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Abstract: In this paper, we are concerned with the independence test for k
high-dimensional sub-vectors of a normal vector, with fixed positive integer
k. A natural high-dimensional extension of the classical sample correlation
matrix, namely block correlation matrix, is proposed for this purpose. We
then construct the so-called Schott type statistic as our test statistic, which
turns out to be a particular linear spectral statistic of the block correla-
tion matrix. Interestingly, the limiting behavior of the Schott type statistic
can be figured out with the aid of the Free Probability Theory and the
Random Matrix Theory. Specifically, we will bring the so-called real second
order freeness for Haar distributed orthogonal matrices, derived in Mingo
and Popa (2013)[10], into the framework of this high-dimensional testing
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problem. Our test does not require the sample size to be larger than the
total or any partial sum of the dimensions of the k sub-vectors. Simulated
results show the effect of the Schott type statistic, in contrast to those
statistics proposed in Jiang and Yang (2013)[8] and Jiang, Bai and Zheng
(2013)[7], is satisfactory. Real data analysis is also used to illustrate our
method.
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distributed orthogonal matrices, central limit theorem, random matrices.

Received September 2016.

1. Introduction

Test of independence for random variables is a very classical hypothesis testing
problem, which dates back to the seminal work by Pearson in [17], followed by
a huge literature regarding this topic and its variants. One frequently recurring
variant is the test of independence for k random vectors, where k ≥ 2 is an
integer. Comprehensive overview and detailed references on this problem can be
found in most of the textbooks on multivariate statistical analysis. For instance,
here we recommend the masterpieces by Muirhead in [13] and by Anderson in
[1] for more details, in the low-dimensional case. However, due to the increasing
demand in the analysis of big data springing up in various fields nowadays,
such as genomics, signal processing, microarray, proteomics and finance, the
investigation on a high-dimensional extension of this testing problem is much
needed, which motivates us to propose a feasible way for it in this work.

Let us take a review more specifically on some representative existing re-
sults in the literature, after necessary notation is introduced. For simplicity,
henceforth, we will use the notation �m� to denote the set {1, 2, . . . ,m} for any
positive integerm. Assume that x = (x′

1, . . . ,x
′
k)

′ is a p-dimensional normal vec-
tor, in which xi possesses dimension pi for i ∈ �k�, such that p1 + · · ·+ pk = p.
Denote by μi the mean vector of the ith sub-vector xi and by Σij the cross
covariance matrix of xi and xj for all i, j ∈ �k�. Then μ := (μ′

1, . . . ,μ
′
k)

′ and
Σ := (Σij)

k
i,j=1 are the mean vector and covariance matrix of x respectively. In

this work, we consider the following hypothesis testing

(T1) H0 : Σij = 0, i �= j v.s. H1 : not H0.

To this end, we draw n observations of x, namely x(1), . . . ,x(n). In addition,
the ith sub-vector of x(j) will be denoted by xi(j) for all i ∈ �k� and j ∈ �n�.
Hence, xi(j), j ∈ �n� are n independent observations of xi. Conventionally,
the corresponding sample means will be written as x̄ = n−1

∑n
j=1 x(j) and

x̄i = n−1
∑n

j=1 xi(j). With the observations at hand, we can construct the
sample covariance matrix as usual. Set

X := [x(1)− x̄, · · · ,x(n)− x̄], Xi := [xi(1)− x̄i, · · · ,xi(n)− x̄i], i ∈ �k�.(1.1)
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The sample covariance matrix of x and the cross sample covariance matrix of
xm and x� will be denoted by Σ̂ and Σ̂m� respectively, to wit,

Σ̂ :=
1

n− 1
XX′, Σ̂m� :=

1

n− 1
XmX′

�.

In the classical large n and fixed p case, the likelihood ratio statistic Λn :=

W
n/2
n with

Wn :=
|Σ̂|∏k

i=1 |Σ̂ii|

is a favorable one for the testing problem (T1). A celebrated limiting law on
Λn under H0 is

− 2κ log Λn =⇒ χ2
ρ, as n → ∞ (1.2)

where

κ = 1− 2(p3 −
∑k

i=1 p
3
i ) + 9(p2 −

∑k
i=1 p

2
i )

6n(p2 −
∑k

i=1 p
2
i )

, ρ =
1

2
(p2 −

k∑
i=1

p2i ).

One can refer to [27] or Theorem 11.2.5 of [13], for instance. The left hand side
of (1.2) is known as the Wilks statistic.

Now, we turn to the high-dimensional setting of interest. A commonly used
assumption on dimensionality and sample size in the Random Matrix Theory
(RMT) is that p is proportionally large as n, i.e.

p := p(n),
p

n
→ y ∈ (0,∞), as n → ∞.

To employ the existing RMT apparatus in the sequel, hereafter, we will always
work with the above large n and proportionally large p setting. This time, resort-
ing to the likelihood ratio statistic in (1.2) directly is obviously infeasible, since
the limiting law (1.2) is invalid when p tends to infinity along with n. Actually,
under this setting, the likelihood ratio statistic can still be employed if an ap-
propriate renormalization is performed a priori. In [8], the authors renormalized
the likelihood ratio statistic, and derived its limiting law under H0 as a central
limit theorem (CLT), under the restriction of

n > p+ 1, pi/n → yi ∈ (0, 1), i ∈ �k�, as n → ∞. (1.3)

One can refer to Theorem 2 in [8] for the details of the normalization and
the CLT. One similar result was also obtained in [7], see Theorem 4.1 therein.
However, the condition (1.3) is indispensable for the likelihood ratio statistic
which will inevitably hit the wall when p is even larger than n, owing to the fact
that log |Σ̂| is not well-defined in this situation. In addition, in [7], another test
statistic constructed from the traces of F-matrices, the so-called trace criterion
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test , was proposed. Under H0, a CLT was derived for this statistic under the
following restrictions

pi
p1 + · · · + pi−1

→ r
(i)
1 ∈ (0,∞),

pi
n− 1− (p1 + · · · + pi−1)

→ r
(i)
2 ∈ (0, 1), (1.4)

for all i ∈ �k�, together with p − p1 < n. We stress here, condition (1.4) is
obviously much stronger than pi/n → yi ∈ (0, 1) for all i ∈ �k�.

Roughly speaking, our aim in this paper is to propose a new statistic with
both statistical visualizability and mathematical tractability, whose limiting be-
havior can be derived with the following restriction on the dimensionality and
the sample size

pi := pi(n), pi/n → yi ∈ (0, 1), i ∈ �k�, as n → ∞. (1.5)

Especially, n is not required to be larger than p or any partial sum of pi. More
precisely, our multi-facet target consists of the following:

• Introducing a new matrix model tailored to (T1), namely block correlation
matrix , which can be viewed as a natural high-dimensional extension of
the sample correlation matrix.

• Constructing the so-called Schott type statistic from the block correlation
matrix, which can be regarded as an extension of Schott’s statistic for
complete independence test in [21].

• Deriving the limiting distribution of the Schott type statistic with the
aid of tools from the Free Probability Theory (FPT). Specifically, we
will channel the so-called real second order freeness for Haar distributed
orthogonal matrices from [10] into the framework.

• Employing this limiting law to test independence of k sub-vectors under
(1.5) and assessing the statistic via simulations and a real data set, which
comes from the daily returns of 258 stocks issued by the companies from
S&P 500.

It will be seen that for (T1), it is quite natural and reasonable to put forward the
concept of block correlation matrix. Just like that the sample correlation matrix
is designed to bypass the unknown mean values and variances of entries, the
block correlation matrix can also be employed, without knowing the population
mean vectors μi and covariance matrices Σii, i ∈ �k�. Also interestingly, it
turns out that, the statistical meaning of the Schott type statistic is rooted in
the idea of testing independence based on the Canonical Correlation Analysis
(CCA). Meanwhile, theoretically, the Schott type statistic is a special type
of linear spectral statistic from the perspective of RMT. Then methodologies
from RMT and FPT can take over the derivation of the limiting behavior
of the proposed statistic. As far as we know, the application of FPT in high-
dimensional statistical inference is still in its infancy. We also hope this work
can evoke more applications of FPT in statistical inference in the future. One
may refer to [19] for another application of FPT, in the context of statistics.
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Our paper is organized as follows. In Section 2, we will construct the block
correlation matrix. Then we will present the definition of the Schott type statis-
tic and its limiting law in Section 3. Meanwhile, we will discuss the statistical
rationality of this test statistic, especially the relationship withCCA. In Section
4, we will detect the utility of our statistic by simulation, and an example about
stock prices will be analyzed in Section 5. Finally, Section 6 will be devoted to
the illustration of how RMT and FPT machinery can help to establish the
limiting behavior of our statistic, and some calculations will be presented in the
Appendix.

Throughout the paper, trA represents the trace of a square matrix A. If A
is N ×N , we will use λ1(A), . . . , λN (A) to denote its N eigenvalues. Moreover,
|A| means the determinant of A. In addition, 0M×N will be used to denote the
M ×N null matrix, and be abbreviated to 0 when there is no confusion on the

dimension. Moreover, for random objects ξ and η, we use ξ
d
= η to represent

that ξ and η share the same distribution.

2. Block correlation matrix

An elementary property of the sample correlation matrix is that it is invariant
under translation and scaling of variables. Such an advantage allows us to discuss
the limiting behavior of statistics constructed from the sample correlation matrix
without knowing the means and variances of the involved variables, thus makes
it a favorable choice in dealing with the real data. Now we are in a similar
situation, without knowing explicit information of the population mean vectors
μi and covariance matrices Σii, we want to construct a test statistic which is
independent of these unknown parameters, in a similar vein. The first step is to
propose a high-dimensional extension of sample correlation matrix, namely the
block correlation matrix. For simplicity, we use the notation

diag(Ai)
k
i=1 =

⎛
⎜⎝

A1

. . .

Ak

⎞
⎟⎠

to denote the diagonal block matrix with blocks Ai, i ∈ �k�, i.e. all off-diagonal
blocks are 0.

Definition 2.1 ((Block correlation matrix)). With the aid of the notation in
(1.1), the block correlation matrix B := B(X1, · · · ,Xk) is defined as follows

B := diag((XiX
′
i)

− 1
2 )ki=1 ·XX′ · diag((XiX

′
i)

− 1
2 )ki=1

=
(
(XiX

′
i)

−1/2XiX
′
j(XjX

′
j)

−1/2
)k

i,j=1
.

Remark 2.1. Note that when pi = 1 for all i ∈ �k�, B is reduced to the classical
sample correlation matrix of n observations of a k-dimensional random vector.
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In this sense, we can regard B as a natural high-dimensional extension of the
sample correlation matrix.

Remark 2.2. If we take determinant of B, we can get the likelihood ratio
statistic. However, since one needs to further take logarithm on the determinant,
the assumption n > p+ 2 is indispensable, in light of [8].

In the sequel, we perform a very standard and well-known transformation for
X to eliminate the inconvenience caused by subtracting the sample mean. Set
the orthogonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1√
n

1√
n

1√
n

· · · 1√
n

1√
2

− 1√
2

0 · · · 0
1√
3·2

1√
3·2 − 2√

3·2 · · · 0

· · · · · · · · · · · · · · ·
1√

n(n−1)

1√
n(n−1)

1√
n(n−1)

· · · − n−1√
n(n−1)

⎞
⎟⎟⎟⎟⎟⎠

.

Then we can find that there exist i.i.d. z(j) ∼ N(0,Σ), j ∈ �n− 1�, such that

XA′ := (0, z(1), · · · , z(n− 1)),

Analogously, we denote

XiA
′ := (0, zi(1), · · · , zi(n− 1)), i ∈ �k�.

Obviously, z(j) = (z′1(j), · · · , z′k(j))′. To abbreviate, we further set the matrices

Z = (z(1), · · · , z(n− 1)), Zi = (zi(1), · · · , zi(n− 1)), i ∈ �k�.

Apparently, we have ZZ′ = XX′ and ZiZ
′
i = XiX

′
i. Consequently, we can also

write

B = diag(ZiZ
′
i)

− 1
2 )ki=1 · ZZ′ · diag(ZiZ

′
i)

− 1
2 )ki=1

=
(
(ZiZ

′
i)

−1/2ZiZ
′
j(ZjZ

′
j)

−1/2
)k

i,j=1
.

An advantage of Zi over Xi is that its columns are i.i.d.

3. Schott type statistic and main result

With the block correlation matrix at hand, we can propose our test statistic
for (T1), namely the Schott type statistic. Such a nomenclature is motivated
by Schott in [21] on another classical independence test problem, the so-called
complete independence test , which can be described as follows. Given a random
vector w = (w1, . . . , wp)

′, we consider the following hypothesis testing:

(T2) H̃0 : w1, · · · , wp are completely independent v.s. H̃1 : not H̃0.
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When w is multivariate normal, the above test problem is equivalent to the
so-called test of sphericity of population correlation matrix, i.e. under the null
hypothesis, the population correlation matrix of w is Ip. There is a long list
of references devoted to testing complete independence for a random vector
under the high-dimensional setting. See, for example, [14], [15], [23], [4], [2]
and [21]. Especially, in [21], the author constructed a statistic from the sample
correlation matrix. To be specific, denote the sample correlation matrix of n
i.i.d. observations of w by R = R(n, p) := (rij)p×p. Schott’s statistic for (T2)
is then defined as follows

s(R) :=

p∑
i=2

i−1∑
j=1

r2ij =
1

2
(

p∑
i,j=1

r2ij − p) =
1

2
trR2 − p

2
.

Note that under the null hypothesis, all off-diagonal entries of the population
correlation matrix should be 0. Hence, it is quite natural to use the summation
of squares of all off-diagonal entries to measure the difference between the pop-
ulation correlation matrix and I. Then Schott’s statistic s(R) is just the sample
counterpart of such a measurement. Now in a similar vein, we define the Schott
type statistic for the block correlation matrix as follows.

Definition 3.1 (Schott type statistic). We define the Schott type statistic of
the block correlation matrix B by

s(B) :=
1

2
trB2 − p

2
=

1

2

p∑
�=1

λ2
�(B)− p

2
.

For simplicity, we introduce the matrix

C(i, j) := (XiX
′
i)

−1/2XiX
′
j(XjX

′
j)

−1XjX
′
i(XiX

′
i)

−1/2.

Stemming from the definition of B, we can easily get

s(B) =
1

2

k∑
i,j=1

trC(i, j)− p

2
=

k∑
i=2

i−1∑
j=1

trC(i, j).

The matrix C(i, j) is frequently used in CCA towards random vectors xi and
xj , known as the canonical correlation matrix. A well-known fact is that the
eigenvalues of C(i, j) provide meaningful measures of the correlation between
these two random vectors. Actually, its singular values (square root of eigen-
values) are the well-known canonical correlations between xi and xj . Thus, the
summation of all eigenvalues, trC(i, j), also known as Pillai’s test statistic, can
obviously measure the correlation between xi and xj . Summing up these mea-
surements over all (i, j) pairs (subject to j < i) yields our Schott type statistic,
which can capture the overall correlation among k parts of x. Thus, from the
perspective of CCA, the Schott type statistic possesses a theoretical validity
for the testing problem (T1).

Our main result is the following CLT under H0.
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Theorem 3.1. Assume that pi := pi(n) and pi/n → yi ∈ (0, 1) for all i ∈ �k�,
we have

s(B)− an√
bn

=⇒ N(0, 1), as n → ∞,

where

an =
1

2

∑
i,j,i �=j

pipj
n− 1

, bn =
∑

i,j,i �=j

pipj(n− 1− pi)(n− 1− pj)

(n− 1)4
.

Remark 3.1. Note that by assumption, an is of order O(n) and bn is of order
O(1).

Remark 3.2. For k = 2, this theorem coincides with Theorem 2.2 of [28], which
does not need the normality assumption. We believe that Theorem 3.1 should be
also true under the same conditions as those in Theorem 2.2 of [28].

4. Numerical studies

In this section we compare the performance of the statistics proposed in [8], [7]
and our Schott type statistic, under various settings of sample size and dimen-
sionality. For simplicity, we will focus on the case of k = 3. The Wilks’ statistic
in (1.2) without any renormalization has been shown to perform badly for (T1)
in [8] and [7], thus will not be considered in this section. Under the null hypoth-
esis H0, due to the scale invariance of the three tests, without loss of generality,
the samples are drawn from the following distribution:

(I) μi = 0pi×1, Σii = Ipi ;

Under the alternative hypothesis H1, we adopt five distributions, including the
two used in [8](II) and [7](III) respectively:

(II) μ = 0p×1, Σ = 0.151p×p + 0.85Ip;
(III) μi = 0pi×1, Σii = 26/25Ipi , Σ12 = 1/25I12, Σ13 = 6/25I13 and Σ23 =

6/25I23;
(IV) μi = 0pi×1, Σii = Ipi , Σ12 = 1/2I12, Σ13 = 0p1×p3 and Σ23 = 0p2×p3 ;
(V) μi = 0pi×1, Σii = Ipi , Σ12 = 0p1×p2 , Σ13 = 0p1×p3 and Σ23 = 1/2I23;
(VI) μi = 0pi×1, Σii = Ipi , Σ12 = 0p1×p2 , Σ13 = 0p1×p3 and Σ23 = 3/4123.

Here 1p×p stands for the matrix whose entries are all equal to 1, Iij stands for
the pi × pj rectangular matrix whose main diagonal entries are equal to 1 and
the others are equal to 0, and 123 stands for the p2 × p3 rectangular matrix
whose first entrie is equal to 1 and the others are equal to 0. The empirical
sizes and powers are obtained based on 100,000 replications with 3 digits. In the
tables, T0 denotes the proposed Schott type test, T1 denotes the renormalized
likelihood ratio test of [8] and T2 denotes the trace criterion test of [7].

The empirical sizes and powers of three tests are presented in Table 1 and
Table 2. It shows that the proposed Schott type test T0 performs quite robust
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Table 1

Empirical sizes (Scenario I) and empirical powers (Scenario II and III) of tests T0, T1 and
T2 at the 5% significance level.

(p1, p2, p3) n
Scenario I Scenario II Scenario III

T0 T1 T2 T0 T1 T2 T0 T1 T2

(2, 2, 1) 4 0.062 N.A. N.A. 0.067 N.A. N.A. 0.066 N.A. N.A.
6 0.056 N.A. 0.037 0.070 N.A. 0.042 0.069 N.A. 0.038
10 0.058 0.077 0.051 0.099 0.110 0.078 0.091 0.105 0.068
16 0.062 0.074 0.060 0.152 0.152 0.132 0.124 0.132 0.104
30 0.064 0.071 0.064 0.280 0.262 0.250 0.216 0.221 0.199
50 0.067 0.070 0.066 0.457 0.427 0.420 0.354 0.360 0.341

(12, 12, 6) 20 0.049 N.A. N.A. 0.106 N.A. N.A. 0.087 N.A. N.A.
30 0.050 N.A. 0.047 0.229 N.A. 0.126 0.140 N.A. 0.071
40 0.050 0.059 0.049 0.399 0.293 0.225 0.218 0.167 0.128
50 0.051 0.058 0.050 0.584 0.478 0.355 0.302 0.246 0.199
100 0.053 0.056 0.053 0.989 0.976 0.922 0.763 0.725 0.683
150 0.054 0.055 0.053 1.000 1.000 1.000 0.965 0.957 0.946

(24, 24, 12) 60 0.050 N.A. 0.048 0.416 N.A. 0.190 0.323 N.A. 0.119
90 0.052 0.055 0.051 0.816 0.757 0.487 0.630 0.478 0.397
110 0.050 0.053 0.050 0.948 0.936 0.692 0.802 0.692 0.617
130 0.052 0.054 0.052 0.991 0.990 0.852 0.911 0.850 0.796
150 0.051 0.054 0.051 0.999 1.000 0.944 0.965 0.938 0.909
180 0.051 0.053 0.050 1.000 1.000 0.992 0.994 0.989 0.982

(36, 36, 18) 100 0.050 0.054 0.048 0.642 0.480 0.302 0.329 0.344 0.282
150 0.051 0.054 0.051 0.966 0.976 0.704 0.954 0.875 0.809
180 0.050 0.052 0.049 0.996 0.999 0.876 0.993 0.975 0.953
210 0.052 0.052 0.051 1.000 1.000 0.961 0.999 0.997 0.993
250 0.051 0.052 0.051 1.000 1.000 0.996 1.000 1.000 1.000
300 0.052 0.053 0.052 1.000 1.000 1.000 1.000 1.000 1.000

Table 2

Empirical powers of tests T0, T1 and T2 at the 5% significance level.

(p1, p2, p3) n
Scenario IV Scenario V Scenario VI

T0 T1 T2 T0 T1 T2 T0 T1 T2

(2, 2, 1) 4 0.064 N.A. N.A. 0.063 N.A. N.A. 0.094 N.A. N.A.
6 0.062 N.A. 0.043 0.058 N.A. 0.036 0.147 N.A. 0.048
10 0.074 0.095 0.069 0.068 0.086 0.056 0.289 0.368 0.186
16 0.099 0.116 0.102 0.081 0.094 0.075 0.571 0.707 0.524
30 0.161 0.173 0.166 0.111 0.119 0.107 0.962 0.976 0.961
50 0.261 0.271 0.266 0.155 0.161 0.151 1.000 1.000 1.000

(12, 12, 6) 20 0.063 N.A. N.A. 0.060 N.A. N.A. 0.080 N.A. N.A.
30 0.091 N.A. 0.104 0.075 N.A. 0.053 0.126 N.A. 0.068
40 0.128 0.128 0.143 0.092 0.089 0.069 0.178 0.198 0.112
50 0.176 0.178 0.194 0.112 0.106 0.089 0.249 0.317 0.172
100 0.515 0.520 0.539 0.242 0.230 0.210 0.682 0.870 0.607
150 0.821 0.825 0.835 0.406 0.396 0.372 0.949 0.995 0.928

(24, 24, 12) 60 0.159 N.A. 0.207 0.114 N.A. 0.067 0.129 N.A. 0.074
90 0.341 0.319 0.398 0.183 0.151 0.128 0.217 0.260 0.147
110 0.498 0.482 0.554 0.243 0.206 0.178 0.293 0.387 0.214
130 0.644 0.635 0.692 0.310 0.270 0.240 0.376 0.52 0.289
150 0.771 0.767 0.809 0.381 0.340 0.308 0.466 0.651 0.375
180 0.904 0.904 0.924 0.490 0.453 0.418 0.607 0.814 0.519

(36, 36, 18) 100 0.322 0.234 0.418 0.191 0.123 0.104 0.146 0.133 0.088
150 0.699 0.665 0.769 0.352 0.278 0.241 0.254 0.323 0.179
180 0.863 0.850 0.904 0.466 0.393 0.349 0.336 0.458 0.253
210 0.952 0.948 0.969 0.579 0.513 0.467 0.424 0.593 0.335
250 0.992 0.991 0.995 0.719 0.662 0.621 0.544 0.754 0.454
300 1.000 1.000 1.000 0.854 0.820 0.789 0.694 0.893 0.612

under the null hypothesis. Even when p1 = 2, p2 = 2, p3 = 1 and n = 4 the
attained significance levels are also close to 6%. It is obvious that the empirical
sizes of T0 is good enough in the inapplicable cases of T1 and T2. Furthermore,
for these applicable cases, when the dimensions and sample sizes are big, all the
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three tests perform good. But when the sample sizes n are close to the total of
dimensions p, test T1 performs worse than T0 and T2.

For the power comparations, in Scenario II and III, which are introduced in
[8] and [7] respectively, all the powers tend to 1 as the sample size increases, and
T0 performs better than T1 and T2 in most of the settings. It is worthy to notice
that when the sample size n is big, the renormalized likelihood ratio test T1 is
also satisfactory, and better than T2. What is more, when the dimensions and
sample sizes are big, T0 also shows to be the most powerful one among the three
tests in Scenario V. But if the dimensions are small, T1 seems slightly better.
In Scenario IV, T2 performs extremely good, especially when the dimensions
and sample sizes are big. In this situation, T0 is also acceptable. Scenario VI
is the so called spike model in RMT, and from the result we can find that all
the three tests failed, because their powers do not tend to 1 as the sample size
increases. Therefore, by the numerical results, we recommend the proposed test
T0 for testing the independence of high dimensional random vectors due to its
stability.

5. An example

For illustration, we apply the proposed test statistic to the daily returns of
258 stocks issued by the companies from S&P 500. The original data are the
closing prices or the bid/ask average of these stocks for the trading days of
the last quarter in 2013, i.e., from 1 October 2013 to 31 December 2013, with
total 64 days. This dataset is derived from the Center for Research in Security
Prices Daily Stock in Wharton Research Data Services. According to The North
American Industry Classification System (NAICS), which is used by business
and government to classify business establishments, the 258 stocks are separated
into 11 sectors. Numbers of stocks in each sector are shown in Table 3. A common
interest here is to test whether the daily returns for the investigated 11 sectors
are independent.

The testing model is established as follows: Denote pi as the number of stocks
in the ith sector, uil(j) as the price for the lth stock in the ith sector at day

j. Here j ∈ �64�. Correspondingly we have p =
∑11

i=1 pi = 258. In order to
satisfy the condition of the proposed test statistic, the original data uil(j) need
to be transformed as follows: (i) logarithmic difference: Let xil(j) = ln(uil(j +

Table 3

Number of stocks in each NAICS Sectors. Sector 1 describes mining, quarrying, and oil and
gas extraction; Sector 2 describes utilities; Sector 3 describes wholesale trade; Sector 4

describes retail trade; Sector 5 describes transportation and warehousing; Sector 6 describes
information; Sector 7 describes finance and insurance; Sector 8 describes real estate and

rental and leasing; Sector 9 describes professional, scientific, and technical services; Sector
10 describes administrative and support and waste management and remediation services;

Sector 11 describes arts, entertainment, and recreation.

Sector 1 2 3 4 5 6 7 8 9 10 11
Number of stocks 30 32 14 32 12 33 55 14 16 10 10
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1)/uil(j)). Notice that j ∈ �63�. So we denote n = 63. Logarithmic difference is
a very commonly used procedure in finance. There are a number of theoretical
and practical advantages of using logarithmic returns, especially we shall assume
that the sequence of logarithmic returns are independent of each other for big
time scales (e.g. ≥ 1 day, see [18]). (ii) power transform: It is well known that if a
security price follows geometric Brownian motion, then the logarithmic returns
of the security are normally distributed. However in most cases, the normalized
logarithmic returns xil(j) are considered to have sharper peaks and heavier tails
than the standard normal distribution. Thus we first transform xil(j) to x̂il(j)
by Box-Cox transformation, and then suppose the transformed data follows a
standard normal distribution, that is

x̃il(j) =

(
x̂il(j)− x̄il

σ̂il

)βil

∼ N(0, 1).

Here βil is an unknown parameter, x̄il and σ̂il are the sample mean and sample
standard deviation of x̂il(j), j ∈ �n�. βil can be estimated by

1

n

n∑
j=1

x̃4
il(j) ≈

∫ bil

ail

t4dΦ(t),

where ail = minj∈�n� x̃il(j), bil = maxj∈�n� x̃il(j) and Φ(t) is the standard nor-
mal distribution function. (iii) normality test : we use the Kolmogorov-Smirnov
test to test whether the transformed prices of each stock are drawn from the
standard normal distribution. By calculation, we get 258 p-values. Among them
the minimum is 0.1473. And 91.86% of p-values are bigger than 0.5. For illus-
tration, we present the smoothed empirical densities of the transformed data
x̃il(j) for the first four stocks of each sector in Figure 1. From these graphs, we
can also see that the transformed data fit the normal density curve well. Ob-
serve that, marginal normal cannot guarantee jointly normal. But still, here we
preform our method on the transformed data, since as we mentioned In Remark
3.2, our result Theorem 3.1 is believed to hold under more generally distributed
data. The transformation is done mainly for getting more moments matching to
the Gaussian distribution. Theorem 2.2 in [28] indicates that moment matching
condition like the fourth moment equal to 3 may be necessary for Theorem 3.1.

Now we apply s(B) to test the independence of every two sectors. The p-
values are shown in Table 4. We find in the total 55 pairs of sectors, there
are 23 pairs with p-values bigger than 0.05 and 18 pairs with p-values bigger
than 0.1. Interestingly, according to these results, if we set the significance level
as 5% we find that there are seven sectors which are independent of Sector 7,
the finance and insurance sector, which seems to be most independent of other
sectors. On the other hand, Sector 11 (the arts, entertainment, and recreation
sector) is dependent on all other sectors except Sector 1 (the mining, quarrying,
and oil and gas extraction sector). We also investigate the mutual independence
of every three sectors. Applying Theorem 3.1, we find that there are 11 groups
with p-values bigger than 0.05. In addition, we find that there is only one group
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Fig 1. Graphs of the empirical density function of the transformed data versus the standard
normal distribution. These graphs contain the empirical density functions of the transformed
data for the first four stocks of each sector used in our study. The blue curve is the smoothed
density function of the transformed data for one stock and the red curve is standard normal
density function.

Table 4

The p-values obtained by the proposed test under H0 with k = 2. Notice that the results are
rounded up to the fourth decimal point.

Sector 1 2 3 4 5 6 7 8 9 10
2 0.0405
3 0.0487 0.2735
4 0.0604 0 0.0002
5 0.0012 0.1041 0.0027 0.1639
6 0.0073 0.0048 0.0008 0.4285 0.0444
7 0.2299 0.4830 0.0451 0.1053 0.7080 0.6843
8 0.3558 0.0208 0.2458 0.3547 0.0013 0.0645 0.1127
9 0.1411 0.0833 0 0.0005 0.2403 0.0124 0.4521 0.0048
10 0.0418 0.3075 0.0004 0.0847 0.0746 0.0026 0.0036 0.0109 0
11 0.8689 0.0048 0 0.0470 0.0167 0.0004 0.0490 0 0.0003 0.0003

containing four sectors which are mutually independent. The results are shown
in Table 5. Thus, we have strong evidence to believe that every five sectors are
dependent.
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Table 5

The p-values obtained by the proposed test under H0 with k = 3 and k = 4. Notice that the
results are rounded up to the fourth decimal point.

Sectors (1,4,8) (1,7,8) (1,7,9) (2,5,7) (2,7,9) (4,5,7)
p-value 0.0804 0.1135 0.1120 0.2541 0.1413 0.1263

Sectors (4,6,7) (4,6,8) (4,7,8) (5,7,9) (6,7,8) (4,6,7,8)
p-value 0.3088 0.1277 0.0686 0.3913 0.0855 0.0650

6. Linear spectral statistics and second order freeness

In this section, we will introduce some RMT and FPT apparatus with which
Theorem 3.1 can be proved. We will just summarize the main ideas on how these
tools fit into the framework of the limiting behavior of our proposed statistic,
but leave the details of the reasoning and calculation to the Appendix. We start
from the following elementary fact. To wit, for two matrices S and T, we know
that ST and TS share the same non-zero eigenvalues, as long as both ST and
TS are square. Therefore, to study the eigenvalues of B, it is equivalent to study
the eigenvalues of the (n− 1)× (n− 1) matrix

B := Z′diag[(ZiZ
′
i)

−1]ki=1Z =

k∑
i=1

Z′
i(ZiZ

′
i)

−1Zi.

Setting

s(B) =
1

2

n−1∑
�=1

λ2
�(B)− p

2
,

by the above discussion we can assert

s(B) = s(B).

A main advantage of B is embodied in the following proposition, which will be
a starting point of the proof of Theorem 3.1.

Proposition 6.1. Assume that O1, . . . ,Ok are i.i.d. (n− 1)-dimensional ran-
dom orthogonal matrices possessing Haar distribution on the orthogonal group
O(n− 1). Let Pi = Ipi ⊕ 0n−1−pi be a diagonal projection matrix with rank pi,
for each i ∈ �k�. Here we denote by 0m the m×m null matrix. Then under H0,
we have

B
d
=

k∑
i=1

O′
iPiOi.

Proof. We perform the singular value decomposition as Zi := U′
iDiOi, where

Ui and Oi are pi-dimensional and (n− 1)-dimensional orthogonal matrices re-
spectively, and Di is a pi × (n − 1) rectangular matrix whose main diagonal
entries are nonzero while the others are all zero. It is well-known that when
Zi has i.i.d. normal entries, both Ui and Oi are Haar distributed. Then an
elementary calculation leads to Proposition 1.
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Note that Proposition 6.1 allows us to study the eigenvalues of a summation
of k independent random projections instead. Moreover, it is obvious that un-
der H0, this summation of random matrices does not depend on the unknown
population mean vectors and covariance matrices of xi, i ∈ �k�.

To compress notation, we set

Q :=
k∑

i=1

O′
iPiOi, Q

d
= B. (6.1)

According to the discussion in the last section, we know that our Schott type
statistic can be expressed (in distribution) in terms of the eigenvalues of Q,
since

trB2 d
= trQ2 =

n−1∑
�=1

λ2
�(Q).

In RMT, given an N ×N random matrix A and some test function f : C → C,
one usually calls the quantity

LN [f ] :=

N∑
�=1

f(λ�(A))

a linear spectral statistic of A with test function f . For some classical random
matrix models such as Wigner matrices and sample covariance matrices, linear
spectral statistics have been widely studied. Not trying to be comprehensive,
one can refer to [3], [9], [16], [25] and [22] for instance. A notable feature in this
type of CLTs is that usually the variance of the linear spectral statistic is of
order O(1) when the test function f is smooth enough, mainly due to the strong
correlations among eigenvalues, thus is significantly different from the case of
i.i.d variables. Now, in a similar vein, with the random matrix Q at hand, we
want to study the fluctuation of its linear spectral statistics, focusing on the
test function f(x) = x2.

In the past few decades, the main stream of RMT has focused on the spec-
tral behavior of single random matrix models such as Wigner matrix, sample
covariance matrix and non-Hermitian matrix with i.i.d. variables. However, with
the rapid development in RMT and its related fields, the study of general poly-
nomials with classical single random matrices as its variables is in increasing
demand. A favorable idea is to derive the spectral properties of the matrix
polynomial from the information of the spectrums of its variables (single matri-
ces). Specifically, the question can be described as

Given the eigenvalues of A and B, what can one say about the eigenvalues
of h(A,B)?

Here h(·, ·) is a bivariate polynomial. Usually, for deterministic matrices A and
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B, only with their eigenvalues given, it is impossible to write down the eigenval-
ues of h(A,B). However, for some independent high-dimensional random ma-
trices A and B, deriving the limiting spectral properties of h(A,B) via those
of A and B is possible. To answer this kind of question, the right machinery
to employ is FPT. In the breakthrough work by Voiculescu in [26], the author
proved that if (An)n∈N and (Bn)n∈N are two independent sequences of random
Hermitian matrices and at least one of them is orthogonally invariant (in dis-
tribution), then they satisfy the property of asymptotic freeness, which allows
one to derive the limit of 1

nEtrh(An,Bn) from the limits of ( 1nEtrA
m
n )m∈N and

( 1nEtrB
m
n )m∈N directly. Sometimes we also call the asymptotic freeness of two

random matrix sequences as first order freeness.

Our aim in this paper, however, is not to derive the limit of the normalized
trace of some polynomial in random matrices, but to take a step further to
study the fluctuation of the trace. To this end, we need to adopt the concept of
second order freeness, which was recently raised and developed in the series of
work: [11, 12, 5, 10], also see [20]. In contrast, the second order freeness aims
at answering how to derive the fluctuation property of trh(An,Bn) from the
limiting spectral properties of An and Bn.

Especially, in [10], the authors established the so-called real second order
freeness for orthogonal matrices, which is specialized in solving the fluctuation
of the linear spectral statistics of polynomials in Haar distributed orthogonal
matrices and deterministic matrices. For our purpose, we need to employ Propo-
sition 52 in [10], an ad hoc and simplified version of which can be heuristically
sketched as follows. Assume that {An}n∈N and {Bn}n∈N are two independent
sequences of random matrices (may be deterministic), where An and Bn are
n by n, and the limits of n−1

Etrh1(An) and n−1
Etrh2(Bn) exist for any given

polynomials h1 and h2, as n → ∞. Moreover, trh1(An) and trh2(Bln) possess
Gaussian fluctuations (may be degenerate) asymptotically for any given poly-
nomials h1 and h2. Then trq(O′AnO,Bn) also possesses Gaussian fluctuation
asymptotically for any given bivariate polynomial q(·, ·), where O is supposed
to be an n× n Haar orthogonal matrix independent of An and Bn.

Now as for Q, we can start from the case of k = 2, which fits the above
framework quite well. To wit, we can regard O′

1P1O1 as Bn−1 and P2 as An−1,
using Proposition 52 of [10] leads to the fact that trh(O′

1P1O1 + O′
2P2O2)

is asymptotically Gaussian after an appropriate normalization, for any given
polynomial h. Then we take O′

1P1O1 + O′
2P2O2 as Bn−1 and regard P3 as

An−1 and repeat the above discussion. By using Proposition 52 in [10] recur-
sively, we can get our CLT for Q finally. A formal result which can be derived
from Proposition 52 in [10] is as follows, whose proof will be presented in the
Appendix.

Theorem 6.1. For our matrix Q defined in (6.1), and any deterministic poly-
nomial sequence h1, h2, h3, · · · , we have

Cov(tr h1(Q), tr h2(Q)) = O(1)
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and

lim
n→∞

κr(tr h1(Q), . . . , tr hr(Q)) = 0, if r ≥ 3

where κr(ξ1, . . . , ξr) represents the joint cumulant of the random variables ξ1, . . . ,
ξr.

Now if we set hi(x) = x2 for all i ∈ N, we can obtain Theorem 3.1 by proving
the following lemma.

Lemma 6.1. Under the above notation, we have

EtrQ2 = p+
∑

i,j,i �=j

pipj
n− 1

, (6.2)

and

Var(trQ2) = 4
∑

i,j,i �=j

pipj(n− 1− pi)(n− 1− pj)

(n− 1)4
+O(

1

n
). (6.3)

The proof of Lemma 6.1 will also be stated in the Appendix. In the sequel,
we prove Theorem 3.1 with Lemma 6.1 granted.
Proof of Theorem 3.1. Setting hi(x) = x2 for all i ∈ N in Theorem 6.1, we see
that all rth cumulants of trQ2 tend to 0 if r ≥ 3 when n → ∞, which together
with Lemma 6.1 implies that

trQ2 − EtrQ2√
Var(trQ2)

=⇒ N(0, 1).

Then Theorem 3.1 follows from the definition of s(B) directly.

Appendix

In this Appendix, we provide the proofs of Theorem 6.1 and Lemma 6.1.

Proof of Theorem 6.1. In Proposition 52 of [10], the authors state that if
{An}n∈N and {Bn}n∈N are two independent sequences of random matrices (may
be deterministic), where An and Bn are n× n, each having a real second order
limit distribution, and O is supposed to be an n × n Haar orthogonal matrix
independent of An and Bn, then Bn and O′AnO are asymptotically real sec-
ond order free. By Definition 30 of [10], we see that for a single random matrix
sequence {An}n∈N, the existence of the so-called real second order limit distri-
bution means that the following three statements hold simultaneously for any
given sequence of polynomials h1, h2, h3, . . . when n → ∞:

1) n−1
Etrh1(An) converges;

2) Cov(trh1(An), trh2(An)) converges (the limit can be 0);
3) κr(trh1(An), . . . , trhr(An)) = o(1) for all r ≥ 3.
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We stress here, the original definition in [10] is given with a language of non-
commutative probability theory. To avoid introducing too many additional no-
tions, we just modify it to be the above 1)-3). Then by the Definition 33 and
Proposition 52 of [10]), one see that if both {An}n∈N and {Bn}n∈N have real
second order limit distributions, we have the following three facts for any given
sequences of bivariate polynomials q1, q2, q3, . . . when n → ∞:

1’) n−1
Etrq1(Bn,O

′AnO) converges;
2’) Cov(trq1(Bn,O

′AnO), trq2(Bn,O
′AnO)) converges;

3’) κr(trq1(Bn,O
′AnO), . . . , trqr(Bn,O

′AnO)) = o(1) for all r ≥ 3.

Here 1’) and 2’) can be implied by the definitions of the first and second order
freeness in [10] respectively, and 3’) can be found in the proof of Proposition
52 of [10], where the authors claim that the proof of Theorem 41 therein is
also applicable under the setting of Proposition 52. Note that in [10], a more
concrete rule to determine the limit of

Cov(trq1(Bn,O
′AnO), trq2(Bn,O

′AnO))

is given, which can be viewed as the core of the concept of real second order free-
ness. However, here we do not need such a concrete rule, thus do not introduce
it.

Now we are at the stage of employing Proposition 52 of [10] to prove Theorem
6.1. Recall our objective Q defined in (6.1). We start from the case of k = 2,
to wit, we are considering the linear spectral statistics of the random matrix
O′

1P1O1 +O′
2P2O2. Now, we regard O′

1P1O1 as Bn−1 and P2 as An−1, then
obviously they both satisfy 1)-3) in the definition of the existence of the real
second order limit distribution, since the spectrums of An−1 and Bn−1 are both
deterministic, noticing they are projection matrices with known ranks. Then
1’)-3’) immediately imply that O′

1P1O1+O′
2P2O2 also has a real second order

limit distribution. Next, adding O′
3P3O3 to O′

1P1O1+O′
2P2O2, and regarding

the latter as Bn−1 and P3 as An−1, we can use the above discussion again to
conclude that O′

1P1O1+O′
2P2O2+O′

3P3O3 also possesses a real second order
limit distribution. Recursively, we can finally get that Q has a real second order
limit distribution, which implies Theorem 6.1. So we conclude the proof.

It remains to prove Lemma 6.1. Before commencing the proof, we briefly
introduce some technical inputs. Since the trace of a product of matrices can
always be expressed in terms of some products of their entries, it is expected
that we will need to calculate the quantities of the form

EOi1j1 · · ·Oimjm , (6.4)

whereO is assumed to be anN -dimensional Haar distributed orthogonal matrix,
and Oij is its (i, j)th entry. A powerful tool handling this kind of expectation is
the so-called Weingarten calculus on orthogonal group, we refer to the seminal
paper of [6], formula (21) therein. To avoid introducing too many combinatorics
notions for Weingarten calculus, we just list some consequence of it for our
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purpose, taking into account the fact that we will only need to handle the case
of m ≤ 4 in (6.4) in the sequel. Specifically, we have the following lemma.

Lemma 6.2. Under the above notation, we have the following facts for (6.4),
assuming m ≤ 4 and i = (i1, . . . , im) and j = (j1, . . . , jm).

1) When m = 2, i1 = i2, and j1 = j2, we have (6.4) = N−1,
2) When m = 4, we have the following results for four sub-cases.

i) If i1 = i2 = i3 = i4, j1 = j2 = j3 = j4, we have (6.4) = 3/(N(N+2));

ii) If i1 = i2 = i3 = i4, j1 = j2 �= j3 = j4, we have (6.4) = 1/(N(N+2));

iii) If i1 = i2 �= i3 = i4, j1 = j2 �= j3 = j4, we have (6.4) = (N +
1)/(N(N − 1)(N + 2));

iv) If i1 = i3 �= i2 = i4, j1 = j2 �= j3 = j4, we have (6.4) = −1/(N(N −
1)(N + 2)).

3) Replacing O by O′, we can obviously switch the roles of i and j in 1) and
2). Moreover, any permutation on the indices {1, . . . ,m} will not change
(6.4). Any other triple (m, i, j), which can not be transformed into any case
in 1) or 2) via switching the roles of i and j or performing permutations
on the indices {1, . . . ,m}, will drives (6.4) to be 0.

With Lemma 6.2 at hand, we can prove Lemma 6.1 in the sequel.

Proof of Lemma 6.1. At first, we verify (6.2). Note that by definition,

EtrQ2 =

k∑
i=1

Etr(O′
iPiOi)

2 +
∑

i,j,i �=j

Etr(O′
iPiOi ·O′

jPjOj)

= p+
∑

i,j,i �=j

Etr(O′
iPiOi ·O′

jPjOj).

Let ui(
) be the 
th column of O′
i and ui(
, s) be the sth coefficient of ui(
),

i.e. the (
, s)th entry of Oi, for all i ∈ �k�. Then for i �= j we have

Etr(O′
iPiOi ·O′

jPjOj) = E

pi∑
m=1

pj∑
�=1

trui(m)u′
i(m)uj(
)u

′
j(
)

=

pi∑
m=1

pj∑
�=1

∑
s

∑
t

Eui(m, s)ui(m, t) · Euj(
, s)uj(
, t)

=

pi∑
m=1

pj∑
�=1

∑
s

E(ui(m, s))2E(uj(
, s))
2 =

pipj
n− 1

. (6.5)
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Here, in the third step above we used 3) of Lemma 6.2 to discard the terms with
s �= t, while in the last step we used 1) of Lemma 6.2. Therefore, we have

Etr(

k∑
i=1

O′
iPiOi)

2 = p+
∑

i,j,i �=j

pipj
n− 1

, (6.6)

Now we calculate Var(trQ2) as follows. Note that we have

Var(trQ2) = E(tr(

k∑
i=1

O′
iPiOi)

2)2 − (Etr(

k∑
i=1

O′
iPiOi)

2)2

= E

( ∑
i,j,i �=j

tr(O′
iPiOi ·O′

jPjOj)

)2

−
(
E

∑
i,j,i �=j

tr(O′
iPiOi ·O′

jPjOj)

)2

=
∑

i,j,i �=j

∑
m,�,m �=�

Cov(tr(O′
iPiOi ·O′

jPjOj), tr(O
′
mPmOm ·O′

�P�O�))

=
∑

i,j,m,�
i �=j,m �=�

{i,j}∩{m,�}�=∅

Cov(tr(O′
iPiOi ·O′

jPjOj), tr(O
′
mPmOm ·O′

�P�O�)).

In the sequel, we briefly write

Cov((i, j), (m, 
)) := Cov(tr(O′
iPiOi ·O′

jPjOj), tr(O
′
mPmOm ·O′

�P�O�))

Note that the summation in the last step above can be decomposed into the
following six cases.

1 : m = i, 
 = j; 2 : m = j, 
 = i;

3 : m = i, 
 �= i, j; 4 : 
 = i, m �= i, j;

5 : m = j, 
 �= i, j; 6 : 
 = j, m �= i, j.

Now given i, j, we decompose the summation over m, 
 according to the above 6
cases and denote the sum restricted on these cases by

∑
α(i,j), α(i, j) = 1, . . . , 6

respectively. Therefore,

Var(trQ2) =
∑

i,j,i �=j

6∑
α(i,j)=1

∑
α(i,j)

Cov((i, j), (m, 
)) (6.7)

Now by definition we have
∑

i,j,i �=j

∑
α(i,j)

Cov((i, j), (m, 
)) =
∑
i

∑
j �=i

Cov((i, j), (i, j)), α = 1, 2,

∑
i,j,i �=j

∑
α(i,j)

Cov((i, j), (m, 
)) =
∑
i

∑
j �=i

∑
��=i,j

Cov((i, j), (i, 
)), α = 3, 4,

∑
i,j,i �=j

∑
α(i,j)

Cov((i, j), (m, 
)) =
∑
i

∑
j �=i

∑
��=i,j

Cov((i, j), (j, 
)), α = 5, 6.
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Now note that for i �= j

Cov((i, j), (i, j)) = E(tr(O′
iPiOi ·O′

jPjOj))
2 − (Etr(O′

iPiOi ·O′
jPjOj))

2

= E(tr(O′
iPiOi ·O′

jPjOj))
2 − (

pipj
n− 1

)2,

where the last step follows from (6.5). Moreover, we have

E(tr(O′
iPiOi ·O′

jPjOj))
2

=

pi∑
m1,m2=1

pj∑
�1,l2=1

Eu′
i(m1)uj(
1)u

′
j(
1)ui(m1)u

′
i(m2)uj(
2)u

′
j(
2)ui(m2)

=
∑

s1,s2,t1,t2

[ pi∑
m1,m2=1

Eui(m1, s1)ui(m1, t1)ui(m2, s2)ui(m2, t2)

]

×
[ pj∑
�1,�2=1

Euj(
1, s1)uj(
1, t1)uj(
2, s2)uj(
2, t2)

]
.

To calculate the above expectation, we need to use Lemma 6.2 again. In light
of 3) of Lemma 6.2, it suffices to consider the following four cases

1 : s1 = s2 = t1 = t2, 2 : s1 = s2 �= t1 = t2

3 : s1 = t1 �= s2 = t2, 4 : s1 = t2 �= s2 = t1.

Through detailed but elementary calculation, with the aid of Lemma 6.2, we
can finally obtain that for i �= j,

Cov((i, j), (i, j)) =
2pipj(n− 1− pi)(n− 1− pj)

(n− 1)4
+O(

1

n
).

Moreover, analogously, when i, j, 
 are mutually distinct, we can get

Cov((i, j), (i, 
)) = Cov((i, j), (j, 
)) = O(
1

n
)

by using Lemma 6.2. Here we just omit the details of the calculation. Conse-
quently, by (6.7) one has

Var(trQ2) =
∑

i,j,i �=j

4pipj(n− 1− pi)(n− 1− pj)

(n− 1)4
+O(

1

n
). (6.8)

Thus we conclude the proof.
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[5] Collins, B., Mingo, J. A., Śniady, P. and Speicher, R. (2007). Second order
freeness and fluctuations of Random Matrices: III. Higher order freeness
and free cumulants, Doc. Math., 12, 1–70.
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