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Abstract: In this paper, we propose a novel modeling and a new method-
ology for estimating the location of block boundaries in a random matrix
consisting of a block-wise constant matrix corrupted with white noise. Our
method consists in rewriting this problem as a variable selection issue. A
penalized least-squares criterion with an �1-type penalty is used for dealing
with this problem. Firstly, some theoretical results ensuring the consistency
of our block boundaries estimators are provided. Secondly, we explain how
to implement our approach in a very efficient way. This implementation is
available in the R package blockseg which can be found in the Comprehen-
sive R Archive Network. Thirdly, we provide some numerical experiments
to illustrate the statistical and numerical performance of our package, as
well as a thorough comparison with existing methods. Fourthly, an empiri-
cal procedure is proposed for estimating the number of blocks. Finally, our
approach is applied to HiC data which are used in molecular biology for
better understanding the influence of the chromosomal conformation on the
cells functioning.
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1. Introduction

Detecting automatically the block boundaries in large block wise constant ma-
trices corrupted with noise is a very important issue which may have several
applications. One of the main situations in which this problem occurs is in the
study of HiC data. It corresponds to one of the most recent chromosome con-
formation capture technologies that have been developed to better understand
the influence of the chromosomal conformation on the cells functioning. This
technology is based on a deep sequencing approach and provides read pairs
corresponding to pairs of genomic loci that physically interacts in the nucleus,
see [13] for more details. The raw measurements provided by HiC data are of-
ten summarized as a square matrix where each entry at row i and column j
stands for the total number of read pairs matching in position i and position
j, respectively, see [5] for further details. Positions refer here to a sequence of
non-overlapping windows of equal sizes covering the genome.

Blocks of different intensities arise among this matrix, revealing interacting
genomic regions among which some have already been confirmed to host co-
regulated genes. The purpose of the statistical analysis is then to provide a fully
automated and efficient strategy to determine a decomposition of the matrix in
non-overlapping blocks, which gives, as a by-product, a list of non-overlapping
interacting chromosomic regions. In the following, our goal will thus be to design
an efficient and fully automated method to find the block boundaries of non-
overlapping blocks in very large matrices which can be modeled as block wise
constant matrices corrupted with white noise. As a natural extension to the two-
dimensional case, the positions in columns and rows of the block boundaries
within the observation matrix will also be called change-points. For a more
precise definition, we refer the reader to the beginning of Section 2.

An abundant literature is dedicated to the change-point detection issue for
one-dimensional data both from a theoretical and practical point of view. From
a practical point of view, the standard approach for estimating the change-point
locations is based on least- square fitting, performed via a dynamic programming
algorithm (DP). Indeed, for a given number of change-points K, the dynamic
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programming algorithm, proposed by [3] and [7], takes advantage of the in-
trinsic additive nature of the least-square objective to recursively compute the
optimal change-points locations with a complexity of O(Kn2) in time, see [1]
and [11]. This complexity has recently been improved by [20] and [15] in some
specific cases. Another very popular approach in the one-dimensional case is the
Binary Segmentation method proposed by [22]. However, contrary to the DP
approach, it does not necessary provide the optimal solution of the least-square
minimization problem.

However, in general one-dimensional situations, the computational burden of
the DP based methods is prohibitive to handle very large data sets. In this sit-
uation, [9] proposed to rephrase the change-point estimation issue as a variable
selection problem. This approach has also been extended by [24] to find shared
change-points between several signals. In the two-dimensional case, namely when
matrices have to be processed, no method has been proposed, to the best of our
knowledge, for providing the block boundaries of non overlapping blocks of very
large n×n matrices. In order to be able to process observation matrices coming
from HiC experiments, we aim at being able to handle 5000 × 5000 matrices,
which corresponds to matrices having 2.5× 107 entries. The only statistical ap-
proach proposed for retrieving such non-overlapping block boundaries in this
two-dimensional framework is the one devised by [12] but it is limited to the
case where the block wise matrix is assumed to be block wise constant on the
diagonal and constant outside the diagonal blocks.

The difficulties that we have to face with in the two-dimensional framework
are the following. Firstly, it has to be noticed that the classical dynamic pro-
gramming algorithm cannot be applied in such a framework since the Markov
property does not hold anymore. Secondly, the group-lars approach of [24] can-
not be used in this framework since it would only provide change-points in
columns and not in rows. Thirdly, although very efficient for image denoising,
neither the generalized Lasso approach devised by [23] nor the fused Lasso sig-
nal approximator of [10], which are implemented in the R packages genlasso
and flsa, respectively, give access to the boundaries of non-overlapping blocks
of a noisy block wise constant matrix. This fact is illustrated in Figure 2. The
first column of this figure contains the block wise constant matrix of Figure 1
corrupted with additional noise in high signal to noise ratio contexts. The de-
noising of these noisy matrices obtained by the packages genlasso and flsa is
displayed in the second and third columns of Figure 1, respectively. Note that,
for obtaining these results, we used the default parameters of these packages
and for the parameter λ we used the one giving the denoised matrix being the
closest to the original one in terms of recovered blocks.

In this paper, our goal is thus to design a statistical method for estimating the
location of the boundaries of non-overlapping blocks from a block wise constant
matrix corrupted with white noise. To the best of our knowledge, there is indeed
no statistical procedure for answering this specific question in the literature that
is both computationally and statistically efficient.

The paper is organized as follows. In Section 2, we first describe how to
rephrase the problem of two-dimensional change-point estimation as a high di-
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Fig 1. Block wise constant matrix without noise.

Fig 2. Left: Matrix of Figure 1 corrupted with Gaussian white noise of variance σ. Middle:
Denoising obtained with genlasso. Right: Denoising obtained with flsa.

mensional sparse linear model and give some theoretical results which prove the
consistency of our change-point estimators. In Section 3, we describe how to
efficiently implement our method. Then, we provide in Section 4 experimental
evidence of the relevance of our approach on synthetic data. We conclude in
Section 6 by a thorough analysis of a HiC dataset.

2. Statistical framework

2.1. Statistical modeling

In this section, we explain how the two-dimensional retrospective change-point
estimation issue can be seen as a variable selection problem. Our goal is to
estimate t�1 = (t�1,1, . . . , t

�
1,K�

1
) and t�2 = (t�2,1, . . . , t

�
2,K�

2
) from the random matrix
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Y = (Yi,j)1≤i,j≤n defined by

Y = U+E, (2.1)

where U = (Ui,j) is a blockwise constant matrix such that

Ui,j = μ�
k,� if t�1,k−1 ≤ i ≤ t�1,k − 1 and t�2,�−1 ≤ j ≤ t�2,� − 1,

with the convention t�1,0 = t�2,0 = 1 and t�1,K�
1+1 = t�2,K�

2+1 = n+ 1. An example
of such a matrix U is displayed in Figure 3. The entries Ei,j of the matrix
E = (Ei,j)1≤i,j≤n are iid zero-mean random variables. With such a definition the
Yi,j are assumed to be independent random variables with a blockwise constant
mean.

Fig 3. Left: An example of a matrix U with n = 9, K�
1 = 2 and K�

2 = 3. Right: The matrix
B associated to this matrix U.

Let T be a n × n lower triangular matrix with nonzero elements equal to
one and B a sparse matrix containing null entries except for the Bi,j such
that (i, j) ∈ {t�1,0, . . . , t�1,K�

1
}× {t�2,0, . . . , t�2,K�

2
}. Then, (2.1) can be rewritten as

follows:

Y = TBT� +E, (2.2)

where T� denotes the transpose of the matrix T. For an example of a ma-
trix B, see Figure 3. Let Vec(X) denotes the vectorization of the matrix X
formed by stacking the columns of X into a single column vector then Vec(Y) =
Vec(TBT�) + Vec(E). Hence, by using that Vec(AXC) = (C� ⊗ A)Vec(X),
where ⊗ denotes the Kronecker product, (2.2) can be rewritten as:

Y = XB + E , (2.3)

where Y = Vec(Y), X = T ⊗ T, B = Vec(B) and E = Vec(E). Thanks to
these transformations, Model (2.1) has thus been rephrased as a sparse high
dimensional linear model where Y and E are n2 × 1 column vectors, X is a
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n2 × n2 matrix and B is n2 × 1 sparse column vectors. Multiple change-point
estimation Problem (2.1) can thus be addressed as a variable selection problem:

B̂(λn) = Argmin
B∈Rn2

{
‖Y − XB‖22 + λn‖B‖1

}
, (2.4)

where ‖u‖22 and ‖u‖1 are defined for a vector u in R
N by ‖u‖22 =

∑N
i=1 u

2
i

and ‖u‖1 =
∑N

i=1 |ui|. Criterion (2.4) is related to the popular Least Absolute
Shrinkage and Selection Operator (LASSO) in least-square regression. Thanks to

the sparsity enforcing property of the �1-norm, the estimator B̂ of B is expected
to be sparse and to have non-zero elements matching with those of B. Hence,
retrieving the positions of the non zero elements of B̂ thus provides estimators
of (t�1,k)1≤k≤K�

1
and of (t�2,k)1≤k≤K�

2
. More precisely, let us define by Â(λn) the

set of active variables:

Â(λn) =
{
j ∈ {1, . . . , n2} : B̂j(λn) �= 0

}
.

For each j in Â(λn), consider the Euclidean division of (j − 1) by n, namely
(j − 1) = nqj + rj then

t̂1 = (t̂1,k)1≤k≤|Â1(λn)| ∈ {rj + 1 : j ∈ Â(λn)},

t̂2 = (t̂2,�)1≤�≤|Â2(λn)| ∈ {qj + 1 : j ∈ Â(λn)}
where t̂1,1 < t̂1,2 < · · · < t̂1,|Â1(λn)|, t̂2,1 < t̂2,2 < · · · < t̂2,|Â2(λn)|. (2.5)

In (2.5), |Â1(λn)| and |Â2(λn)| correspond to the number of distinct elements

in {rj : j ∈ Â(λn)} and {qj : j ∈ Â(λn)}, respectively.
As far as we know, neither thorough practical implementation nor theoretical

grounding have been given so far to support such an approach for change-point
estimation in the two-dimensional case. In the following section, we give theo-
retical results supporting the use of such an approach.

2.2. Theoretical results

In order to establish the consistency of the estimators t̂1 and t̂2 defined in
(2.5), we shall use assumptions (A1–A4). These assumptions involve the two
following quantities

I�min = min
0≤k≤K�

1

|t�1,k+1 − t�1,k| ∧ min
0≤k≤K�

2

|t�2,k+1 − t�2,k|,

J�
min = min

1≤k≤K�
1 ,1≤�≤K�

2+1
|μ�

k+1,� − μ�
k,�| ∧ min

1≤k≤K�
1+1,1≤�≤K�

2

|μ�
k,�+1 − μ�

k,�|,

which corresponds to the smallest length between two consecutive change-points
and to the smallest jump size between two consecutive blocks, respectively.
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(A1) The random variables (Ei,j)1≤i,j≤n are iid zero mean random variables
such that there exists a positive constant β such that for all ν in R,
E[exp(νE1,1)] ≤ exp(βν2).

(A2) The sequence (δn) is a non increasing and positive sequence tending to
zero such that nδnJ

�
min

2/ log(n) → ∞, as n tends to infinity.

(A3) The sequence (λn) appearing in (2.4) is such that (nδnJ
�
min)

−1λn → 0, as
n tends to infinity.

(A4) I�min ≥ nδn.

The following proposition ensures that the distance between each estimated
and true change-point is less than nδn, where δn is a non increasing and positive
sequence tending to zero defined in (A2), (A3) and (A4), with a probability
tending to 1, as n → ∞.

Proposition 1. Let (Yi,j)1≤i,j≤n be defined by (2.1) and t̂1,k, t̂2,k be defined by

(2.5). Assume that (A1)–(A4) hold. Assume also that |Â1(λn)| = K�
1 and that

|Â2(λn)| = K�
2 , with probabilty tending to one. Then,

P

({
max

1≤k≤K�
1

∣∣t̂1,k − t�1,k
∣∣ ≤ nδn

}
∩
{

max
1≤k≤K�

2

∣∣t̂2,k − t�2,k
∣∣ ≤ nδn

})
→ 1,

as n → ∞. (2.6)

The proof of Proposition 1 is based on the two following lemmas. The first
one comes from the Karush-Kuhn-Tucker conditions of the optimization prob-
lem stated in (2.4). The second one allows us to control the supremum of the
empirical mean of the noise.

Lemma 2. Let (Yi,j)1≤i,j≤n be defined by (2.1). Then, Û = XB̂, where X and

B̂ are defined in (2.3) and (2.4) respectively, is such that

n∑
k=rj+1

n∑
�=qj+1

Yk,� −
n∑

k=rj+1

n∑
�=qj+1

Ûk,� =
λn

2
sign(B̂j), if B̂j �= 0, (2.7)

∣∣∣∣∣∣
n∑

k=rj+1

n∑
�=qj+1

Yk,� −
n∑

k=rj+1

n∑
�=qj+1

Ûk,�

∣∣∣∣∣∣ ≤
λn

2
, if B̂j = 0, (2.8)

where qj and rj are the quotient and the remainder of the Euclidean division of
(j − 1) by n, respectively, that is (j − 1) = nqj + rj. In (2.7), sign denotes the
function which is defined by sign(x) = 1, if x > 0, −1, if x < 0 and 0 if x = 0.

Moreover, the matrix Û, which is such that Û = Vec(Û), is blockwise constant

and satisfies Ûi,j = μ̂k,�, if t̂1,k−1 ≤ i ≤ t̂1,k − 1 and t̂2,�−1 ≤ j ≤ t̂2,� − 1,

k ∈ {1, . . . , |Â1(λn)|}, � ∈ {1, . . . , |Â2(λn)|}, where the t̂1,k, t̂2,k, Â1(λn) and

Â2(λn) are defined in (2.5).
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Lemma 3. Let (Ei,j)1≤i,j≤n be random variables satisfying (A1). Let also (vn)
and (xn) be two positive sequences such that vnx

2
n/ log(n) → ∞, then

P

⎛
⎝ max

1≤rn<sn≤n

|rn−sn|≥vn

∣∣∣∣∣∣(sn − rn)
−1

sn−1∑
j=rn

En,j

∣∣∣∣∣∣ ≥ xn

⎞
⎠ → 0, as n → ∞,

the result remaining valid if En,j is replaced by Ej,n.

The proofs of Proposition 1, Lemmas 2 and 3 are given in Appendix A.

Remark. If Y is a non square matrix having n1 rows and n2 columns, with n1 �=
n2, the result of Proposition 1 remains valid if in Assumption (A2) δn is replaced
by δn1,n2 satisfying n1δn1,n2J

�
min

2/ log(n2) → ∞ and n2δn1,n2J
�
min

2/ log(n1) →
∞, as n1 and n2 tend to infinity.

3. Implementation

In order to identify a series of change-points we look for the whole path of
solutions in (2.4), i.e., {B̂(λ), λmin < λ < λmax} such that |Â(λmax)| = 0 and
|Â(λmin)| = s with s a predefined maximal number of activated variables. To
this end it is natural to adopt the famous homotopy/LARS strategy of [18, 6].
Such an algorithm identifies in Problem (2.4) the successive values of λ that
correspond to the activation of a new variable, or the deletion of one that became
irrelevant. However, the existing implementations do not apply here since the
size of the design matrix X – even for reasonable n – is challenging both in
terms of memory requirement and computational burden. To overcome these
limitations, we need to take advantage of the particular structure of the problem.
In the following lemmas (which are proved in Appendix A), we show that the
most involving computations in the LARS can be made extremely efficiently
thanks to the particular structure of X .

Lemma 4. For any vector v ∈ R
n2

, computing Xv and X�v requires at worse
2n2 operations.

Lemma 5. Let A = {a1, . . . , aK} and for each j in A let us consider the
Euclidean division of j − 1 by n given by j − 1 = nqj + rj, then((

X�X
)
A,A

)
1≤k,�≤K

= ((n− (qak
∨ qa�

))× (n− (rak
∨ ra�

)))1≤k,�≤K . (3.1)

Moreover, for any non empty subset A of distinct indices in
{
1, . . . , n2

}
, the

matrix X�
AXA is invertible.

Lemma 6. Assume that we have at our disposal the Cholesky factorization of
X�

AXA. The updated factorization on the extended set A ∪ {j} only requires
solving a |A|-size triangular system, with complexity O(|A|2). Moreover, the
downdated factorization on the restricted set A\{j} requires a rotation with
negligible cost to preserve the triangular form of the Cholesky factorization after
a column deletion.
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Remark. We were able to obtain a closed-form expression of the inverse
(X�

AXA)
−1 for some special cases of the subset A, namely, when the quo-

tients/ratios associated with the Euclidean divisions of the elements of A are en-
dowed with a particular ordering. Moreover, for addressing any general problem,
we rather solve systems involving X�

AXA by means of a Cholesky factorization
which is updated along the homotopy algorithm. These updates correspond to
adding or removing an element at a time in A and are performed efficiently as
stated in Lemma 6.

These lemmas are the building blocks for our LARS implementation given
in Algorithm 1, where we detail the leading complexity associated with each
part. The global complexity is in O(mn2 + ms2) where m is the final number
of steps in the while loop. These steps include all the successive additions and
deletions needed to reach s, the final targeted number of active variables. At the
end of day, we have m block wise prediction Ŷ associated with the series of m
estimations of B̂(λ). The above complexity should be compared with the usual
complexity of the LARS algorithm, when no particular structure is at play in
Problem (2.4): in such a case, a implementation of the LARS as in [2] would be
at least in O(mn4 +ms2).

Algorithm 1: Fast LARS for two-dimensional change-point estimation
Input: data matrix Y, maximal number of active variables s.

// Initialization

Start with no change-point A ← ∅, B̂ = 0

Compute current correlations ĉ = X�Y with Lemma 4 // O(n2)
while λ > 0 or |A| < s do

// Update the set of active variables

Determine next change-point(s) by setting λ ← ‖ĉ‖∞ and A ← {j : ĉj = λ}
Update the Cholesky factorization of X�

AXA with Lemma 5 // O(|A|2)

// Compute the direction of descent

Get the unormalized direction w̃A ←
(
X�

·AX·A
)−1

sign(ĉA) // O(|A|2)
Normalize wA ← αw̃A with α ← 1/

√
w̃�

Asign(ĉA)

Compute the equiangular vector uA = XAwA and a = X�uA with Lemma 4
// O(n2)

// Compute the direction step

Find the maximal step preserving equicorrelation γin ← min+j∈Ac

{
λ−cj
α−aj

,
λ+cj
α+aj

}
Find the maximal step preserving the signs γout ← min+j∈A

{
−B̂A/wA

}
The direction step that preserves both is γ̂ ← min(γin, γout)

Update the correlations ĉ ← ĉ− γ̂a and B̂A ← B̂A + γ̂wA accordingly // O(n)

// Drop variable crossing the zero line

if γout < γin then

Remove existing change-point(s) A ← A\
{
j ∈ A : B̂j = 0

}
Downdate the Cholesky factorization of X�

AXA // O(|A|)

Output: Sequence of triplet (A, λ, B̂) recorded at each iteration.
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In all our experiments the number of stepsm required to reach a given number
of change-points s was always of the same order as s, as argued in the original
LARS paper of [6]. However, there is no theoretical guarantee for m to be small:
Indeed, it is possible to build artificial designs where m is equal to s3, see [16].
Mairal and Yu in [16] propose a slight modification of the LARS to overcome
this issue, that can be applied to our implementation.

Concerning the memory requirements, we only need to store the n× n data
matrixY once. Indeed, since we have at our disposal the analytic form of any sub
matrix extracted from X�X , we never need to compute neither store this large
n2 × n2 matrix. This paves the way for quickly processing data with thousands
of rows and columns.

4. Simulation study

In this Section, we conduct a set of simulation studies to assess the performances
of our proposal. First, we report the computational performances of Algorithm 1
and of its practical implementation in terms of timings. Second, we report the
statistical performances of our estimators (2.5) for recovering the true change-
points by means of Receiver Operating Characteristic (ROC) curves.

4.1. Data generation

All synthetic data are generated fromModel (2.1). We control the computational
difficulty of the problem by varying the sample size n. The statistical difficulty
is controlled by varying σ, the standard deviation of the Gaussian noise E. We
chose different patterns for the true matrix U� designed to mimic the variety
of block matrix structures met in Hi-C data. These patterns are obtained by
changing the parameters μ�

k,�s, each of whom controlling the intensity in block
(k, �) of U�. We consider four different scenarios, all with K�

1 = 4 change-points
along the rows and K�

2 = 4 change-points along the columns.

(
μ
�,(1)
k,�

)
=

⎛
⎜⎜⎜⎜⎝
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎞
⎟⎟⎟⎟⎠ ,

(
μ
�,(2)
k,�

)
=

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

(
μ
�,(3)
k,�

)
=

⎛
⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 1 1 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

(
μ
�,(4)
k,�

)
=

⎛
⎜⎜⎜⎜⎝

0 −1 −1 −1 −1
−1 −1 0 −1 0
−1 0 1 0 1
−1 −1 0 −1 0
−1 0 1 0 1

⎞
⎟⎟⎟⎟⎠ .

(4.1)
Examples of matrices Y are displayed in Figure 4 for these four scenarios,

with n = 100 and σ = 1 which corresponds to a relatively small level of noise
in this problem.
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Fig 4. Data matrices Y drawn from Model 2.1 for σ = 1, n = 100 and various block wise
pattern for U�.

The first (μ
�,(1)
k,� ) corresponds to a “checkerboard-shaped” matrix, that is,

a natural two dimensional extension of a one dimensional piece-wise constant
problem.

The second (μ
�,(2)
k,� ) defines a block diagonal model that mimics the cis-

interactions in the human Hi-C experiments: these are the most usual interac-
tions found in the cell, which occur between nearby elements along the genome.

The third (μ
�,(3)
k,� ) and fourth (μ

�,(4)
k,� ) configurations describe more complex

patterns that can be found when trans-interactions occur in Hi-C experiments.
They also correspond to more difficult change-points problems.

4.2. Competitors and implementation details

In our experiments, we compare our methodology with popular methods for
segmentation and variable selection that we adapted to the specific problem of
two-dimensional change-points detection:

1. First, we adapt Breiman et al.’s classification and regression trees [4] (here-
after called CART) by using the successive boundaries provided by CART
as change-points for the two-dimensional data. We use the implementation
provided by the publicly available R package rpart.

2. Second, we adapt Harchaoui and Lévy-Leduc’s method [9] (hereafter HL),
which is the exact one-dimensional counterpart of our approach. To anal-
yse two-dimensional data, we apply this procedure to each row of Y in
order to recover the change-points of each row. The change-points ap-
pearing in the different rows are claimed to be change-points for the two-
dimensional data either if they appear at least in one row (variant HL1) or
if they appear in ([n/2]+1) rows (variant HL2). This approach is fitted by
solving n Lasso problems (one per row of Y) by means of the R package
glmnet.

3. Third, we consider an adaptation of the fused-Lasso (hereafter FL2D). In-
deed, as illustrated in the introduction, the basic 2-dimensional fused-
Lasso for signal approximator is not tailored for recovering change points.
We thus consider the following variant, which applied a fused-Lasso penalty
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on the following linear model:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1n 0n · · · · · · 0n In

0n 1n
. . .

...
...

...
. . .

. . .
. . .

...
...

...
. . . 1n 0n

...
0n · · · · · · 0n 1n In

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
X (FL)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β
(FL)
1
...

β
(FL)
n

β
(FL)
n+1
...

β
(FL)
2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
B(FL)

+ E

where 1n (resp. 0n) is a size-n column vector of ones (resp. zeros), In a
n × n-diagonal matrix of ones and Y , E are defined as in Equation (2.3).
The FL2D method detects a change-point in columns (resp. in row) if two

successive values β
(FL)
i and β

(FL)
i+1 with 1 ≤ i ≤ n − 1 (resp. n + 1 ≤

i ≤ 2n − 1) are different. To solve this problem, we must fit a general
fused-Lasso problem. We rely on the R package genlasso for this task.

4. Finally, our own procedure, that we call blockseg, is implemented in the R
package blockseg which is available from the Comprehensive R Archive
Network (CRAN, [19]). Most of the computation are performed in C++

using the library armadillo for linear algebra [21].

In what follows, all experiments were conducted on a Linux workstation with
Intel Xeon 2.4 GHz processor and 8 GB of memory.

4.3. Numerical performances

We start by presenting in Figure 5 the computational times for 100 runs of
each method applied to a matrix drawn from the “checkerboard” scenario, with
n = 100 and σ = 5. Each run provides the estimated change-points in rows and
columns for all the possible number of change-points in rows and in columns,
that is all the values between 1 and n.

Independent of its statistical performance, we can see on this small problem
that the adaptation of the fused-Lasso cannot be used for analyzing real Hi-C
problems. On the other hand, our modified CART procedure is extremely fast.
However, we will see that its statistical performances are quite poor. Finally,
our implementation blockseg is quite efficient as it clearly outperforms HL.
This should be emphasized since blockseg is a two-dimensional method dealing
with data with size n2, while HL is a 1-dimensional approach that addresses two
univariate problems of size n.

We now consider blockseg on its own in order to study the scalability of our
approach regarding the problem dimension. To this end, we generated “checker-

board” matrix
(
μ
�,(1)
k,�

)
given in (4.1) with various sizes n (from 100 to 5000)

and various values of the maximal number of activated variables s (from 50
to 750). The median runtimes obtained from 4 replications (+ 2 for warm-up)
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Fig 5. Boxplots of the computational times for 100 runs (one point per run) of each procedure:
CART methodology (CART), adaptation of [9] (HL), our method (blockseg) and fused LASSO
(FL).

Fig 6. Left: Computational time (in seconds) for various values of n as a function of the
sparsity level s = |A| reached at the end of the algorithm. Right: Computation time (in
seconds) as a function of sample size n.

are reported in Figures 6. The left (resp. the right) panel gives the runtimes in
seconds as a function of s (resp. of n). These results give experimental evidence
for the theoretical complexity O(mn2 +ms2) that we established in Section 3
and thus for the computational efficiency of our approach: applying blockseg

to matrices containing 107 entries takes less than 2 minutes for s = 750.

4.4. Statistical performances

We evaluate the performance of the different competitors for recovering the
true change-points in the 4 scenarios defined in Section 4.1 for an increasing
level of difficulty. We draw 1000 datasets for each scenario for a varying level
of noise σ ∈ {1, 2, 5, 10} and for a problem size of n = 100. Note that we use
this relatively small problem size to allow the comparison with methods HL and
FL2D that would not work for greater values of n.

Figure 7 shows the results in terms of receiver operating characteristic (ROC)
curves for recovering the change-points in rows, averaged over the 1000 runs.
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Fig 7. ROC curves for the estimated change-points in rows for blockseg (dotted green), HL1
(double-dashed purple), HL2 (in dotted blue), CART (solid red) and FL2D (long-dashed orange).
Each row is associated to a scenario depicted in Section 4.1.

Similar results hold for the change-points in columns. This Figure exhibits the
very good performance of our method, which outperforms its competitors by
retrieving the change-points with a very small error rate even in high noise
level frameworks. Moreover, our method seems to be less sensitive to the block
pattern shape in matrix U than the other ones. In order to further assess our
approach we give in Figure 8 the boxplots of the Area Under Curve (AUC) for
the different ROC curves. We also give in Table 1 the mean of the AUC and the
associated standard deviation.

In order to further compare the different approaches we generated matrices

Y satisfying Model (2.1) with a “checkerboard” matrix
(
μ
�,(1)
k,�

)
given in (4.1)

for n ∈ {50, 100, 250}. We observe from Table 2 that the performance of our
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Fig 8. Boxplots of the area under the ROC curve for the different scenarios and the different
algorithms as a function of the noise variance.

Table 1

Mean and standard deviation of the area under the ROC curve for the different scenarios,
different algorithms and different values of the noise variance.

Scenario 1 Scenario 2
σ = 1 σ = 2 σ = 5 σ = 10 σ = 1 σ = 2 σ = 5 σ = 10

blockseg
0.972 0.913 0.733 0.644 0.977 0.896 0.689 0.617

(0.0145) (0.0421) (0.0988) (0.118) (0.0206) (0.0555) (0.107) (0.123)

FL2D
0.918 0.738 0.623 0.608 0.608 0.603 0.601 0.603
(0.102) (0.139) (0.127) (0.13) (0.116) (0.125) (0.127) (0.127)

HL1
0.618 0.535 0.407 0.363 0.635 0.505 0.382 0.351

(0.0427) (0.0708) (0.102) (0.108) (0.0535) (0.0874) (0.105) (0.107)

HL2
0.576 0.448 0.337 0.323 0.498 0.374 0.326 0.317

(0.0744) (0.0713) (0.0734) (0.072) (0.0653) (0.0777) (0.0727) (0.0745)

CART
0.482 0.497 0.498 0.486 0.496 0.487 0.491 0.484
(0.107) (0.107) (0.117) (0.119) (0.112) (0.124) (0.126) (0.118)

Scenario 3 Scenario 4
σ = 1 σ = 2 σ = 5 σ = 10 σ = 1 σ = 2 σ = 5 σ = 10

blockseg
0.983 0.945 0.758 0.63 0.983 0.977 0.866 0.707

(0.0114) (0.0391) (0.113) (0.125) (0.00927) (0.0179) (0.102) (0.124)

FL2D
0.799 0.772 0.667 0.623 0.969 0.931 0.789 0.68

(0.0855) (0.0956) (0.121) (0.121) (0.051) (0.0722) (0.135) (0.134)

HL1
0.575 0.479 0.391 0.368 0.556 0.504 0.418 0.368

(0.0458) (0.0819) (0.0981) (0.105) (0.0252) (0.0514) (0.0974) (0.11)

HL2
0.524 0.384 0.326 0.319 0.616 0.416 0.327 0.316

(0.0612) (0.0711) (0.0716) (0.0738) (0.0527) (0.0696) (0.0714) (0.067)

CART
0.474 0.485 0.495 0.502 0.484 0.493 0.512 0.516
(0.106) (0.11) (0.114) (0.115) (0.0905) (0.0889) (0.0985) (0.111)
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Table 2

Mean and standard deviation of the area under the ROC curve as a function of the standard
deviation of the noise, the algorithms and the size of the matrices. The crosses correspond

to cases where the results are not available.

σ = 1 σ = 2
n = 50 n = 100 n = 250 n = 50 n = 100 n = 250

blockseg
0.896 0.972 0.993 0.791 0.923 0.982

(0.0425) (0.0162) (0.00463) (0.0789) (0.0398) (0.00865)

FL2D
0.814 0.906 X 0.679 0.753 X
(0.132) (0.0997) (0.133) (0.128)

HL1
0.574 0.619 0.66 0.467 0.527 0.611

(0.0598) (0.0426) (0.0255) (0.0899) (0.084) (0.0513)

HL2
0.56 0.573 0.59 0.424 0.451 0.472

(0.101) (0.0642) (0.0432) (0.0972) (0.0713) (0.0467)

CART
0.445 0.479 0.498 0.487 0.487 0.512
(0.123) (0.108) (0.0589) (0.125) (0.114) (0.0708)

σ = 5 σ = 10
n = 50 n = 100 n = 250 n = 50 n = 100 n = 250

blockseg
0.646 0.739 0.91 0.577 0.642 0.766
(0.127) (0.11) (0.0394) (0.112) (0.124) (0.0867)

FL2D
0.631 0.629 X 0.602 0.616 X
(0.132) (0.125) (0.118) (0.115)

HL1
0.382 0.397 0.481 0.364 0.35 0.386
(0.106) (0.107) (0.0909) (0.103) (0.108) (0.115)

HL2
0.333 0.342 0.341 0.325 0.313 0.317

(0.0905) (0.0775) (0.0451) (0.083) (0.0729) (0.0539)

CART
0.488 0.501 0.497 0.466 0.483 0.48
(0.115) (0.119) (0.0917) (0.129) (0.131) (0.117)

method are on a par with those of FL2D for n = 50 and 100. However, for
n = 250 the computational burden of FL2D is so large that the results are not
available, see the blue crosses in Table 2. The AUC are also displayed with
boxplots in Figure 9.

5. Model selection

In the previous experiments we did not need to explain how to choose the
number of estimated change-points since we used ROC curves for comparing
the methodologies. However, in real data applications, it is necessary to propose
a methodology for estimating the number of change-points. This is what we
explain in the following.

In practice, we take s = K2
max where Kmax is an upper bound for K�

1 and
K�

2 . For choosing the final change-points we shall adapt the well-known stability
selection approach devised by [17]. More precisely, we randomly choose M times
n/2 columns and n/2 rows of the matrix Y and for each subsample we select
s = K2

max active variables. Finally, after the M data resamplings, we keep the
change-points which appear a number of times larger than a given threshold.
By the definition of the change-points given in (2.5), a change-point t̂1,k or t̂2,�
may appear several times in a given set of resampled observations. Hence, the
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Fig 9. Boxplots of the area under the ROC curve as a function of the standard deviation of
the noise, the size of the matrices and the methods.

score associated with each change-point corresponds to the sum of the number
of times it appears in each of the M subsamplings.

To evaluate the performances of this methodology, we generated observations

according to the “checkerboard” model defined in (2.1) with (μ
�,(1)
k,� ) defined in

(4.1), s = 225 and M = 100. The results are given in Figure 10 which displays
the score associated to each change-point for a given matrix Y. We can see from
this figure that there are some spurious change-points close to the true change-
point positions. In order to identify the most representative change-point in
a given neighborhood, we keep the one with the largest score among a set of
contiguous candidates. The result of such a post-processing is displayed in the
first row of Figure 11. More precisely the boxplots associated to the estimation of
K�

1 (resp. the histograms of the estimated change-points in rows) are displayed
for different values of σ and different thresholds expressed as a percentage of
the largest score. We can see from these figures that when the threshold is in
the interval [20, 40] the number and the location of the change-points are very
well estimated even in the high noise level case.

In order to further assess our methodology including the post-processing step
and to be in a framework closer to our real data application, we generated
observations following (2.1) with n = 1000 and K�

1 = K�
2 = 100 where we

used for the matrix U the same shape as the one of the matrix (μ
�,(1)
k,� ) except
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Fig 10. Scores associated to each estimated change-points for different values of σ; the true
change-point positions in rows and columns are located at 101, 201, 301 and 401.

Fig 11. Top row: Boxplots of the estimation of K�
1 for different values of σ and threshold after

the post-processing step; 3 bottom rows: Barplots of the estimated change-points for different
values of σ (columns) and different thresholds (rows) for the model μ�,(1).
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Fig 12. Top row: Boxplots of the estimation of K�
1 for different values of σ and thresholds

after the post-processing step; 3 bottom rows: Barplots of the estimated change-points for
different variances (columns) and different thresholds (rows) in the case where n = 1000 and
K�

1 = K�
2 = 100.

that K�
1 = K�

2 = 100. In this framework, the proportion of change-points is
thus ten times larger than the one of the previous case. The corresponding
results are displayed in Figures 12 and 13. We can see from the last figure that
taking a threshold equal to 20% provides the best estimations of the number and
of the change-point positions. This threshold corresponds to the lower bound
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Fig 13. Zoom of the barplots of Figure 12.

of the thresholds interval obtained in the previous configuration. Our package
blockseg provides an estimation of the matrix U for any threshold given by
the user as we shall explain in the next section.

6. Application to HiC data

In this section, we apply our methodology to publicly available HiC data
(http://chromosome.sdsc.edu/mouse/hi-c/download.html) already studied
by [5]. This technology is based on a deep sequencing approach and provides
read pairs corresponding to pairs of genomic loci that physically interacts in the
nucleus, see [13] for more details. The raw measurements provided by HiC data
is therefore a list of pairs of locations along the chromosome, at the nucleotide
resolution. These measurement are often summarized as a square matrix where
each entry at row i and column j stands for the total number of read pairs

http://chromosome.sdsc.edu/mouse/hi-c/download.html
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Fig 14. Plots of the estimated change-points locations (x-axis) for different thresholds (y-axis)
from 0.5% to 50% by 0.5% for Chromosome 1 (left) and Chromosome 19 (right). The esti-
mated change-point locations associated to threshold which are multiples of 5% are displayed
in red.

matching in position i and position j, respectively. Positions refer here to a
sequence of non-overlapping windows of equal sizes covering the genome. The
number of windows may vary from one study to another: [13] considered a Mb
resolution, whereas [5] went deeper and used windows of 40kb (called hereafter
the resolution).

In our study, we processed the interaction matrices of Chromosomes 1 and
19 of the mouse cortex at a resolution 40 kb and we compared the number
and the location of the estimated change-points found by our approach with
those obtained by [5] on the same data since no ground truth is available. More
precisely, in the case of Chromosome 1, n = 4930 and in the case of Chromosome
19, n = 1534.

Let us first give the results obtained by using our methodology. Figure 14 dis-
plays the change-point locations obtained for the different values of the threshold
used in our adaptation of the stability selection approach and defined in Sec-
tion 5. The corresponding estimated matrices Ŷ = Û for Chromosome 1 and
19 are displayed in Figure 15 when the thresholds are equal to 10, 15 and 20%,
which correspond to the red horizontal levels in Figure 14.

In order to compare our approach with the technique devised by [5], we dis-
play in Figure 16 the number of change-points in rows found by our methodology
as a function of the threshold and a red line corresponding to the number of
change-points found by [5]. Note that we did not display the change-points in
columns in order to save space since they are similar.

We also compute the two parts of the Hausdorff distance for the change-points
in rows which is defined by

d
(
t̂B , t̂

)
= max

(
d1

(
t̂B , t̂

)
, d2

(
t̂B , t̂

))
, (6.1)

where t̂ and t̂B are the change-points in rows found by our approach and [5],
respectively. In (6.1),
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Fig 15. Estimated matrices Ŷ = Û for Chromosomes 1 and 19 for the thresholds 10, 15 and
20%.

Fig 16. Number of change-points in rows found by our approach as a function of the threshold
(in %) for the interaction matrices of Chromosome 1 (left) and Chromosome 19 (right) of
the mouse cortex. The red line corresponds to the number of change-points found by [5].

d1 (a,b) = sup
b∈b

inf
a∈a

|a− b| , (6.2)

d2 (a,b) = d1 (b,a) . (6.3)

More precisely, Figure 17 displays the boxplots of the d1 and d2 parts of the
Hausdorff distance without taking the supremum in orange and blue, respec-
tively.

We can observe from Figure 17 that some differences indeed exist between
the segmentations produced by the two approaches but that the boundaries of
the blocks are quite close when the number of estimated change-points are the
same, which is the case when thresh = 1.8% (left) and 10% (right).



1592 V. Brault et al.

Fig 17. Boxplots for the infimum parts of the Hausdorff distances d1 (orange) and d2 (blue)
between the change-points found by [5] and our approach for the Chromosome 1 (left) and
the Chromosome 19 (right) of the mouse cortex for the different thresholds in %.

Fig 18. Topological domains detected by [5] (upper triangular part of the matrix) and by our
method (lower triangular part of the matrix) from the interaction matrix of Chromosome 1
(left) and Chromosome 19 (right) of the mouse cortex with a threshold giving 232 (resp 85)
estimated change-points in rows and columns.

In the case where the number of estimated change-points are on a par with
those of [5], we can see from Figure 18 that the change-points found with our
strategy present a lot of similarities with those found by the HMM based ap-
proach of [5]. However, contrary to our method, the approach of [5] can only
deal with binned data at the resolution of several kilobases of nucleotides. The
very low computational burden of our strategy paves the way for processing
data collected at a very high resolution, namely at the nucleotide resolution,
which is one of the main current challenges of molecular biology.

7. Conclusion

In this paper, we proposed a novel approach for retrieving the boundaries of a
block wise constant matrix corrupted with noise by rephrasing this problem as a
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variable selection issue. Our approach is implemented in the R package blockseg
which is available from the Comprehensive R Archive Network (CRAN).

In the course of this study, we have shown that our method has two main
features which make it very attractive. Firstly, it is very efficient both from the
theoretical and practical point of view. Secondly, its very low computational
burden makes its use possible on very large data sets coming from molecular
biology.

However, in view of applying our approach to HiC data experiments, it could
be interesting to develop a methodology which could deal with change-points
that do not affect all rows and columns simultaneously. This will be the subject
of a future work.

Appendix A: Proofs

A.1. Proofs of statistical results

Proof of Lemma 2. A necessary and sufficient condition for a vector B̂ in R
n2

to

minimize the function Φ defined by: Φ(B) =
∑n2

i=1(Yi− (XB)i)2+λn

∑n2

i=1 |Bi|,
is that the zero vector in R

n2

belongs to the subdifferential of Φ at B̂ that is:

(
X�(Y − XB̂)

)
j
=

λn

2
, if B̂j �= 0,∣∣∣∣(X�(Y − XB̂)

)
j

∣∣∣∣ ≤ λn

2
, if B̂j = 0.

Using that X�Y = (T⊗T)
�Y = (T� ⊗ T�)Y = Vec(T�YT), where

(T�YT)i,j =
∑n

k=i

∑n
�=j Yk,�, and that Û = XB̂, Lemma 2 is proved.

Proof of Lemma 3. Note that

P

⎛
⎝ max

1≤rn<sn≤n

|rn−sn|≥vn

∣∣∣∣∣∣(sn − rn)
−1

sn−1∑
j=rn

En,j

∣∣∣∣∣∣ ≥ xn

⎞
⎠

≤
∑

1≤rn<sn≤n

|rn−sn|≥vn

P

⎛
⎝
∣∣∣∣∣∣(sn − rn)

−1
sn−1∑
j=rn

En,j

∣∣∣∣∣∣ ≥ xn

⎞
⎠ .

By (A1) and the Markov inequality, we get that for all positive η,

P

⎛
⎝(sn − rn)

−1
sn−1∑
j=rn

En,j ≥ xn

⎞
⎠ ≤ exp[−η(sn − rn)xn](E(exp(ηE1,1)))

sn−rn

≤ exp[−η(sn − rn)xn + βη2(sn − rn)].
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By taking η = xn/(2β), we get that

P

⎛
⎝(sn − rn)

−1
sn−1∑
j=rn

En,j ≥ xn

⎞
⎠ ≤ exp[−x2

n(sn − rn)/(4β)].

Since the same result is valid for −En,j , we get that

P

⎛
⎝ max

1≤rn<sn≤n

|rn−sn|≥vn

∣∣∣∣∣∣(sn − rn)
−1

sn−1∑
j=rn

En,j

∣∣∣∣∣∣ ≥ xn

⎞
⎠ ≤ 2n2 exp[−x2

nvn/(4β)],

which concludes the proof of Lemma 3.

Proof of Proposition 1. Since

P

({
max

1≤k≤K�
1

∣∣t̂1,k − t�1,k
∣∣ > nδn

}
∪
{

max
1≤k≤K�

2

∣∣t̂2,k − t�2,k
∣∣ > nδn

})

≤ P

(
max

1≤k≤K�
1

∣∣t̂1,k − t�1,k
∣∣ > nδn

)
+ P

(
max

1≤k≤K�
2

∣∣t̂2,k − t�2,k
∣∣ > nδn

)
, (A.1)

it is enough to prove that both terms in (A.1) tend to zero for proving (2.6). We
shall only prove that the second term in the rhs of (A.1) tends to zero, the proof
being the same for the first term. Since P(max1≤k≤K�

2
|t̂2,k − t�2,k| > nδn) ≤∑K�

2

k=1 P(|t̂2,k − t�2,k| > nδn), it is enough to prove that for all k in {1, . . . ,K�
2},

P(An,k) → 0, where An,k = {|t̂2,k − t�2,k| > nδn}. Let Cn be defined by

Cn =

{
max

1≤k≤K�
2

|t̂2,k − t�2,k| < I�min,2/2

}
. (A.2)

It is enough to prove that, for all k in {1, . . . ,K�
2}, P(An,k∩Cn) and P(An,k∩Cn)

tend to 0, as n tends to infinity.
Let us first prove that for all k in {1, . . . ,K�

2}, P(An,k ∩ Cn) → 0. Observe
that (A.2) implies that t�2,k−1 < t̂2,k < t�2,k+1, for all k in {1, . . . ,K�

2}. For a

given k, let us assume that t̂2,k ≤ t�2,k. Applying (2.7) and (2.8) with rj +1 = n,

qj + 1 = t̂2,k on the one hand and rj + 1 = n, qj + 1 = t�2,k on the other hand,
we get that ∣∣∣∣∣∣

t�2,k−1∑
j=t̂2,k

Yn,j −
t�2,k−1∑
j=t̂2,k

Ûn,j

∣∣∣∣∣∣ ≤ λn.

Hence using (2.1), the notation: E([a, b]; [c, d]) =
∑b

i=a

∑d
j=c Ei,j and the defi-

nition of Û given by Lemma 2, we obtain that∣∣∣(t�2,k − t̂2,k)(μ
�
K�

1+1,k − μ̂K�
1+1,k+1) +E(n; [t̂2,k, t

�
2,k − 1])

∣∣∣ ≤ λn,
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which can be rewritten as follows∣∣∣(t�2,k − t̂2,k)(μ
�
K�

1+1,k − μ�
K�

1+1,k+1) + (t�2,k − t̂2,k)(μ
�
K�

1+1,k+1 − μ̂K�
1+1,k+1)

+E(n; [t̂2,k, t
�
2,k − 1])

∣∣ ≤ λn.

Thus,

P(An,k ∩ Cn) ≤ P(λn/(nδn) ≥ |μ�
K�

1+1,k − μ�
K�

1+1,k+1|/3)
+ P({|μ�

K�
1+1,k − μ̂K�

1+1,k+1| ≥ |μ�
K�

1+1,k − μ�
K�

1+1,k+1|/3} ∩ Cn)

+ P({|E(n; [t̂2,k, t
�
2,k − 1])|/|t�2,k − t̂2,k| ≥ |μ�

K�
1+1,k − μ�

K�
1+1,k+1|/3} ∩An,k).

(A.3)

The first term in the rhs of (A.3) tends to 0 by (A3). By Lemma 3 with xn =
J�
min/3, vn = nδn and (A2) the third term in the rhs of (A.3) tends to 0.

Applying Lemma 2 with rj+1 = n, qj+1 = t̂2,k on the one hand and rj+1 = n,
qj + 1 = (t�2,k + t�2,k+1)/2 on the other hand, we get that

∣∣∣∣∣∣
(t�2,k+t�2,k+1)/2−1∑

j=t�2,k

Yn,j −
(t�2,k+t�2,k+1)/2−1∑

j=t�2,k

Ûn,j

∣∣∣∣∣∣ ≤ λn.

Since t̂2,k ≤ t�2,k, Ûn,j = μ̂K�
1+1,k+1 within the interval [t�2,k, (t

�
2,k+ t�2,k+1)/2−1]

and we get that

(t�2,k+1−t�2,k)|μ�
K�

1+1,k+1−μ̂K�
1+1,k+1|/2 ≤ λn+|E(n, |[t�2,k, (t�2,k+t�2,k+1)/2−1])|.

Therefore the second term in the rhs of (A.3) can be bounded by

P

(
λn ≥ (t�2,k+1 − t�2,k)|μ�

K�
1+1,k − μ�

K�
1+1,k+1|/12

)
+ P

(
(t�2,k+1 − t�2,k)

−1
∣∣E(n, , |[t�2,k, (t�2,k + t�2,k+1)/2− 1])

∣∣
≥ |μ�

K�
1+1,k − μ�

K�
1+1,k+1|/6

)
By Lemma 3 and (A3), (A2) and (A4), we get that both terms tend to zero as
n tends to infinity. We thus get that P(An,k ∩ Cn) → 0, as n tends to infinity.

Let us now prove that P(An,k ∩Cn) tend to 0, as n tends to infinity. Observe
that

P(An,k ∩ Cn) = P(An,k ∩D(�)
n ) + P(An,k ∩D(m)

n ) + P(An,k ∩D(r)
n ),

where

D(�)
n =

{
∃p ∈ {1, . . . ,K�}, t̂2,p ≤ t�2,p−1

}
∩ Cn,

D(m)
n =

{
∀k ∈ {1, . . . ,K�}, t�2,k−1 < t̂2,k < t�2,k+1

}
∩ Cn,
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D(r)
n =

{
∃p ∈ {1, . . . ,K�}, t̂2,p ≥ t�2,p+1

}
∩ Cn.

Using the same arguments as those used for proving that P(An,k ∩Cn) → 0, we

can prove that P(An,k ∩ D
(m)
n ) → 0, as n tends to infinity. Let us now prove

that P(An,k ∩D
(�)
n ) → 0. Note that

P(D(�)
n ) ≤

K�
2−1∑
k=1

P({t�2,k − t̂2,k > I�min/2} ∩ {t̂2,k+1 − t�2,k > I�min/2})

+P(t�2,K�
2
− t̂2,K�

2
> I�min/2). (A.4)

Applying (2.7) and (2.8) with rj + 1 = n, qj + 1 = t̂2,k on the one hand and
rj + 1 = n, qj + 1 = t�2,k on the other hand, we get that∣∣∣∣∣∣

t�2,k−1∑
j=t̂2,k

Yn,j −
t�2,k−1∑
j=t̂2,k

Ûn,j

∣∣∣∣∣∣ ≤ λn.

Thus,

P({t�2,k − t̂2,k > I�min/2} ∩ {t̂2,k+1 − t�2,k > I�min/2})
≤ P(λn/(nδn) ≥ |μ�

K�
1+1,k − μ�

K�
1+1,k+1|/3)

+P({|μ�
K�

1+1,k − μ̂K�
1+1,k+1| ≥ |μ�

K�
1+1,k − μ�

K�
1+1,k+1|/3}

∩{t̂2,k+1 − t�2,k > I�min/2})
+P({|E(n; [t̂2,k, t

�
2,k − 1])|/(t�2,k − t̂2,k) ≥ |μ�

K�
1+1,k − μ�

K�
1+1,k+1|/3}

∩{t�2,k − t̂2,k > I�min/2}). (A.5)

Using the same arguments as previously we get that the first and the third term
in the rhs of (A.5) tend to zero as n tends to infinity. Let us now focus on
the second term of the rhs of (A.5). Applying (2.7) and (2.8) with rj + 1 = n,
qj +1 = t̂2,k+1 on the one hand and rj +1 = n, qj +1 = t�2,k on the other hand,
we get that ∣∣∣∣∣∣

t̂2,k+1−1∑
j=t�2,k

Yn,j −
t̂2,k+1−1∑
j=t�2,k

Ûn,j

∣∣∣∣∣∣ ≤ λn.

Hence,

|(μ�
K�

1+1,k − μ̂K�
1+1,k+1)(t̂2,k+1 − t�2,k) +E(n, [t�2,k; t̂2,k+1 − 1])| ≤ λn.

The second term of the rhs of (A.5) is thus bounded by

P({λn(t̂2,k+1 − t�2,k)
−1 ≥ |μ�

K�
1+1,k − μ�

K�
1+1,k+1|/6}

∩{t̂2,k+1 − t�2,k > I�min/2})
+P({(t̂2,k+1 − t�2,k)

−1|E(n, [t�2,k; t̂2,k+1 − 1])| ≥ |μ�
K�

1+1,k − μ�
K�

1+1,k+1|/6}
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∩{t̂2,k+1 − t�2,k > I�min/2}),

which tend to zero by Lemma 3, (A3), (A2) and (A4). It is thus proved that
the first term in the rhs of (A.4) tends to zero as n tends to infinity. The same
arguments can be used for addressing the second term in the rhs of (A.4) since
t̂2,K�

2+1 = n and hence t̂2,K�
2+1 − t�2,K�

2
> I�min/2.

Using similar arguments, we can prove that P(An,k ∩D
(r)
n ) → 0, which con-

cludes the proof of Proposition 1.

A.2. Proofs of computational lemmas

Proof of Lemma 4. Consider Xv for instance (the same reasoning applies for
X�v): we have Xv = (T ⊗ T)v = Vec(TVT�) where V is the n × n matrix
such that Vec(V) = v. Because of its triangular structure, T operates as a
cumulative sum operator on the columns of V. Hence, the computations for the
jth column is done by induction in n operations. The total cost for the n columns
of TV is thus n2. Similarly, right multiplying a matrix by T� boils down to
perform cumulative sums over the rows. The final cost for Xv = Vec(TVT�)
is thus 2n2 in case of a dense matrix V, and possibly less when V is sparse.

Proof of Lemma 5. Let A = {a1, . . . , aK}, then(
X�X

)
A,A = (T⊗T)

�
•,A(T⊗T)•,A, (A.6)

where (T ⊗ T)•,A (resp. (T⊗T)
�
•,A) denotes the columns (resp. the rows) of

T ⊗ T lying in A. For j in A, let us consider the Euclidean division of j − 1
by n given by: (j − 1) = nqj + rj , then (T⊗T)•,j = T•,qj+1 ⊗T•,rj+1. Hence,
(T⊗T)•,A is a n2 ×K matrix defined by:

(T⊗T)•,A

=
[
T•,qa1+1 ⊗T•,ra1+1 ;T•,qa2+1 ⊗T•,ra2+1 ; . . . ;T•,qaK+1 ⊗T•,raK+1

]
.

Thus,

(T⊗T)•,A = T•,QA ∗T•,RA , where QA = {qa1 + 1, . . . , qaK
+ 1},

RA = {ra1 + 1, . . . , raK
+ 1}

and ∗ denotes the Khatri-Rao product, which is defined as follows for two n×n
matrices A and B

A ∗B = [a1 ⊗ b1; a2 ⊗ b2; . . . ; an ⊗ bn] ,

where the ai (resp. bi) are the columns of A (resp. B). Using (25) of Theorem 2
in [14], we get that

(T⊗T)
�
•,A(T⊗T)•,A =

(
T�

•,QAT•,QA

)
◦
(
T�

•,RAT•,RA

)
,
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where ◦ denotes the Hadamard or entry-wise product. Observe that by definition
of T, (T�

•,QA
T•,QA)k,� = n− (qak

∨ qa�
) and (T�

•,RA
T•,RA)k,� = n− (rak

∨ ra�
).

By (A.6),
(
X�X

)
A,A is a Gram matrix which is positive and definite since the

vectors T•,qa1+1 ⊗ T•,ra1+1 , T•,qa2+1 ⊗ T•,ra2+1 , . . . , T•,qaK+1 ⊗ T•,raK+1 are
linearly independent.

Proof of Lemma 6. The operations of adding/removing a column to a Cholesky
factorization are classical and well treated in books of numerical analysis, see
e.g. [8]. An advantage of our settings is that there is no additional computational
cost for computing X�X�j when entering a new variable j thanks to the closed-
form expression (3.1).
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