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Abstract: In this paper we provide some general asymptotic properties of
covariate-adaptive (CA) randomized designs aimed at balancing the alloca-
tions of two treatments across a set of chosen covariates. In particular, we
establish the central limit theorem for a vast class of covariate-adaptive pro-
cedures characterized by i) a different allocation function for each covariate
profile and ii) sequences of allocation rules instead of a pre-fixed one. This
result allows one to derive theoretically the asymptotic expressions of the
loss of information induced by imbalance and the selection bias due to the
lack of randomness, that are the fundamental properties for estimation of
every CA rule, widely used in order to compare different CA procedures.
Besides providing the proofs of unsolved conjectures about some CA designs
suggested in the literature, explored up to now almost exclusively through
simulations, our results provide substantial insight for future suggestions
and represent an accurate tool for the large sample comparisons between
CA designs. A numerical study is also performed to assess the validity of
the suggested approach.
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1. Introduction

The statistical research on adaptive randomized designs for treatment com-
parisons has advanced substantially over the past five decades, especially in the
context of medical and pharmacological studies where randomization is regarded
as a must, since it guarantees comparable treatment groups and a suitable pro-
tection against several forms of bias like, e.g., the selection bias arising from
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the investigators being able to guess the treatment allocations in advance, the
accidental bias due to the presence of confounders or time trends, etc...

Brought to the fore by Efron [17], adaptive randomization rules are sequential
allocation procedures where at each step the accrued information is used to
make decisions about the way of randomizing the allocation of the next subject.
In particular, Efron’s Biased Coin Design (BCD) and, more generally, the so-
called restricted randomization methods are adaptive procedures that, by taking
into account at each step the sequence of previous assignments, are intended to
achieve nearly balanced groups by forcing the allocation of the under-represented
treatment, while maintaining at the same time a good degree of randomness (see
e.g. [1, 32, 33, 37]).

However real life experiments and, in particular, clinical trials often involve
additional information on the experimental units expressed by a set of important
covariates/prognostic factors, usually of categorical nature. Taking into account
these factors is fundamental for planning the experiment in a suitable way as
well as for correct inference (see [7, 22, 25, 29]), so that starting from the works of
Zelen [40] and Taves [34], several authors have dealt with the topic of covariate-
adaptive (CA) designs. These procedures modify at each step the allocation
probabilities by taking into account the assignments and the characteristics of
previous subjects, as well as those of the current patient, with the aim of ensuring
balance between the treatment groups among a set of pre-specified covariates.

Even if balance is often considered desirable from several viewpoints, its
mathematical justification is strictly related to the linear homoscedastic model
assumptions (see for instance [8]). Let A and B be the treatments to be com-
pared and suppose that for each subject entering the experiment we observe
a vector X of categorical covariates, that could be represented by a vector of
dummies of their levels. In general, patient’s covariates are assumed to be ran-
dom (i.e., they are not under the experimenters’ control) but could be observed
before assigning a treatment. Each statistical unit is assigned to one of two
treatments and assume that the observation of the ith subject with covariate
profile x; follow (at least approximately) the linear homoscedastic model:

ElY;] = 6ipa+ (1 —0)us + fi(x:)B, Var(Y)=0> (i=1,...,n),

where §; denotes the corresponding allocation, with é; = 1 if he/she is assigned
to A, and 0 otherwise, 14 and pp are the treatment effects, f'(-) is a known
vector function which may include interactions among the covariates, and 3
is a (¢ — 1)-dim vector of common regression parameters. This model can be
rewritten in matrix form as

E(Yn) = 677,(/1*14 - ,UB) + IFnBa Var(Yn) = 02]171 (11)

with Y, = (Y1,..., Y)Y, 8, = (01,...,6,)8, Fp, = {(1;ft(:ci))}nxq, Bt =
(1p;B%) and T,, denotes the n-dim identity matrix. In this setting it is cus-
tomary to regard 3 as a nuisance and the inferential interest typically lies in
estimating pa — up, or (na; up), as precisely as possible. In both cases, the effi-
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ciency of the design is given by 1—n~"!L,,, where (assuming IF%, IF,, non-singular)

L, = bﬁL (]FZ]Fn)il bn, (1'2)
is the loss associated with an experiment involving n patients and b, = (24,, —
1,)!F,, is usually called the imbalance vector. Thus, the estimation precision
is maximized when the design is perfectly balanced, namely if b, = 0, (where
0, denotes the g-dim vector of zeros), which means that the two treatments
should be globally equireplicated and, on the basis of the absence or presence
of interactions among covariates, the treatments should be also marginally bal-
anced (i.e., A and B are equally replicated at every level of each covariate) or
jointly balanced (A and B are equireplicated also within each combination of
the covariate levels, usually called stratum).

Adopting an optimum design approach, in order to minimize (1.2) sequen-
tially Atkinson [1] suggested his famous D 4-optimum BCD by assigning the
(n + 1)st subject to A with probability proportionally to the quantity (1 —
(1; f(®n41)")(F,Fr) by, )%, where

(1§f(wn+1)t)(Ffz]Fn)_1bn (1-3)

represents a measure of overall covariate imbalance for the profile x, 11 after n
steps. Note that under (1.3), at each step the components of the imbalance vec-
tor b, that will be activated are the global imbalance and the imbalance terms
corresponding to the margins and the stratum of the present subject, that are
suitably weighted on the basis of the observed representativeness of the different
profiles. Even if this rule is perfectly justified from a mathematical perspective
and it is also highly general, since it deals with any number of treatments and
any type of covariates, its mathematical structure is quite difficult and this is the
main reason for which there is a lack of theoretical results about the properties
of D 4-optimum BCD, that are explored almost exclusively through simulations
(see [2, 3, 4, 5, 6]). In the same setting, Begg and Iglewicz [13] suggested a
simplified scenario where the treatment allocations are deterministically based
on the sign of the quantity (1; f(@,+1)")by,, that corresponds to substituting in
(1.3) FLTF,, with I;; thus, the ensuing overall imbalance measure puts together
the global imbalance with the marginal imbalances and the stratum imbalance
involved for the current profile (namely, the same imbalance terms of the D 4-
BCD) by summing them without weights, and no particular justifications as well
as properties were provided for such a proposal (see [28]). On the other hand, a
thorough theoretical work was done by Smith [32, 33], who modified Atkinson’s
idea by approximating F!TF,, ~ nQ, where Q = E[(1; f*(x;))"(1; f'(x;))] is the
non-singular matrix depending on the covariate distribution that is assumed to
be a-priori known; therefore, the weights are now related to the true represen-
tativeness of the covariates in the population of interest, but the knowledge of
Q strongly reduces the applicability of the procedure in the actual practice.
Additional classes of CA rules are the well-known minimization methods by
Pocock and Simon [26] aimed at achieving marginal balance, where an Efron’s
coin is applied to a measure of overall imbalance that sums the imbalances of the
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margins of the covariates (see also [20, 31, 34]) and the stratified randomization
methods, which assign the treatments by using a restricted randomization rule
applied to a measure of the current stratum imbalance to achieve joint balance
(see [18, 23]). Generally, stratified randomization is quite simple to implement
and is still now widely used in the clinical practice (see e.g. [35, 42]).

However, as correctly stated in Rosenberger and Sverdlov [28] and Ma, Hu
and Zhang [25], there is a lack of theoretical results about CA rules as well
as the related statistical inference. For instance, only recently Baldi Antognini
and Zagoraiou [8] provide the asymptotics of a class of stratified randomization
mechanisms - called covariate-adaptive biased coin designs (CABCD) - showing
that the imbalance process is bounded in probability, that guarantees excellent
performances in terms of loss. Moreover, the same property still holds for a
family of CA rules introduced by Hu and Hu [21], where the allocations are
randomized accordingly to an Efron’s coin applied to the overall imbalance
measure of Begg and Iglewicz (suitably generalized by weighting the roles of
the global, marginal and stratum imbalances on the basis of a set of prefixed
weights).

Even if CABCD and Hu and Hu’s design seem to be very attractive, since they
guarantee a high order of convergence to balance with respect to all the other CA
rules, they are also very exposed to potential bias induced by the ensuing lack
of randomness (i.e., predictability), both asymptotically and for finite samples,
that plays itself a fundamental role from the viewpoint of estimation precision.
Indeed, as emphasized by Atkinson [6] in his interesting review, for a suitable
comparison between CA procedures it is important to combine the loss (or other
measures of balance) to a measure of selection bias. Otherwise, “It is, however,
self-evident that, if selection bias is not an issue, deterministic construction
of optimum designs will provide the lowest loss out of all rules considering
one treatment allocation at a time”. As discussed by many authors (see e.g.
[5, 6, 7, 10, 33]), a suitable compromise between these two goals consists in
assuming procedures that strongly force balance for small samples and become
increasingly random as the sample size grows. This could be possible for CA
rules under which the imbalance process satisfies a CLT property, but until now,
excluding Smith’s work, the only theoretical results about the asymptotics of CA
rules have been proved for CABCD and Hu and Hu’s rule (see [8, 21, 25]), where
emphasis is given on the ergodic properties of the imbalance process having a
Markovian structure. Moreover, although a theoretical analysis of hypothesis
testing under CA rules has been recently provided (see [25, 29, 30]), the effects of
the adoption of CA randomization procedures in terms of estimation, as well as
the comparisons of different methods, have been approached almost exclusively
through simulations (see [2, 3, 13, 23, 26]).

The aim of this paper is to provide general theoretical results on the asymp-
totic properties of covariate-adaptive randomized designs aimed at balancing
the allocations of two competing treatments in the presence of prognostic fac-
tors, taking into account both i) the loss of estimation precision induced by
imbalance and ii) the selection bias due to the lack of randomness in the alloca-
tion process, namely the fundamental ingredients from an estimation viewpoint
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under CA randomization. In particular, we prove the asymptotic normality for
the treatment allocation proportion of a vast class of CA procedures, which
includes stratified randomization as well as allocation rules depending on the
information accrued from all the strata, taking also into account designs charac-
terized by sequences of allocation rules instead of a prefixed one. Moreover, we
provide the asymptotic variance-covariance structure in an explicit form, stress-
ing the consequence in terms of estimation precision. Under this approach it
is possible to derive the asymptotics of several suggested procedures as special
cases, as well as to prove some unsolved up to now conjectures of the current
CA literature, also providing a general asymptotic framework for future sugges-
tions.

The paper is structured as follows. Starting from the notation in Section
2, Sections 3 deals with the central limit theorem for the treatment allocation
proportion of CA rules, while in Section 4 we derive analytically the ensuing
loss and bias for asymptotically normal CA procedures. Section 5 discusses the
stratified randomization rules as a special case, while Section 6 deals with the
asymptotics of Atkinson’s rule. A simulation study is performed in Section 7 to
assess the validity of the suggested approach, giving also some recommendations
about a proper choice of CA rules in the actual practice.

2. Notation for Covariate-Adaptive designs

The standard notation for CA rules is usually based on the specification of the
covariates of interest and their levels, for instance by the definition of f(x)
in the linear model (1.1), in order to characterize the different strata as well
as the margins of the chosen factors. However, to avoid cumbersome notation,
for most of the paper we adopt a simplified notation by vectorizing the com-
binations of each level of chosen covariates into K > 1 different strata, de-
noted by £k = 1,..., K and letting Z; = k represent the stratum of the ith
subject. Only if required (as in Section 4), to emphasize the role of the mar-
gins of the covariates of interest, this vectorized notation will simply change
according to a linear transformation preserving the chosen ordering between
strata.

Suppose that the covariates are iid with joint probability distribution over
the strata p = (p1,...,pk)", where pp = Pr(Z = k) > 0 and p'lx = 1, where
1k is the K-dim vector of ones. After n steps, at each stratum k (with k =
L...,K)let Ny = >0, 1{z,—ky be the number of subjects with this covariate-
profile, ppr = n~ !N, the corresponding percentage and ]\~fnk =37, 0ilyz,—ky
denotes the number of allocations to A within this stratum (where 1;gy is the
indicator function of the event F); also, let m,; = Nnk/Nnk be the allocation
proportion to A and D,r = Npg[27n, — 1] is the corresponding imbalance,
namely the difference between the number of subjects assigned to A and those
assigned to B for stratum k. Moreover, we set m, = (Tp1,...,Tnk)’ Ny
(an, cey NnK)t; ﬁn = (ﬁnl, cee ;ﬁnK)ta pn = dlag(ﬁn)a P = diag(p) and D, =
(Dp1, ..., Dp)t, where clearly Nilg = n, pilx = 1 and pllg = 1 for n >
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1, while DL1x = D, is the global imbalance between the two arms after n
steps.

In general, under CA procedures the sequence of allocations is a stochastic
process that can be represented by the sequence of the conditional probabilities
of assigning A given the previous allocations and covariates, as well as the covari-
ate of the present subject, namely Pr(d,41 = 1| 61,...,0n; 21, Zn, Zny1)-
So letting 8, = 0 {01,...,0n; Z1,...,Zn} be the c—field representing the natu-
ral history of the experiment up to step n, with &g the trivial o—algebra, from
now on we consider the class of CA procedures such that the first allocation at
each stratum is completely randomized and, at each step n,

Pr(0p41 =1|Sn, Znt1 = k) = 0nk (0, Pn), k=1,....K, (2.1)

where @,k : [0;1]% x (0;1)% — [0;1] is the so-called allocation function and we

set Qon(ﬂ-n7ﬁn) = (‘Pnl (ﬂ-n7ﬁn)a ceey (an(ﬂ-naﬁn))t
Note that this framework is quite general, since

e at each stratum k, it allows to consider a sequence of allocation functions
{@nkn>1 instead of a prefixed one ¢y, in order to model the relative
importance of the experimental goals (often balance and randomness) also
as a function of the sample size [12, 11];

e the allocation functions could be different at the different strata, to allow
a possibly different importance of the covariate profiles [20, 21]; otherwise,
letting @i = @, for every k = 1,..., K, all the strata will be treated in
the same way;

e under (2.1), the evolutions of the allocation proportions at different strata
are not independent, since they could involve the information accrued from
all the strata. Clearly, the so-called stratified randomization is a special
case with ©nk(Tn, Pn) = @nk(Tnk, Pnx) for k =1,..., K, i.e., for any given
stratum at each step the allocation probability depends only on the actual
allocation proportion and the current percentage of subjects observed for
this profile.

Since the goal of covariate-adaptive randomization is balancing the allo-
cations across covariates, natural conditions (fulfilled by all CA designs sug-
gested in the literature) that will be always assumed throughout the paper
are:

H1: the two treatments A and B should be treated symmetrically (namely
their roles could be exchanged); this corresponds to assume at each step
n the following symmetric structure for the allocation functions:

‘Pn(ﬂ'vuﬁn) =1k — Son(lK - anﬁn)v (2'2)
which clearly implies that

en(27 1k, y) =271k, for any y € (0; 1), n>1; (2.3)
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H2: at each step n, the allocation function ¢,k (7., Pn) should be decreasing
in 7, in order to force balance on the basis of its current allocation
proportion (for any k =1,..., K).

Within this framework, several authors have suggested suitable conditions on
the allocation rule that guarantee the asymptotic balance of CA rules, i.e.,

lim 7, =27 '1g a.s. (2.4)
n—oo
These conditions are based on technical approaches inspired by i) non-negative
almost supermartingales [27], ii) Stochastic Approximation (SA) methods [16]
and iii) down-crossing methodology [11].
From now on we take into account asymptotically balanced CA procedures,
assuming that H1-H2 and (2.4) are always satisfied, in order to characterize the
asymptotic normality of their treatment allocation proportion.

3. Asymptotic normality for CA rules

We now provide a central limit theorem for the treatment allocation proportions
of asymptotically balanced CA designs in the case of categorical covariates. The
underlined idea is to fit the evolution of the treatment assignments of a CA rule
into a multivariate SA algorithm, in order to derive their asymptotic normality
(similar results for response-adaptive designs in the absence of covariates can
be found in [24, 41]).

Theorem 3.1. Under any asymptotically balanced CA procedures, if

C1: the functions @, (x,y)s are continuous on the set {(x,y) € [0;1]K x
(0;1)X . y'1x = 1} and converge uniformly to a limiting allocation rule
@ [0, 15 x (0; 1)K — [0;1]5, where @(z,y) = (p1(x,y), ..., ox(x,y))
is Lipschitz continuous and locally differentiable at (27 11x;p), with

Jtpm = Vmso(lv y)|(2*111<;p)

Op1(x,y) .. Ovi(zy)

oz, ‘(2711}(;1’) ’ ox K |(2711K§P)
O¢K (z,y) O¢ K (z,y)

Ox1 |(2*11K;P) Oz i |(2*11K;p)

denotes the gradient of @(x,y) with respect to x evaluated at (27 1k ;p);
C2: Re(Amax) < 0, where Amax is the eigenvalue of J, with the largest real
part;
Cs: H"pn(way) - ‘P(wa y)” = O(n_l/Q);

then, /n(m, — 2 '11g) =9 N(0x; 2) as n tends to infinity, where

1 [ ¢
Y= 1/ e tedea Pl edea du. (3.1)
0
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Proof. See Appendix A. O

Remark 3.1. Note that:

e when @, (x,y) = p(x,y), condition C3 becomes trivial, while C1 sim-
ply reads that p(x,y) is a continuous function locally differentiable at
(271 g5 p) with bounded partial derivatives; clearly, condition C1 is quite
restrictive and excludes CA procedures characterized by discontinuous al-
location rules (like, e.g., the minimization method of Pocock and Simon
[26] and the CA rule proposed by Hu and Hu [21] based on Efron’s step
function);

o from (2.8), it follows that Vyp(,y)|(2-11,:p) = Or, where Ok denotes
the (K x K)-dim matriz of zeros, so that the Jacobian of p(x,y) evaluated
at (27'1;p) is the (K x 2K )-dim matriz J, = [Jp, : Oxk];

o condition C8 guarantees that the rate of convergence of the allocations
rules is sufficiently fast to ensure the asymptotic normality.

Remark 3.2. The spectrum of J, plays a fundamental role for characterizing
the convergence of the allocation proportions. In general, condition C2 is verified
under CA procedures for which the Jacobian Jo,, is diagonally dominant, i.e.,
the magnitude of the diagonal entry in a row is not lower than the sum of
the magnitudes of all the off-diagonal entries in that row (that clearly includes
the case of stratified randomization). This means that the improvement in the
(asymptotic) allocation rule for a given stratum is dominated by its allocation
proportion, while the contributions of the remaining strata (even if considered
all together) are less important.

Moreover, the spectrum of J,, has also a crucial role for deriving the ma-
triz exponential e’e=" in (3.1). For instance, if J,, is symmetric, then all the
eigenvalues \; are real and J,, can be diagonalized by an orthogonal matrix, i.e.,
there exists a real orthogonal matriz K such that A = K'J, K is a diagonal
matriz containing the eigenvalues of Jo,_ , and therefore

edeat = KeM K = K diag ((3)‘1“7 e ,eAK“) K.

More generally, if J,, is not diagonalizable, the Jordan canonical form can
be used in order to derive ele=". Since Jo,, is similar to a block diagonal ma-
tric B = diag(By,...,B,,) (here m denotes the number of blocks), that is
T_IJ%T = B, where the columns of T are the generalized eigenvectors of Jo,,
and

N1 o0 ...00
0 N 1 ... 0
B,=| 0 0 X\ :
) o
0 0 0 N

Thus, ete=" = T'diag (eB“‘, ... ,eB""“) T and hence
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0 1 U

eBr=cNl g o 1 . ,
: . . .. u
0o ... O 0 1

where s denotes the matriz dimension of the Jordan block B;.

4. Large sample bias and loss for asymptotically normal CA rules
4.1. Bias

Lack of randomness of a given design, usually interpreted in terms of predictabil-
ity, shows in the possibility for the experimenter to partially guess the sequence
of treatment allocations in order to select the most appropriate patients. Fol-
lowing the approach of Blackwell and Hodges [14], the selection bias is usually
measured by the proportion of correct guesses when the best guessing strategy
is used, namely to pick at each step the under-represented treatment with no
preference in case of a tie.

Let U; = 1 if the ith assignment is guessed correctly, and O otherwise, then
the lack of randomness induced by a design after n steps can be measured by
SB, = n~! >oi, Ui, so that the comparisons between different procedures in
terms of predictability are usually evaluated by taking the expected value, i.e.,
E(SB,) =n"tY" | Pr(U; = 1), often called selection bias indicator (eventually
re-scaled to lies in [0;1]). For CA rules, at each step the allocation of the next
subject depends on its covariate profile, which identifies the stratum of interest.
Thus, when the ith patient belonging to the kth stratum (kK = 1,...,K) is
ready to be randomized, the probability of correctly guessing his/her treatment
allocation given the optimal strategy is

PI‘(Ui =1 | ]l{Zi:k}a%ifl)
= Pi—1,k(Ti-1,Pi-1) N1 — @i—1 k(mi—1,Pi1), (4.1)
where a A b denotes the maximum between a,b € R.
Corollary 4.1. Under any CA rule satisfying the hypothesis of Theorem 3.1

1
lim SB, = 3 a.s.

n—oo

Proof. See Appendix B. O

A straightforward consequence of Corollary 4.1 is that lim, . E(SB,) =
271, namely CA rules satisfying the CLT property are asymptotically unpre-
dictable like complete randomization.
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4.2. Loss

To explore the properties of CA rules in terms of loss of estimation precision, a
linear model setup is essential for discriminating the different roles of the covari-
ate margins with respect to those of the strata. Hoverer, as discussed in Section
2, on the basis of the chosen f(x) specifying the covariates taken into account,
their levels (i.e., the associated dummies) as well as the presence or absence
of interactions among them, the vectorized notation of the previous Sections is
still valid provided that the corresponding linear transformation preserving the
chosen ordering between strata is applied. Indeed, for any chosen (¢ — 1)-dim
vector f(x) there exists a unique (¢ — 1) x K-dim Boolean matrix A (i.e., with
elements 0 and 1) such that E[f(x)] = Ap. Essentially, A specifies the cor-
respondence between strata and covariate margins with respect to the chosen
order (namely, which strata collapse into a given margin for each covariate).
Thus, letting A = (1 : A?), it follows that E(F!) = Ap, b, = AD,, and
F! T, = nAP, A" for every n, where A is full row rank ¢ and it is non-singular
when the model is full (i.e., when ¢ = K).

Example 4.1. Toking now into account the case of two covariates, a binary
one T with levels 0 — 1 (that can be represented by a single scalar dummy
t) and a covariate W with three levels 0 — 1 — 2 (represented by a pair of
dummies w1 and wsy). Let the following vectorized ordering between the ensu-
ing 6 strata: ((0,0),(0,1),(0,2),(1,0),(1,1),(1,2)) < (1,2,3,4,5,6), so that
pt = (p17p27p3ap4ap53p6); DfL = (DnlaDnQaDn37D7z4aDn5aDn6) and so on.
Without interactions among covariates ft(x) = (t,w1,ws), so that E[f(z)] =
Ap = (Pr(t = 1),Pr(w; = 1), Pr(wy = 1)) with

A:

oS O O
o = O
—_ o O

1
0
0

e e
— o

while in the presence of interactions Fi(x) = (t, w1, wa, twy, tws) and therefore
E[f(x)] = Ap = (Pr(t = 1),Pr(wy = 1),Pr(wy = 1),Pr(t = 1,w; = 1),Pr(t =
1,we = 1))t with

00 01 11
01 0010
A= 0 0 1 0 0 1
000 01O
00 0 0 01

Although the loss in (1.2) depends on the model assumptions by the chosen
form of f, namely L, depends through b, on the marginal imbalances in the
absence of interactions among covariates, while it also involves the stratum im-
balances in the presence of interactions (see [8]), the following Theorem provides
a general asymptotic result for the loss of estimation precision.

Theorem 4.1. Under model (1.1), for any CA rule satisfying the hypothesis
of Theorem 3.1, as n tends to infinity L, —? IN'(APA)™'IN, where N ~
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N(0,;4APX.PA"). Therefore,

lim E(L,) = 4tr((APA") ' APXPA"). (4.2)
n— oo
Proof. See Appendix C. O

Therefore, any large sample comparison between different CA rules that
are asymptotically normal should be made taking into account exclusively the
asymptotic expected loss of estimation precision in (4.2), because these proce-
dures are always asymptotically unpredictable. Moreover, Theorem 4.1 states a
clear relationship between the asymptotic loss of precision and the asymptotic
variance of the allocation proportion. Indeed, from (3.1) it is possible to com-
pare different CA rules satisfying the CLT property, looking for designs that
induce a suitably small variability in the allocation proportion, which corre-
sponds to a lower asymptotic loss of inferential precision. Indeed, by employing
the Lowner ordering for symmetric matrices (denoted here by <), namely
MDY <p M® o M® — MM is positive definite, given two CA designs sat-
isfying the hypotheses of Theorem 3.1 with (asymptotic) variance > and
3 respectively, rule-1 is better than rule-2 if and only if Z() <, 3®),
It is quite obvious that the variance achieves its maximum if J,, = Og,
namely when the asymptotic allocation rule ¢ (x,y) does not depend on « (like
e.g. for complete randomization). In such a case, ¥ = (4P)~! and therefore
N ~ N(0,; APA"); thus, L,, converges in distribution to a Chi-squared r.v. x§
and hence lim,, o, F(L,) = q.

Remark 4.1. When the linear model (1.1) is full (i.e., in the presence of the in-
teractions effects among covariates), then A is invertible and from Theorem 4.1

lim E(L,) = 4tr((A") ' P 'A ' APXPA") = 4tr(ZP). (4.3)
n—oo
Thus, the asymptotic expected loss depends on the design only through the main
diagonal of 3 and therefore for every CA rule satisfying the hypothesis of Theo-
rem 3.1 it is possible to identify a stratified randomization rule which guarantees
the same expected asymptotic loss.

5. A special case: stratified randomization

Under stratified randomization, at each step the evolution of each stratum de-
pends only on the information gathered up to that step for this covariate profile,
namely

Pr(6n+1 =1 | %na ZnJrl = k) = L)Onk(ﬂ-nk:aﬁnk)a k=1,...,K.

In this simplified setting, when the hypotheses of Theorem 3.1 are satisfied, the
Jacobian of the limiting allocation function ¢ has a diagonal structure and its
entries coincide with the corresponding eigenvalues.
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Corollary 5.1. Suppose that, at each stratum k =1,..., K, {@nk(-)}n>1 is a
sequence of continuous allocation functions converging uniformly to pr(-), which
is locally Lipschitz and differentiable around (1/2,py) with

Jim i | onr(z,y) = er(z,y) =0, V(x,y) € [0;1] x (0;1). (5.1)

Then, as n tends to infinity,

nlbrr;o m, =2 11k a.s. (5.2)
and
Vilm, =271 g) =4 N (OK; iP‘l g — 2J¢m}_1> , (5.3)
where Jo,, = diag(p1,...,px) and
:WR%M)SO’ forany k=1... K.
Proof. See Appendix D. O

From (5.3), different CA stratified randomization rules can be easily com-
pared in terms of their asymptotic variance. Indeed, given two CA designs sat-
isfying the hypotheses of Corollary 5.1 with (asymptotic) allocation rules ()

and ¢(?) | respectively, (1) is better than ¢(?) if and only if []IK — 2J¢m<1>] ! <z,
[Ix — 2J¢m<2>] _1, namely when J,_a) <p J,_ .

Notice that, from Theorem 4.1, N ~ N (04; A [Ix — 2J<,(,m]71 P A?Y); therefore,
in general, the loss L,, does not converge to a Chi-squared r.v. and

lim E(L,) = tr((APAY) YA [lx — 2J,,] ' PAY)
n—roo

=g+ 2tr((APAY)TASPAY), (5.4)
where S = diag (p/(1 — 2px)) =, - Clearly, if p1 = ... = pp = p, as n tends
to infinity L, <9 (1 — 2p)~'x2 and thus

lim E(L,) = (1-2p)"'q. (5.5)

n—oo

Remark 5.1. Theorem 4.1 and Corollary 5.1 derive analytically the relation-
ship between the asymptotic expected loss and the numbers of covariates/levels
involved in the model; in particular, results (5.4) and (5.5) allow one to choose
the allocation function in order to obtain the desirable asymptotic precision.
For instance, adopting a restricted randomization rule with the same allocation
function ¢ at every stratum, to obtain a given asymptotic loss Lo that does not
depend on q, we should choose ¢ such that p = (f/oo — q)/Qioo, where Loy is
a prefized constant in (0;q) (i.e., the deterministic component in the allocation
function should be increasing in q in order to guarantee that the asymptotic loss
of estimation precision is not affected by the number of prognostic factors and
their levels).
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Moreover, since Nnk = Tk Nnk, then the global number of allocations to A
after n steps is N,, = w!p,, and a further consequence of Corollary 5.1 is that,
as n tends to infinity,

~ K
vn (% - %) 4 N <o; ﬁ) : (5.6)

k=1

since
Lot P — 20, ] p = 21t [l — 20, p = EK S —
4p K Pz p 4 K K Pz P — 4(1_2pk)

Therefore, the (global) percentage of allocation to A is asymptotically normal,
with asymptotic variance depending on both i) the different allocation functions
chosen in the strata and ii) the representativeness of the strata. When p; = ... =
pr. = p (i.e., by choosing the same allocation function at each stratum) then the
asymptotic variance in (5.6) simply becomes [4(1 — 2p)]~!, that confirms the
conjecture of Atkinson [6] (page 19) that the distribution of N,, is asymptotically
independent of the presence of covariates.

Example 5.1. Generalized Friedman Urn. We now analyze the asymptotic
properties of a stratified randomization procedure based on the well-known Gen-
eralized Friedman Urn (GFU) model (see [19, 56, 57, 39]), that can be described
as follows. At each stratum k = 1,..., K, suppose that there is an wrn u* con-
taining balls of 2 different types (i.e., colors), one for each treatment. When
the (n + 1)st statistical unit belonging to stratum k is ready to be randomized,
a ball is drawn at random from among all the ones in u* and, if the chosen
ball is of type j (j = A, B), then the corresponding treatment will be assigned
to the present unit. Then the selected ball of type j is replaced in u* together
with o additional balls of the same type and ¢ additional balls of the other type,
with o, ¢ > 0, while the composition of all the other urns u* with k % k remain
unchanged.

Starting with an initial urn composition Wk, = Wk = w, letting an rep-
resents the number of balls of type j present in u* after n assignments, then

Wh i1 =Why + abniilz,, —ky + ¢ = 0ns) iz, =k
i.e, W = w+ anmuipnk + nCPnk (1 — mur); thus, the total number of balls in
u after n steps is W, +WE =2w+3"  (a+)Liz,—k} = 2w +nppr(a+C),
since for each subject belonging to the kth stratum (a+ ) balls are added in u,
and therefore
W + nppk[C — k(¢ — )]
2w + nppi(a + ¢)

This procedure corresponds to a stratified randomization with the same sequence
of allocation functions at each stratum k=1,..., K, i.e.,

L4 yl¢ — (¢ — )]
204 yla+(¢)

Pr(6n+1 =1 | %naZn-&-l = k/’) =

@nk(xvy) = @n(xvy) =
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Obviously, for every n, p,(1/2,y) = 1/2 for all y € (0;1) and, letting ¢ >

a, on(z,y) is non-increasing in x (the case a« = ( corresponds to complete
randomization). Moreover, when ( + o # 0, then p,(x,y) converges uniformly
to
¢—a(¢—a)
&€, i ——
o(z,y) ot C

with rate satisfying (5.1). Thus, as n tends to infinity, ™, — 271k a.s. and

\/E(ﬂ'n — 2711}() ;)d N <0K§ ZmPl) ,

since p, = (a—C)/(a+¢) <0 foranyk =1..., K. Moreover, from Theorem 4.1,
as n tends to infinity,

L, < (;ti) X; = lim B(Ly) = (;”;—_Cc)yq (5.7)

Example 5.2. Reinforced Doubly-adaptive Biased Coin Design. Since the evo-
lution and the convergence of the allocation proportion at each stratum depends
on the number of subjects falling into that covariate profile, strata that could
potentially be under-represented might induce high deviations from the corre-
sponding targets. For this reason Baldi Antognini and Zagoraiou [9] have pro-
posed the Reinforced Doubly-adaptive Biased Coin Design (RD-BCD), which is
a general class of randomization procedures for categorical covariates intended
to converge to any given allocation proportion by forcing closeness to the target
when necessary. Taking into account the balanced target, assume at each step n
the following allocation rule for the kth stratum

(1 — ﬂ'nk)y(ﬁnk)

(1 = i)V (Pr) - i)

Ok (Tnk, Puk) = k=1,...,K, (5.8)

where v : (0;1) — R U {0} is a continuous and decreasing function that could
be chosen on the basis of the need for more/less balance. Clearly, allocation
(5.8) satisfies assumptions H1-H2 and furthermore every gy is decreasing in
Tk, SO that the almost sure convergence to balance in (2.4) is guaranteed (see
[11]). Moreover, letting for instance v(pni) = p,i, then J,, = —P~" and hence
% = diag ([4(pk + 2)}_1)k:1 - In general, the asymptotic expected loss of this
procedure depends on the covariate distribution; clearly, under the uniform dis-
tribution (i.e., pr = K~ for every k = 1,..., K ), straightforward calculations
show that lim,,_,, FE(L,) = q/(1+ 2K), recalling that ¢ = K when the model is
Sull.

Otherwise, if we choose a strongly deterministic allocation function by letting
V(Pnj) =K /pnj in (5.8), then Jp, = —KP~1, % = diag ([4(p + 2K)]_1)k:17”_7K
and therefore lim,, oo E(Ly) = q/(1 + 2K?) under the uniform distribution.

Remark 5.2. FEven if Corollary 5.1 is quite general, it is evident that cannot
be applied for any stratified CA rule as, for instance, for CABCD suggested by
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Baldi Antognini and Zagoraiou [8]. This procedure is defined by assigning the
(n + 1)st patient to A with probability

Pr(6ns1=1|Sn, Zns1 = k) = Fe[Di],  k=1,... K,

where at each stratum k, F(-) : R — [0,1] is a non-increasing and symmetric
function with Fy(—x) = 1 — Fy(x). This corresponds to assume at each step n

Pnk (ﬂ'nvf)n) = Pnk (7Tnk;]3nk) = Fk [nﬁnk (27Tnk - 1)] 5 k= 1a ce 7K (59)

and, from the properties of Fy, the function onk(x;y) is non-increasing in x
with @nie(1/2;y) = 1/2 for all y € (0;1). Thus, ¢ is antitone and therefore
the CABCD is asymptotically balanced, i.e. lim,_,o 7, = 2711k a.s. However,
the asymptotic normality stated in (5.8) does not hold even if we assume the
functions Fys continuous and differentiable. Indeed, excluding the degenerate
case of a constant allocation rule, namely the complete randomization for which
Ey(t) =1/2 for any t, as n tends to infinity pnr(x;y) in (5.9) converges point-
wise (and not uniformly) to the limiting allocation rule of the Permuted Block
Design of size 2, i.e.

1, if x<1/2,
plesy) =1/2, if v=1/2, Voe[n1),
0, if x>1/2,

which is discontinuous at 1/2. Roughly speaking, although at each stratum k =
1,..., K {¢nk}tn>1 is a sequence of continuous and differentiable functions, as
n grows the partial derivative of oni(x;y) with respect to x evaluated around
1/2 decreases and tends to —oo (i.e., the asymptotic variance in (5.3) van-
ishes). Therefore, if compared to the other CA procedures satisfying the CLT,
the CABCD guarantees a high order of convergence towards balance, due to
the underlined ergodic structure of {Dy,}n>1, that clearly implies a remarkable
drawback in terms of predictability of the allocations.

6. Proof of some unsolved conjectures about Atkinson’s
D p-optimum BCD

Inspired by the Wynn-Fedorov sequential construction of D-optimal design un-

der the linear model (1.1), Atkinson D 4-BCD is a randomized CA rule defined
by

PI‘((S,H_I =1 | %n; Zn+1 = k‘) =

Lt (1 f@nsn))(ELE) 00 *]
- (1 - f<wn+1>t)(lFan>1bn) '

(6.1)
This rule is asymptotically balanced (see for instance [1, 11, 15]) and coincides
(or not) to a stratified randomization on the basis of the presence (or absence)
of interactions among covariates in the model, and for this reason we treat these
two situations separately.
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6.1. The case of full model

Assuming model (1.1) with full interactions effects among covariates, A is non-
singular and

(FLF,) b, =n ' (AP,A")"'AD, = n ' (A")"'P'D,.

Thus, let al, represent the kth row of A* and e, be the standard basis vector,
if the (n 4 1)st subject belongs to the kth stratum the quantity (1.3) becomes

n_la};(At)_llsn_an = n_le’,;lsn_an = (n;ﬁnk)_an;€7

i.e., it is equal to the relative imbalance of the corresponding stratum. Therefore
D 4-BCD in (6.1) becomes a stratified randomization rule defined by (see [8]):

(o)
Pr(6n+1 =1 ‘ %n7Zn+1 = k) = IS 2 -~ s 2 (62)
(1_ NZ,’i) + (1+ ﬁ)
Clearly, procedure (6.2) assumes the same allocation rule at each step n, as well
as at every stratum k=1,..., K, i.e.,

H(lxxﬂ

which is a continuous and differentiable function, decreasing in z with ¢(1/2,y)=
1/2 for any y € (0;1); therefore, from Corollary (5.1), as n tends to infinity,
m, — 271k a.s. and /n(mw, — 2711 g) < N (0g; (20P)71), since pp = —2
forany k=1..., K.

As regards the loss, from Corollary 4.1 and (4.3), L,, —¢ 571X3 as n tends
to infinity and therefore lim,, o, E(L,) = q/5, regardless of the covariate dis-
tribution.

Remark 6.1. In the same spirit of Wei [38] and Smith [32, 33], Atkinson’s
rule (6.2) could be generalized by letting Pr(dp41 = 1 | Sn, Znt1 = k) =
f(Dnk/Nnk), for k =1,..., K, where f : [-1;1] — [0;1] is a continuous and
non-increasing function with f(—t) = 1 — f(t). Clearly, all the previously ob-
tained asymptotics hold true by letting p(z,y) = fog(x), with g(x) = 22 —1 for
any x € [0;1], provided that f(-) is locally differentiable around 0 with bounded
derivative. Moreover, these results agree with the theoretical properties derived
by Smith [32, 33], as well as with those obtained by Wei [38] in the absence of
covariates (that can be regarded as a special case of our framework with K =1
and px = 1).

-1

o(r,y) =

6.2. Model without interactions

In the absence of some/all interactions among covariates, Atkinson’s procedure
is not a stratified randomization method. Indeed, from (6.1), the allocation rule
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of Atkinson’s D 4-BCD for the kth stratum after n steps could be rewritten as

follows
14 (1 +hk(ﬂ'n§f)n)>2
1-— hk(ﬂ-naﬁn)

-1

@nk(ﬂ'naﬁn) = s (63)

where now
by (0 Pn) = 0~ tal (AP, AY) ' AD, = 2a'(AP,A") 'AP,(m, — 2 '1k),

and rank(A) = ¢ < K, so A is singular. After tedious algebra (see Appendix
E),

J,, = —2A' (APA") ' AP = —2E (6.4)
with Re(Amaz) = 0, because E is an idempotent matrix. Thus,

1

_1 -1 L oAt ty—1
2—4P 5A (APA)

A,

and therefore, from (4.2), lim,, o E(L,) = q/5.

Consequently, the asymptotic expected loss of estimation precision for Atkin-
son’s D 4-BCD is always ¢/5, regardless of i) the covariate distribution, as well as
the presence/absence of a correlation structure among the covariates, and ii) the
interactions among covariates included in the model. This result also confirms
the conjecture of Burman [15] about the asymptotic loss of Atkinson’s design,
where the quantity ¢/5 was observed in a simulation study of Atkinson’s rule (in
its deterministic version) with four normally distributed covariates. Moreover,
from (5.7), it is easy to show that Atkinson’s rule always guarantees a lower
asymptotic expected loss with respect to the Generalized Friedman Urn.

7. A simulation study for comparing CA rules

In the present Section we describe how to use the previous results in order
to compare different CA procedures satisfying the CLT. A numerical study is
performed to assess the properties of some CA rules on the basis of the ensuing
asymptotic expected loss of estimation precision, taking also into account the
selection bias, in order to analyze the speed of convergence of E(L,,) and E(SB,,)
to their asymptotic values and therefore to show the validity of the suggested
approach. Since, in general, the loss depends on the model assumptions, in
particular on the presence or absence of interactions among covariates, these
two situations will be treated separately (in Table 1 and Table 2, respectively).

More in detail, we take into account model (1.1) with two binary covariates
(i.e., K = 4) under four different scenarios: in the presence or absence of interac-
tions (namely with ¢ = 4 or ¢ = 3, respectively) and under two different covari-
ate distributions: the uniform one p) = 4-11, and p® = (0.3;0.3;0.3;0.1)".
Note that the choices for the covariate distributions are motivated by the fact
that for the RD-BCD the highest asymptotic expected loss is induced by i) the
uniform distribution when the model is full and ii) a distribution where one
stratum tends to vanish while the remaining strata are equally-represented, in
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TABLE 1
Expected loss of estimation precision and selection bias (within brackets) under model (1.1)
in the full version for n = 100, 200 and 500.

p(1> p(2)
n 100 200 500 ) 100 200 500 )
D 4-BCD 0.826 0.813 0.797 0.8 0.818 0.802 0.798 0.8
(.553)  (.543)  (.528) (.5) (.552)  (.544)  (.528) (.5)
RD-BCD 0.471 0.456 0.445 0.444 | 0.469 0.440 0.438  0.439
(.568)  (.551)  (.530) (-5) (.565)  (.549)  (.529) (.5)
Hu&Hu(2/3) | 0.944 0.524 0.208 1.025 0.603 0.260
(.654) (.658) (.660) (.655)  (.658)  (.660)
Hu&Hu(3/4) | 0.464 0.235 0.092 0.543 0.289 0.113
(.727)  (.732)  (.735) (.728)  (.732)  (.735)
P&S(2/3) 1.381 1.237 1.114 1.445 1.253 1.120
(.640)  (.643) (.645) (.640)  (.642) (.645)
P&S(3/4) 1.125 1.116 1.027 1.193 1.062 1.058
(.700)  (.704) (.706) (.700)  (.703)  (.706)
TABLE 2

Expected loss of estimation precision and selection bias (within brackets) under model (1.1)
without interactions among covariates for n = 100, 200 and 500.

D e
n 100 200 500 o0 100 200 500 o0
D,-BCD | 0630 0623 0607 06 | 0624 0605 0604 06
(553)  (.540) (.529)  (.5) | (.554)  (.54l)  (.529)  (.5)
RD-BCD | 0.353 0344 0.337 0.333 | 0376 0360 0.355  0.350
(567) (.550) (.535)  (.5) | (.565)  (.549)  (.529)  (.5)
Hu&Hu(2/3) | 0.526 0.275  0.112 0.553  0.313  0.129
(.655)  (.659)  (.660) (.655)  (.658) (.660)
Hu&Hu(3/4) | 0.247 0.124  0.050 0.265  0.132  0.054
(728)  (.732)  (.736) (726)  (.732)  (.735)
P&S(2/3) | 0.398 0215 0.085 0.446 0232 0.089
(641)  (.644) (.645) (.639)  (.643)  (.645)
P&S(3/4) | 0.181  0.100  0.036 0.190  0.097  0.039
(;700)  (.703)  (.707) (.701)  (.706)  (.707)

the absence of interactions. The results come from 5000 simulations with sample
sizes n = 100, 200 and 500.

In what follows we compare the performances of Atkinson’s D 4-BCD and the
RD-BCD, discussed in Example 5.2, with v(p,;) = ﬁfbjl. We also consider Hu
and Hu’s rule [21] - denoted by Hu&Hu(p) - with biased coin probability p equal
to 2/3 and 3/4 and weights: w, = 1/3 for the global imbalance, w, = 1/3 for the
stratum imbalances and the same weights for the marginal imbalances of the
two covariates equal to 1/6. Moreover, to stress the peculiarity of minimization
methods as well, we take into account Pocock and Simon’s procedure - denoted
by P&S(p) - with the same choices for the biased coin probabilities, i.e. 2/3 and
3/4.

When the model is full (K = ¢ = 4), the asymptotic expected loss for both
stratified randomization rules rapidly converges towards their theoretical values,
given by 4/5 for D4-BCD (regardless of the covariate distribution), 4/9 and
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0.439 for the RD-BCD under p*) and p®, respectively. The same behavior
holds also in the absence of interactions, where the asymptotic expected loss for
Atkinson’s rule is 3/5, while it is given by 1/3 and 0.35 for RD-BCD under p(")
and p®, respectively.

In the presence of interactions, the superiority of stratified randomization
rules wrt P&S is evident. Even if the bias is substantially equivalent for D 4-BCD
and RD-BCD, the latter guaranties an asymptotic expected loss which is almost
half of Atkinson’s one; this is also confirmed in the absence of interactions,
although this gain is lower.

In general, for n > 200 the differences in terms of selection bias between
D 4-BCD and RD-BCD are negligible (i.e., of order 1073) and this validates our
suggestion that the comparisons between different CA rules satisfying the CLT
should be based only on the loss indicator.

As regards Hu&Hu’s procedure, the asymptotic expected loss rapidly vanishes
(only for small samples is comparable to the RD-BCD), but this procedure
is characterized by extremely high levels of predictability, around 66% when
p=2/3 and 73% for p = 3/4 (namely like those of the permuted block designs
of size 2 and 3 respectively), regardless of the model assumptions.

A different analysis should be made for Pocock and Simon’s minimization
method. Regardless of the presence/absence of interactions, the selection bias
of P&S is extremely high (around 70% when p = 3/4 and 64% when p =
2/3, but P&S is less predictable than Hu&Hu’s rule with the same bias coin
probability) and quite stable for any sample size, that clearly prejudices the
usefulness of minimization methods due to their high exposure to potential
bias. Taking into account the loss, when the model is full the asymptotic loss of
Pocock and Simon’s rule is higher wrt the considered stratified randomization
procedures; moreover, the loss does not vanish and, asymptotically, seems to
converge to 1 (even if the marginal imbalances and the global one are always
bounded in probability, as proved in Ma, Hu and Zhang [25], in this case the
stratum imbalances seem to be unbounded, as conjectured by Hu and Hu [21]).
Thus, Pocock and Simon’s minimization method performs worse than D 4-BCD
and stratified randomization with respect to both loss and predictability, namely
P&S rule is dominated in the sense of Atkinson [5, 6]. Only in the absence of
interaction P&S method performs very well in terms of loss, which vanishes
asymptotically, while both RD-BCD and D 4-BCD induce a higher loss, having
however a negligible impact in terms of inferential efficiency (the expected loss
of efficiency is of order 1073). In other words, from the viewpoint of loss of
inferential precision, the performances of P&S rule are strictly related to the
model assumptions, in particular on the presence/absence of interactions among
covariates, while its level of predictability, that clearly increases as the value of
the bias coin probability grows, is always quite large and greater than 1/2.

Therefore, our suggestion is that minimization methods should be adopted
only i) for clinical trials characterized by strong double-blind protocols, ii) when
the adopted linear model does not contain interactions among covariates and
iii) if the number of strata - i.e., the number of covariates and their levels
- is large if compared with the available sample size (in this case stratified
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randomization rules cannot suitably evolve, since the number of subjects in
every stratum tends to be extremely small, but this situation is anyhow critical
from an estimation viewpoint, due to the magnitude of the standard errors of
the estimates). Also Hu&Hu'’s rule should be employed only in the case of strong
double-blind protocols, especially for large sample sizes, due to the asymptotic
convergence of the loss to 0. In all the other situations, stratified randomization
methods - and in particular the RD-BCD - can guarantee superior performances
regardless of the model assumptions.

Appendix A: Proof of Theorem 3.1

In this proof we firstly show that, under CA randomization, the evolution of a
suitable transformation of the treatment allocation proportions can be fitted by
a multivariate SA algorithm; therefore, we derive the asymptotic normality for
7, by applying the so-called stochastic differential equation method (see [24]).
For CA procedures defined by (2.1), at each stratum k=1,..., K,
n+1

Npiig = Z 0ilyz,—ky = Npk + AM,, 415 + E(0nt1lyz, 1=y | Sn)
i=1

(A1)

= Npr + AMnJrl,k + @nk(ﬁnvﬁn)pk’

where AMn_HJg = 67l+1]1{Zn+1:k7}_E(5n+11{zn+1:k} | Sn) Clearly, {AMik}ie]N
is a sequence of bounded martingale differences with |[AM;;| < 1 for i > 1;
thus, let My, = > AM;g, {Muy}nen is a squared integrable martingale
with Z?IllE[(AMlk)Q | Si—l] S n+ 1. Letting now J\ank/n = ’/Tnkf)nk = %nka
from (A.1)

1 1
Nn :~n 11— — —AMn n ny An
Tnt1,k Wk( n+1>+n+1[ +1,6 + @nk (T, Pn)Dk]

= %nk: — Tn [%nk: - ka(ﬂ-n;ﬁn)pk)] + 'YnAMnJrl,k: + ’Yank,
where Tn = 1/(” + 1) and R = pk [cpk (ﬂ-naﬁn) — Pnk (ﬂ-naﬁn)] Analogousb’a
ﬁn—&-l,k = f)nk — Tn [f)nk - pk] + ’}/nAGn+1,ka

where AGn+l,k = ]l{Zn+1=k} - E(]I{Zn+1=k} | %n) = ]l{Zn+1=k} — Pk is a
martingale difference. Letting 7, = (Tn1,..., k), Ry = (Ru1,--., Ruk)?,
AM, = (AM,1,...,AM, k), AG, = (AGp1,...,AGK)t,

_ (AM, (R,
in order to express the allocation rule as a function of 6,, = (7!, p!,)* from now
on we set F(0,) = @ o(0,) : [0;1]% x (0; 1)K — [0; 1]¥ with
%nl/ﬁnl
: Y
YO,)=1|_ - |= () : (A.2)
'/TnK/an Pn
Pn
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Therefore, 0,, fits the SA scheme 0,11 = 6, — v, H(0,) + v, (Mu11 +Ry),

where H,) = 6, - (PFéO,J) .

From H1-H2, £ = 27 "1 is a fixed point of the limiting allocation rule, namely
p(x,y) = x, where at each stratum k£ = 1,..., K the function ¢i(x,y) is
decreasing in zj. Thus, due to the iid nature of the covariates, from (2.4) it
follows that lim,, o 0, = 8* = (27 1p’; p')! a.s., since condition C2 guarantees
the stability of the equilibrium point of the SA algorithm.

Let Jg = VH(z,y)|o~ denote the Jacobian matrix of H evaluated at 6*,
then

—1 —1 -1
PJ, P! 2°'PJ, P > (A.3)

Moreover, letting now Sp(Jgr) be the set of eigenvalues of Jg, clearly Sp(Jg) =
Sp(I — PJy,, P~1) U {1}, namely Sp(Jg) = {1 — A1,...,1 — Ak, 1}, where
Sp(Jp,) = {A1,..., A }. Notice that

2710 Q

. 471(P+Q) 27'Q
h_)m E[Mn+1Mfz+1|%n]:I‘:( (Pt ) )7

with Q = P —pp’. Furthermore, Re(Apax) < 0 means that the eigenvalue of Jg
with the smallest real part is 1 and therefore, from the CLT for SA algorithms
(see e.g. the book [16] and [24, 41]), \/n(0,, — 6*) —? N(0x;Xg) as n tends
to infinity, where

29 — /Oo 6(271H2K—JH)uF (e(QilﬂgK—JH)u)tdu.
0
Thus, from (A.2), by applying the so-called Delta-method, as n tends to infinity,
T %11( d . t
\/ﬁ bn — D —* N (OQK,J¢29J¢),
where Jy, denotes the Jacobian of 1 evaluated at 8%, namely

pl o _lp
go=vetwule = (5 2.

So, letting

r_ (PJo,P7' LPJ, P!
Ok Ok :

1 )
then e lex—Jm)u — e*“/QeT“, since Jg and I commute, and therefore

2

Tu Pelezup—1 1 (]IK _ PeJ‘Pqu_l)
€ = .
Ox Ix

Moreover, , ) L )
J 6Tu (e ez P —56 ezl P
ve o= 0 I
K K
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and therefore
e t
JypXoJ), :/ e " JypeT'T (Jye™) du
0

_ / e (i‘f"“’”“P‘l CE) (DK) du
0

Ok Q

_ %foooe*“eJ‘Pw“P*1 (eJ‘Pw“)tdu Ox
Ok Q)

Appendix B: Proof of Corollary 4.1

Notice that, at each step n,

n

i=1 i=1

i=1 i=1

where the centered martingale U, = > . | AU; = o(n) a.s., since | U; [< 1 a.s.
[e.°]

for any ¢ > 1 and Y i 2E [U? | Sj-1] < oo. Due to the symmetric property
i=1

(2.2) of the allocation rule, by (4.1)

Pr(U; = 1| 1iz,—1},Si-1) =

(fi1sBit) — 5| + &
i— Ti—1,Pi—1) — 5 5
Pi—1,k 1, Pi—1 B D)
and therefore
K
PI‘(U7 =1 | %1_1) :X:PI‘(U7 =1 | H{Z,i:k}ysi—l)pk

1

<Pi71,k(77i71,15i71) - 5 Dk

Due to the iid nature of the covariates lim, ,o P, = P a.s., so that, from
(2.4), limp 00 nk (70, Pn) = i (271 1k, p) = 2715 thus, from the continuous
mapping theorem, lim, o, Pr(U, = 1| S,_1) = 27! and hence lim,, ,o, SB,, =
271 q.s.

Appendix C: Proof of Theorem 4.1

Since D,, = 2nP,(m, — 2 '1x) at every step n, the loss (1.2) can be rewritten

as

b -1 by,
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where n=2b, = 2/nAP, (7, — 27 '1x). Moreover, since the covariates are iid
with py > 0 for any k = 1,..., K, then there exits a limiting symmetric matrix

lim n 'F!F, = BE(FiF,) = APA!

n— oo

which is non-singular. Thus, from Theorem 3.1 and the continuous mapping
theorem, as n tends to infinity n=2b,, <9 N(0;4APXPA"). Finally, the last
statement follows directly from the uniform integrability of L,,.

Appendix D: Proof of Corollary 5.1

From H1-H2, at every stratum k = 1, ..., K the limiting allocation rule ¢ (z, y)
is decreasing in # and x = 27! is the unique solution of the equation ¢y (x,y) =
x. Therefore, the Jacobian of the limiting function ¢ has a diagonal structure,
namely J,, = diag(pk)k=1,... Kk, where pgs are non positive and coincide with
the corresponding eigenvalues. Thus ¢ is antitone (i.e., anti-monotone) in & and
hence the almost sure convergence to balance in (5.2) is proved (see Theorem
6.1 in [11]). Moreover, e/e=" = diag (e”*"),_, j and therefore Theorem 3.1
can be applied with

.....

1 o 1 _
> = Zp—l/ diag (e@m—l)“, . .,e@ﬂk—l)“) du = ZP_l Mg —2J,,] "
0

Appendix E: Asymptotic variance and expected loss for D4-BCD

Notice that,

(AP, A" 'AP,1x =

0
(5 )wee o (6)= (o))

with w = Ap,, and W = (AP, A — ww?)" 1.
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So, hi(; Pn) = 2aL(AP,AY)"'AP, 7, — 1 and, from (6.3), Vap(xz,y) =
—2U A? (A diag(y) A" Adiag(y), where
_ 2
U = diag (1 Z’“($’y)2> )
(1 + hk(wvy)) k=1,...,K

Since hi(2711;p) = 0 for any k, the Jacobian can be factorized as in (6.4)
and

— (—2u)'
eJeatt — =208 _ . 4 Z E =1+ (e -1)E.

and therefore, from (4.2),
lim E(L,) = 4tr((APA")"'APZPA")

n—oo
=tr ((APA")"'APA")
— %tr ((APAt)*lAPAt(APAt)*lAPAt)
4 q
= tI‘(]Iq) (1 — g) = 5
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