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1. Introduction

It is well known that the simple errors-in-variables (EV, for short) regression
model was proposed by Deaton [1] to correct for the effects of sampling error
and is somewhat more practical than the ordinary regression model. For more
details about the EV regression model, one can refer to Fuller [2], Fusek and
Fusková [3], Carroll et al. [4], Hslao et al. [5], and so on.

In this article, we consider the following simple linear EV model:

ηi = θ + βxi + εi, ξi = xi + δi, 1 ≤ i ≤ n, (1.1)

where θ, β are unknown parameters, x1, x2, · · · , xn are unknown constants,
(ε1, δ1), (ε2, δ2), · · · , (εn, δn) are random vectors and ξi, ηi, i = 1, 2, · · · , n
are observable. From (1.1) we have

ηi = θ + βξi + νi, νi = εi − βδi, 1 ≤ i ≤ n. (1.2)

Consider formally (1.2) as a usual regression model of ηi on ξi, we get the least
square (LS, for short) estimators of θ and β as

β̂n =

∑n
i=1(ξi − ξ̄n)(ηi − η̄n)∑n

i=1(ξi − ξ̄n)2
, θ̂n = η̄n − β̂nξ̄n, (1.3)

where ξ̄n = n−1
∑n

i=1 ξi, and other similar notations, such as η̄n, δ̄n and x̄n, are
defined in the same way.

The limiting behaviors for the LS estimators of θ and β in the EV model have
been studied by many authors since the EV model was proposed by Deaton [1].
For the case that the errors are sequences of independent random variables, one
can refer to [6]-[13]. Under the case that the errors are sequences of dependent
random variables, Fazekas and Kukush [14] studied the asymptotic properties
of an estimator in nonlinear functional EV models with α-mixing error terms;
Miao et al. [15] studied the strong consistency of LS estimators in the EV
regression model with negatively associated (NA, for short) errors; Miao et al.
[16] established the consistency of LS estimators in the EV regression model
with martingale difference errors; Wang [17] studied the moderate deviation
principles for the least-square estimators of the unknown parameters in EV
regression models with α-mixing errors, and so on.

We are interested in the results of Liu and Chen [11]. For the case (ε1, δ1),
(ε2, δ2), · · · are independent and identically distributed random variables, Liu

and Chen [11] provided the sufficient and necessary conditions for β̂n being
strong and weak consistent estimator of β, and the sufficient and necessary
conditions for θ̂n being a weak consistent estimator of θ.
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Miao et al. [15] generalized the results of Liu and Chen [11] for independent
and identically distributed random variables to the case of NA setting, and
proved that for some τ > 0,

√
Sn

nτ
(β̂n − β) → 0 a.s. (1.4)

where Sn =
∑n

i=1(xi − x̄n)
2. However, the following sufficient conditions are

needed:

(i) {εi, i ≥ 1} and {δi, i ≥ 1} are both strictly stationary sequences of NA
random variables and independent with each other such that Eε1 = 0 and
Eδ1 = 0;

(ii) E|ε1|q < ∞ and E|δ1|q < ∞ for some q ≥ 2;
(iii) there exists some τ > 0 such that

max
1≤i≤n

|xi − x̄n|√
Snnτ−1/q

= O(1),
nτ

√
Sn

= O(1); (1.5)

(iv) for the case q = 2, assume that
√
Sn

n1−τ+γ
→ ∞, for some γ > 0; (1.6)

for the case q > 2, assume that

n1−τ

√
Sn

→ 0. (1.7)

It is easily checked that (1.6) implies (1.7). So we want to ask that whether
condition (1.6) could be replaced by (1.7) for the case q = 2. Furthermore,
the condition of strict stationarity seems too strong. Could it be replaced by
a weaker condition, such as identical distribution? The answers are positive.
Please see Theorem 2.1 in Section 2.

On the other hand, it is also very desirable to extend the result of Miao et al.
[15] for NA setting to a more general setting. The main purpose of the paper is to
investigate the strong consistency of LS estimators in the EV regression model
with negatively orthant dependent (NOD, for short) errors, which generalizes
and improves the corresponding one of Miao et al. [15]. In addition, we will
study the weak consistency and complete consistency of LS estimators in the
EV regression model with NOD errors, which were not considered in Miao et
al. [15].

The paper is organized as follows: main results of the paper are presented
in Section 2, including the strong consistency, weak consistency and complete
consistency of LS estimators in the EV regression model with NOD errors.
Some basic properties for NOD random variables are provided in Section 3. In
Section 4, we provide the proofs of the main results.

Throughout the paper, let C be a positive constant not depending on n,
which may be different in various places. an = O(bn) stands for |an| ≤ C|bn| for
all n ≥ 1 and some C > 0, and “

P−−−→” stands for convergence in probability.

Denote log x = lnmax(x, e), x+ = max(X, 0) and x− = max(−X, 0).
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2. Main results

Before we state the main results, we introduce the concept of negatively orthant
dependence as follows.

Definition 2.1. A finite collection of random variables X1, X2, · · · , Xn is said
to be negatively orthant dependent (NOD, for short) if

P (X1 > x1, X2 > x2, · · · , Xn > xn) ≤
n∏

i=1

P (Xi > xi)

and

P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) ≤
n∏

i=1

P (Xi ≤ xi)

for all x1, x2, · · · , xn ∈ R. An infinite sequence {Xn, n ≥ 1} is said to be NOD
if every finite subcollection is NOD.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NOD if
for every n ≥ 1, {Xni, i ≥ 1} is NOD.

The concept of NOD random variables was introduced by Joag-Dev and
Proschan [18]. Obviously, independent random variables are NOD. Joag-Dev
and Proschan [18] pointed out that NA random variables are NOD. They also
presented an example in which X = (X1, X2, X3, X4) possesses NOD, but does
not possess NA. So we can see that NOD is weaker than NA. A number of limit
theorems for NOD random variables have been established by many authors.
We refer to [19]-[28] for instance.

Now, we present the main results of the paper.
The model (1.1) to be studied can be exactly described as follows:{

ηi = θ + βxi + εi, ξi = xi + δi, 1 ≤ i ≤ n;
Eεi = Eδi = 0, 1 ≤ i ≤ n.

(2.1)

Here ξi, ηi, i = 1, 2, · · · , n are observable, while θ, β are unknown parameters,
and x1, x2, · · · , xn are unknown constants. In what follows, we assume that the
two error sequences {εi, i ≥ 1} and {δi, i ≥ 1} are independent with each other,
where {εi, i ≥ 1} and {δi, i ≥ 1} are both mean zero NOD random variables
with identical distribution. Denote Sn =

∑n
i=1(xi − x̄n)

2 for each n ≥ 1.
Based on the notations above, we can get that

β̂n − β =

∑n
i=1(δi − δ̄n)εi +

∑n
i=1(xi − x̄n)(εi − βδi)− β

∑n
i=1(δi − δ̄n)

2∑n
i=1(ξi − ξ̄n)2

(2.2)

and

θ̂n − θ = (β − β̂n)x̄n + (β − β̂n)δ̄n + ε̄n − βδ̄n. (2.3)

These relations above will play an important role to prove the main results of
this paper.
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2.1. Strong consistency

In this subsection, we will present the strong consistency of LS estimators β̂n

and θ̂n.

Theorem 2.1. Under the model (2.1), let E|ε1|2p < ∞ and E|δ1|2p < ∞ for
some p ≥ 1. Suppose that there exists some τ > 0 such that

max
1≤i≤n

|xi − x̄n|√
Snnτ−1/p

= O(1), (2.4)

nτ

√
Sn

= O(1) (2.5)

and

n1−τ

√
Sn

→ 0. (2.6)

Assume further that τ > 1/p− 1/2 if 1 ≤ p ≤ 2. Then

√
Sn

nτ
(β̂n − β) → 0 a.s.. (2.7)

Remark 2.1. It is easily seen that (2.6) implies (2.5) when 0 < τ ≤ 1/2 and
(2.5) implies (2.6) when τ > 1/2.

Remark 2.2. Combining Theorem 2.1 with the corresponding one of Miao et
al. [15], we have the following generalizations or improvements:

(i) NA errors are extended to NOD errors;
(ii) in Miao et al. [15], the two sequences {εi, i ≥ 1} and {δi, i ≥ 1} are as-

sumed to be strictly stationary. However, in Theorem 2.1, we only need
the assumption of identical distribution, which is weaker than strict sta-
tionarity;

(iii) for p = 1 (q = 2 in Miao et al. [15]), the condition (1.6) is weakened by
(2.6).

Remark 2.3. The result of Theorem 2.1 generalizes the corresponding one of
Liu and Chen [11].

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied. As-
sume further that there exist some 0 < ν < min(1 − 1/p, 1/2) and p > 1 such
that

nτ+ν

√
Sn

|x̄n| = O(1). (2.8)

Then

nν(θ̂n − θ) → 0 a.s.. (2.9)
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2.2. Weak consistency

In this subsection, we will provide the weak consistency of LS estimators β̂n and
θ̂n under much weaker conditions than those in Theorem 2.1 and Theorem 2.2.

Theorem 2.3. Under the model (2.1), assume that E|ε1|2p < ∞ and E|δ1|2p <
∞ for some p > 1. Let {bn, n ≥ 1} be a sequence of positive real numbers such
that bn → ∞ as n → ∞. If

bn√
Sn

= O(1), lim
n→∞

√
Snbn
n

= ∞, (2.10)

then
√
Sn

bn
(β̂n − β)

P−−−−→ 0. (2.11)

Theorem 2.4. Suppose that the conditions of Theorem 2.3 are satisfied. As-
sume further that

nx̄2
n

b2nSn
→ 0,

n3/2|x̄n|
bnSn

→ 0, as n → ∞. (2.12)

Then
√
n

bn
(θ̂n − θ)

P−−−−→ 0. (2.13)

Remark 2.4. If we take bn = nτ for some τ > 0, then the conditions (2.10)
are equivalent to (2.5) and (2.6).

2.3. Complete consistency

Theorem 2.5. Under the model (2.1), let E|ε1|4p < ∞ and E|δ1|4p < ∞ for
some p > 1. Suppose that there exists some τ > 0 such that (2.4)–(2.6) hold.
Then for any ε > 0,

∞∑
n=1

P

(∣∣∣∣
√
Sn

nτ
(β̂n − β)

∣∣∣∣ > ε

)
< ∞,

i.e.
√
Sn

nτ
(β̂n − β) → 0 completely. (2.14)

Theorem 2.6. Suppose that the conditions of Theorem 2.5 are satisfied. As-
sume further that there exists some 0 < ν < min(1 − 1/p, 1/2) such that (2.8)
holds. Then

nν(θ̂n − θ) → 0 completely. (2.15)

Remark 2.5. Comparing Theorem 2.1 with Theorem 2.5, and Theorem 2.2
with Theorem 2.6, respectively, the strong consistency is improved to complete
consistency.
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3. Properties for NOD random variables

In order to prove the main results of the paper, we will present some basic
properties for NOD random variables. The first one is well known and can be
found, for example, in Taylor et al. [20].

Lemma 3.1. Let random variables X1, X2, · · · , Xn be NOD.

(i) If f1, f2, · · · , fn are all nondecreasing (or all nonincreasing) functions,
then random variables f1(X1), f2(X2), · · · , fn(Xn) are also NOD.

(ii) If X1, X2, · · · , Xn are nonnegative, then

E(X1X2 · · ·Xn) ≤ EX1 · EX2 · · ·EXn.

Lemma 3.2. Let X1, X2, · · · , Xn and Y1, Y2, · · · , Yn be both NOD random vari-
ables. If random variables X1, X2, · · · , Xn and Y1, Y2, · · · , Yn are independent,
then X1 + Y1, X2 + Y2, · · · , Xn + Yn are also NOD random variables.

Proof. Denote Zk = Xk + Yk, 1 ≤ k ≤ n. For any z1, z2, · · · , zn ∈ R, we have

P (Z1 > z1, Z2 > z2, · · · , Zn > zn)

= E {E [I(Z1 > z1, Z2 > z2, · · · , Zn > zn) | X1, X2, · · ·Xn]}
= E{E[I(Y1 > z1 −X1) · I(Y2 > z2 −X2) · · · I(Yn > zn −Xn) | X1, X2, · · ·Xn]}.

(3.1)

Note that the indicator functions above are nondecreasing of Y1, Y2, · · ·Yn. Since
X1, X2, · · · , Xn and Y1, Y2, · · · , Yn are independent, and Y1, Y2, · · · , Yn are NOD
random variables, we have by Lemma 3.1 (ii) that

E {E [I(Y1 > z1 −X1) · I(Y2 > z2 −X2) · · · I(Yn > zn −Xn) | X1, X2, · · ·Xn]}
≤ E{E [I(Y1 > z1 −X1) | X1]

· E [I(Y2 > z2 −X2) | X2] · · ·E [I(Yn > zn −Xn) | Xn]}. (3.2)

Noting that E[I(Y1 > z1 − X1) | X1], E[I(Y2 > z2 − X2) | X2], · · · , E[I(Yn >
zn −Xn) | Xn] are nondecreasing functions of X1, X2, · · ·Xn respectively, and
X1, X2, · · · , Xn are NOD random variables, we have by Lemma 3.1 (ii) again
that

E{E [I(Y1 > z1 −X1) | X1]

· E [I(Y2 > z2 −X2) | X2] · · ·E [I(Yn > zn −Xn) | Xn]}.
≤ E {E [I(Y1 > z1 −X1) | X1]}
· E {E [I(Y2 > z2 −X2) | X2]} · · ·E {E [I(Yn > zn −Xn) | Xn]} .

= P (X1 + Y1 > z1) · P (X2 + Y2 > z2) · · ·P (Xn + Yn > zn)

= P (Z1 > z1) · P (Z2 > z2) · · ·P (Zn > zn) , (3.3)

which together with (3.1) and (3.2) yields that

P (Z1 > z1, Z2 > z2, · · · , Zn > zn) ≤ P (Z1 > z1) · P (Z2 > z2) · · ·P (Zn > zn) .
(3.4)
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Similarly, we have

P (Z1 ≤ z1, Z2 ≤ z2, · · · , Zn ≤ zn) ≤ P (Z1 ≤ z1)P (Z2 ≤ z2) · · ·P (Zn ≤ zn) .
(3.5)

Hence, by the definition of NOD random variables and the inequalities (3.4)
and (3.5), we can see that Z1, Z2, · · · , Zn are NOD random variables. That is
to say, X1 + Y1, X2 + Y2, · · · , Xn + Yn are NOD random variables. The proof is
completed.

Combining Lemma 3.1 and Lemma 3.2, we can get the following important
property for NOD random variables, which will be used to prove the main results
of the paper.

Corollary 3.1. Let X1, X2, · · · , Xn and Y1, Y2, · · · , Yn be both NOD random
variables. If random variables X1, X2, · · · , Xn and Y1, Y2, · · · , Yn are indepen-
dent, then for any β ∈ R, X1 + βY1, X2 + βY2, · · · , Xn + βYn are also NOD
random variables.

The next one is the Rosenthal type inequality for NOD random variables.
The first inequality can be found in Asadian et al. [21] and the second one can
be found in Wu [29].

Lemma 3.3. Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of NOD random variables
with EXn = 0 and E|Xn|p < ∞ for every n ≥ 1. Then there exists a positive
constant Cp depending only on p such that for every n ≥ 1,

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

≤ Cp

⎧⎨
⎩

n∑
i=1

E|Xi|p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭

and

E

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣
p)

≤ C logp n

⎧⎨
⎩

n∑
i=1

E|Xi|p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭ .

With the above lemmas accounted for, we can get the following strong conver-
gence and complete convergence for weighted sums of NOD random variables,
which will be applied to prove the main results of the paper. The proof is similar
to that of Jing and Liang [30]. For convenience of the reader, we will present
the proofs of Lemmas 3.4 and 3.5 in Appendix A.

Lemma 3.4. Let {Xn, n ≥ 1} be a sequence of NOD random variables, which is
stochastically dominated by a random variable X, namely, there exists a positive
constant C such that

P (|Xn| > x) ≤ CP (|X| > x)

for all x ≥ 0 and n ≥ 1. Assume that E|X|p < ∞ for some p > 0 and EXn = 0
if p > 1. Let {bni, i ≥ 1, n ≥ 1} be an array of constants satisfying

max
1≤i≤n

|bni| = O(n−1/p) (3.6)
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and ⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

|bni|p = O
(
n−δ

)
for some δ > 0, if 0 < p ≤ 2,

n∑
i=1

b2ni = o
(
(log n)−1

)
, if p > 2.

(3.7)

Then

Tn
.
=

n∑
i=1

bniXi → 0 a.s.. (3.8)

Lemma 3.5. Let {Xn, n ≥ 1} be a sequence of NOD random variables, which
is stochastically dominated by a random variable X such that E|X|2p < ∞ for
some p > 0. Assume further that EXn = 0 if p > 1. Let {bni, i ≥ 1, n ≥ 1} be
an array of constants satisfying

max
1≤i≤n

|bni| = O(n−1/p) (3.9)

and ⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

|bni|p = O(n−δ) for some δ > 0, if 0 < p ≤ 1,

n∑
i=1

b2ni = o((log n)−1), if p > 1.
(3.10)

Then
∞∑

n=1

P

(∣∣∣∣∣
n∑

i=1

bniXi

∣∣∣∣∣ > ε

)
< ∞ for all ε > 0. (3.11)

The last one is the Marcinkiewicz-Zygmund type strong law of large numbers
for NOD random variables.

Lemma 3.6. Let 1/2 < α ≤ 1 and αp > 1. Let {Xn, n ≥ 1} be a sequence of
mean zero NOD random variables which is stochastically dominated by a random
variable X with E|X|p < ∞. Then

∞∑
n=1

nαp−2P

(
max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ > εnα

)
< ∞ for all ε > 0, (3.12)

and thus,

1

nα

n∑
i=1

Xi → 0 a.s. (3.13)

Proof. Similar to the proof of Theorem 1.1 of Zhang [31], one can get (3.12),
and (3.13) follows from (3.12) immediately. The proof is completed.
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4. Proofs of the main results

Proof of Theorem 2.1

Proof. In view of (2.2), to prove the main result (2.7), it suffices to show that

1√
Snnτ

n∑
i=1

(δi − δ̄n)
2 → 0 a.s., (4.1)

1√
Snnτ

n∑
i=1

(δi − δ̄n)εi → 0 a.s., (4.2)

1√
Snnτ

n∑
i=1

(xi − x̄n)(εi − βδi) → 0 a.s. (4.3)

and

1

Sn

n∑
i=1

(ξi − ξ̄n)
2 → 1 a.s.. (4.4)

To prove (4.1), we first prove that

J1n
.
=

1√
Snnτ

n∑
i=1

[
δ2i I(δi ≥ 0)− Eδ2i I(δi ≥ 0)

]
→ 0 a.s. (4.5)

and

J2n
.
=

1√
Snnτ

n∑
i=1

[
δ2i I(δi < 0)− Eδ2i I(δi < 0)

]
→ 0 a.s.. (4.6)

It is easily seen that {δ2i I(δi ≥ 0) − Eδ2i I(δi ≥ 0), i ≥ 1} and {δ2i I(δi < 0) −
Eδ2i I(δk < 0), i ≥ 1} are still NOD random variables by Lemma 3.1. Applying
Lemma 3.4 with Xi = δ2i I(δi ≥ 0)−Eδ2i I(δi ≥ 0) and bni =

1√
Snnτ , we have by

E|δ1|2p < ∞, (2.5) and (2.6) that:

(i) E|X1|p ≤ CE|δ1|2p < ∞;

(ii) max
1≤i≤n

bni =
1√

Snnτ ≤ n1−τ
√
Sn

· 1
n1/p = O(n−1/p);

(iii) if p > 2, then
n∑

i=1

b2ni =
n2−2τ

Sn
· 1
n
= o((log n)−1);

if 1 < p ≤ 2, then

n∑
i=1

|bni|p =
n

S
p/2
n npτ

= n1−p ·
(
n1−τ

√
Sn

)p

= O
(
n−(p−1)

)
;
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if p = 1, then

n∑
i=1

|bni| =
n1−τ

√
Sn

= n1−2τ · nτ

√
Sn

= O
(
n−(2τ−1)

)
,

where τ > 1/2, since τ > 1/p − 1/2 if 1 ≤ p ≤ 2. That is to say, the
conditions of Lemma 3.4 are satisfied. Hence, (4.5) follows by Lemma 3.4
immediately. Similarly, we can also get (4.6).

Note that Eδ21 < ∞ by E|δ1|2p < ∞ for p ≥ 1, we have

1√
Snnτ

n∑
i=1

(
δi − δ̄n

)2 ≤ 1√
Snnτ

n∑
i=1

(
δ2i − Eδ2i

)
+

1√
Snnτ

n∑
i=1

Eδ2i

= J1n + J2n +
n1−τ

√
Sn

Eδ21 . (4.7)

Hence (4.1) follows by (4.5)–(4.7) and (2.6) immediately.
Similar to the proof of (4.1), we can get that

1√
Snnτ

n∑
i=1

(εi − ε̄n)
2 → 0 a.s.. (4.8)

Note that ∣∣∣∣∣
n∑

i=1

(δi − δ̄n)εi

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(δi − δ̄n)(εi − ε̄n)

∣∣∣∣∣
≤ 1

2

[
n∑

i=1

(δi − δ̄n)
2 +

n∑
i=1

(εi − ε̄n)
2

]
, (4.9)

which together with (4.1) and (4.8) yield (4.2).
It is easily checked that for any r > 0,

n∑
i=1

|xi − x̄n| ·
∣∣δi − δ̄n

∣∣ ≤
√√√√ n∑

i=1

(xi − x̄n)2 ·

√√√√ n∑
i=1

(δi − δ̄n)2

=

√√√√r
n∑

i=1

(xi − x̄n)2 ·

√√√√1

r

n∑
i=1

(δi − δ̄n)2

≤
r
∑n

i=1(xi − x̄n)
2 + 1

r

∑n
i=1(δi − δ̄n)

2

2

=
r

2
Sn +

1

2r

n∑
i=1

(δi − δ̄n)
2,

which implies that∣∣∣∣∣
n∑

i=1

(ξi − ξ̄n)
2 − Sn

∣∣∣∣∣ =
∣∣∣∣∣2

n∑
i=1

(xi − x̄n)(δi − δ̄n) +
n∑

i=1

(δi − δ̄n)
2

∣∣∣∣∣
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≤ 2

n∑
i=1

|xi − x̄n| ·
∣∣δi − δ̄n

∣∣+ n∑
i=1

(δi − δ̄n)
2

≤ rSn +
1 + r

r

n∑
i=1

(δi − δ̄n)
2. (4.10)

Hence, we have by (4.10), (2.5) and (4.1) that∣∣∣∣∣ 1

Sn

n∑
i=1

(ξi − ξ̄n)
2 − 1

∣∣∣∣∣ ≤ r +
1 + r

r

1

Sn

n∑
i=1

(δi − δ̄n)
2

= r +
1 + r

r
· nτ

√
Sn

· 1√
Snnτ

n∑
i=1

(δi − δ̄n)
2 → r a.s.

(4.11)

Since r > 0 is arbitrary, it follows by (4.11) that

1

Sn

n∑
i=1

(ξi − ξ̄n)
2 − 1 → 0 a.s.,

which implies (4.4).
Finally, we will prove (4.3). Denote

bni =
xi − x̄n√
Snnτ

, Xi = εi − βδi.

It follows by Corollary 3.1 that {Xi, i ≥ 1} is still a sequence of NOD random
variables. In addition, we have by E|ε1|2p < ∞, E|δ1|2p < ∞ and (2.4) that:

(i) E|X1|p = E|ε1 − βδ1|p ≤ CE|ε1|p + CE|δ1|p < ∞;
(ii) max

1≤i≤n
|bni| = O

(
n−1/p

)
;

(iii) if p > 2, then
n∑

i=1

b2ni =
1

n2τ
= o

(
(log n)−1

)
;

if 1 ≤ p ≤ 2, noting that τ > 1/p− 1/2, we have

n∑
i=1

|bni|p =
1

S
p/2
n npτ

n∑
i=1

|xi − x̄n|p

≤ 1

S
p/2
n npτ

· n
(
1

n

n∑
i=1

|xi − x̄n|2
)p/2

= n1−p/2−pτ = O
(
n−(pτ+p/2−1)

)
.

That is to say, the conditions of Lemma 3.4 are satisfied. Hence, (4.3) follows
by Lemma 3.4 immediately. This completes the proof of the theorem.
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Proof of Theorem 2.2

Proof. According to the relation (2.3), to prove (2.9), it suffices to show that

nν(ε̄n − βδ̄n) → 0 a.s., (4.12)

nν(β − β̂n)x̄n → 0 a.s. (4.13)

and

nν(β − β̂n)δ̄n → 0 a.s.. (4.14)

Firstly, we will prove (4.12). It is easily seen that

nν(ε̄n − βδ̄n) =
1

n1−ν

n∑
i=1

(εi − βδi).

Applying Lemma 3.4 with bni =
1

n1−ν , Xi = εi − βδi, and noting that 0 < ν <
min(1− 1/p, 1/2), p > 1, we can see that:

(i) E|X1|p = E|ε1 − βδ1|p ≤ CE|ε1|p + CE|δ1|p < ∞;
(ii) max

1≤i≤n
|bni| = n−(1−ν) = O

(
n−1/p

)
;

(iii) if p > 2, then
n∑

i=1

b2ni =
1

n1−2ν
= o

(
(logn)−1

)
;

if 1 < p ≤ 2, noting that p− 1− pν > 0, we have

n∑
i=1

|bni|p =
n

np(1−ν)
= O

(
n−(p−1−pν)

)
.

That is to say, the conditions of Lemma 3.4 are satisfied. Hence, (4.12) follows
by Lemma 3.4 immediately.

Next, we will prove (4.13). It can be checked that

nν(β − β̂n)x̄n =

√
Sn

nτ
(β − β̂n) ·

nτ+ν

√
Sn

x̄n. (4.15)

Hence (4.13) follows by (4.15), (2.8) and Theorem 2.1 immediately.
Finally, we will prove (4.14). Similar to the proof of (4.12), we can get that

1

n1−ν

n∑
i=1

δi → 0 a.s.. (4.16)

Note that

nν(β − β̂n)δ̄n =

√
Sn

nτ
(β − β̂n) ·

nτ

√
Sn

· 1

n1−ν

n∑
i=1

δi. (4.17)

It follows by (4.17), (2.5), Theorem 2.1 and (4.16) that (4.14) holds. This com-
pletes the proof of the theorem.
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Proof of Theorem 2.3

Proof. The proof is similar to that of Theorem 2.1. In view of (2.2), to prove
the main result (2.11), it suffices to show that

1√
Snbn

n∑
i=1

(δi − δ̄n)
2 P−−−→ 0, (4.18)

1√
Snbn

n∑
i=1

(δi − δ̄n)εi
P−−−→ 0, (4.19)

1√
Snbn

n∑
i=1

(xi − x̄n)(εi − βδi)
P−−−→ 0 (4.20)

and

1

Sn

n∑
i=1

(ξi − ξ̄n)
2 P−−−→ 1. (4.21)

First, we will prove (4.18). Note that

1√
Snbn

n∑
i=1

(
δi − δ̄n

)2

≤ 1√
Snbn

n∑
i=1

δ2i

=
n√
Snbn

· 1
n

n∑
i=1

[
δ2i I(δi ≥ 0)− Eδ2i I(δi ≥ 0)

]

+
n√
Snbn

· 1
n

n∑
i=1

[
δ2i I(δi < 0)− Eδ2i I(δi < 0)

]
+

n√
Snbn

Eδ21 . (4.22)

It is easily seen that {δ2i I(δi ≥ 0) − Eδ2i I(δi ≥ 0), i ≥ 1} and {δ2i I(δi < 0) −
Eδ2i I(δk < 0), i ≥ 1} are both sequences of NOD random variables by Remark
3.1. Applying Lemma 3.6 with α = 1, we have by E|δ1|2p < ∞ and (2.10) that

n√
Snbn

· 1
n

n∑
i=1

[
δ2i I(δi ≥ 0)− Eδ2i I(δi ≥ 0)

] P−−−→ 0, (4.23)

n√
Snbn

· 1
n

n∑
i=1

[
δ2i I(δi < 0)− Eδ2i I(δi < 0)

] P−−−→ 0 (4.24)

and

n√
Snbn

Eδ21 → 0, as n → ∞. (4.25)

Hence, (4.18) follows by (4.22)–(4.25) immediately.
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Next, we will prove (4.19). Similar to the proof of (4.18), one has

1√
Snbn

n∑
i=1

(εi − ε̄n)
2 P−−−→ 0, (4.26)

By (4.9), (4.18) and (4.26), we can get (4.19) immediately.
In the following, we will prove (4.20). It follows by Lemma 3.1, Lemma 3.3,

Eδ21 < ∞ and Eε21 < ∞ that

1

Snb2n
E

[
n∑

i=1

(xi − x̄n)(εi − βδi)

]2

≤ 2

Snb2n
E

[
n∑

i=1

(xi − x̄n)
+(εi − βδi)

]2

+
2

Snb2n
E

[
n∑

i=1

(xi − x̄n)
−(εi − βδi)

]2

≤ C

Snb2n

n∑
i=1

(xi − x̄n)
2E(εi − βδi)

2 ≤ C

b2n

[
Eε21 + β2Eδ21

]
→ 0, as n → ∞,

which yields (4.20).
Finally, we will prove (4.21). It follows by (4.10) that∣∣∣∣∣

n∑
i=1

(ξi − ξ̄n)
2 − Sn

∣∣∣∣∣ ≤ 2

n∑
i=1

|xi − x̄n| ·
∣∣δi − δ̄n

∣∣+ n∑
i=1

(δi − δ̄n)
2

≤ 2

√√√√ n∑
i=1

(xi − x̄n)2 ·
n∑

i=1

(δi − δ̄n)2 +

n∑
i=1

(δi − δ̄n)
2

= 2

√√√√Sn ·
n∑

i=1

(δi − δ̄n)2 +

n∑
i=1

(δi − δ̄n)
2,

which implies that∣∣∣∣∣ 1

Sn

n∑
i=1

(ξi − ξ̄n)
2 − 1

∣∣∣∣∣ ≤ 2

√√√√ 1

Sn

n∑
i=1

(δi − δ̄n)2 +
1

Sn

n∑
i=1

(δi − δ̄n)
2. (4.27)

Note that

1

Sn

n∑
i=1

(δi − δ̄n)
2 ≤ bn√

Sn

· 1√
Snbn

n∑
i=1

(δi − δ̄n)
2,

which together with (2.10) and (4.18) yields that

1

Sn

n∑
i=1

(δi − δ̄n)
2 P−−−→ 0. (4.28)

Combining (4.27) and (4.28), we can get (4.21) immediately. This completes the
proof of the theorem.
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Proof of Theorem 2.4

Proof. According to the relation (2.3), to prove (2.13), it suffices to show that

√
n

bn
(ε̄n − βδ̄n)

P−−−→ 0, (4.29)

√
n

bn
(β − β̂n)x̄n

P−−−→ 0 (4.30)

and
√
n

bn
(β − β̂n)δ̄n

P−−−→ 0. (4.31)

By Markov’s inequality, Lemma 3.3 and Eε21 < ∞, we have for any ε > 0
that

P

(∣∣∣∣
√
n

bn
ε̄n

∣∣∣∣ ≥ ε

)
≤ C

nb2n
E

(
n∑

i=1

εi

)2

≤ C

b2n
→ 0, as n → ∞,

which implies that

√
n

bn
ε̄n

P−−−→ 0. (4.32)

Similarly, we have

√
n

bn
δ̄n

P−−−→ 0. (4.33)

Combining (4.32) and (4.33), we can get (4.29).
It follows by (2.10) and (2.11) that

β − β̂n
P−−−→ 0, (4.34)

which together with (4.33) yields (4.31).
Finally, we will prove (4.30). From the equality (2.2) and the fact (4.21), to

prove (4.30), it suffices to show

√
n|x̄n|
bnSn

[
n∑

i=1

(δi − δ̄n)εi +

n∑
i=1

(xi − x̄n)(εi − βδi)− β

n∑
i=1

(δi − δ̄n)
2

]
P−−−→ 0.

(4.35)

Similar to the proofs of (4.18) and (4.19), one has

√
n|x̄n|
bnSn

n∑
i=1

(δi − δ̄n)
2 ≤

√
n|x̄n|
bnSn

n∑
i=1

δ2i =
n3/2|x̄n|
bnSn

· 1
n

n∑
i=1

δ2i
P−−−→ 0 (4.36)
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and
√
n|x̄n|
bnSn

n∑
i=1

(δi − δ̄n)εi
P−−−→ 0. (4.37)

It follows by Lemma 3.1, Lemma 3.3, Eδ21 < ∞ and Eε21 < ∞ again that

nx̄2
n

b2nS
2
n

E

[
n∑

i=1

(xi − x̄n)(εi − βδi)

]2

≤ 2nx̄2
n

b2nS
2
n

E

[
n∑

i=1

(xi − x̄n)
+(εi − βδi)

]2

+
2nx̄2

n

b2nS
2
n

E

[
n∑

i=1

(xi − x̄n)
−(εi − βδi)

]2

≤ Cnx̄2
n

b2nS
2
n

n∑
i=1

(xi − x̄n)
2E(εi − βδi)

2 ≤ Cnx̄2
n

b2nSn

[
Eε21 + β2Eδ21

]
→ 0, as n → ∞,

which yields that

√
n|x̄n|
bnSn

n∑
i=1

(xi − x̄n)(εi − βδi)
P−−−→ 0. (4.38)

By (4.36)–(4.38), we can get (4.35) immediately. The proof is completed.

Proof of Theorem 2.5

Proof. The proof is similar to that of Theorem 2.1. In view of (2.2), to prove
the main result (2.14), it suffices to show that

1√
Snnτ

n∑
i=1

(δi − δ̄n)
2 → 0 completely, (4.39)

1√
Snnτ

n∑
i=1

(δi − δ̄n)εi → 0 completely, (4.40)

1√
Snnτ

n∑
i=1

(xi − x̄n)(εi − βδi) → 0 completely (4.41)

and

1

Sn

n∑
i=1

(ξi − ξ̄n)
2 → 1 a.s.. (4.42)

To prove (4.39), we firstly prove that

J1n
.
=

1√
Snnτ

n∑
i=1

(
δ2i I(δi ≥ 0)− Eδ2i I(δi ≥ 0)

)
→ 0 completely (4.43)
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and

J2n
.
=

1√
Snnτ

n∑
i=1

(
δ2i I(δi < 0)− Eδ2i I(δi < 0)

)
→ 0 completely. (4.44)

It is easily seen that {δ2i I(δi ≥ 0) − Eδ2i I(δi ≥ 0), i ≥ 1} and {δ2i I(δi < 0) −
Eδ2i I(δk < 0), i ≥ 1} are still NOD random variables by Lemma 3.1. Applying
Lemma 3.5 with Xi = δ2i I(δi ≥ 0)−Eδ2i I(δi ≥ 0) and bni =

1√
Snnτ , we have by

E|δ1|4p < ∞ and (2.6) that:

(i) E|X1|2p ≤ CE|δ1|4p < ∞;

(ii) max
1≤i≤n

bni =
1√

Snnτ ≤ n1−τ
√
Sn

· 1
n1/p = O(n−1/p);

(iii)
∑n

i=1 b
2
ni =

n2−2τ

Sn
· 1
n = o((log n)−1).

That is to say, the conditions of Lemma 3.5 are satisfied. Hence, (4.43) follows
by Lemma 3.5 immediately. Similarly, we can also get (4.44).

Note that Eδ21 < ∞ by E|δ1|4p < ∞ for p > 1, we have

1√
Snnτ

n∑
i=1

(
δi − δ̄n

)2 ≤ 1√
Snnτ

n∑
i=1

(
δ2i − Eδ2i

)
+

1√
Snnτ

n∑
i=1

Eδ2i

= J1n + J2n +
n1−τ

√
Sn

Eδ21 . (4.45)

It follows by (2.6) again that for any ε > 0,

n1−τ

√
Sn

Eδ21 <
ε

2
for all n large enough. (4.46)

By (4.43)–(4.46), we can get that for any ε > 0,

∞∑
n=1

P

(
1√
Snnτ

n∑
i=1

(
δi − δ̄n

)2
> ε

)
< ∞,

which implies (4.39).
Similar to the proof of (4.39), we can get that

1√
Snnτ

n∑
i=1

(εi − ε̄n)
2 → 0 completely. (4.47)

Note that ∣∣∣∣∣
n∑

i=1

(δi − δ̄n)εi

∣∣∣∣∣ ≤ 1

2

[
n∑

i=1

(δi − δ̄n)
2 +

n∑
i=1

(εi − ε̄n)
2

]
,

which together with (4.39) and (4.47) yield (4.40).
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It is easily checked that for any r > 0,

n∑
i=1

|xi − x̄n| ·
∣∣δi − δ̄n

∣∣ ≤
√√√√ n∑

i=1

(xi − x̄n)2 ·

√√√√ n∑
i=1

(δi − δ̄n)2

≤ r

2
Sn +

1

2r

n∑
i=1

(δi − δ̄n)
2,

which implies that∣∣∣∣∣
n∑

i=1

(ξi − ξ̄n)
2 − Sn

∣∣∣∣∣ =
∣∣∣∣∣2

n∑
i=1

(xi − x̄n)(δi − δ̄n) +

n∑
i=1

(δi − δ̄n)
2

∣∣∣∣∣
≤ rSn +

1 + r

r

n∑
i=1

(δi − δ̄n)
2. (4.48)

It follows by (4.39) and Borel-Cantelli lemma that

1√
Snnτ

n∑
i=1

(δi − δ̄n)
2 → 0 a.s. (4.49)

Hence, we have by (2.5), (4.48) and (4.49) that∣∣∣∣∣ 1

Sn

n∑
i=1

(ξi − ξ̄n)
2 − 1

∣∣∣∣∣ ≤ r +
1 + r

r
· nτ

√
Sn

· 1√
Snnτ

n∑
i=1

(δi − δ̄n)
2 → r a.s.

(4.50)

Since r > 0 is arbitrary, we can get (4.42) immediately by (4.50).
Finally, we will prove (4.41). Denote

bni =
xi − x̄n√
Snnτ

, Xi = εi − βδi.

It follows by Corollary 3.1 that {Xi, i ≥ 1} is still a sequence of NOD random
variables. In addition, we have by E|ε1|4p < ∞, E|δ1|4p < ∞ and (2.4) that

E|X1|2p = E|ε1 − βδ1|2p ≤ CE|ε1|2p + CE|δ1|2p < ∞,

max
1≤i≤n

|bni| = O
(
n−1/p

)
,

n∑
i=1

b2ni =
1

n2τ
= o

(
(logn)−1

)
.

That is to say, the conditions of Lemma 3.5 are satisfied. Hence, (4.41) follows by
Theorem Lemma 3.5 immediately. This completes the proof of the theorem.

Proof of Theorem 2.6

Proof. According to the relation (2.3), to prove (2.15), it suffices to show that

nν(ε̄n − βδ̄n) → 0 completely, (4.51)
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nν(β − β̂n)x̄n → 0 completely (4.52)

and

nν(β − β̂n)δ̄n → 0 completely. (4.53)

Firstly, we will prove (4.51). It is easily seen that

nν(ε̄n − βδ̄n) =
1

n1−ν

n∑
i=1

(εi − βδi).

Applying Lemma 3.5 with bni = 1
n1−ν , Xi = εi − βδi, and noting that 0 <

ν < min(1− 1/p, 1/2), p > 1, we can see that the conditions of Lemma 3.5 are
satisfied. Hence, (4.51) follows by Lemma 3.5 immediately.

Next, we will prove (4.52). It can be checked that

nν(β − β̂n)x̄n =

√
Sn

nτ
(β − β̂n) ·

nτ+ν

√
Sn

x̄n. (4.54)

We have by (4.54), (2.8) and Theorem 2.5 that for any ε > 0,

∞∑
n=1

P
(
nν |(β − β̂n)x̄n| > ε

)
≤

∞∑
n=1

P

(√
Sn

nτ
|β − β̂n| > C

)
< ∞,

which implies (4.52).
Finally, we will prove (4.53). Similar to the proof of (4.51), we can get that

1

n1−ν

n∑
i=1

δi → 0 completely. (4.55)

Notinge that

nν(β − β̂n)δ̄n =

√
Sn

nτ
(β − β̂n) ·

nτ

√
Sn

· 1

n1−ν

n∑
i=1

δi, (4.56)

we have by (4.56), (2.5), Theorem 2.5 and (4.55) that for any ε > 0,

∞∑
n=1

P
(
nν |(β − β̂n)δ̄n| > ε

)
≤

∞∑
n=1

P

(∣∣∣∣
√
Sn

nτ
(β − β̂n)

∣∣∣∣ > C

)

+

∞∑
n=1

P

(∣∣∣∣∣ 1

n1−ν

n∑
i=1

δi

∣∣∣∣∣ > C

)

< ∞,

which implies (4.53). This completes the proof of the theorem.
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Appendix A: Appendix section

To prove Lemmas 3.4 and 3.5, we need the following Kolmogorov-type expo-
nential inequality for NOD random variables, which can be found in Shen [26]
for instance.

Lemma A.1. Let {Xn, n ≥ 1} be a sequence of NOD random variables with zero
means and finite second moments. Denote Sn =

∑n
i=1 Xi and B2

n =
∑n

i=1 EX2
i

for each n ≥ 1. Then for all x > 0 and y > 0,

P (|Sn| ≥ x)

≤ 2P

(
max
1≤i≤n

|Xi| ≥ y

)
+ 2 exp

{
− x2

2(xy +B2
n)

[
1 +

2

3
log

(
1 +

xy

B2
n

)]}
.

By the integration by parts, we can get the following property for stochastic
domination. For the proof, one can refer to Wu [32], or Shen et al. [33].

Lemma A.2. Let {Xn, n ≥ 1} be a sequence of random variables which is
stochastically dominated by a random variable X. For any α > 0 and b > 0, the
following two statements hold:

E|Xn|αI (|Xn| ≤ b) ≤ C1 [E|X|αI (|X| ≤ b) + bαP (|X| > b)] ,

E|Xn|αI (|Xn| > b) ≤ C2E|X|αI (|X| > b) ,

where C1 and C2 are positive constants. Consequently, E|Xn|α ≤ CE|X|α,
where C is a positive constant.

Now we turn to prove Lemmas 3.4 and 3.5.

Proof of Lemmas 3.4

Proof. Without loss of generality, we may assume that bni > 0 (note that bni =
b+ni − b−ni). For any ε > 0, we choose small η > 0 and large N ≥ 1 (to be
specialized later).

Denote for 1 ≤ i ≤ n and n ≥ 1 that

Xni(1) = −b−1
ni n

−ηI
(
bniXi < −n−η

)
+XiI

(
|bniXi| ≤ n−η

)
+ b−1

ni n
−ηI

(
bniXi > n−η

)
,

Xni(2) =
(
Xi − b−1

ni n
−η

)
I
(
n−η < bniXi < ε/N

)
,

Xni(3) =
(
Xi + b−1

ni n
−η

)
I
(
−n−η > bniXi > −ε/N

)
,

Xni(4) =
(
Xi − b−1

ni n
−η

)
I (bniXi ≥ ε/N) +

(
Xi + b−1

ni n
−η

)
I (bniXi ≤ −ε/N) ,

Sn(l) =

n∑
i=1

bniXni(l), l = 1, 2, 3, 4.

For fixed n ≥ 1, it is easily seen that Tn =
∑n

i=1 bniXi = Sn(1) + Sn(2) +
Sn(3) + Sn(4) and {bniXni(1) − EbniXni(1), 1 ≤ i ≤ n} are still NOD random
variables by the definition of Xni(1) and Lemma 3.1.

We consider two cases.
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Case 1. p > 2

In order to prove Tn = o(1) a.s., we only need to show Sn(l) = o(1) a.s. for
l = 1, 2, 3, 4.

To prove Sn(1) = o(1) a.s., it suffices to show ESn(1) → 0 and Sn(1) −
ESn(1) → 0 a.s. as n → ∞.

Take η > 0 small enough such that 0 < η < 1−2/p
p−1 , which implies that

(p − 1)η − 1 + 2/p < 0. Hence, by EXn = 0, Markov’s inequality and Lemma
A.2, we can get that

|ESn(1)| ≤ n−η
n∑

i=1

P
(
|bniXi| > n−η

)
+

∣∣∣∣∣
n∑

i=1

bniEXiI
(
|bniXi| ≤ n−η

)∣∣∣∣∣
= n−η

n∑
i=1

P
(
|bniXi| > n−η

)
+

∣∣∣∣∣
n∑

i=1

bniEXiI
(
|bniXi| > n−η

)∣∣∣∣∣
≤ n(p−1)η

n∑
i=1

E|bniXi|p + n(p−1)η
n∑

i=1

E|bniXi|pI
(
|bniXi| > n−η

)

≤ Cn(p−1)η

(
max
1≤i≤n

|bni|
)p−2 n∑

i=1

b2ni

≤ Cn(p−1)η−1+2/p(logn)−1 → 0, as n → ∞, (A.1)

which implies that ESn(1) → 0 as n → ∞.
To prove Sn(1)−ESn(1) → 0 a.s., we only need to show that for any ε > 0,

∞∑
n=1

P (|Sn(1)− ESn(1)| > ε) < ∞. (A.2)

By the definition of Xni(1), we can see that

max
1≤i≤n

|bniXni(1)− EbniXni(1)| ≤ 2n−η (A.3)

and

B2
n

.
=

n∑
i=1

E [bniXni(1)− EbniXni(1)]
2

≤
n∑

i=1

E |bniXni(1)|2 ≤
n∑

i=1

E |bniXi|2

≤ CEX2
n∑

i=1

b2ni = o((log n)−1). (A.4)

Applying Lemma A.1 with x = ε and y = 2n−η, we have by (A.3), (A.4) and
Lemma A.1 that

∞∑
n=1

P (|Sn(1)− ESn(1)| > ε)
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≤ 2

∞∑
n=1

P

(
max
1≤i≤n

|bni(Xni(1)− EXni(1))| > 2n−η

)

+ C

∞∑
n=1

exp

{
− ε2

2(2εn−η + o((log n)−1))

}

≤ C

∞∑
n=1

exp{−2 logn} < ∞, (A.5)

which implies (A.2). This completes the proof of Sn(1) = o(1) a.s..
Next, we will estimate Sn(2). From the definition of Xni(2), we can see that

0 ≤ bniXni(2) < ε/N . Hence, |Sn(2)| =
∑n

i=1 bniXni(2) > ε implies that there
are at least N i’s such that bniXni(2) 	= 0. Therefore, by Markov’s inequality
and Lemma A.2, we can get that

P (|Sn(2)| > ε) ≤ P (there are at least N i′s such that bniXni(2) 	= 0)

≤
∑

1≤i1<i2<···<iN≤n

P (bn1Xni1(2) 	= 0, · · · , bniNXniN (2) 	= 0)

≤
∑

1≤i1<i2<···<iN≤n

P
(
bn1Xi1 > n−η, · · · , bniNXiN > n−η

)
≤

∑
1≤i1<i2<···<iN≤n

P
(
bn1Xi1 > n−η

)
· · ·P

(
bniNXiN > n−η

)

≤
[

n∑
i=1

P
(
bniXi > n−η

)]N

≤
[

n∑
i=1

P
(
|bniXi| > n−η

)]N

≤ C

[
npη

n∑
i=1

E |bniXi|p
]N

≤ C

[
npη

(
max
1≤i≤n

|bni|
)p−2 n∑

i=1

b2ni

]N

≤ Cn−(1−2/p−pη)N (log n)−N . (A.6)

Taking η small enough and N > 1 large enough such that 1− 2/p− pη > 0 and
(1− 2/p− pη)N ≥ 1, we can see that

∞∑
n=1

P (|Sn(2)| > ε) < ∞,

which implies that Sn(2) = o(1) a.s..
Note that −ε/N < bniXni(3) ≤ 0, hence, |Sn(3)| = −

∑n
i=1 bniXni(3) > ε

implies that there are at least N i’s such that bniXni(3) 	= 0. Similar to the
proof of Sn(2) = o(1) a.s., we can get Sn(3) = o(1) a.s. immediately.
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Finally, we will show that Sn(4) = o(1) a.s.. Note that E|X|p < ∞ is equiv-
alent to ∞∑

i=1

P
(
|Xi| ≥ ci1/p

)
< ∞ for any c > 0.

Hence, by Borel-Cantelli Lemma, we have for any c > 0 that

P
(
|Xi| ≥ ci1/p, i.o.

)
= 0 ⇔ P

(
|Xi| < ci1/p, for i large enough

)
= 1,

which implies that for any c > 0,

∞∑
i=1

|Xi|I(|Xi| > ci1/p) < ∞ a.s.

Noting that

|Xni(4)| =
(
|Xi| − b−1

ni n
−η

)
I (|bniXi| ≥ ε/N)

≤ |Xi|I
(
|Xi| ≥ Ci1/p

)
,

we have

|Sn(4)| ≤ max
1≤i≤n

|bni|
n∑

i=1

|Xni(4)|

≤ Cn−1/p
∞∑
i=1

|Xi|I(|Xi| > Ci1/p) → 0 a.s., (A.7)

which yields that Sn(4) = o(1) a.s..

Case 2. 0 < p ≤ 2

Firstly, we will show that ESn(1) = o(1). If p > 1, similar to the process of
(A.1), we can get ESn(1) = o(1) immediately. If 0 < p ≤ 1, then for any η > 0,
we have by Lemma A.2 that

|ESn(1)| ≤ n−η
n∑

i=1

P
(
|bniXi| > n−η

)
+

n∑
i=1

E |bniXi| I
(
|bniXi| ≤ n−η

)

≤ n(p−1)η
n∑

i=1

E|bniXi|p + n(p−1)η
n∑

i=1

E|bniXi|pI
(
|bniXi| ≤ n−η

)
≤ Cn(p−1)η−δ → 0, as n → ∞.

Thus, for all 0 < p ≤ 2, we have ESn(1) = o(1). Note that |bniXni(1)| ≤ n−η

and

B2
n

.
=

n∑
i=1

E [bniXni(1)− EbniXni(1)]
2
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≤
n∑

i=1

E |bniXni(1)|2 ≤ Cn−(2−p)η−δ

= o((log n)−1).

Therefore, (A.5) remains true, which implies that Sn(1)−ESn(1) → 0 a.s. and
hence Sn(1) → 0 a.s..

Similar to the proofs of (A.6) and (A.7), we can get that Sn(l) → 0 a.s. for
l = 2, 3, 4 immediately. This completes the proof of the lemma.

Proof of Lemmas 3.5

Proof. The proof is similar to that of Lemma 3.4. Without loss of generality, we
may assume that bni > 0. For any ε > 0, we choose positive integer N (to be

specified later) and small positive constant q such that q < 1−1/p
p if p > 1 and

q < δ/p if 0 < p ≤ 1.
Denote for 1 ≤ i ≤ n and n ≥ 1 that

Xni(1) = XiI(|bniXi| ≤ n−q)− b−1
ni n

−qI(bniXi < −n−q)

+ b−1
ni n

−qI(bniXi > n−q)

Xni(2) = (Xi − b−1
ni n

−q)I(n−q < bniXi ≤ ε/N),

Xni(3) = (Xi + b−1
ni n

−q)I(−ε/N ≤ bniXi < −n−q),

Xni(4) = (Xi + b−1
ni n

−q)I(bniXi < −ε/N) + (Xi − b−1
ni n

−q)I(bniXi > ε/N).

It is easy to check that Xni(1) +Xni(2) +Xni(3) +Xni(4) = Xi, which implies
that

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

bniXi

∣∣∣∣∣ > 4ε

)
≤

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

bniXni(1)

∣∣∣∣∣ > ε

)

+

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

bniXni(2)

∣∣∣∣∣ > ε

)

+
∞∑

n=1

P

(∣∣∣∣∣
n∑

i=1

bniXni(3)

∣∣∣∣∣ > ε

)

+

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

bniXni(4)

∣∣∣∣∣ > ε

)
.
= I1 + I2 + I3 + I4.

Hence, to prove (3.11), it suffices to show that I1 < ∞, I2 < ∞, I3 < ∞ and
I4 < ∞.

Noting that max1≤i≤n |bni(Xni(1) − EXni(1))| ≤ 2n−q for every n ≥ 1, we
have

P

(
max
1≤i≤n

|bni(Xni(1)− EXni(1))| ≤ 2n−q

)
= 1 for every n ≥ 1. (A.8)
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If 0 < p ≤ 1, we have by Markov’s inequality, Lemma A.2 and (3.10) that

B2
n

.
=

n∑
i=1

E[bni(Xni(1)− EXni(1))]
2 ≤

n∑
i=1

E(bniXni(1))
2

≤ Cn−(2−p)q
n∑

i=1

|bni|pE|X|p ≤ Cn−(2−p)q−δ = o((log n)−1). (A.9)

If p > 1, note that |Xni(1)| ≤ |Xi|, we have by Lemma A.2 and (3.10) again
that

B2
n

.
=

n∑
i=1

E[bni(Xni(1)− EXni(1))]
2

≤ C

n∑
i=1

b2niEX2 = o((log n)−1). (A.10)

Note that for fixed n ≥ 1, {bni(Xni(1) − EXni(1)), 1 ≤ i ≤ n} are still NOD
by Lemma 3.1. Applying Lemma A.1 with x = ε and y = 2n−q, we have by
(A.8)–(A.10) that

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

bni(Xni(1)− EXni(1))

∣∣∣∣∣ > ε

)

≤ 2

∞∑
n=1

P

(
max
1≤i≤n

|bni(Xni(1)− EXni(1))| > 2n−q

)

+ C

∞∑
n=1

exp

{
− ε2

2(2εn−q + o((log n)−1))

}

≤ C

∞∑
n=1

exp{−2 logn} < ∞. (A.11)

To show that I1 < ∞, it remains to show∣∣∣∣∣
n∑

i=1

bniEXni(1)

∣∣∣∣∣ → 0 as n → ∞. (A.12)

If 0 < p ≤ 1, we have by Markov’s inequality, Lemma A.2 and (3.10) that∣∣∣∣∣
n∑

i=1

bniEXni(1)

∣∣∣∣∣
≤ n−(1−p)q

n∑
i=1

E|bniXi|p +
n∑

i=1

E|bniXi|p|bniXi|1−pI(|bniXi| ≤ n−q)

≤ Cn−(1−p)q
n∑

i=1

|bni|pE|X|p ≤ Cn−(1−p)q−δ → 0 as n → ∞. (A.13)
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If p > 1, noting that EXi = 0 and q < 1−1/p
p < 2−2/p

2p−1 , we have by Markov’s

inequality, Lemma A.2 and (3.9)–(3.10) that∣∣∣∣∣
n∑

i=1

bniEXni(1)

∣∣∣∣∣ ≤ n(2p−1)q
n∑

i=1

E|bniXi|2p + n(2p−1)q
n∑

i=1

E|bniXi|2p

≤ Cn(2p−1)q

(
max
1≤i≤n

|bni|
)2p−2 n∑

i=1

b2ni

≤ Cn(2p−1)q−(2−2/p)(log n)−1 → 0 as n → ∞. (A.14)

From (A.12)–(A.14), we have proved that I1 < ∞.
Next, we will prove that I2 < ∞. Since 0 < bniXni(2) ≤ ε/N , we can see

that ∣∣∣∣∣
n∑

i=1

bniXni(2)

∣∣∣∣∣ =
n∑

i=1

bniXni(2) > ε

implies that there are at least N integers such that bniXni(2) 	= 0. Hence, by
conditions (3.9)–(3.10), we can see that

P

(∣∣∣∣∣
n∑

i=1

bniXni(2)

∣∣∣∣∣ > ε

)

≤
∑

1≤i1<i2<...<iN≤n

P (bn,i1Xn,i1(2) 	=0, bn,i2Xn,i2(2) 	=0, . . . , bn,iNXn,iN (2) 	=0)

≤
∑

1≤i1<i2<...<iN≤n

P (bn,i1Xi1 > n−q)P (bn,i2Xi2 > n−q) · · ·P (bn,iNXiN > n−q)

≤
(

n∑
i=1

P (bniXi > n−q)

)N

≤
(
C

n∑
i=1

P (|bniX| > n−q)

)N

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C

(
npq

n∑
i=1

E|bniX|p
)N

, if 0 < p ≤ 1,

C

(
n2pq

n∑
i=1

E|bniX|2p
)N

, if p > 1,

≤

⎧⎪⎨
⎪⎩

Cn−(δ−pq)N , if 0 < p ≤ 1,

C

[
n2pq

(
max
1≤i≤n

|bni|
)2p−2 n∑

i=1

b2ni

]N

, if p > 1,

≤
{

Cn−(δ−pq)N , if 0 < p ≤ 1,
Cn−2(1−1/p−pq)N (log n)−N , if p > 1.

Noting that q < 1−1/p
p if p > 1 and q < δ/p if 0 < p ≤ 1, we choose some large

integer N such that (δ − pq)N > 1 and 2(1− 1/p− pq)N > 1. Hence, I2 < ∞.
Since −ε/N ≤ bniXni(3) < 0, we can see that∣∣∣∣∣

n∑
i=1

bniXni(3)

∣∣∣∣∣ = −
n∑

i=1

bniXni(3) > ε
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implies that there are at least N integers such that bniXni(3) 	= 0. Hence, similar
to the proof of I2 < ∞, we can get I3 < ∞.

Finally, we will prove that I4 < ∞. By Lemma A.2 and E|X|2p < ∞, we
have

I4 ≤
∞∑

n=1

n∑
i=1

P (|bniXi| > ε/N) ≤ C

∞∑
n=1

nP (|X| > Cn1/p)

≤ C

∞∑
k=1

k2P (Ck1/p < |X| ≤ C(k + 1)1/p)

≤ CE|X|2p < ∞.

This completes the proof of the lemma.
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