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Abstract: We propose a new procedure for optimally estimating high
dimensional Gaussian graphical models. Our approach is asymptotically
tuning-free and non-asymptotically tuning-insensitive: It requires very lit-
tle effort to choose the tuning parameter in finite sample settings. Compu-
tationally, our procedure is significantly faster than existing methods due
to its tuning-insensitive property. Theoretically, the obtained estimator si-
multaneously achieves minimax lower bounds for precision matrix estima-
tion under different norms. Empirically, we illustrate the advantages of the
proposed method using simulated and real examples. The R package camel

implementing the proposed methods is also available on the Comprehensive
R Archive Network.
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1. Introduction

We consider the problem of learning high dimensional Gaussian graphical mod-
els: let X1, . . . ,Xn be n data points from a d-dimensional random vector
X = (X1, ..., Xd)

T with X ∼ Nd(0,Σ). We want to estimate an undirected
graph denoted by G = (V,E), where V contains nodes corresponding to the
d variables in X, and the edge set E describes the conditional independence
relationships between X1, ..., Xd. Let X\{j,k} := {X� : � �= j, k}. We say the
joint distribution of X is Markov to G if Xj is independent of Xk given X\{j,k}
for all (j, k) /∈ E. For Gaussian distributions, the graph G is encoded by the
precision matrix Θ := Σ−1. More specifically, there is no edge connects Xj and
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Xk if and only if Θjk = 0. The graph estimation problem is then reduced to
the estimation of the precision matrix Θ. This problem is also called covariance
selection (Dempster, 1972).

In low dimensions where d < n, Drton and Perlman (2007, 2008) develop a
multiple testing procedure for identifying the sparsity pattern of the precision
matrix. In high dimensions where d � n, Meinshausen and Bühlmann (2006)
propose a neighborhood pursuit approach for estimating Gaussian graphical
models by solving a collection of sparse regression problems using the Lasso
(Tibshirani, 1996; Chen et al., 1998). This approach can be viewed as a pseudo-
likelihood approximation of the full likelihood. A related approach is to directly
estimate Θ by penalizing the likelihood using the L1-penalty (Banerjee et al.,
2008; Yuan and Lin, 2007; Friedman et al., 2008). To further reduce the es-
timation bias, Lam and Fan (2009); Jalali et al. (2012); Shen et al. (2012)
propose either greedy algorithms or non-convex penalties for sparse precision
matrix estimation. Under certain conditions, Ravikumar et al. (2011); Roth-
man et al. (2008) study the theoretical properties of the penalized likelihood
methods. Yuan (2010) and Cai et al. (2011) also propose the graphical Dantzig
selector and CLIME respectively, which can be solved by linear programming
and are more amenable to theoretical analysis than the penalized likelihood ap-
proach. More recently, Liu and Luo (2015) and Sun and Zhang (2013) propose
the SCIO and scaled-Lasso methods, which estimate the sparse precision matrix
in a column-by-column fashion and have good theoretical properties.

Besides Gaussian graphical models, Liu et al. (2012) propose the nonpara-
normal model family. Instead of assuming X to be Gaussian, they assume there
exists a set of monotone functions f1, . . . , fd, such that the transformed data
f(X) := (f1(X1), . . . , fd(Xd))

T is Gaussian. More details can be found in Liu
et al. (2012) and Lafferty et al. (2012). Zhao et al. (2012) developed a scalable
software package to implement the nonparanormal algorithms. Other nonpara-
metric graph estimation methods include forest graphical models (Liu et al.,
2011) or conditional graphical models (Liu et al., 2010a).

Most of these methods require choosing some tuning parameters that con-
trol the bias-variance tradeoff. Theoretical justifications of these methods are
usually built upon some oracle choices of tuning parameters that cannot be im-
plemented in practice. It remains an challenging problem on choosing the reg-
ularization parameter in a data-dependent way. Popular techniques include the
Cp-statistic (Mallows, 1973), AIC (Akaike information criterion, Akaike (1973)),
BIC (Bayesian information criterion, Schwarz (1978)), extended BIC (Chen and
Chen, 2008, 2012; Foygel and Drton, 2010), RIC (Risk inflation criterion, Foster
and George (1994)), cross validation (Efron, 1982), and covariance penalization
(Efron, 2004). Most of these methods require data splitting and have been only
justified for low dimensional settings. Significant progress has been made re-
cently on developing likelihood-free regularization selection techniques, includ-
ing permutation methods (Wu et al., 2007; Boos et al., 2009; Lysen, 2009) and
subsampling methods (Lange et al., 2004; Ben-david et al., 2006; Meinshausen
and Bühlmann, 2010; Bach, 2008). Meinshausen and Bühlmann (2010) and Bach
(2008) and Liu et al. (2010b) also propose to select the tuning parameters using
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subsampling. However, these subsampling based methods are computationally
expensive and are still lack of theoretical guarantees.

In this paper we propose a new procedure for estimating high dimensional
Gaussian graphical models. Our method, named TIGER (Tuning-Insensitive
Graph Estimation and Regression), owes a “tuning-insensitive property”: it
automatically adapts to the unknown sparsity pattern and is asymptotically
tuning-free. In finite sample settings, we only need to pay very little effort to tune
the regularization parameter. The main idea is to estimate the precision matrix
Θ in a column-by-column fashion. For each column, the computation is reduced
to a sparse regression problem. This idea has been adopted by many meth-
ods, including the neighborhood pursuit (Meinshausen and Bühlmann, 2006),
graphical Dantzig selector (Yuan, 2010), CLIME (Cai et al., 2011), SCIO (Liu
and Luo, 2015), and the scaled-Lasso method (Sun and Zhang, 2013). These
methods differ from each other mainly by how they solve the sparse regression
subproblem: the graphical Dantzig selector and CLIME use the Dantzig selec-
tor, the SCIO and neighborhood pursuit use the Lasso, while Sun and Zhang
(2013) use the scaled-Lasso (Sun and Zhang, 2013). Unlike these methods, the
TIGER solves this sparse regression problem using the SQRT-Lasso (Belloni
et al., 2012). The main advantage of the TIGER over existing methods is its
asymptotic tuning-free property, which allows us to use the entire dataset to
efficiently learn and select the model. In contrast, it is well known that the cross-
validation and subsampling methods are computationally expensive. Moreover,
they may potentially waste valuable data which could otherwise be exploited to
learn a better model (Bishop et al., 2003).

Another advantage of the TIGER is its computational simplicity and scala-
bility for large datasets. For problems with large dimensionality d, the TIGER
divides the whole problem into many subproblems, in each subproblem it esti-
mates one column of the precision matrix by solving a simple SQRT-Lasso prob-
lem. The final matrix estimator is formed by combining the vector solutions into
a matrix. This procedure can be solved in a parallel fashion and achieves a linear
scale up with the number of CPU cores. An additional performance improve-
ment comes from the tuning-insensitive property of the TIGER. Most existing
methods exploit cross-validation to choose tuning parameters, which requires
computing the solutions over a full regularization path. In contrast, the TIGER
solves the SQRT-Lasso subproblem only for several fixed tuning parameters. For
sparse problems, this is significantly faster than existing methods.

In the current paper, we prove theoretical guarantees of the TIGER esitmator
Θ̂ of the true precision matrix Θ. In particular, let ‖Θ‖max := maxjk |Θjk| and
‖Θ‖1 := maxj

∑
k |Θjk|. Under the assumption that the condition number of

Θ is bounded by a constant, we establish the elementwise sup-norm rate of
convergence:

∥∥Θ̂−Θ
∥∥
max

= OP

(
‖Θ‖1

√
log d

n

)
. (1.1)

If we further assume
∥∥Θ∥∥

1
≤ Md where Md may scale with d, the obtained
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rate in (1.1) is minimax optimal over the model class consisting of precision
matrices with bounded condition numbers. This result allows us to effectively
conduct graph estimation without the need of very restrictive irrepresentable-
type conditions.

Let ‖Θ‖2 be the largest eigenvalue of Θ (i.e., ‖Θ‖2 is the spectral norm of
Θ) and k := maxi=1,...,d

∑
j I(Θij �= 0). We also prove that

∥∥Θ̂−Θ
∥∥
2
≤
∥∥Θ̂−Θ

∥∥
1
= OP

(
k‖Θ

∥∥
2

√
log d

n

)
. (1.2)

Under the same condition that
∥∥Θ∥∥

1
≤ Md where Md may scale with d, this

spectral norm rate in (1.2) is also minimax optimal over the same model class
as before.

Besides these theoretical results, we also establish a relationship between the
SQRT-Lasso and the scaled-Lasso proposed by Sun and Zhang (2013). More
specifically, the objective function of the scaled-Lasso can be viewed as a varia-
tional upper bound of the SQRT-Lasso. This relationship allows us to develop
an efficient algorithm for the TIGER.

Computationally, the TIGER is significantly faster than existing methods
since very few tunings are needed. In particularly, we propose an iterative al-
gorithm with initial values searched by the Alternating Direction Method of
Multipliers (ADMM). For each reduced sparse regression subproblem, the com-
putational complexity is of the same order as solving one single Lasso with a
sparse solution. Empirically, we present thorough numerical results to compare
the graph recovery and parameter estimation performance of our method with
other approaches. Some real data experiments on gene expression datasets are
also provided to back up our theory. The R package camel implementing the
proposed methods is also available on the Comprehensive R Archive Network.

Notations. Let v := (v1, . . . , vd)
T ∈ R

d and I(·) be the indicator function,

for 0 < q < ∞, we define ‖v‖q :=
(∑d

j=1 |vj |q
)1/q

, ‖v‖0 :=
∑d

j=1 I(vj �= 0), and
‖v‖∞ := maxj |vj |.

Let A ∈ R
d×d be a symmetric matrix and I, J ⊂ {1, . . . , d} be two sets, we

denote AI,J to be the submatrix of A with rows and columns indexed by I and
J . Let A∗j be the jth column of A and A∗\j be the submatrix of A with the

jth column A∗j removed.
We define the following matrix norms:

‖A‖q := max
‖v‖q=1

‖Av‖q , ‖A‖max := max
jk

|Ajk|, and ‖A‖F =
(∑
j,k

|Ajk|2
)1/2

.

It is easy to see that when q = ∞, ‖A‖∞ = ‖A‖1. We also denote Λmax(A) and
Λmin(A) to be the largest and smallest eigenvalues of A.

The rest of the paper is organized as follows. In Section 2, we introduce some
background on Gaussian graphical models. In Section 3, we describe the TIGER
estimator and its computational algorithm. In Section 4, we present the theoret-
ical properties including the rates of convergence for parameter estimation and



A tuning-insensitive approach for optimally estimating Gaussian graphical models 245

graph recovery. We also provide further discussions on the connections and dif-
ferences of our results with other related methods. In Section 5, we demonstrate
the numerical performance of our methods through synthetic and real datasets.
All proofs are delegated to the appendix.

2. Background on Gaussian graphical models

Let X1, . . . ,Xn be n data points from a d-dimensional Gaussian random vector
X := (X1, . . . , Xd)

T ∼ Nd(0,Σ). We denoteXi := (Xi1, . . . , Xid)
T . As has been

discussed in the previous section, we define precision matrix to be Θ := Σ−1.
In this section, we introduce some background on solving Gaussian graphical
models in a column-by-column fashion.

Let X ∼ Nd(0,Σ), the conditional distribution of Xj given X\j satisfies

Xj |X\j ∼ Nd−1

(
Σ\j,j(Σ\j,\j)

−1X\j , Σjj −Σ\j,j(Σ\j,\j)
−1Σ\j,j

)
.

Let αj := (Σ\j,\j)
−1Σ\j,j ∈ R

d−1 and σ2
j := Σjj − Σ\j,j(Σ\j,\j)

−1Σ\j,j . We
have

Xj = αT
j X\j + εj , (2.1)

where εj ∼ N
(
0 , σ2

j

)
is independent of X\j . By the block matrix inversion

formula, we have

Θjj = (Var(εj))
−1 = σ−2

j , (2.2)

Θ\j,j = −(Var(εj))
−1αj = −σ−2

j αj . (2.3)

Therefore, we can recover Θ in a column by column manner by regressing Xj

on X\j for j = 1, 2, · · · , d. For example, let

X :=

⎛
⎜⎝

X11 · · · X1d

... · · ·
...

Xn1 · · · Xnd

⎞
⎟⎠ ∈ R

n×d

be the data matrix. We denote by αj := (αj1, . . . , αj(d−1))
T ∈ R

d−1. Mein-
shausen and Bühlmann (2006) propose to iteratively estimate each αj by solving
the Lasso regression:

α̂j = argmin
αj∈Rd−1

1

2n

∥∥X∗j −X∗\jαj

∥∥2
2
+ λj

∥∥αj

∥∥
1
,

where λj is a tuning parameter. Once α̂j is given, we get the neighborhood

edges by reading out the nonzero coefficients of αj . The final graph estimate Ĝ
is obtained by either the “AND” or “OR” rule on combining the neighborhoods
for all the d nodes. However, the neighborhood pursuit method of Meinshausen
and Bühlmann (2006) only estimates the graph G and does not estimate the
inverse covariance matrix Θ.
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Instead of using the Lasso estimator as in Meinshausen and Bühlmann (2006),
Yuan (2010) proposes to estimate αj by solving the Dantzig selector:

α̂j = argmin
αj∈Rd−1

∥∥αj

∥∥
1

subject to
∥∥Σ̂\j,j − Σ̂\j,\jαj

∥∥
∞ ≤ γj ,

where Σ̂ := XXT /n is the sample covariance matrix and γj is a tuning param-
eter. Once α̂j is given, we can estimate σ2

j by

σ̂2
j =

[
1− 2α̂T

j Σ̂\j,j + α̂T
j Σ̂\j,\jα̂j

]−1
.

We then get the estimate Θ̂ of Θ by plugging α̂j and σ̂2
j into (2.2) and (2.3).

Yuan (2010) analyzes the L1-norm error ‖Θ̂ − Θ‖1 and shows its minimax
optimality over certain model space. However, no graph estimation result is
provided for this approach.

In another work, Sun and Zhang (2013) propose to estimate αj and σj by
solving a scaled-Lasso problem:

b̂j , σ̂j = argmin
b=(b1,...,bd)T ,σ

{
bT Σ̂b

2σ
+

σ

2
+ λ

d∑
k=1

Σ̂kk

∣∣bk∣∣ subject to bj = −1

}
.

Once b̂j is obtained, αj = b̂\j . Sun and Zhang (2013) analyze the spectral-norm
rate of convergence of the obtained precision matrix estimator. They did not
investigate the elementwise sup-norm and graph recovery performance. In the
next section, we will show that the scaled-Lasso estimator is highly related to
our proposed procedure and will discuss the relationship in more details.

To estimate both precision matrix Θ and graph G, Cai et al. (2011) proposes
the CLIME estimator, which directly estimates the jth column of Θ by solving

Θ̂∗j = argmin
Θ∗j

∥∥Θ∗j
∥∥
1

subject to
∥∥Σ̂Θ∗j − ej

∥∥
∞ ≤ δj , for j = 1, . . . , d,

where ej is the j
th canonical vector and δj is a tuning parameter. Cai et al. (2011)

show that this convex optimization can be formulated into a linear program.
Once Θ̂ is obtained, we use another tuning parameter τ to threshold Θ to
estimate the graph G. In a follow-up work, Liu and Luo (2015) propose the
SCIO estimator, which estimates the jth column of Θ by solving

Θ̂∗j = argmin
Θ∗j

{
1

2
ΘT

∗jΣ̂Θ∗j − eTj Θ∗j + λj

∥∥Θ∗j
∥∥
1

}
.

The theory of most of these graph estimation methods builds upon some the-
oretical choices of tuning parameters that cannot be implemented in practice.
For example, in the neighborhood pursuit method and the graphical Dantzig
selector, the tuning parameter λj and γj depend on σ2

j , which is unknown.
Practically, we usually set λ = λ1 = · · · = λd and γ = γ1 = · · · = γd to reduce
the number of tuning parameters. However, as we will illustrate in later sections,



A tuning-insensitive approach for optimally estimating Gaussian graphical models 247

such a choice makes the estimating procedure non-adaptive to inhomogeneous
graphs. The tuning parameters of the CLIME and SCIO estimators depend on
‖Θ‖1, which is unknown. In general, these methods employ cross validation to
conduct data-dependent tuning parameter selection and Liu and Luo (2015)
provide some theoretical analysis of the cross-validation method. However, as
we discussed before, cross-validation is computationally expensive and a waste
of valuable training data.

3. Method

In this section we introduce the use of the SQRT-Lasso from Belloni et al. (2012)
for simultaneously estimating the graph G and precision matrix Θ := Σ−1.

The SQRT-Lasso is a penalized optimization algorithm for solving high di-
mensional linear regression problems. More specifically, for a linear model y =
Xβ + ε, where y ∈ R

n is the response vector, X ∈ R
n×d is the design matrix,

β ∈ R
d is the vector of unknown coefficients, and ε ∈ R

n is the noise vector,
the SQRT-Lasso estimates β by solving

β̂ = arg min
β∈Rd

{ 1√
n
‖y −Xβ‖2 + λ‖β‖1

}
,

where λ is the tuning parameter. It is shown in Belloni et al. (2012) that the
choice of λ for the SQRT-Lasso method is asymptotically universal and does
not depend on any unknown parameter. In contrast, most of other methods,
including the Lasso and Dantzig selector, rely heavily on the unknown standard
deviation of the noise. Moreover, the SQRT-Lasso method achieves near oracle
performance for the estimation of β.

3.1. TIGER for graph and precision matrix estimation

In the discussion of this section, we always condition on the observed data
X1, . . . ,Xn. Let Γ̂ := diag(Σ̂) be a d-dimensional diagonal matrix with the

diagonal elements be the same as those in Σ̂. We define

Z := (Z1, . . . , Zd)
T = XΓ̂

−1/2
.

By (2.1), we have

ZjΓ̂
1/2

jj = αT
j Γ̂

1/2

\j,\jZ\j + εj , (3.1)

Define βj := Γ̂
1/2

\j,\jΓ̂
−1/2

jj αj and τ2j = σ2
j Γ̂

−1

jj , we then have

Zj = βT
j Z\j + Γ̂

−1/2

jj εj . (3.2)

We define R̂ to be the sample correlation matrix: R̂ :=
(
diag(Σ̂)

)−1/2 ×
Σ̂
(
diag(Σ̂)

)−1/2
.
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Motivated by the model in (3.2), we propose the following precision matrix
estimator.

For j = 1, . . . , d, we estimate the jth column of Θ by solving :

β̂j := argmin
βj∈Rd−1

{√
1− 2βT

j R̂\j,j + βT
j R̂\j,\jβj + λ

∥∥βj

∥∥
1

}
, (3.3)

τ̂j :=

√
1− 2β̂

T

j R̂\j,j + β̂
T

j R̂\j,\jβ̂j ,

Θ̂jj = τ̂−2
j Γ̂

−1

jj and Θ̂\j,j = −τ̂−2
j Γ̂

−1/2

jj Γ̂
−1/2

\j,\j β̂j .

For the estimator in (3.3), λ is a tuning parameter. In the next section, we

show that by choosing λ = π

√
log d

2n
, the obtained estimator achieves the opti-

mal rates of convergence in the asymptotic setting. Therefore, our procedure is
asymptotically tuning-parameter free. For finite samples, we set

λ := ζπ

√
log d

2n
, (3.4)

and ζ can be chosen from a range [
√
2/π, 1]. Since the choice of ζ does not

depend on any unknown parameters or quantities, we call the procedure tuning-
insensitive. Empirically, we found that in most cases we encountered, simply
setting ζ =

√
2/π works well in finite sample settings. More details can be

found in the simulation section.
If a symmetric precision matrix estimate is preferred, we could conduct post-

processing step as in Cai et al. (2011), which does not affect the theoretical
analysis.

Let Z ∈ R
n×d be the normalized data matrix, i.e., Z∗j = X∗jΣ

−1/2
jj for

j = 1, . . . , d. An equivalent form of (3.3) is

β̂j = argmin
βj∈Rd−1

{
1√
n

∥∥Z∗j − Z∗\jβj

∥∥
2
+ λ

∥∥βj

∥∥
1

}
, (3.5)

τ̂j =
1√
n

∥∥Z∗j − Z∗\jβ̂j

∥∥
2
. (3.6)

Once Θ̂ is obtained, the estimated graph Ĝ := (V, Ê) where (j, k) ∈ Ê if

Θ̂jkΘ̂kj �= 0.

3.2. Relationship with the scaled-Lasso estimator

In this subsection, we show that the scaled-Lasso from Sun and Zhang (2013)
can be viewed as a variational upper bound of the objective function of the
SQRT-Lasso and they are solving the same problem1.

1This relationship is proposed and kindly provided by Cun-hui Zhang.
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More specifically, we consider the following optimization:

β̂j := argmin
βj∈Rd−1,τj≥0

{1− 2βT
j R̂\j,j + βT

j R̂\j,\jβj

2τj
+

τj
2

+ λ
∥∥βj

∥∥
1

}
, (3.7)

Proposition 3.1. The problems in (3.3) and (3.7) have the same solution β̂j .

Proof. For any a, b > 0, we have a2 + b2 ≥ 2ab and the equality is attained if
and only a = b. Therefore, we have

1− 2βT
j R̂\j,j + βT

j R̂\j,\jβj

2τj
+

τj
2

≥
√

1− 2βT
j R̂\j,j + βT

j R̂\j,\jβj .

This shows that the objective function in (3.7) is an upper bound of the objective
function in (3.3). The equality is attained if and only if

τj =
√
1− 2βT

j R̂\j,j + βT
j R̂\j,\jβj .

This finishes the proof.

This relationship between the TIGER and scaled-Lasso provides an efficient
algorithm as described in the next subsection.

3.3. Computational algorithm

Equation (3.3) is jointly convex with respect to βj and τj and can be solved

by a coordinate-descent procedure. In the tth iteration, for a given τ
(t)
j , we first

solve the subproblem

β
(t+1)
j := argmin

βj∈Rd−1

{
1− 2βT

j R̂\j,j + βT
j R̂\j,\jβj

2τ
(t)
j

+ λ
∥∥βj

∥∥
1

}
, (3.8)

This is a Lasso problem and can be efficiently solved by the coordinate descent

algorithm developed by Friedman et al. (2007). Once β
(t+1)
j is obtained, we can

calculate τ
(t+1)
j as

τ
(t+1)
j =

√
1− 2

(
β
(t+1)
j

)T
R̂\j,j +

(
β
(t+1)
j

)T
R̂\j,\j

(
β
(t+1)
j

)
. (3.9)

We iterate these two steps until the algorithm converges.
On thing to note is that the above algorithm converges fast if a good initial

value of τj is provided. For example, if τj is close to τ̂j , the algorithm converges
in only 3 to 5 iterations. In fact, with a good initial value of τj , the computa-
tion is roughly the same as running one single tuning parameter of the Lasso
with a sparse solution. However, with an inappropriate initial value of τj , the
computational complexity can be as heavy as calculating the full regularization
path of a Lasso problem, which is inefficient.
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To obtain a good initial estimate of τj , we propose an augmented Lagrange
method as follows: We first reparameterize (3.5) and (3.6) as

β̂j , γ̂ = argmin
βj∈Rd−1,γ∈Rn

{
1√
n

∥∥γ∥∥
2
+ λ

∥∥βj

∥∥
1

subject to γ = Z∗j − Z∗\jβj

}
,

(3.10)

τ̂j =
1√
n

∥∥γ̂∥∥
2
. (3.11)

We consider the following augmented Lagrangian function

L(βj ,γ,α) :=
1√
n

∥∥γ∥∥
2
+ λ

∥∥βj

∥∥
1
+ ρ

〈
α,γ − Z∗j + Z∗\jβj

〉
+
ρ

2

∥∥γ − Z∗j + Z∗\jβj

∥∥2
2

where ρ > 0 is the penalty parameter for the violation of the linear constraints.
For simplicity, throughout this paper we assume that ρ > 0 is fixed (In practical
implementations, we simply set ρ = 1). α ∈ R

n is the Lagrange multiplier
vector but rescaled by ρ for computational and notational convenience. This
reparametrization decouples the computational dependency in the optimization
problem. Therefore a complicated problem can be split into multiple simpler
sub-problems, each of which can be solved easily.

The augmented Lagrangian method works in an iterative fashion. Suppose

we have the solution β
(t)
j , γ(t), α(t) at the t-th iteration, the algorithm proceeds

as follows:
Step 1. Update βj by

β
(t+1)
j = argmin

βj∈Rd−1

{
λ
∥∥βj

∥∥
1
+

ρ

2

∥∥α(t) + γ(t) − Z∗j + Z∗\jβj

∥∥2
2

}
. (3.12)

Let u(t) := Z∗j −α(t)−γ(t). and λρ := λ/ρ. The problem in (3.12) is equivalent
to

β
(t+1)
j = argmin

βj∈Rd−1

{
λρ

∥∥βj

∥∥
1
+

1

2

∥∥u(t) − Z∗\jβj

∥∥2
2

}
.

This is a Lasso subproblem which can be efficiently solved by the coordinate
descent algorithm (Friedman et al., 2007).

Step 2. Given β
(t+1)
j , we then update γ by

γ(t+1) =argmin
γ∈Rn

{
1√
n

∥∥γ∥∥
2
+

ρ

2

∥∥γ − Z∗j + Z∗\jβ
(t+1)
j +α(t)

∥∥2
2

}
. (3.13)

The problem (3.13) a the closed-form solution via the soft-thresholding operator,

γ(t+1) =
(
Z∗j − Z∗\jβ

(t+1)
j −α(t)

)
·
(
1− 1

ρ
√
n
∥∥Z∗j − Z∗\jβ

(t+1)
j −α(t)

∥∥
2

)
+

,
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where (x)+ := max
{
0, x

}
is the hinge function.

Step 3. Given γ(t+1) and β
(t+1)
j , we update the Lagrange multiplier α by

α(t+1) = α(t) + γ(t+1) − Z∗j + Z∗\jβ
(t+1)
j .

Since we have rescaled the Lagrange multiplier α by ρ, the updating equation
for α is independent of ρ.

The algorithm stops when the following convergence criterion is satisfied

max

{‖β(t+1)
j − β

(t)
j ‖2

‖β(t)
j ‖2

,
‖β(t+1)

j − γ(t)‖2
‖β(t)

j ‖2

}
≤ ε,

where ε > 0 is a precision tolerance parameter. Theoretically, we can set ε to be
a very small value, e.g., ε = 10−6. This directly solves β̂j . However, empirically,
we found it is more efficient to set ε = 10−3 and only obtain a crude initial
estimate τ̂ crudej . We then use τ̂ crudej as the initial value and alternatively solve
(3.8) and (3.9). Such a hybrid procedure delivers the best empirical performance.

3.4. Fine-tune the regularization parameter

To achieve the best finite sample performance, we could also find-tune the pa-
rameter ζ in (3.4) on a small interval [

√
2/π, 1]. Practically, since our procedure

is tuning-insensitive, it suffices to only cross-validate 3 values and pick the best
one: ζ ∈

{√
2/π, 0.6, 1

}
. In general, the algorithm runs very efficiently.

4. Theoretical properties

In this section we investigate the theoretical properties of the proposed method.
We begin with some notations and assumptions. We define a matrix class
M(ξmax, k):

M(ξmax, k) :=
{
Θ = ΘT ∈ R

d×d : Θ � 0,
Λmax(Θ)

Λmin(Θ)
≤ ξmax,

max
i

∑
j

I
(
Θij �= 0

)
≤ k

}
,

where ξmax is a constant and k may scale with the sample size n. We first list
down three required assumptions:

(A1) Θ ∈ M(ξmax, k),
(A2) k2 log d = o(n),

(A3) lim supn→∞ max1≤j≤d Σ
2
jj

log d

n
<

1

4
.
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All these assumptions are mild. Assumption (A1) only requires the inverse co-
variance matrix Θ := Σ−1 to have a bounded condition number. Assumption
(A2) is equivalent to

lim
n→∞

k

√
log d

n
= 0. (4.1)

In later analysis, we will show that this condition is necessary to secure the
consistency of the precision matrix estimation under different matrix norms.
Assumption (A3) constrains that the marginal variance of Xj should not diverge
too fast.

4.1. Precision matrix estimation consistency

We study the estimation error of precision matrix Θ̂−Θ under different norms,
including spectral norm, matrix L1-norm, elementwise sup-norm, and Frobenius
norm. The rate under the elementwise sup-norm is important for graph recovery.
The rate under the spectral norm is important since it leads to the consistency
of the estimation of eigenvalues and eigenvectors, which may further be utilized
to analyze the theoretical properties of downstream statistical inference. We
analyze the rate of spectral norm by bounding the L1-norm rate. The rate of
Frobenius is also a useful measure on the accuracy of the estimation of Θ and
can be viewed as the sum of squared errors for estimating individual rows. Our
main results indicate that the TIGER procedure simultaneously achieves the
optimal rates of convergence under all these different matrix norms. We present
these results in two main theorems and compare our results with related work
in the literature. The proofs of these theorems can be found in the appendix.

Theorem 4.1 provides the rates of convergence under the matrix L1 and
spectral norms.

Theorem 4.1 (L1 and spectral norm rates). We choose the regularization pa-
rameter λ as in (3.4) with ζ = 1. Under Assumptions (A1), (A2), and (A3),
we have

∥∥Θ̂−Θ
∥∥
1
= OP

(
k
∥∥Θ∥∥

2

√
log d

n

)
, (4.2)

∥∥Θ̂−Θ
∥∥
2
= OP

(
k
∥∥Θ∥∥

2

√
log d

n

)
. (4.3)

Proof. The proof of (4.2) can be found in Appendix D.1. The proof of (4.3)

follows from the inequality that
∥∥Θ̂−Θ

∥∥
2
≤
∥∥Θ̂−Θ

∥∥
1
.

If we further assume
∥∥Θ∥∥

1
≤ Md where Md may scale with d, i.e., we define

the following new matrix class M(Md, ξmax, k):

M(Md, ξmax, k) :=
{
Θ ∈ M(ξmax, k) :

∥∥Θ∥∥
1
≤ Md

}
. (4.4)
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The result of Theorem 4.1 implies that

sup
Θ∈M(Md,ξmax,k)

∥∥Θ̂−Θ
∥∥
2
= OP

(
kMd

√
log d

n

)
. (4.5)

Based on the results of Cai et al. (2016), Liu and Luo (2015), and Yuan (2010),
this rate of convergence is minimax optimal on model class M(Md, ξmax, k).

The next theorem provides the rates of convergence under the elementwise
sup-norm, which is useful for the graph recovery from the precision matrix Θ.

Theorem 4.2 (Elementwise sup-norm rate). We choose the regularization pa-
rameter λ as in (3.4) with ζ = 1. Let s be the total number of nonzero off-
diagonal elements of Θ. Under Assumptions (A1), (A2), and (A3), we have

∥∥Θ̂−Θ
∥∥
max

= OP

(∥∥Θ∥∥
1

√
log d

n

)
. (4.6)

Proof. The proof of (4.6) can be found in Appendix D.2.

Again, based on the results in Cai et al. (2016) and Liu and Luo (2015), we
know that the TIGER achieves the minimax optimal rates of convergence under
both elementwise sup-norm and Frobenius norm on model classM(Md, ξmax, k).

In summary, the TIGER simultaneously achieves the optimal rates of con-
vergence under spectral norm, matrix L1-norm, and elementwise sup-norm.

4.2. Graph recovery consistency

Next, we study the graph recovery property of the TIGER. Let Θ̂ be the esti-
mated precision matrix. Recall that we define the estimated graph Ĝ := (V, Ê)

where (j, k) ∈ Ê if and only if Θ̂jkΘ̂kj �= 0. Similarly, the true graph G := (V,E)
where (j, k) ∈ E if and only if Θjk �= 0. We have the following theorem on graph
recovery consistency.

Theorem 4.3 (Graph recovery consistency). We choose the regularization pa-
rameter λ as in (3.4) with ζ = 1. We assume Assumptions (A1), (A2), and (A3)
hold and for a sufficiently large constant K, such that the smallest nonzero ele-
ment of Θ satisfies

Θcrit := min
(j,k)∈E

∣∣Θjk

∣∣ ≥ K
∥∥Θ∥∥

1

√
log d

n
.

We have E ⊂ Ê when n is large enough.

Theoretically, it is possible that the TIGER delivers some precision matrix
estimates with very small nonzero values. To achieve exact recovery, we can
threshold the estimated precision matrix Θ̂ to get a sparse precision matrix
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estimate Θ̂
A
. Specifically, let

Θ̂
A

jk :=

⎧⎪⎪⎨
⎪⎪⎩

Θ̂jk if |Θ̂jk| > A

√
log d

n

0 if |Θ̂jk| ≤ A

√
log d

n

.

It can be seen that under the same conditions of Theorem 4.3, there exists a
constant A (A may depend on K) such that the above hresholded estimator
achieves exact recovery. More discussions can be found in Cai et al. (2011).
Unlike the CLIME and graphical Dantzig selector where the linear program
solver may deliver very small nonzero values (but not exact zero). Our algorithm
defined in Section 3 explicitly exploit soft-thresholding operator and is capable
of delivering exact zero. Empirically, we found the TIGER procedure works very
effectively in graph estimation even without this hard-thresholding step. So this
hard-thresholding step is more of theoretical interest and is not necessary in
applications.

It is worth pointing out that if we are only interested in estimating the
graph, assumption (A2) can be straightforwardly relaxed to k log d = o(n), see
for example Meinshausen and Bühlmann (2006) and Jalali et al. (2012).

4.3. Discussion

In this subsection, we briefly discuss the theoretical properties of the TIGER
estimator and compare them with other existing results.

The SCIO method proposed in Liu and Luo (2015) also provides the rates
of convergence for precision matrix estimation under various norms. One can
see that the TIGER estimator and SCIO estimator achieve the same rates of
convergence in terms of spectral norm, matrix L1-norm, and elementwise sup-
norm. However, in this paper we consider a much larger matrix class since we
only bound the condition number of the precision matrix while the SCIO bounds
the largest and smallest eigenvalues from above and below, respectively. More-
over, the SCIO requires the irrepresentable condition, which is much stronger
than our condition. In fact, it is still an open problem on whether the SCIO
estimator can achieve the same rates as the TIGER on the same model class
M(Md, ξmax, k).

The graphical Dantzig selector (Yuan, 2010) also considers the model class
where the largest and smallest eigenvalues are bounded from above and below.
Therefore the results of the Graphical Dantzig selector are on a smaller model
class than the TIGER estimator. Moreover, the graphical Dantzig does not have
any result on graph recovery consistency.

When compared with the CLIME in Cai et al. (2011), we see that the rate of
convergence of the TIGER is faster since the spectral norm rate of the CLIME is

OP

(
kM2

d

√
log d
n

)
, and the spectral norm rate of the TIGER is OP

(
kMd

√
log d
n

)
.
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When compared with the glasso method, see for example Rothman et al.
(2008) and Ravikumar et al. (2011), the TIGER estimator achieves the min-
imax optimal rates of convergence under spectral norm, matrix L1-norm and
elementwise sup-norm. In contrast, the only theoretical result of the glasso is in
terms of Frobenius norm. it is still an open problem on whether the glasso can
achieve the same spectral norm rate of convergence as the TIGER method on
the model class M(Md, ξmax, k).

The scaled-Lasso estimator (Sun and Zhang, 2013) provides the rates of con-
vergence under spectral norm and matrix L1 norm of the precision matrix es-
timation. However, the scale-Lasso estimator considers a different model class
where the smallest eigenvalue of the correlation matrix is bounded away from
zero by a constant. It is not clear on the optimality of the obtained rates of con-
vergence over that model class. Besides, Sun and Zhang (2013) does not provide
the elementwise sup-norm analysis and hence does not have the graph recovery
result. Though the TIGER has a close relationship with the scaled-Lasso, the
theoretical analysis of the current paper is fundamentally different from that
in Sun and Zhang (2013). Another related work is Meinshausen and Bühlmann
(2006), where they only focus on the graph recovery and do not have precision
matrix estimation result.

5. Experimental results

We compare the performance of the TIGER with other methods (glasso and
CLIME) in parameter estimation and graph recovery using simulated and real
datasets. The TIGER and CLIME algorithms are implemented in the R pack-
age camel, and it is publicly available through CRAN. The glasso method is
implemented in the R package huge (ver. 1.2.3).

5.1. Numerical simulations

In our numerical simulations, we consider 6 settings to compare these methods:
(i) n = 200, d = 100; (ii) n = 200, d = 200; (iii) n = 200, d = 400; (iv) n =
400, d = 100; (v) n = 400, d = 200; (vi) n = 400, d = 400. We adopt the
following models for generating undirected graphs and precision matrices. A
typical run of the generated graphs and the heatmaps of the precision matrices
are illustrated in Figure 1.

∗ Scale-free graph. The degree distribution of the scale-free graph follows a
power law. The graph is generated by the preferential attachment mechanism.
The graph begins with an initial small chain graph of 2 nodes. New nodes are
added to the graph one at a time. Each new node is connected to one existing
node with a probability that is proportional to the number of degrees that the
existing node already has. Formally, the probability pi that the new node is
connected to an existing node i is, pi =

ki∑
j kj

, where ki is the degree of node

i. The resulting graph has d edges (d = 200 or d = 400). Once the graph
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Fig 1. An illustration of the 6 graph patterns and the heatmaps of their corresponding pre-
cision matrices adopted in the simulations. To ease visualization, we only present example
graphs with d = 200 nodes.
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is obtained, we generate an adjacency matrix A by setting the nonzero off-
diagonal elements to be 0.3 and the diagonal elements to be 0. We calculate its
smallest eigenvalue Λmin(A). The precision matrix is constructed as

Θ = D
[
A+

(∣∣Λmin(A)
∣∣+ 0.2

)
· Id

]
D, (5.1)

where D ∈ R
d×d is a diagonal matrix with Djj = 1 for j = 1, . . . , d/2 and

Djj = 3 for j = d/2 + 1, . . . , d. The covariance matrix Σ := Θ−1 is then
computed to generate the multivariate normal data: X1, . . . ,Xn ∼ Nd(0,Σ).

∗ Erdös-Rényi random graph. We add an edge between each pair of nodes
with probability 0.02 independently. The resulting graph has approximately 400
edges when d = 200 and 1, 596 edges when d = 400. Once the graph is obtained,
we construct the adjacency matrix A and generate the precision matrix Θ using
(5.1) but setting Djj = 1 for j = 1, . . . , d/2 and Djj = 1.5 for j = d/2+1, . . . , d.
We then invertΘ to get the covariance matricesΣ and generate the multivariate
normal data: X1, . . . ,Xn ∼ Nd(0,Σ).

∗ Hub graph. The d nodes are evenly partitioned into d/20 disjoint groups
with each group contains 20 nodes. Within each group, one node is selected
as the hub and we add edges between the hub and the other 19 nodes in that
group. The resulting graph has 190 edges when d = 200 and 380 edges when
d = 400. Once the graph is obtained, we generate the precision matrix in the
same way as the Erdös-Rényi random graph model.

∗ Cluster graph. Similar to the hub model, the d nodes are evenly partitioned
into d/20 disjoint groups with each group contains 20 nodes. The subgraph of
each group is an Erdös-Rényi random graph with the probability parameter
0.2. The resulting graph has approximately 380 edges when d = 200 and 760
edges when d = 400. Once the graph is obtained, we generate the precision and
covariance matrices in the same way as the Erdös-Rényi random graph model.

∗ Band graph. Each node is assigned a coordinate j with j = 1, ..., d. Two
nodes are connected by an edge whenever the corresponding coordinates are
at distance less than or equal to 3. The resulting graph has approximately 594
edges when d = 200 and 1, 194 edges when d = 400. Once the graph is obtained,
we generate the precision and covariance matrices in the same way as the Erdös-
Rényi random graph model.

∗ Block graph. The precision matrix Θ is a block diagonal matrix with block
size d/20. Each block has off-diagonal entries equal to 0.5 and diagonal entries
equal to 1. Such a matrix is guaranteed to be positive definite. The resulting
matrix is then randomly permuted by rows and columns. The resulting graph
has approximately 900 edges when d = 200 and 3, 800 edges when d = 400. The
covariance matrix Σ := D−1Θ−1D−1 is then computed to generate multivariate
normal data, where D is a diagonal matrix with Djj = 1 for j = 1, . . . , d/2 and
Djj = 1.5 for j = d/2 + 1, . . . , d.
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5.1.1. Graph recovery performance

We first compare the TIGER with the CLIME and glasso on their graph recov-
ery performance. Let G = (V,E) be a d-dimensional graph. We denote by |E|
the number of edges in the graph G. We use the false positive and false negative
rates to evaluate the graph recovery performance. Let Ĝλ = (V, Êλ) be an esti-
mated graph using a regularization parameter λ in any of these procedures. The
number of false positives when using the regularization parameter λ is defined
as FP(λ) := the number of edges in Êλ but not in E. The number of false neg-
atives with λ is defined as FN(λ) := the number of edges in E but not in Êλ.
We further define the false negative rate (FNR) and false positive rate (FPR)
as

FNR(λ) :=
FN(λ)

|E| and FPR(λ) := FP(λ)/
[(d

2

)
− |E|

])
. (5.2)

To illustrate the overall performance of the TIGER, CLIME and glasso methods
over the full paths, the receiver operating characteristic (ROC) curves are drawn
using

(
FNR(λ), 1 − FPR(λ)

)
. For the TIGER method, we found that using

or without using the second hard-thresholding step provides the same graph
estimates. So, the presented result does not use the second hard-thresholding
step. The ROC curves for these models are presented in Figures 2, 3, 4.

From the ROC curves on the scale-free model in Figure 2, we see that the
graph recovery performance of the TIGER is significantly better than those
of the CLIME and glasso in higher dimensional settings (when d = 200 or
d = 400 and d ≥ n). This result suggests that the TIGER is more adaptive to
inhomogeneous noise models. From Figure 2, we also see that the TIGER has
similar graph recovery performance as the CLIME on the band model. Both the
TIGER and CLIME significantly outperform the glasso. In particular, in the
high dimensional setting when d = 400 and n = 200, the TIGER outperforms
both CLIME and glasso. This result suggests that the TIGER is more reliable
when facing higher dimensional problems on this model.

For the other models, from the ROC curves in Figures 3 and 4, we see that the
three methods perform similarly on these settings, and for Erdös-Rényi random
graph models, the TIGER outperforms the CLIME in the settings when n ≤ d.
This means that the TIGER is effective for a wide range of models. In summary,
the above numerical results suggest that the TIGER is a very competitive graph
estimation method in high dimensions.

5.1.2. Tuning-insensitive regularization path

We are interested in studying the tuning-insensitive property of the TIGER.
For conciseness, we only discuss the TIGER and CLIME in this section and
compare their regularization paths. Recall that

λ = ζ · π√
2

√
log d

n
, (5.3)
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Fig 2. ROC curves for the Scale-free and Band models (Best visualized in color).

we see that ζ and λ have a one-to-one mapping. In Figure 5 (a) and (b), we plot
the curves of Frobenius-norm errors vs. the tuning parameter ζ for the TIGER
and CLIME. We define FNR(ζ) and FPR(ζ) in the same way as in (5.2). We
also define the graph recovery accuracy as

Accuracy(ζ) := 1− FPR(ζ)− FNR(ζ). (5.4)
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Fig 3. ROC curves for the cluster and Erdös-Rényi random graph models (Best visualized in
color).

In Figure 5 (c) and (d), we plot the curves of the graph recovery accuracy vs.
the tuning parameter ζ for the TIGER and CLIME. The vertical axis of these
plots are calibrated so that the results are directly comparable. These plots illus-
trate the tuning-insensitive property of the TIGER regularization path. For the
TIGER, we found it is empirically safe to only consider the regularization path
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Fig 4. ROC curves for the hub and block models (Best visualized in color).

over the range ζ ∈ [
√
2/π, 1]. From both subplots (a) and (c), the regularization

paths are flat and do not change dramatically with the change of ζ (In another
word, the procedure is insensitive to the tuning parameter). In contrast, for the
CLIME, we need to search over a much larger range of ζ to find the optimal
value and the paths are more irregular. In the subplots (b) and (d), we visual-
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Fig 5. Comparison of the regularization paths of the TIGER and CLIME on the hub graph
model. The vertical axis of these plots (Forebius divide by the dimensionality d) are calibrated
so that the results are directly comparable. These plots illustrate the tuning-insensitive prop-
erty of the TIGER regularization path. For the TIGER, we only need to consider the range
ζ ∈ [

√
2/π, 1]. From both subplots (a) and (c), the regularization paths are flat and do not

change dramatically with ζ. In contrast, for the CLIME, we need to search over a much larger
range of ζ to find the optimal value and the paths are more irregular (the subplots (b) and
(d) only show a part of this range).

ize the regularization paths of the CLIME over ζ ∈ [0.125, 2], these are only a
sub-fraction of the whole regularization paths of the CLIME and the paths are
irregular (or more sensitive to the choice of ζ). Therefore, it is much easier to
choose a reasonable tuning parameter for the TIGER than for the CLIME. In
most cases, the choice of ζ = 1 for TIGER provides a sparser graph estimate
than the true graph. This is due to the fact that the asymptotic analysis in the
previous section involves many union bounds, which may be too conservative
in finite sample settings. As will be illustrated in the next subsection, we found
that in most settings, simply setting ζ =

√
2/π yields a reasonably good graph
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and precision matrix estimates. Such a choice is used as a default in the camel
package on CRAN.

5.1.3. Parameter estimation performance

We then compare the TIGER with CLIME and glasso on their parameter es-
timation performance. For each model described before, we generate a training
sample of n. The tuning parameters of the glasso and CLIME are automatically
chosen in a data-dependent way. More specifically, for a given sample size n,
we generate the same number of independent data points from the same dis-
tribution as a validation set. For each tuning parameter, the glasso or CLIME
estimated precision matrix Θ̂ is calculated on training data. The optimal tuning
parameter is chosen by minimizing the held-out negative log-likelihood loss

Ln(Θ̂) := tr
(
Σ̂Θ̂

)
− log

∣∣Θ̂∣∣
on the validation set. For the TIGER, the tuning parameter ζ in (3.4) is simply
chosen to be ζ =

√
2/π so that the procedure is completely tuning-free. For

dimensionality d = 100, 200, 400, we consider the spectral norm error
∥∥Θ̂−Θ

∥∥
2

and Frobenius norm error
∥∥Θ̂−Θ

∥∥
F
of all the 6 models described in the previous

subsections.
The results are reported in Tables 1 and 2. In these tables we present the mean

and standard deviation (in the parenthesis) of the spectral and Frobenius norm
errors based on 50 random trials. We see that in almost all cases, the TIGER
and CLIME outperform the glasso. In most cases, the TIGER outperforms the
CLIME. Our results, though obtained in different experimental settings, are
consistent with the results in Sun and Zhang (2013) for the scaled-Lasso based
matrix inversion method.

One possible reason for the superior empirical performance of the TIGER
over CLIME and glasso is that the data-dependent tuning selection procedure
described in the previous section does not work well for the CLIME and glasso.
To gain more insight, we also report the oracle estimation results in Tables 3
and 4. In these tables we present the mean and standard deviation (in the
parenthesis) of the spectral and Frobenius norm errors based on 50 random
trials. For all three methods, we draw the full regularization paths and select the
best tuning parameter by minimizing the corresponding spectral or Frobenius
norm errors to the true precision matrix. From these tables, we see that again
the TIGER and CLIME outperform glasso and the TIGER is slightly better
than CLIME.

5.1.4. Time benchmark and dense graph estimation

In the above numerical study we did not report the exact wall-clock time
complexity of the proposed algorithm. A thorough evaluation of the compu-
tational performance of the TIGER estimator is reported in a recent work (Li



264 H. Liu and L. Wang

Table 1

Quantitative comparisons of the TIGER, Glasso, and CLIME on the scale-free, hub, and
band models using data-dependent model selection method.

Spectrum Norm Frobenius Norm

Model n d TIGER CLIME GLasso TIGER CLIME GLasso

scale-free 200

100
3.71370 4.41206 6.00048 11.5245 14.3260 21.1852
(0.4651) (0.4149) (0.1838) (0.7596) (1.0260) (0.4794)

200
4.11834 4.19539 6.54951 16.3318 17.0776 35.1912
(0.6495) (0.3070) (0.3823) (0.8017) (0.5752) (2.4153)

400
4.43263 4.58973 7.21601 23.4459 24.1157 50.9695
(0.6412) (0.5466) (0.2184) (0.7896) (1.0119) (0.3715)

400

100
2.77888 3.53363 5.30674 8.3591 11.4838 17.4945
(0.3167) (0.5060) (0.1676) (0.5206) (0.7872) (0.3696)

200
2.68762 3.29772 5.23455 11.7521 14.0718 23.3348
(0.2668) (0.2480) (0.2602) (0.4706) (0.5345) (0.3524)

400
3.31452 3.57110 6.32043 16.9996 19.1326 41.8133
(0.5758) (0.3068) (0.2675) (0.6411) (0.7619) (0.3717)

hub 200

100
2.67040 4.31716 6.51814 5.4347 7.3545 10.6739
(0.4446) (0.4979) (0.3070) (0.3356) (0.5204) (0.4329)

200
3.02307 5.35713 7.41337 8.2277 12.7079 18.1376
(0.4151) (0.3096) (0.1374) (0.3049) (0.4182) (0.1653)

400
3.34315 6.11506 7.69167 12.0676 19.8038 26.4038
(0.3017) (0.2093) (0.1061) (0.2801) (0.3058) (0.2002)

400

100
1.82245 2.46543 5.28610 3.7161 4.5920 8.5380
(0.2619) (0.3995) (0.1834) (0.1811) (0.2968) (0.2247)

200
2.07601 3.11260 6.23933 5.6517 7.5627 15.0739
(0.2105) (0.2491) (0.1208) (0.2366) (0.3261) (0.1747)

400
2.23719 4.02006 6.43531 8.1420 13.0960 22.0039
(0.1675) (0.4557) (0.0913) (0.1207) (1.1531) (0.1230)

band 200

100
5.72715 4.37815 6.36789 16.7205 12.8498 17.4244
(0.1546) (0.3626) (0.0850) (0.2793) (0.8868) (0.1506)

200
6.04373 5.81030 7.32236 24.6770 23.3002 28.8514
(0.1381) (0.1378) (0.0517) (0.2373) (0.3368) (0.1293)

400
6.28046 6.76049 7.87172 36.0083 38.6665 44.7691
(0.0760) (0.0738) (0.1168) (0.1940) (0.1779) (0.7423)

400

100
4.34163 2.92088 5.53820 12.5012 8.2567 14.7940
(0.1847) (0.2552) (0.0871) (0.2989) (0.5046) (0.1483)

200
4.69878 3.62779 5.71676 19.0534 14.3844 21.9130
(0.1302) (0.1494) (0.0740) (0.2633) (0.2863) (0.1285)

400
5.01406 4.24658 6.82527 28.6523 24.1215 37.6074
(0.0709) (0.4150) (0.0392) (0.2313) (2.0819) (0.0953)

et al., 2016). In addition to the ADMM algorithm described in this paper, Li
et al. (2016) also introduce an efficient pathwise iterative smoothing shrinkage
thresholding algorithm, along a novel model-based perspective for analyzing the
smoothing optimization framework. Thorough wall-clock timing benchmarks of
these algorithms on different datasets are reported in Li et al. (2016).



A tuning-insensitive approach for optimally estimating Gaussian graphical models 265

Table 2

Quantitative comparisons of the TIGER, Glasso, and CLIME on the block, Erdös-Rényi
random, and cluster models using data-dependent model selection method.

Spectrum Norm Frobenius Norm

Model n d TIGER CLIME GLasso TIGER CLIME GLasso

block 200

100
3.88080 2.92791 4.62777 12.7803 9.8588 14.1474
(0.2123) (0.1907) (0.1221) (0.2231) (0.2728) (0.3767)

200
4.21258 3.50847 5.05219 19.1984 16.4653 21.8517
(0.2073) (0.2014) (0.0408) (0.1841) (0.2043) (0.0455)

400
4.54196 4.72388 5.44260 28.8940 29.7674 34.0288
(0.1456) (0.1344) (0.0387) (0.1471) (0.1169) (0.2657)

400

100
2.61796 1.91879 3.63244 8.4651 6.1005 10.7808
(0.1746) (0.2812) (0.0969) (0.2232) (0.6898) (0.0964)

200
2.86024 2.04201 4.26378 12.8697 9.7477 17.7396
(0.1613) (0.1219) (0.0476) (0.2201) (0.2173) (0.0674)

400
3.12185 3.03083 4.70495 19.4939 19.6861 28.0988
(0.1423) (0.1365) (0.0333) (0.2277) (0.1791) (0.0522)

random 200

100
1.40361 1.63446 2.66316 4.9173 5.5390 7.4979
(0.2093) (0.2246) (0.2626) (0.2158) (0.2072) (0.5315)

200
1.92515 2.13847 2.97502 9.3623 10.4678 13.2284
(0.1352) (0.1984) (0.2074) (0.1845) (0.5063) (0.8328)

400
3.03486 3.57549 4.16129 17.6548 20.1956 23.3014
(0.0710) (0.0417) (0.0313) (0.1165) (0.1937) (0.0777)

400

100
0.96871 1.08246 1.94886 3.3962 3.7713 5.4841
(0.1265) (0.1420) (0.1879) (0.1332) (0.1521) (0.2622)

200
1.38675 1.45379 2.20816 6.6106 7.2891 9.6509
(0.1133) (0.1517) (0.0634) (0.1273) (0.2580) (0.1012)

400
2.21101 2.49335 3.02710 13.3298 14.9634 17.0508
(0.0792) (0.2862) (0.0468) (0.2506) (0.7566) (0.1373)

cluster 200

100
3.84966 3.45717 5.35790 8.9219 8.3992 11.7727
(0.3371) (0.3465) (0.1325) (0.2710) (0.3329) (0.1427)

200
3.66157 3.90672 5.11136 11.6676 12.1507 16.0086
(0.2469) (0.3981) (0.2043) (0.2153) (0.7474) (0.5784)

400
2.99469 3.34376 4.11403 15.1022 16.5420 20.2334
(0.1527) (0.1257) (0.0848) (0.1233) (0.1500) (0.1057)

400

100
2.74935 2.32058 4.21725 6.4102 5.7983 8.9115
(0.2604) (0.2737) (0.4733) (0.2067) (0.2324) (0.8694)

200
2.97759 2.80625 4.18294 8.7524 8.4317 11.9685
(0.1958) (0.2788) (0.0969) (0.1863) (0.3450) (0.1067)

400
2.20812 2.29522 3.58522 11.0885 11.4516 16.8512
(0.0627) (0.0675) (0.0630) (0.1962) (0.1888) (0.1091)

As for another concern, many of the graphs (except the block one) under
consideration in the above numerical study have a high sparsity level (i.e., edges
present represent about 1-2% of the potential ones). It would be interesting to
investigate the performance of the proposed method on graphical models with
dense graphs (e.g, graphs at the sparsity level 5% or 10%). Such analysis is also
conducted and reported in Li et al. (2016).
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Table 3

Quantitative comparisons of the TIGER, Glasso, and CLIME on the scale-free, hub, and
band models using oracle model selection method.

Spectrum Norm Frobenius Norm

Model n d TIGER CLIME GLasso TIGER CLIME GLasso

scale-free 200

100
3.49331 4.20880 4.44102 11.4419 14.0362 14.6163
(0.2888) (0.3896) (0.2517) (0.7051) (0.8067) (0.4395)

200
3.55648 3.97078 4.06802 15.5481 16.8466 20.6089
(0.4300) (0.3312) (0.3903) (0.5613) (0.4808) (0.2790)

400
3.93523 4.50636 4.36077 21.2401 23.6391 32.9509
(0.5407) (0.4290) (0.2883) (0.5478) (0.2663) (0.1983)

400

100
2.65555 2.92806 3.72758 8.3378 10.1875 11.5142
(0.2640) (0.2593) (0.2702) (0.5277) (0.4220) (0.4212)

200
2.62826 3.20446 3.46773 11.7350 13.9074 16.2752
(0.2368) (0.1861) (0.3240) (0.4554) (0.3791) (0.2982)

400
3.10365 3.42918 3.74972 16.7337 18.9504 25.1616
(0.4002) (0.2338) (0.3319) (0.5986) (0.4950) (0.2071)

hub 200

100
2.42283 2.66693 4.13856 5.4124 6.6481 9.6412
(0.3287) (0.3362) (0.2862) (0.3213) (0.3566) (0.2294)

200
2.80843 3.37883 4.18505 8.2170 10.9757 15.5200
(0.2737) (0.2853) (0.2116) (0.3008) (0.3744) (0.1934)

400
3.18571 4.51681 4.06350 12.0676 15.5895 24.0977
(0.2904) (0.3600) (0.0675) (0.2801) (0.2402) (0.1782)

400

100
1.63670 1.70506 3.31738 3.6970 4.2848 7.6101
(0.1863) (0.2001) (0.2704) (0.1763) (0.2483) (0.2076)

200
1.93008 2.23970 3.52276 5.6341 6.4934 12.3937
(0.2119) (0.2799) (0.1672) (0.2342) (0.2451) (0.1873)

400
2.10478 2.49148 3.45920 8.1420 10.4606 19.0323
(0.1478) (0.2029) (0.1311) (0.1207) (0.1850) (0.1332)

band 200

100
3.29816 3.27817 4.69050 12.2957 11.7620 14.0160
(0.2127) (0.2519) (0.1342) (0.4519) (0.4908) (0.2475)

200
3.89225 4.53169 4.78844 19.7902 20.0180 22.8946
(0.2489) (0.2191) (0.1114) (0.3364) (0.3778) (0.2232)

400
4.72424 5.57854 4.77270 31.1798 34.4919 37.4700
(0.1313) (0.1061) (0.0857) (0.2101) (0.3571) (0.1044)

400

100
2.09320 2.18392 3.87918 7.8187 7.4255 10.8361
(0.1604) (0.2292) (0.1348) (0.2798) (0.2845) (0.2176)

200
2.44876 2.65924 4.00698 12.8840 12.3307 17.2196
(0.1452) (0.1878) (0.1037) (0.1946) (0.2244) (0.1598)

400
2.82127 2.94520 4.08170 20.4888 21.4755 28.8954
(0.1166) (0.0979) (0.0655) (0.2645) (0.2665) (0.1768)

5.2. Arabidopsis thaliana gene network analysis

This dataset includes 118 gene expression arrays from Arabidopsis thaliana orig-
inally appeared in Wille et al. (2004). Our analysis focuses on gene expres-
sion from 39 genes involved in two isoprenoid metabolic pathways: 16 from the
mevalonate (MVA) pathway are located in the cytoplasm, 18 from the plastidial
(MEP) pathway are located in the chloroplast, and 5 are located in the mito-
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Table 4

Quantitative comparisons of the TIGER, Glasso, and CLIME on the block, Erdös-Rényi
random, and cluster models using oracle model selection method.

Spectrum Norm Frobenius Norm

Model n d TIGER CLIME GLasso TIGER CLIME GLasso

block 200

100
1.78662 1.96932 2.30284 7.0491 7.2065 8.7645
(0.1583) (0.1773) (0.1754) (0.2670) (0.3231) (0.1882)

200
2.26303 2.58484 2.72901 11.8684 13.6219 16.0190
(0.1872) (0.1816) (0.0660) (0.2641) (0.2550) (0.1207)

400
2.79826 3.67637 3.60729 20.5628 26.3292 25.4660
(0.2608) (0.2448) (0.0702) (0.2978) (0.2781) (0.0911)

400

100
1.18086 1.22283 1.89098 4.5090 4.2706 6.2619
(0.1352) (0.1702) (0.1439) (0.1631) (0.1898) (0.1538)

200
1.33627 1.48764 1.94656 7.4712 7.9438 11.0249
(0.1202) (0.1009) (0.1143) (0.1473) (0.1856) (0.1133)

400
1.58491 2.04870 2.58467 11.8926 15.1659 19.7672
(0.1664) (0.1761) (0.0316) (0.1673) (0.1953) (0.1090)

random 200

100
1.30656 1.54958 1.93012 4.8291 5.4697 6.4292
(0.1552) (0.1801) (0.1224) (0.2090) (0.1878) (0.1705)

200
1.74892 2.05243 2.23740 9.1014 10.2764 11.3447
(0.1026) (0.0972) (0.0769) (0.1862) (0.2062) (0.1505)

400
2.55517 3.49539 3.01732 17.0088 20.1956 20.0869
(0.0663) (0.1640) (0.0501) (0.1298) (0.1937) (0.0937)

400

100
0.87331 1.03685 1.35098 3.3014 3.7713 4.8714
(0.0838) (0.0957) (0.0712) (0.1317) (0.1521) (0.1361)

200
1.19717 1.37938 1.79435 6.2812 7.1464 8.7373
(0.0783) (0.0963) (0.0578) (0.1174) (0.1425) (0.0880)

400
1.67683 2.11043 2.45761 12.3481 14.0788 15.6806
(0.1227) (0.0694) (0.0596) (0.2473) (0.3149) (0.1436)

cluster 200

100
2.50462 2.61965 3.12584 7.9860 8.1190 9.9439
(0.2153) (0.2687) (0.2686) (0.2865) (0.3492) (0.1874)

200
2.72033 2.89910 2.91801 11.1472 11.5100 13.2443
(0.2079) (0.2528) (0.1019) (0.2200) (0.2111) (0.1515)

400
2.49864 3.30405 2.94846 14.8704 16.5420 18.3397
(0.1125) (0.1874) (0.1043) (0.2025) (0.1500) (0.1082)

400

100
1.63625 1.74909 2.47721 5.3929 5.4465 7.1791
(0.1633) (0.1612) (0.2247) (0.2439) (0.2127) (0.1576)

200
1.84653 2.04163 2.29099 7.7920 7.7961 10.4819
(0.1555) (0.1747) (0.1570) (0.1718) (0.1957) (0.1135)

400
1.66908 1.75361 2.46020 10.3907 10.8631 14.6437
(0.1359) (0.0699) (0.0658) (0.1888) (0.1774) (0.1132)

chondria. While the two pathways generally operate independently, crosstalk
is known to happen (Wille et al., 2004). Our goal is to recover the gene reg-
ulatory network, with special interest in crosstalk. We first examine whether
the data actually satisfies the Gaussian distribution assumption. In Figure 6 we
plot the histogram and normal QQ plot of the expression levels of a gene named
MECPS. From the histogram, we see the distribution is left-skewed compared
to the Gaussian distribution. From the normal QQ plot, we see the empirical
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Fig 6. The histogram and normal QQ plots of the marginal expression levels of the gene
MECPS. We see the data are not exactly Gaussian distributed.

distribution has a heavier tail compared to Gaussian. To suitably apply the
TIGER method on this dataset, we need to first transform the data so that
its distribution is closer to Gaussian. Therefore, we Gaussianize the marginal
expression values of each gene by converting them to the corresponding normal-
scores. This is automatically done by the huge.npn function in the R package
huge (Zhao et al., 2012).

We apply the TIGER on the transformed data using the default tuning pa-
rameter ζ =

√
2/π. The estimated network is shown in Figure 7. We see the es-

timated network is very sparse with only 44 edges. We draw the within-pathway
connections using solid lines and the between-pathway connections using dashed
lines. Our result is consistent with previous investigations, which suggest that
the connections from genes AACT1 and HMGR2 to gene MECPS indicate a
primary sources of the crosstalk between the MEP and MVA pathways and
these edges are presented in the estimated network. MECPS is clearly a hub
gene for this pathway.

For the MEP pathway, the genes DXPS2, DXR, MCT, CMK, HDR, and
MECPS are connected as in the true metabolic pathway. Similarly, for the MVA
pathway, the genes AACT2, HMGR2, MK, MPDC1, MPDC2, FPPS1 and FPP2
are closely connected. Our analysis suggests 11 cross-pathway links, which is
consistent to previous investigation in Wille et al. (2004). This result suggests
that there might exist rich inter-pathway crosstalks.

5.3. Human gene network analysis

Next, we apply the TIGER method to analyze a publicly available human gene
expression data. This data has been described and studied by Bhadra and
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Fig 7. The estimated gene networks of the Arabadopsis dataset. The within-pathway links are
denoted by solid lines and between-pathway links are denoted by dashed lines.

Mallick (2013); Mohammadi and Wit (2015); Chen et al. (2008); Stranger et al.
(2007). This dataset contains 60 unrelated individuals of Northern and Western
European ancestry from Utah (CEU), whose genotypes are available from the
Sanger Institute website2. Illumina’s Sentrix Human-6 Expression BeadChips
are used to measure gene expression in B-lymphocyte cells for all the individ-
uals (Stranger et al., 2007). The genotype for rare homozygous, heterozygous
and homozygous common alleles are coded by 0, 1, and 2, respectively. The raw
data were background corrected and then quantile normalized across four repli-
cates of a single indi- vidual and then median normalized across all individuals.
100 most variable probes among the 47, 293 total available probes correspond-
ing to different Illumina TargetID were chased for the analysis (Bhadra and
Mallick, 2013; Mohammadi and Wit, 2015). Each selected probe corresponds to
a different transcript. The data can be found in the R package BDgraph. The
dataset is thus of size n = 60 and d = 100. Bhadra and Mallick (2013) have ana-
lyzed the data, and they found 55 significant interactions among the 100 chosen
traits. Mohammadi and Wit (2015) exploited a Bayesian method to infer the
gene network and the inferred network corresponding to the highest posterior
density contains 281 edges. he identified 281 interactions include almost all the

2ftp://ftp.sanger.ac.uk/pub/genevar.
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significant interactions discovered by Bhadra and Mallick (2013). Among these
281 edges, 86 edges were deemed as significant interactions (with a posterior
probability > 0.6).

We apply the TIGER method on the same data using the default parameter
ζ =

√
2/π estimated network for all the 100 chosen traits is shown in Figure 8.

The estimated network contains 306 edges. It includes almost all the interactions
discovered by Bhadra and Mallick (2013) (40 out of 55), and it also includes the
majority of the interactions found by Mohammadi and Wit (2015) (70 out of
86). This shows the efficacy of our proposed tuning-insensitive approach. It is
also computationally faster.

6. Conclusions and discussion

We introduce a tuning-insensitive approach named TIGER for estimating high
dimensional Gaussian graphical models. Our method is asymptotically tuning-
free and simultaneously achieves the minimax optimal rates of convergence in
precision matrix estimation under different matrix norms (matrix L1, spetral,
Frobenius, and elementwise sup-norm). Computationally, our procedure is sig-
nificantly faster than existing methods due to its tuning-insensitive property.
The advantages of our estimators are also illustrated using both simulated and
real data examples. The TIGER approach is a very competitive alternative for
estimating high dimensional Gaussian graphical models.

There are several possible directions to expand the current methods. First, it
is interesting to extend the TIGER to the nonparanomral setting for estimating
high dimensional Gaussian copula graphical models (Liu et al., 2012). Second, it
is also interesting to extend the TIGER to more complex settings where latent
variables or missing data might exist.

Appendix A: Proofs

We begin with everal important lemmas, followed by the proof of the main
results. For notational simplicity, we use a generic constant C whose value may
vary from line to line.

A.1. Preliminaries

For any set S ⊂ {1, 2, · · · , d} and |S| ≤ k, let Δd
c̄(S) denote a subset of Rd

defined as

Δd
c̄(S) :=

{
β ∈ R

d : ‖βSc‖1 ≤ c̄‖βS‖1,β �= 0
}
.

Also, we define

Δd
c̄(k) :=

⋃
S⊂{1,2,··· ,d},|S|≤k

Δd
c̄(S).
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Fig 8. The estimated networks of the human gene expression dataset. It includes all the 100 traits with 306 interactions. It includes almost all the
interactions discovered by Bhadra and Mallick (2013) (40 out of 55), and it also includes the majority of the significant interactions identified by
Mohammadi and Wit (2015) (70 out of 86).



272 H. Liu and L. Wang

Recall that the matrix class M(ξmax, k) is defined as

M(ξmax, k) :=
{
Θ = ΘT ∈ R

d×d : Θ � 0,
Λmax(Θ)

Λmin(Θ)
≤ ξmax,

max
j

∑
k

I
(
Θjk �= 0

)
≤ k

}
,

let Θ := Σ−1 ∈ M(ξmax, k), we have

Λmax(Θ)

Λmin(Θ)
=

Λmax(Σ
−1)

Λmin(Σ
−1)

=
Λmax(Σ)

Λmin(Σ)
≤ ξmax.

We define the population correlation matrix R as

R := [diag(Σ)]−1/2Σ[diag(Σ)]−1/2.

We also define τj := σjΓ̂
−1/2

jj . We recall that there are three assumptions:

(A1) Σ−1 ∈ M(ξmax, k),
(A2) k2 log d = o(n),

(A3) lim supn→∞ max1≤j≤d Σ
2
jj

log d

n
<

1

4
.

We define

Qj(βj) :=
∥∥Z∗j − Z∗\jβj

∥∥
2
.

Therefore, β̂j from (3.5) can be written as

β̂j = argmin
β∈Rd−1

{ 1√
n
Qj(βj) + λ

∥∥β∥∥
1

}
, for j = 1, . . . , d.

In the whole proof, for notational simplicity, we always denote the tuning
parameter λ to be

λ = c

√
2a log d

n
,

where c > 1 and a > 2. It is easy to see that λ =
π√
2

√
log d

n
is a special case of

this setup.

A.2. Technical lemmas

Throughout this paper we often use one of the following tail bounds for central
χ2 random variables. We denote χ2

d to be a Chi-square variable with d degrees
of freedom. Lemma A.1 presents some well known results of χ2

d and the proofs
can be found in the original papers.
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Lemma A.1 (Johnstone. (2000) and Laurent and Massart (1998)). Let X ∼ χ2
d.

We have

max
{
P

(
X − d ≥ 2

√
dt+ 2t

)
,P

(
X − d ≤ −2

√
dt
)}

≤ exp(−t)

for all t ≥ 0, (A.1)

P (|X − d| > dt) ≤ exp
(
− 3

16
dt2

)
, for all t ∈

[
0,

1

2

)
, (A.2)

P (X ≤ (1− t)d) ≤ exp
(
−1

4
dt2

)
, for all t ∈

[
0,

1

2

)
. (A.3)

The next lemma bounds the tail of sample correlation for bivariate Gaussian
random variables.

Lemma A.2. Let X := (X1, X2)
T follows a bivariate normal distribution:

(
X1

X2

)
∼ N2

((
0

0

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Let X1, . . . ,Xn ∈R
2 be n independent data points from X and Σ̂ :=

1

n

n∑
i=1

XiX
T
i be the sample covariance matrix. We define the sample and popu-

lation correlations ρ̂ and ρ as

ρ̂ := (Σ̂11)
−1/2Σ̂12(Σ̂22)

−1/2 and ρ := (Σ11)
−1/2Σ12(Σ22)

−1/2.

For any t ∈
[
0, 1+|ρ|

2

)
, we have

P

(∣∣ρ̂− ρ
∣∣ > t

)
≤ 4 exp

[
− 3nt2

64(1 + |ρ|)2
]
.

Proof. Suppose that r is a small positive number such that |ρ|r ≤ t(1 − r), we
have

P

(∣∣ρ̂− ρ
∣∣ > t

)
= P

(∣∣(Σ̂11)
−1/2Σ̂12(Σ̂22)

−1/2 − ρ
∣∣ > t

)
= P

(∣∣Σ̂12 − ρ(Σ̂11Σ̂22)
1/2

∣∣ > t(Σ̂11Σ̂22)
1/2

)
.

Let r :=
t

1 + 2|ρ|+ t
, we define the event

A :=
{∣∣Σ̂11 −Σ11

∣∣ ≤ rΣ11 and
∣∣Σ̂22 −Σ22

∣∣ ≤ rΣ22

}
.

On A, we have∣∣(Σ̂11Σ̂22)
1/2 − (Σ11Σ22)

1/2
∣∣ ≤ r(Σ11Σ22)

1/2.
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Therefore, using (A.4), we have

P

(∣∣ρ̂− ρ
∣∣ > t

)
≤ P

(∣∣Σ̂12 − ρ(Σ̂11Σ̂22)
1/2

∣∣ > t(Σ̂11Σ̂22)
1/2 | A

)
+ P(Ac)

≤ P

(∣∣Σ̂12 − ρ(Σ11Σ22)
1/2

∣∣ > [t(1− r)− |ρ|r](Σ11Σ22)
1/2

)
+ P(Ac)

= P

(∣∣Σ̂12 −Σ12

∣∣ > [t(1− r)− |ρ|r](Σ11Σ22)
1/2

)
+ P(Ac)

≤ P

(∣∣Σ̂12 −Σ12

∣∣ > [t(1− r)− |ρ|r](Σ11Σ22)
1/2

)
(A.4)

+P

(∣∣Σ̂11 −Σ11

∣∣ > rΣ11

)
+ P

(∣∣Σ̂22 −Σ22

∣∣ > rΣ22

)
.

Therefore, it suffices to analyze the terms P

(∣∣Σ̂12 −Σ12

∣∣ > ε
)

and

P

(∣∣Σ̂11 −Σ11

∣∣ > ε
)
. For this, we denote X̃i := (X̃i1, X̃i2), where

X̃i1 :=
Xi1

(Σ11)1/2
∼ N(0, 1) and X̃i2 :=

Xi2

(Σ22)1/2
∼ N(0, 1).

We have

n∑
i=1

[ (X̃i1 + X̃i2)
2

2(1 + ρ)

]
∼ χ2

n and

n∑
i=1

[ (X̃i1 − X̃i2)
2

2(1− ρ)

]
∼ χ2

n.

Furthermore, since
∑n

i=1 X̃
2
i1 ∼ χ2

n, we have

P

(∣∣Σ̂11 −Σ11

∣∣ > ε
)

= P

(∣∣ 1
n

n∑
i=1

X̃2
i1 − 1

∣∣ > ε

Σ11

)

= P

(∣∣ n∑
i=1

X̃2
i1 − n

∣∣ > nε

Σ11

)

≤ exp

(
− 3nε2

16(Σ11)2

)
, (A.5)

where the last inequality follows from (A.3).
Similarly,

P

(∣∣Σ̂12 −Σ12

∣∣ > ε
)

= P

(∣∣ 1
n

n∑
i=1

X̃i1X̃i2 − ρ
∣∣ > ε

(Σ11Σ22)1/2

)

= P

(∣∣ 1
n

n∑
i=1

[
(X̃i1 + X̃i2)

2 − 2(1 + ρ)− (X̃i1 − X̃i2)
2 + 2(1− ρ)

]∣∣
>

4ε

(Σ11Σ22)1/2

)
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≤ P

(∣∣ 1
n

n∑
i=1

[
(X̃i1 + X̃i2)

2 − 2(1 + ρ)
]∣∣ > 2ε

(Σ11Σ22)1/2

)

+P

(∣∣ 1
n

n∑
i=1

[
(X̃i1 − X̃i2)

2 − 2(1− ρ)
]∣∣ > 2ε

(Σ11Σ22)1/2

)

≤ P

(∣∣∣ n∑
i=1

[ (X̃i1 + X̃i2)
2

2(1 + ρ)

]
− n

∣∣∣ > nε

(1 + ρ)(Σ11Σ22)1/2

)
(A.6)

+P

(∣∣∣ n∑
i=1

[ (X̃i1 − X̃i2)
2

2(1− ρ)

]
− n

∣∣∣ > nε

(1− ρ)(Σ11Σ22)1/2

)
. (A.7)

Applying (A.3) on (A.6) and (A.7), we have

P

(∣∣Σ̂12 −Σ12

∣∣ > ε
)

≤ exp

(
− 3nε2

16(1 + ρ)2Σ11Σ22

)

+exp

(
− 3nε2

16(1− ρ)2Σ11Σ22

)
. (A.8)

Combining (A.4) with (A.5) and (A.8), we get

P

(∣∣ρ̂− ρ
∣∣ > t

)
≤ 2 exp

(
−3n[t(1− r)− |ρ|r]2

16(1 + |ρ|)2
)
+ 2 exp

(
−3nr2

16

)
.

Since

r :=
t

1 + 2|ρ|+ t
,

we have

P

(∣∣ρ̂− ρ
∣∣ > t

)
≤ 4 exp

(
− 3nt2

64(1 + |ρ|)2
)
.

We thus complete the whole proof.

The following lemma bounds the difference between the sample correlation
matrix and the true correlation matrix in elementwise sup-nrom.

Lemma A.3. Let R̂ and R be the sample and population correlation matrices.
We define the event

A1 :=

{∥∥R̂−R
∥∥
max

≤ 18

√
log d

n

}
.

Then, we have P
(
A1

)
≥ 1− 1/d.

Proof. From Lemma A.2, we have

P

(∥∥R̂−R
∥∥
max

> t
)
≤ 4d2 exp

(
−nt2

86

)
. (A.9)

The result follows by choosing t = 18

√
log d

n
.
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Lemma A.4. Let εj := (εj1, . . . , εjn)
T ∈ R

n and εj ∼ Nn(0, σ
2
j In). We define

the event

A2 :=

{
max
1≤j≤d

‖εj‖22
nσ2

j

≤ 1.4 and max
1≤j≤d

∣∣∣‖εj‖22
nσ2

j

− 1
∣∣∣ ≤ 3.5

√
log d

n

}
.

We have P
(
A2

)
≥ 1− d exp

(
− n

100

)
− 1

d
.

Proof. Since

‖εj‖22
σ2
j

=

n∑
i=1

ε2ij
σ2
j

∼ χ2
n,

by Lemma A.1, it is easy to see that for any constant 1 ≤ w < 1.5,

P

(‖εj‖22
nσ2

j

≤ w
)
≥ 1− exp

(
−3n(w − 1)2

16

)
,

for all j = 1, 2, · · · , d. By setting w = 1.4, we have

P

(
max
1≤j≤d

‖εj‖22
nσ2

j

≤ 1.4

)
≥ 1− d exp

(
− n

100

)
. (A.10)

Similarly, for t ∈ [0, 1/2), we have

P

(∣∣∣‖εj‖22
n

− σ2
j

∣∣∣ > tσ2
j

)
= P

(∣∣∣‖εj‖22
σ2
j

− n
∣∣∣ > nt

)
≤ exp

(
− 3

16
nt2

)
.

By setting t = 3.5

√
log d

n
, we have

P

(
max
1≤j≤d

∣∣∣‖εj‖22
nσ2

j

− 1
∣∣∣ ≤ 3.5

√
log d

n

)
≥ 1− 1

d
. (A.11)

The desired result of this lemma follows from a union bound of (A.10) and
(A.11).

The next lemma bounds the sample standard deviation of each marginal
univariate Gaussian random variable.

Lemma A.5. Let Σ̂ be the sample covariance matrix. Under the assumption
that

lim sup
n→∞

max
1≤j≤d

Σjj

√
log d

n
<

1

2
, (A.12)

we define the event

A3 :=

{
1

2
Λmin(Σ) ≤ min

1≤j≤d
Σ̂jj ≤ max

1≤j≤d
Σ̂jj ≤

3

2
Λmax(Σ)

}
.

We have P
(
A3

)
≥ 1− 1/d.
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Proof. By the definitions of Λmax(Σ) and Λmin

(
Σ
)
, we have

Λmax(Σ) ≥ max
1≤j≤d

Σjj ≥ min
1≤j≤d

Σjj ≥ Λmin

(
Σ
)
.

By (A.5), we know that for any j ∈ {1, . . . , d} and 0 ≤ ε < 1/2,

P

(∣∣Σ̂jj −Σjj

∣∣ > ε
)
≤ exp

(
− 3nε2

16(Σjj)2

)
. (A.13)

We choose ε = tΣjj , then

P

(
min

1≤j≤d
Σjj(1− t) ≤ Σ̂jj ≤ (1 + t) max

1≤j≤d
Σjj

)
≤ exp

(
−3nt2

16

)
,

By the union bound, we have

P

(
(1− t)Λmin(Σ) ≤ min

1≤j≤d
Σ̂jj ≤ max

1≤j≤d
Σ̂jj ≤ (1 + t)Λmax(Σ)

)

≤ d exp

(
−3nt2

16

)
.

Under the assumption (A.12), we know that, for large enough n, there must
be ε = tΣjj < 1/2. The desired result of the lemma follows by setting t =

3.5

√
log d

n
.

Recall that we define

Qj(βj) :=
∥∥Z∗j − Z∗\jβj

∥∥
2
,

the next lemma provides theoretical justification to the choice of the tuning
parameter λ.

Lemma A.6. Let λ = c

√
2a log d

n
with c > 1 and a > 2, we define an event

A4 :=

{
max
1≤j≤d

c
∥∥∇Qj(βj)

∥∥
∞ ≤ λ

√
n

}
.

Then

P(A4) ≥ 1−
√

2

πa log d
· d

2−a

(
1−2

√
(a−1) log d

n

)
− 1

da−2
.

Proof. Using the fact that Z∗j = X∗jΓ̂
−1/2

jj and Z∗\j = X∗\jΓ̂
−1/2

\j,\j , we have

Z∗j = Z∗\jβj + Γ̂
−1/2

jj εj ,

where εj ∼ Nn(0, σ
2
j In). We then have

∥∥∇Qj(βj)
∥∥
∞ =

∥∥ZT
∗\j(Z∗j − Z∗\jβj)

∥∥
∞∥∥Z∗j − Z∗\jβj

∥∥
2
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=

∥∥ZT
∗\jεj

∥∥
∞∥∥εj∥∥2

From the properties of multivariate Gaussian, we know that Z∗\j and εj are inde-
pendent. For any � �= j, ZT

∗�εj follows N(0, nσ2
j ) distribution when conditioning

on Z∗\j . In the following argument, we suppose everything is conditioning on
Z∗\j . Since ‖εj‖22/σ2

j ∼ χ2
n, by Lemma A.1, we know that, for any 0 ≤ rn < 1/2,

P

(
max
1≤j≤d

‖εj‖22
nσ2

j

≤ 1− rn

)
≤ d exp

(
−nr2n

4

)
.

Let Φ(·) and φ(·) be the cumulative and density functions of a standard Gaussian
random variable. For any 0 ≤ rn < 1/2, we have

P

(
max
1≤j≤d

∥∥ZT
∗\jεj

∥∥
∞∥∥εj∥∥2 >

√
2a log d

)

≤ dP
(∥∥ZT

∗\jεj
∥∥
∞ >

√
1− rn

√
2anσ2

j log d
)
+ P

(
max
1≤j≤d

‖εj‖22
nσ2

j

≤ 1− rn

)

≤ d
∑
�
=j

P

(
|ZT

∗�εj | >
√
1− rn

√
2anσ2

j log d
)
+ d exp

(
−nr2n

4

)

≤ 2d2
(
1− Φ(

√
1− rn

√
2a log d)

)
+ d exp

(
−nr2n

4

)

≤ 2d2
d−a(1−rn)

√
2π

√
1− rn

√
2a log d

+ d exp

(
−nr2n

4

)

=
d2−a(1−rn)√

π(1− rn)a log d
+ d exp

(
−nr2n

4

)
.

where the second to last inequality follows from the fact that

1− Φ(t) ≤ φ(t)

t
=

1√
2πt

exp

(
− t2

2

)
,

whenever t ≥ 1. Now let

rn = 2

√
(a− 1) log d

n
,

it can be seen that, when n is large enough,

P

(
max
1≤j≤d

∥∥ZT
∗\jεj

∥∥
∞∥∥εj∥∥2 ≤

√
2a log d

)

≥ 1−
√

2

πa log d
· d

2−a

(
1−2

√
(a−1) log d

n

)
− 1

da−2
.

We finish the proof of this lemma.
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The next lemma shows that the error vector falls in a restricted set: β̂j−βj ∈
Δd−1

c̄ (k).

Lemma A.7. Let β̂j be defined as in (3.5) and c̄ = c+1
c−1 . Then, on the event

A4, we have β̂j − βj ∈ Δd−1
c̄ (k) for all j = 1, . . . , d.

Proof. Since β̂j is the empirical minimizer of the objective function in (3.5), we
have

1√
n

∥∥Z∗j − Z∗\jβ̂j

∥∥
2
+ λ

∥∥β̂j

∥∥
1
≤ 1√

n

∥∥Z∗j − Z∗\jβj

∥∥
2
+ λ

∥∥βj

∥∥
1
. (A.14)

Let S := {� : βj� �= 0}, it is obvious that |S| ≤ k. From (A.14), we get

1√
n

∥∥Z∗j − Z∗\jβ̂j

∥∥
2
− 1√

n

∥∥Z∗j − Z∗\jβj

∥∥
2

≤ λ
∥∥βj

∥∥
1
− λ

∥∥β̂j

∥∥
1

≤ λ
∥∥(βj)S

∥∥
1
− λ

∥∥(β̂j)S
∥∥
1
− λ

∥∥(β̂j)Sc

∥∥
1

≤ λ
(∥∥(βj − β̂j)S

∥∥
1
−
∥∥(βj − β̂j)Sc

∥∥
1

)
.

On the event A4, we have c
∥∥∇Qj(βj)

∥∥
∞ ≤ λ

√
n, where

Qj(βj) :=
∥∥Z∗j − Z∗\jβj

∥∥
2
.

Therefore, using the fact that Qj(·) is a convex function

−λ
(∥∥(βj − β̂j)S

∥∥
1
+
∥∥(βj − β̂j)Sc

∥∥
1

)
= −λ

∥∥βj − β̂j

∥∥
1

≤ − c√
n

∥∥∇Qj(βj)
∥∥
∞
∥∥βj − β̂j

∥∥
1

≤ − c√
n
(∇Qj(βj))

T (βj − β̂j)

≤ c√
n

(
Qj(β̂j)−Qj(βj)

)
= c

( 1√
n

∥∥Z∗j − Z∗\jβ̂j

∥∥
2
− 1√

n

∥∥Z∗j − Z∗\jβj

∥∥
2

)
.

Combining the above analysis, we have

−
(∥∥(βj − β̂j)S

∥∥
1
+
∥∥(βj − β̂j)Sc

∥∥
1

)
≤ c

(∥∥(βj − β̂j)S
∥∥
1
−
∥∥(βj − β̂j)Sc

∥∥
1

)
.

Therefore,

∥∥(βj − β̂j)Sc

∥∥
1
≤ c+ 1

c− 1

∥∥(βj − β̂j)S
∥∥
1
= c̄

∥∥(βj − β̂j)S
∥∥
1
.

We finish the proof of this lemma.



280 H. Liu and L. Wang

Appendix B: Proof of matrix restricted eigenvalue conditions

The following lemma bounds the restricted eigenvalue of the sample correlation
matrix R̂.

Lemma B.1. Let the event A3 be defined as in Lemma A.5. We assume
k log d = o(n) and define an event

B1 :=

{
inf

β∈Δd
c̄ (k)

√
kβT R̂β

‖β‖1
≥ 1

5(1 + c̄)ξ
1/2
max

}
.

Then, there exist constants c1 and c2, such that P (B1 | A3) ≥ 1− c1 exp
(
−c2n

)
.

Proof. For any S ⊂ {1, 2, · · · , d} with |S| ≤ k, we have, for any β ∈ Δd
c̄(S),

‖β‖1 ≤ (1 + c̄)‖βS‖1 ≤ (1 + c̄)
√
k‖βS‖2 ≤ (1 + c̄)

√
k‖β‖2, (B.1)

and

βTΣβ ≥ Λmin(Σ)‖β‖22 ≥ Λmin(Σ)‖βS‖22 ≥ Λmin(Σ)
‖β‖21

k(1 + c̄)2
,

where the last inequality uses the fact that ‖β‖1 ≤ (1+ c̄)
√
k‖βS‖2. This result

is obtained from (B.1).
Recall that X ∈ R

n×d is a matrix and the rows of X are independent N(0,Σ)

Gaussian random vectors, where Σ is the d×d covariance matrix. Let Σ̂ be the
sample covariance matrix of X. From Theorem 1 of Raskutti et al. (2010), we
know that there exist two positive constants c1 and c2 such that

P

(√
βT Σ̂β ≥ 1

4

√
βTΣβ − 9 max

1≤j≤d

√
Σjj

√
log d

n
‖β‖1, ∀β ∈ R

d

)

≥ 1− c1 exp
(
−c2n

)
.

Let Γ̂ := diag
(
Σ̂
)
, we have, for any β ∈ R

d,

P

(√
(Γ̂

−1/2
β)T Σ̂(Γ̂

−1/2
β)

≥ 1

4

√
(Γ̂

−1/2
β)TΣ(Γ̂

−1/2
β)− 9 max

1≤j≤d

√
Σjj

√
log d

n
‖Γ̂−1/2

β‖1
)

≥ 1− c1 exp
(
−c2n

)
. (B.2)

Since Σ̂ = Γ̂
1/2

R̂Γ̂
1/2

, we have

(Γ̂
−1/2

β)T Σ̂(Γ̂
−1/2

β) = βT R̂β. (B.3)

On the event A3 as defined in Lemma A.5, we have

1

2
Λmin(Σ) ≤ min

1≤j≤d
Σ̂jj ≤ max

1≤j≤d
Σ̂jj ≤

3

2
Λmax(Σ).
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It is easy to see that

‖Γ̂−1/2
β‖1 ≤ ‖β‖1 min

1≤j≤d
(Σ̂jj)

−1/2 ≤
√

2

Λmin(Σ)
‖β‖1, (B.4)

‖Γ̂−1/2
β‖2 ≥ ‖β‖2 max

1≤j≤d
(Σ̂jj)

−1/2 ≥
√

2

3Λmax(Σ)
‖β‖2.

Therefore,√
(Γ̂

−1/2
β)TΣ(Γ̂

−1/2
β) ≥

√
Λmin

(
Σ
)
‖Γ̂−1/2

β‖2 ≥
√

2Λmin

(
Σ
)

3Λmax

(
Σ
)‖β‖2. (B.5)

Plugging (B.3), (B.4) and (B.5) into(B.2), we have

P

(√
βT R̂β ≥ 1

4

√
2Λmin

(
Σ
)

3Λmax

(
Σ
)‖β‖2 − 9

√
max1≤j≤d Σjj

Λmin(Σ)

√
2 log d

n
‖β‖1,

∀β ∈ R
d

)
≥ 1− c1 exp

(
−c2n

)
.

By (B.1), for any β ∈ Δd
c̄(k), we have

‖β‖2 ≥ 1

(1 + c̄)
√
k
‖β‖1.

Therefore,

P

(
inf

β∈Δd
c̄ (k)

√
kβT R̂β

‖β‖1
≥ 1

4(1 + c̄)

√
2Λmin

(
Σ
)

3Λmax

(
Σ
) − 9ξ1/2max

√
2k log d

n

)

≥ 1− c1 exp
(
−c2n

)
.

Since we assume k log d = o(n), for n large enough, we have

1

4(1 + c̄)

√
2Λmin

(
Σ
)

3Λmax

(
Σ
) − 9ξ1/2max

√
2k log d

n
≥ 1

5(1 + c̄)ξ
1/2
max

.

We finish the proof of this lemma.

We can see that when k log d = o(n) and n large enough, with high probabil-
ity,

η(R̂) := inf
β∈Δd

c̄ (k)

√
kβT R̂β

‖β‖1
≥ 1

5(1 + c̄)ξ
1/2
max

is bounded away from zero by a positive constant. This implies the restricted
eigenvalue condition required by the SQRT-Lasso method, which is provided in
the next lemma.
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Lemma B.2. We define the event

B2 :=

{
max
1≤j≤d

∥∥Z∗\j(β̂j − βj)
∥∥
2

τj
≤ C ·

√
k log d

}
.

Then P(B2 | B1) ≥ 1− 1/d.

Proof. We only need to verify that the L1-restricted eigenvalue condition of the
SQRT-Lasso is satisfied. More specifically, we need to verify the conditions in

Theorem 1 of Belloni et al. (2012). Since R̂ =
1

n
ZZT , where Z is defined as in

Section 3, we have proved that, on B1,

inf
β∈Δd

c̄ (k)

√
k‖Zβ‖2√
n‖β‖1

= inf
β∈Δd

c̄ (k)

√
kβT R̂β

‖β‖1
≥ 1

5(1 + c̄)ξ
1/2
max

.

Recall that Z∗\j is the n× (d−1) submatrix of Z with the jth column removed,
then

min
1≤j≤d

inf
β∈Δd−1

c̄ (k)

√
k‖Z∗\jβ‖2√
n‖β‖1

≥ inf
β∈Δd

c̄ (k)

√
k‖Zβ‖2√
n‖β‖1

≥ 1

5(1 + c̄)ξ
1/2
max

.

Therefore, on the event B1, the L1-restricted eigenvalue condition holds for all
the SQRT-Lasso subproblem defined in (3.5). The desired result follows from
Theorem 1 of Belloni et al. (2012).

Appendix C: Main lemmas

We define the event E := A1

⋂
A2

⋂
A3

⋂
A4

⋂
B1

⋂
B2. It is easy to see that

P(E) ≥ 1− o(1). To prove the main results, we separately analyze the diagonal

and off-diagonal elements of Θ̂−Θ. In the next subsection, we first control the
diagonal elements.

C.1. Analyzing the diagonal elements

Lemma C.1. On the event E, we have

max
1≤j≤d

∣∣Θ̂jj −Θjj

∣∣ ≤ C · ‖Θ‖2
√

log d

n
,

for large enough n.

Proof. Recall that Z∗j = Z∗\jβj + Γ̂
−1/2

jj εj , we have∣∣∣(Θ̂jj)
−1 − (Θjj)

−1
∣∣∣

=
∣∣∣Γ̂jj τ̂

2
j − Γ̂jjτ

2
j

∣∣∣
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=
∣∣∣Γ̂jj

‖Z∗j − Z∗\jβ̂j‖22
n

− Γ̂jjτ
2
j

∣∣∣
=

∣∣∣Γ̂jj

‖Z∗\j(βj − β̂j) + Γ̂
−1/2

jj εj‖22
n

− σ2
j

∣∣∣
≤

∣∣∣‖εj‖22
n

− σ2
j

∣∣∣+ Γ̂jj

‖Z∗\j(β̂j − βj)‖22
n

+ 2Γ̂
1/2

jj

|(β̂j − βj)
TZT

∗\jεj |
n

.

On the event E , we have

‖εj‖22
n

≤ 1.4σ2
j and

∣∣∣‖εj‖22
n

− σ2
j

∣∣∣ ≤ 3.5σ2
j

√
log d

n
,

‖Z∗\j(β̂j − βj)‖2 ≤ C · τj
√
k log d, (C.1)

Γ̂
1/2

jj ≤ max
1≤j≤d

(
Σ̂jj

)1/2 ≤
√

3Λmax(Σ)

2
,

Γ̂
−1/2

jj =
(
Σ̂jj

)−1/2 ≤
√

2

Λmin(Σ)
.

Futhermore, since τ2j = σ2
j Γ̂

−1

jj , we have

Γ̂jj‖Z∗\j(β̂j − βj)‖22 ≤ C2 · σ2
j · k log d.

We also have

2Γ̂
1/2

jj

∣∣(β̂j − βj)
TZT

∗\jεj
∣∣ ≤ 2Γ̂

1/2

jj

∥∥β̂j − βj

∥∥
1
·
∥∥ZT

∗\jεj
∥∥
∞.

Since β̂j − βj ∈ Δd−1
c̄ (k), by the definition of the L1-restricted eigenvalue, we

know that

Γ̂
1/2

jj

∥∥β̂j − βj

∥∥
1

≤ Γ̂
1/2

jj · 5(1 + c̄)ξ1/2max ·
√
k(β̂j − βj)

T R̂\j,\j(β̂j − βj)

≤ Γ̂
1/2

jj · 5(1 + c̄)ξ1/2max ·
√

k

n
· ‖Z∗\j(β̂j − βj)‖2

≤ Γ̂
1/2

jj · 5(1 + c̄)ξ1/2max ·
√

k

n
· C · σjΓ

−1/2
jj

√
k log d

≤ 5(1 + c̄) · C · ξ1/2max · σj · k
√

log d

n
.

Similarly, on the event E , we have

∥∥ZT
∗\jεj

∥∥
∞ ≤ 1

c

∥∥εj∥∥2λ√n = σj

√
2.8n log d.

Therefore, on E ,∣∣∣(Θ̂jj)
−1 − (Θjj)

−1
∣∣∣
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≤ 3.5σ2
j

√
log d

n
+ C2σ2

j ·
k log d

n
+ 10

√
2.8 · (1 + c̄) · Cξ1/2maxσ

2
j

k log d

n
.

Since k

√
log d

n
= o(1), there exists a constant C such that, for large enough n,

∣∣∣(Θ̂jj)
−1 − (Θjj)

−1
∣∣∣ ≤ Cσ2

j ·
√

log d

n
.

Multiplying Θjj on both sides and using the fact that Θjj = σ−2
j , we have

∣∣∣Θjj(Θ̂jj)
−1 − 1

∣∣∣ ≤ C

√
log d

n
. (C.2)

This implies that(
1 + C

√
log d

n

)−1

≤ Θ̂jj

Θjj
≤
(
1− C

√
log d

n

)−1

Since, for large enough n,

1− C

√
log d

n
≤
(
1 + C

√
log d

n

)−1

and

(
1− C

√
log d

n

)−1

≤ 1 + 2C

√
log d

n
,

we have (
1− C

√
log d

n

)
≤ Θ̂jj

Θjj
≤
(
1 + C

√
log d

n

)
.

This implies that

max
1≤j≤d

∣∣Θ̂jj −Θjj

∣∣ ≤ C · ‖Θ‖2
√

log d

n
.

The last inequality follows from the fact that max1≤j≤d Θjj ≤ ‖Θ‖2.

C.2. Analyzing the off-diagonal elements in L1-norm error

We first bound the L1-norm of each column of the off-diagonal elements of
Θ̂−Θ.

Lemma C.2. On the event E, we have

max
1≤j≤d

∥∥Θ̂\j,j −Θ\j,j
∥∥
1
≤ C

(∥∥Θ∥∥
2
k +

∥∥Θ∥∥
1

)√ log d

n
,

max
1≤j≤d

∥∥β̂j − βj

∥∥
1
≤ 5

√
2C(1 + c̄).ξmaxk

√
log d

n
, (C.3)

for large enough n.
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Proof. We recall that

Θ\j,j = −ΘjjΓ̂
−1/2

\j,\j Γ̂
1/2

jj βj .

Since τ−2
j := σ−2

j Γ̂jj = ΘjjΓ̂jj , we have

∥∥Θ̂\j,j −Θ\j,j
∥∥
1

=
∥∥τ̂−2

j Γ̂
−1/2

jj Γ̂
−1/2

\j,\j β̂j − τ−2
j Γ̂

−1/2

jj Γ̂
−1/2

\j,\jβj

∥∥
1

=
∥∥Γ̂−1/2

\j,\j Γ̂
1/2

jj (Θ̂jjβ̂j −Θjjβj)
∥∥
1

≤
∥∥Γ̂−1/2

\j,\j
∥∥
1

∣∣Γ̂1/2

jj Θ̂jj

∣∣∥∥β̂j − βj

∥∥
1
+ Γ̂

1/2

jj

∣∣Θ̂jj −Θjj

∣∣∥∥Γ̂−1/2

\j,\jβj

∥∥
1

=
∥∥Γ̂−1/2

\j,\j
∥∥
1

∣∣Γ̂1/2

jj Θ̂jj

∣∣∥∥β̂j − βj

∥∥
1
+
∣∣Θ̂jj −Θjj

∣∣∥∥Θ\j,jΘ
−1
jj

∥∥
1

≤
∥∥Γ̂−1/2

\j,\j
∥∥
1

∣∣Γ̂1/2

jj Θ̂jj

∣∣∥∥β̂j − βj

∥∥
1
+
∣∣∣Θ̂jj

Θjj
− 1

∣∣∣∥∥Θ\j,j
∥∥
1
.

On the event E , using (C.2) and the analysis of Lemma C.1, we have, for large
enough n,

∥∥Γ̂−1/2

\j,\j
∥∥
1
≤ max

1≤j≤d
Γ̂
−1/2

jj = max
1≤j≤d

(
Σ̂jj

)−1/2 ≤
√

2

Λmin(Σ)
,

Γ̂
1/2

jj ≤
√

3

2
Λmax(Σ),

Θ̂jj ≤
(
1 + C

√
log d

n

)
Θjj ≤ 2

∥∥Θ∥∥
2
,

∣∣∣Θ̂jj

Θjj
− 1

∣∣∣ ≤ C

√
log d

n
.

By Lemma A.7, β̂j − βj ∈ Δd−1
c̄ (k). By the definition of the L1-restricted

eigenvalue, we know that, on the event B2,

∥∥β̂j − βj

∥∥
1

≤ 5(1 + c̄)ξ1/2max ·
√
k(β̂j − βj)

T R̂\j,\j(β̂j − βj)

≤ 5(1 + c̄)ξ1/2max ·
√

k

n
· ‖Z∗\j(β̂j − βj)‖2

≤ 5(1 + c̄)ξ1/2max ·
√

k

n
· C · σjΓ̂

−1/2

jj

√
k log d

= 5(1 + c̄) · C · ξ1/2max · σj · Γ̂
−1/2

jj · k
√

log d

n

≤ 5
√
2C(1 + c̄).ξmaxk

√
log d

n
,
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where the last inequality follows from the fact that

σjΓ̂
−1/2

jj ≤
√

Σjj ·
√

2

Λmin(Σ)
≤
√

2Λmax(Σ)

Λmin(Σ)
≤

√
2ξ1/2max.

Therefore

∥∥Γ̂−1/2

\j,\j
∥∥
1

∣∣Γ̂1/2

jj Θ̂jj

∣∣∥∥β̂j −βj

∥∥
1
≤ 10(1+ c̄)

√
3 ξmax ·C ·σj

∥∥Θ∥∥
2
· Γ̂−1/2

jj · k
√

log d

n

and ∣∣∣Θ̂jj

Θjj
− 1

∣∣∣∥∥Θ\j,j
∥∥
1
≤ C ·

∥∥Θ∥∥
1

√
log d

n
.

Combining all the above analysis, we have

∥∥Θ̂\j,j −Θ\j,j
∥∥
1

≤ C
∥∥Θ∥∥

2
k

√
log d

n
+ C ·

∥∥Θ∥∥
1

√
log d

n
.

We thus prove the desired result of the lemma.

C.3. Analyzing the off-diagonal elements in sup-norm error

To conduct sup-norm analysis of each of the column of the off-diagonal elements,
we first present a technical lemma:

Lemma C.3. On the event E, there exists a constant C such that

∥∥∥ Γ̂
1/2

jj

n
ZT

∗\j(Z∗\jβ̂j − Z∗\jβj)
∥∥∥
∞

≤ Cσj

√
log d

n
for all j = 1, . . . , d.

Proof. Recall that we define

Qj(γ) =
∥∥Z∗j − Z∗\jγ

∥∥
2
,

let λ = c

√
2a log d

n
with c > 1 and a > 2, since β̂j is defined as:

β̂j := argmin
γ∈Rd−1

{
1√
n
Qj(γ) + λ‖γ‖1

}
,

we know that c‖∇Qj(β̂j)‖∞ ≤ √
nλ. This means∥∥ZT

∗,\j
(
Z∗j − Z∗\jβ̂j

)∥∥
∞ ≤

√
2a log d

∥∥Z∗j − Z∗\jβ̂
∥∥
2
.

Using the fact that Z∗j = Z∗\jβj + Γ̂
−1/2

jj εj , we have

∥∥ZT
∗\j

(
Z∗\j(βj − β̂j) + Γ̂

−1/2

jj εj
)∥∥

∞ ≤
√

2a log d
∥∥Z∗\j(βj − β̂j) + Γ̂

−1/2

jj εj
∥∥
2
.
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Therefore∥∥ZT
∗\jZ∗\j(βj − β̂j)

∥∥
∞

≤
√

2a log d
∥∥Z∗\j(βj − β̂j)

∥∥
2
+
√

2a log dΓ̂
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∥∥ZT
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∞.

On the event E , we have

‖εj‖2 ≤ σj ·
√
1.4n,
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√
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√
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√
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√
k log d.

By piecing all these terms together, we have∥∥ZT
∗\jZ∗\j(βj − β̂j)

∥∥
∞

≤ C · σj · Γ̂
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jj

√
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√
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n
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√
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n
.

The result follows from the fact that
√
k log d

n
≤
√

log d

n

for large enough n. We finish the proof of this lemma.

Lemma C.4. On the event E, we have

max
1≤j≤d
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∥∥Θ∥∥
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√
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n
,

for large enough n.
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Following a similar argument as in Lemma C.2, we have, on the event E ,
∣∣∣Θ̂jj

Θjj
− 1

∣∣∣‖Θ\j,j‖∞ ≤ C ·
∥∥Θ∥∥

1

√
log d

n
. (C.5)

Now for the first term in (C.4), we have

∣∣Γ̂1/2

jj

∣∣∥∥Γ̂−1/2

\j,\j (β̂j − βj)
∥∥
∞
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\j,\jR\j,\jΓ̂
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jj (β̂j − βj)
∥∥
∞ (C.6)

≤
∥∥Γ̂−1/2

\j,\jR
−1
\j,\j

∥∥
∞
∥∥R\j,\jΓ̂

1/2

jj (β̂j − βj)
∥∥
∞ (C.7)

≤
∥∥Γ̂−1/2

\j,\j
∥∥
∞
∥∥R−1

\j,\j
∥∥
∞
∥∥R\j,\jΓ̂
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jj (β̂j − βj)
∥∥
∞. (C.8)

To analyze the term
∥∥R\j,\jΓ̂

1/2

jj (β̂j − βj)
∥∥
∞, we have
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∥∥
∞

≤
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∥∥
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n
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∥∥
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From (C.3), we have, on the event E :

∥∥β̂j − βj

∥∥
1
≤ 5

√
2C(1 + c̄).ξmaxk

√
log d

n
.

By Lemma A.3, we have, on the event E :
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n
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∥∥
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≤
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√
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n
.

On the other hand, let A be an invertible matrix, we have

1 =
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∥∥
∞ ≤

∥∥A∥∥
∞
∥∥A−1

∥∥
∞,

which implies that

1∥∥A∥∥
∞
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∥∥
∞.

Therefore,
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β 
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‖R\j,\jβ‖∞
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≤ min
β 
=0,β∈Rd

‖β‖∞
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1
. (C.10)

From Lemma C.3, we have
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n
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≤ Cσj
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.

Therefore, by piecing all these terms together:
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√
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. (C.11)

Again, on the event E , we have

Γ̂jj ≤
3

2
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∥∥
∞ ≤ 1
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√
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, (C.12)

Θ̂jj ≤
(
1 + C

√
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)
Θjj ≤ 2

∥∥Θ∥∥
2
=

2

Λmin(Σ)
, (C.13)

σj =
1√
Θjj

≤ 1√
Λmin(Θ)

=
√
Λmax(Σ).

Putting all the terms in (C.10), (C.11), (C.12), (C.13) together, we get, for large
enough n:
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≤ 2
(√

3 +
√
2
)
ξ3/2max · C ·

∥∥Θ∥∥
1
·
√

log d

n
,

where the last inequality follows from the fact that k
√
log d ≤ √

n for large
enough n. Therefore, the lemma is proved.

Appendix D: Proof of the main theorems

In this section, we prove the main results based on the previous technical lem-
mas.

D.1. Proof of Theorem 4.1

Proof. By piecing together the results of Lemma C.1 and Lemma C.2, we have∥∥Θ̂−Θ
∥∥
1

= max
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√
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)
.

The last inequality follows from the fact that∥∥Θ∥∥
1
≤ k

∥∥Θ∥∥
max

≤ k
∥∥Θ∥∥

2
.

We complete the proof of this theorem.

D.2. Proof of Theorem 4.2

Proof. By piecing together the results of Lemma C.1 and Lemma C.4, we have

∥∥Θ̂−Θ
∥∥
max

= max
1≤j≤d

∣∣Θ̂jj −Θjj

∣∣+ max
1≤j≤d

∥∥Θ̂\j,j −Θ\j,j
∥∥
∞ ≤ C

∥∥Θ∥∥
1

√
log d

n
.

We complete the proof of this theorem.
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