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1. Introduction

The estimation of a density under shape constraint is a statistical problem that
was first raised by Grenander [18] in 1956 in the case of a density under mono-
tonicity constraint. Over the past 30 years, there has been several studies of
estimators under shape constraint, most of them being maximum likehood es-
timators or least squares estimators. In these cases, the authors characterize
the estimators, study the asymptotic law and the rate of convergence and dis-
cuss the implementation. For such studies, the constraints are, for example,
the monotonicity, the convexity or the log-concavity (if log(f) is concave, f is
log-concave) and the k-monotonicity.

The k-monotonicity notion was introduced by Knopp [23] in 1929 for discrete
functions: it generalizes to kth order the notion of convex series (or 2-monotone
series) and corresponds to the positivity of a k-th derivative function. In 1941,
Feller [16] extended that definition to k-monotone continuous functions and
Williamson [27] enabled characterizing these k-monotone functions with their
decomposition in spline basis:

Property 1 (Williamson, 1955). Let g be a continuous function. Let k � 2.
The function g is k-monotone if and only if there exists a nonnegative mesure
μ on R

∗ such that:

g(x) =

∫ ∞

0

(t− x)k−1
+ dμ(t).
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Consequently k-monotone functions can be described with an integral form.
The estimation of a k-monotone distribution has been studied by Balabdaoui
et al. ([1],[6],[5]): they proposed the maximum likehood and the least-squares
estimators under k-monotonicity constraint for the continuous space and studied
their theoretical properties (consistency and rate of convergence) as well as their
limit distribution. They also discussed the adaptation of an algorithm proposed
by Groeneboom et al. [20].

The k-monotonicity may seem as a restrictive assumption but the study of
this shape constraint is motivated by the existence of widely-used k-monotone
parametric families like Gamma’s, Weibull’s or Beta’s laws (for particular choices
of parameters) for the continuous case and their discretized versions or the Geo-
metric law for the discrete case. The Poisson distribution is also k-monotone for
some choice of its parameter λ. Moreover, for each λ, it is possible to determine
the exact degree l of k-monotonicity (i.e. l-monotone and not (l+1)-monotone),
see Property 8 page 14 for more details.

Most of the work on estimation under shape constraint was focused on den-
sities with a support on R or on an interval, but recently, discrete probabilities
have gained interest because of their numerous applications in ecology or finan-
cial mathematics (see [14] or [25]). Jankowski and Wellner [21] recently studied
the estimation under monotonicity constraint and Balabdaoui et al. [3] inves-
tigated the log-concave discrete densities. More recently, the estimation of a
convex discrete distribution was treated by Durot et al. ([13], [14]) and Balab-
daoui et al. [3].

In this article we propose two least-squares estimators of a k-monotone dis-
crete probability with k � 2. The first one is the projection of the empirical
estimator on the set of k-monotone sequences, the second one is the projection
of the empirical estimator on the set of k-monotone probabilities. We show the
existence of these estimators and give a characterization for each one of them
which is based on the decomposition on a spline basis of k-monotone sequences
showed by Lefevre and Loisel [25]. Thanks to this characterization we generalize
some results for the convex case (k = 2, see [13]) to k > 2, as for example the
comparison with the empirical estimator (Theorem 3).

However differences between the convex case and the case k > 2 arised. First
the projection of a discrete probability on the set of k-monotone sequences is
not a probability in general when k > 2. This structural property of the set of
k-monotone functions, k � 3, justifies the definition of two different estimators
while they are equivalent in the convex case. Secondly the proofs of some other
properties require new tools. In fact the results about the support of our esti-
mator require control of the decreasing of the tail of k-monotone probabilities
while truncation is sufficient in the convex case.

Because k-monotone sequences are l-monotone for l � k (See Property 2
page 4) one can ask what is the advantage of using in the estimation procedure
the correct k (i.e. the integer k such that the true distribution p is k-monotone
and not (k + 1)-monotone) instead of a smaller k, in particular k = 2. In fact
one could expect that projection on a smaller set decreases the l2-loss of the
estimator. This phenomenon is illustrated in a simulation study in Section 6.
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Although the construction of our estimators is inspired by the work of Bal-
abdaoui [1] our results are not deduced from the continuous case. In fact, for
k � 3, unlike for the convex case, we could neither construct a k-monotone
density that goes through the points of a k-monotone sequence nor approach
a k-monotone sequence with a k-monotone density. It is however interesting
to note that connecting the points of a convex sequence can provide a convex
continuous function because no differentiability assumption is required in the
definition of convexity. Moreover the practical implementation of the estima-
tor is structurally different from the continuous case. For the discrete case we
implement the estimators using exact iterative algorithms inspired by the Sup-
port Reduction Algorithm described in Groeneboom et al. [20] and we discuss
a practical stopping criterion (see Section 4).

Differences with the continuous case also emerged when we consider the rate
of convergence in terms of l2-error since our estimators are consistent with typ-
ical parametric

√
n-rate of convergence (see Theorem 3).

The paper is organized as follows: the definition of the k-monotonicity and
some properties about k-monotone discrete sequences are reminded in Section 2,
and a characterization of the estimator is given in Section 3.1. Statistical prop-
erties about this estimator are presented in Section 3.3. In Section 4, a method
to implement the estimator in practice using the Support Reduction Algorithm
of Groeneboom et al. [20] is presented. The stopping criterion for this algorithm,
which differs from the convex case (k = 2) is also discussed. In Section 5 we dis-
cuss the possibility to choose an estimator on the set of k-monotone sequences
instead of the set of k-monotone probabilities. Finally a simulation study is
given in Section 6. All functions mentionned in this article are implemented as
an R package named pkmon and available on the Comprehensive R Archive
Network (https://CRAN.R-project.org/package=pkmon).

2. Characterizing k-monotone sequences

Let us begin with a list of notation and definitions that will be used throughout
the paper.

The same notation is used to denote a discrete function f : N → R
+ and the

corresponding sequence of real numbers (f(j), j ∈ N). For all r ∈ N \ {0}, the
classical Lr-norm of f is defined as follows:

‖f‖r =

⎛⎝∑
j�0

|f(i)|r
⎞⎠1/r

, ‖f‖∞ = sup
i�0

|f(i)|,

and we denote by Lr(N) the set of functions f such that ‖f‖r is finite. In
particular L2 is an Hilbert space and the associated scalar product is denoted
〈, 〉.

For any integer k � 1, let Δkf be the kth differential operator of f defined
for all i � 0 by the following recurrence equation:

Δ1f(i) = f(i+ 1)− f(i)

https://CRAN.R-project.org/package=pkmon
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Δkf(i) = Δk−1f(i+ 1)−Δk−1f(i).

It is easy to see that the operator Δk satisfies the following equation:

∀i ∈ N, Δkf(i) =

k∑
h=0

(
k

h

)
(−1)k−hf(h+ i).

Definitions

• A sequence f on N is k-monotone if

(−1)
k
Δkf(i) � 0 for all i ∈ N.

• Let f be a k-monotone sequence. The integers i such that (−1)
k
Δkf(i) >

0 are called the k-knots of f . If for all integer i in the support of f ,
the quantities (−1)

k
Δkf(i) are strictly positive, f is said to be strictly

k-monotone.
• The maximum sf of the support of f is defined as

sf = min
j�0

{∀i > j, p(i) = 0}

and may be infinite.

Let us remark that if the support of a k-monotone sequence f is finite, then sf
is a k-knot.

A k-monotone function on L1(N) is for example a non-negative and non-
increasing polynomial function of degree k− 1, such as f(i) = max(0,m− i)k−1

for some positive constant m.
It should be noticed that there exists a link between the k-monotonicity and

the (k − 1)-monotonicity stated in the following property:

Property 2. For all k � 2, if p ∈ L1(N) is a k-monotone discrete sequence
then p is j-monotone and strictly j-monotone on its support for all j < k.

This property, shown in Section 7.3.1, is not true in general in the continuous
case (see Balabdaoui [1] for example).

Finally we will denote by Sk the set of k-monotone sequences that are in
L1(N), and by Pk the set of k-monotone probabilities on N. We denote by P
the set of probabilities on N.

Decomposition on a spline basis

The characterization of k-monotone functions defined on R as a mixture of poly-
nomial functions has been established by Lévy [26], and the inversion formula
that specifies the mixture function follows from the results of Williamson [27]
(see Lemma 1. in [6] for example). In the case of k-monotone sequences a simi-
lar decomposition has been simultaneously established for convex sequences by
Durot et al. [13], and in the more general case of k-monotonicity by Lefevre and
Loisel [25]. Many of our proofs will rely on this decomposition.
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For any integer k, let us define a basis of spline sequences (Q̄k
j )j∈N\{0} as

follows:

∀i ∈ N, Q̄k
j (i) =

(
j − i+ k − 1

k − 1

)
1{j�i} =

(j − i+ k − 1) . . . (j − i+ 1)

(k − 1)!
1{j�i}.

(1)

Let mk
j be the mass of Q̄k

j : m
k
j =

∑j
i=0 Q̄

k
j (i) and Qk

j = Q̄k
j /m

k
j the normal-

ized spline. We can now formulate the mixture representation of k-monotone
sequences.

Property 3. Let f ∈ L1(N).

• The sequence f is k-monotone if and only if there exists a positive measure
π on N, such that for all i ∈ N, f(i) satisfies:

f(i) =
∑
j�0

π(j)Qk
j (i) =

∑
j�i

π(j)Qk
j (i). (2)

• If f is k-monotone, the measure π is unique and defined as follows:

∀j � 0, π(j) = (−1)kΔkf(j)mk
j . (3)

• If f is k-monotone,
∑∞

i=0 f(i) =
∑∞

j=0 πj .

In particular Qk
j is k-monotone, and the set of k-knots of f is the set of integers

j such that π(j) is strictly positive.

These properties are shown in Lefevre and Loisel [25].
From this property, it appears that monotone discrete probabilities are mix-

ture of uniform distributions, convex probabilities are mixture of triangular
distribution, . . . , k-monotone probabilities are mixture of splines with degree
k − 1.

3. Constrained least-squares estimation on the set of k-monotone
discrete probabilities

Suppose that we observe n i.i.d random variables, X1, . . . , Xn with distribution
p defined on N, such that for all i = 1, . . . , n, and j ∈ N, p(j) = P (Xi = j). We
propose to build an estimator of p that satisfies the k-monotonicity constraint.
Since the projection on the set of k-monotone sequences Sk is not a probability
in general for k � 3 (see Section 5) we consider the least-squares estimator p̂
defined as follows:

p̂ = argmin
{
‖f − p̃‖22, f ∈ Pk

}
(4)

where p̃ is the empirical estimator of p:

∀j ∈ N, p̃(j) =
1

n

n∑
i=1

1{Xi=j}.

Since the set Pk of k-monotone discrete probabilities is convex and closed
in the Hilbert space L2(N), it follows, from the projection theorem for Hilbert
spaces, that p̂ exists and is unique.
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3.1. Characterizing the constrained least-squares estimator

A connerstone for deriving some statistical properties of our estimator is the
following characterization of p̂. Let us begin with a few notation. For any positive
sequence f in L1(N) we define the j-th primitive of f as follows: for all l ∈ N

F 1
f (l) =

l∑
i=0

f(i),

F j
f (l) =

l∑
i=0

F j−1
f (i) for all j � 2.

Moreover, we define the quantity β(f)

β(f) =

∞∑
i=0

f(i)(f(i)− p̃(i)). (5)

Theorem 1. Let f ∈ P. The projection p̂ defined at Equation (4) is the unique
k-monotone probability f satisfying:

1. For all l ∈ N,

F k
f (l)− F k

p̃ (l) � β(f)mk
l . (6)

2. If l is a k-knot of f , then the previous inequality is an equality.

The proof of this theorem is given in Section 7.1.1. It uses the connections
between successive primitives of the spline sequences (Qk

j , j ∈ N).
In the particular case of convexity the same result can be established with 0

in place of β(f), see Lemma 2 in [13]. Let us recall that in that case, we have
the nice property that the least-squares estimator over convex sequences is a
convex probability distribution. This property is no longer satisfied when k � 3.
We will come back to this point in Section 5.

3.2. Support of p̂

A key feature of the estimator p̂ is that its support is finite. Let us denote by
ŝ = sp̂, respectively s̃ = sp̃, the maximum of the support of p̂, respectively p̃.

Theorem 2. Let p̂ be the least-squares estimator defined by Equation (4).

1. The support of p̂ is finite.
2. If ŝ � s̃+ 1, then Δkp̂(i) = 0

• for all i ∈ [s̃− k + 2, ŝ− 1] if k is even,

• for all i ∈ [s̃− k + 2, ŝ− 2] if k is odd.

The proof of this theorem is given in Section 7.1.2. In the particular case of
convexity, when k = 2, it is shown that ŝ � s̃. The question whether such a
property still holds for k � 3 remains open.
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3.3. Statistical Properties of p̂ when p is k-monotone

Let us now evaluate the behaviour of p̂ for estimating a probability, in particular,
how does it compare with the empirical estimator p̃. It is proved in the following
theorem that the constrained least-squares estimator is closer (with respect to
the L2-norm) to any k-monotone probability than is p̃.

Theorem 3. For any k-monotone probability f , the following inequality is sat-
isfied:

‖f − p̂‖2 � ‖f − p̃‖2. (7)

If p̃ is not k-monotone, then the inequality is strict.
Moreover if p is k-monotone and if there exists i ∈ N such as Δkp(i) = 0,

then for all k-monotone probability f , we have:

lim inf
n→∞

P(‖f − p̂‖2 < ‖f − p̃‖2) � 1/2.

In particular, if p is k-monotone and not strictly k-monotone, the estimator
p̂ is strictly closer to p than is p̃ with probability at least 1/2. This theorem is
a straightforward generalization of Theorem 4 in [13] for the convex case and
its proof is omitted. Other statistical results have been shown in the convex
case. In particular Balabdaoui and Durot [2] considered the difference between
the cumulative distribution of the estimator under convex constraint, F 1

p̂ , and

F 1
f for any convex discrete probability f . They showed a Marshall lemma which

states the following inequality: ‖F 1
p̂ −F 1

f ‖∞ � 2‖F 1
p̃ −F 1

f ‖∞. Such a result could
possibly be generalized for k � 3.

In the following theorem the moments of the distributions p̂ and p̃ are com-
pared. The proof of this theorem is given in Section 7.1.3.

Theorem 4. For all u � max(1, k − 3) and 0 � a � ŝ the following inequality
is satisfied: ∑

i�0

|i− a|u (p̂(i)− p̃(i)) � β (p̂)m(a, u), (8)

where β is defined at Equation (5) and m(a, u) =
∑a

i=0(a− i)u.
Moreover p̂(0)− p̃(0) � β(p̂).

If p̂ satisfies β (p̂) = 0, the result is the same as the one obtained in the convex
case. In fact, it will be stated in Section 5, that β(p̂) � 0, and that β(p̂) = 0 if

the mimimizer of ‖f − p̃‖2 over f ∈ Sk equals the mimimizer of ‖f − p̃‖2 over
f ∈ Pk. This is the case if p̃ is k-monotone, or if k = 2.

3.4. Asymptotic properties of p̂

In this section we consider the asymptotic properties of p̂ when the sample size
n tends to infinity. We first establish the consistency of p̂ both in the case of a
well-specified model or a misspecified model.



8 J. Giguelay

Theorem 5. Let pSk be the orthogonal projection of p on the set Pk. Then, for
all r ∈ [2,+∞], the random variable

√
n ‖pSk − p̂‖r is bounded in probability.

In particular, this theorem states that if the distribution p is k-monotone,
then the convergence of p̂ to p is of the order

√
n with respect to the Lr-norm.

The case of a finite support In the particular case where the distribution
p is k-monotone and has a finite support, we characterize the asymptotic be-
haviour of the k-knots of p̂, and give an upper bound for ŝ, the maximum of the
support of p̂.

Theorem 6. Let p be a k-monotone probability with finite support.

1. Let j ∈ N be a k-knot of p. Then with probability one there exists n0 ∈ N

such that for all n � n0, j is a k-knot of p̂.
2. Let s, respectively ŝ, be the maximum of the support of p, respectively p̂.

Then, with probability one, there exists n0 ∈ N such that for all n � n0

we have

• ŝ � s if k is even.

• ŝ � s+ 1 if k is odd.

The proof of the first part of the theorem (see Section 7.1.5) is based on the
fact that for all j ∈ N,

P

(
lim

n→∞
(−1)kΔkp̂(j) = (−1)kΔkp(j)

)
= 1.

It follows that if j is a k-knot of p, then (−1)kΔkp̂(j) will be strictly positive
for n large enough. Conversely, if j is not a k-knot of p, which means that
Δkp(j) = 0, then (−1)kΔkp̂(j) may be strictly positive for all n. Therefore, the
set of k-knots of p̂ does not estimate consistently the set of k-knots of p.

Concerning the second part of the theorem, we can notice that the result we
get concerning ŝ is weaker than what was obtained in the convex case. Indeed,
when k = 2, we know that ŝ � s̃, and consequently that, ŝ = s for n large
enough if p has a finite support.

4. Implementing the estimator p̂

The practical implementation of p̂ requires the use of a specific algorithm that is
composed of two parts. The first part consists in solving the problem defined at
Equation (4) for sequences f whose support is finite. More precisely, for a chosen
positive integer L, we compute p̂L, the minimizer of ‖f − p̃‖2 over probabilities
f ∈ Pk whose support is included in {0, . . . , L}. This part is similar to the first
part of the algorithm described by Durot et al [13] except that an adaptation
is needed to compute the minimizer over the set of probabilities (and not over
the set of sequences). The second part consists in checking if p̂L = p̂. For that
purpose, starting from Theorem 1, we propose a stopping criterion that can be
calculated in practice.
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All functions mentionned in this article are implemented as an R pack-
age named pkmon and available on the Comprehensive R Archive Network.
(https://CRAN.R-project.org/package=pkmon).

4.1. Constrained least-squares estimation on a given finite support

We know from Property 2 that if f ∈ Pk, there exists a unique probability π on
N, such that f and π satisfy Equation (2). Therefore, solving (4) is equivalent
to minimizing on the set of probabilities π on N, the criterion Ψ(π) defined as
follows:

Ψ(π) =
∑
i�0

⎛⎝∑
j�i

π(j)Qk
j (i)− p̃(i)

⎞⎠2

.

The first part of our algorithm computes

p̂L = argmin
{
‖f − p̃‖22, f ∈ Pk, sf � L

}
.

The solution is given by p̂L =
∑

j�0 π̂L(j)Q
k
j where π̂L is the minimizer of Ψ(π)

over probabilities π whose support is included in {0, . . . , L}:

π̂L = argmin {Ψ(π), π ∈ P , sπ � L} . (9)

The algorithm we use to compute π̂L is based on the support reduction
algorithm introduced by Groeneboom et al. [20]. An adaptation is needeed to
guarantee that π̂L is a probability. Let us underline that this algorithm gives
the exact solution in a finite number of steps.

For all ν ∈ P , let DνΨ be the directionnal derivative function of Ψ in the
direction ν defined as follows:

∀μ ∈ P , DνΨ(μ) = lim
ε↘0+

1

ε

(
Ψ((1− ε)μ+ εν)−Ψ(μ)

)
.

The Support Reduction Algorithm is based on the property that π̂L is solution
of (9) if and only if the directionnal derivative functions calculated in π̂L in
the directions ν = δj , where δj denotes the Dirac probability in {j}, are non
negative for all 0 � j � L. Moreover, these derivatives are exactly 0 for all j in
the support of π̂L.

Starting from this property, the Support Reduction Algorithm is composed of
two steps. In the first step, the support of the current probability μ is augmented
by a point j where DδjΨ(μ) is strictly negative (if any). In the second step the
minimisation of Ψ(μ) over sequences μ such that

∑
j�0 |μ(j)| = 1 and whose

support is the current support, is performed. The current support is reduced to
obtain a positive sequence. This second step performs minimization over the set
of probabilities and differs from [13] and [20] which minimizes over all sequences.
This step requires the introduction of KKT’s conditions.

Let us introduce notation used in the second step of the algorithm. For a set
S = {j1, . . . , js} ⊂ {0, . . . , L} we note

https://CRAN.R-project.org/package=pkmon
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Table 1

Algorithm for computing π̂L for a fixed L.

• Initialisation:
S ← {L}
π ← δL

• Step 1:
For all j ∈ {0, . . . , L} compute DδjΨ(π).

– If for all j ∈ {0, . . . , L} DδjΨ(π) � 0, stop.

– Else choose j ∈ {0, . . . , L} such as DδjΨ(π) < 0.

S′ ← S + {j}.
Go to step 2.

• Step 2:
λ ← λS′

πS′ ← argmin{Ψ(μ) + λ(
∑

j∈S′ μ(j)− 1), supp(μ) ⊂ S′}.

– If for all l ∈ S′, πS′ (l) � 0,
π ← πS′

S ← S′

Return to step 1.

– Else

l ← argmin{εj′ =
πj′

πj′ − πS′ (j′)
, j′ ∈ S′, πS′ (j′) < πj′}

S′ ← S′ − {l}
Return to step 2.

• QS the matrix whose component (QS)i+1,� = Qk
j�
(i) for 0 � i � L and

j� ∈ S, l = 1, . . . , s,
• HS the projection matrix HS = QS(Q

T
SQS)

−1QT
S ,

• λS the Lagrange multiplier

λS =
〈HS p̃, I〉 − 1

〈HSI, I〉
,

where I is the vector with L+ 1 components all equal to 1.

The parameter λS comes from the KKT’s condition linked to the following
problem of minimization:

πS = argmin∑
j∈S π(j)=1

π∈MS

(
Ψ(π)

)
.

Its value is calulated in Section 7.2.2.
The algorithm for computing π̂L for a fixed L is given at Table 1. It is shown

in Section 7.2 that this algorithm returns π̂L in a finite number of steps.

4.2. Stopping criterion

The second step of the algorithm is to find a stopping criterion, that is to say
a characterization of p̂ allowing to decide for which L we have p̂L = p̂. We will
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developp two stopping criteria in this section. The first one is available for all
k � 2 but offers no guarantee for the complexity. The second one is available
only for k ∈ {3, 4}. This is the analoguous of the stopping criterion for k = 2
given in [13].

The characterization of p̂ given by Theorem 1 cannot help for practical imple-
mentation because the necessary condition in that theorem requires an infinite
number of calculations. Nevertheless, if f is a k-monotone probability, with
maximum support sf , it is possible to find an integer M such that if f satisfies
Inequality (6) for all l � M , then f satisfies Inequality (6) for all l > M . Such
a property results from the writting of

Pf (l) = F k
f (l)− F k

p̃ (l)− β(f)mk
l

as a polynomial function in the variable l. On the one hand, Property 4, shown
in Section 7.3.2, states that F k

f (l)−F k
p̃ (l) is a polynomial function in l of degree

k − 1 as soon as l is greater than the maxima of the support of f and p̃.

Property 4. Let f be a discrete sequence with finite support and sf be the
maximum of its support. Let τ = max(sf , s̃), then for all l � τ +1, we have the
following equalities:

F k
f (l)− F k

p̃ (l) =

k∑
j=1

Q̄k−j+1
l−1 (τ)

(
F j
f (τ)− F j

p̃ (τ)
)

=

k∑
j=1

F j
f (τ)− F j

p̃ (τ)

(k − j)!
((l − τ + k − j − 1) . . . (l − τ)) (10)

On the other hand starting from Pascal’s rule, it is easy to see that for all
k � 2 and l � 0,

mk
l = Q̄k+1

l (0) =
(l + k)(l + k − 1) . . . (l + 1)

k!
. (11)

Putting Equations (10) and (11) together, it appears that for all l � τ =
max(sf ; s̃), there exist coefficients (a0, a1, . . . , ak−1) such that

Pf (l) =
k−1∑
j=0

aj l
j .

Let d be the degree of this polynomial (the smallest j such that aj = 0 for all
j � d+ 1) and let M be defined by

M = max

(
1 +

ad−1

ad
, . . . , 1 +

a0
ad

)
,

By Cauchy’s Theorem for localization of polynomial’s roots, the largest root
of Pf (l) is bounded by M . Therefore if ad is positive, Pf (l) is positive beyond
M . This leads to the following characterization of p̂ which is a corollary of
Theorem 1. Its proof is omitted.
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Theorem 7. Let f be a sequence in P with a finite support. Let M and ad be
defined as above. The two following assertions are equivalent:

1. The sequence f satisfies

(a) ad is positive.

(b) ∀l � M,F k
f (l)− F k

p̃ (l) � β(f)mk
l .

(c) If l is a k-knot of f , the previous inequality is an equality.

(d) β(f) � 0.

2. The sequence f is exactly p̂.

This Theorem answers our initial problem, namely checking if p̂L equals p̂:
the coefficients aj depending on p̂L and p̃, can be calculated in practice, as well
as M . Nevertheless M can be very large, leading to tedious computation. For
small values of k more efficient criteria can be proposed. In particular, for k = 3
and k = 4, it is possible to obtain a characterization of p̂ that only depends on
s̃ and ŝ. This is the object of the following theorem shown in Section 7.1.6.

Theorem 8. Let f be a sequence in P with a finite support and s′ = max {sf , s̃}.
Let k ∈ {3, 4}. The two following assertions are equivalent:

1. The sequence f satisfies

(a) ∀l � s′ + 1, F k
f (l)− F k

p̃ (l) � β(f)mk
l .

(b) If l is a k-knot of f , the previous inequality is an equality.

(c) for all 2 � j � k − 1, F j
f (s

′ + 1)− F j
p̃ (s

′ + 1) � β(f)mj
s′+1.

(d) β(f) � 0.

2. The sequence f is exactly p̂.

The algorithm we propose here can also be applied when k = 2, as an al-
ternative to the algorithm proposed by [13]. For each L, p̂L is calculated under
the constraint that p̂L sums to one. Necessary and sufficient condition to have
p̂ = p̂L are reduced to conditions (a) and (b) with β(f) = 0.

When k > 4 we are not able to propose a similar stopping criterion. Indeed
the proof is based on the properties of the spline function Qk

j for k > 4 and in

particular, requires the calculation of the number of k′-knots of Qk
j for k′ � k,

which is intractable.

5. Constrained least-squares estimation on the set of k-monotone
sequences

By definition, our estimator p̂ is a probability. We could have proposed to es-
timate p by minimizing the least-squares criterion under the constraint of k-
monotonicity only. Let p̂∗ be that estimator:

p̂∗ = argmin
{
‖f − p̃‖22, f ∈ Sk

}
(12)

The following property, shown in Section 7.3.3, establishes the link between both
estimators.
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Property 5. Let p̂ and p̂∗ be defined at Equations (4) and (12), and let β be
defined at Equation (5). The coefficient β(p̂) is null if and only if p̂ = p̂∗.

In the particular case where k = 2, p̂∗ is exactly p̂ (see Theorem 1 in [13]).
As soon as k � 3 this property is no longer satisfied in general and the following
property is proven in Section 7.3.4:

Property 6. The mass of p̂∗ is greater than or equal to 1.

This result was expected because a similar property was shown by Balab-
daoui [1] in the continuous framework.

To illustrate this point in the discrete framework, let us consider the projec-
tion of δ1 (the Dirac probability in 1) on the set of 3-monotone sequences. Some
calculation (see Section 7.3.5 for a proof) leads to the following result:

ProjS3 (δ1) =
3

238
Q̄3

5 +
1

238
Q̄3

6,

and its mass is close to 1.06.
Nevertheless we can show (see Section 7.3.6) the following asymptotic result.

Property 7. Let p be a k-monotone probability, and p̂∗ be defined at Equa-
tion (12). Then, with probability one the mass of p̂∗ converges to one.

The properties shown in Section 3 for the estimator p̂ hold true for p̂∗. More
precisely, the estimator p̂∗ satisfies Theorems 2, 5, 6. Theorem 3 is also true
for p̂∗ apart from the first assertion, where Equation (7) is satisfied for any k-
monotone sequence f . Finally Theorem 4 is true with 0 in place of β(p̂)(ŝ+1−a)
in Equation (8).

The implementation of p̂∗ is similar to that of p̂ except that in the first part
of the algorithm (see Section 4.1) the Support Reduction Algorithm can be used
without any modification at Step 2 (where the estimator of π is constraint to
have a sum of one). The stopping criterion used in the second part is obtained
in the same way as for p̂. The proofs of these last results are omitted. They are
based on Property 5.

6. Simulation

We designed a simulation study to assess the quality of the least-squares esti-
mator p̂ on the set of k-monotone probabilities, as compared to the empirical
estimator p̃, and to the least-squares estimator p̂∗ on the set of k-monotone
sequences for k ∈ {2, 3, 4}. We considered both the case where the true distri-
bution is k-monotone and the case where it is not.

6.1. Simulation design

We considered mainly two shapes for the distribution p: the spline distribution
Q�

j with j = 10 and 	 ∈ {2, 3, 4, 10}, and the Poisson distribution P(λ) for
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λ ∈ {0.3, 0.35, 0.45, 2 −
√
2, 0.7, 1}. Those two families of distribution differ by

the finiteness of their support, and by the number of knots in their decomposition
on the spline basis. Precisely, the distribution Q�

j has one 	-knot in j while a 	-
monotone Poisson distribution has an infinite number of 	-knots. The following
proposition, shown in Section 7.3.7, gives the property of k-monotonicity for
Poisson distributions.

Property 8. Let P(λ) be the Poisson distribution with parameter λ. For each
	 � 1, let λ� be defined as the smallest root of the following polynomial function:

P�(λ) =

�∑
h=0

(−1)h
(	!)2

h!((	− h)!)2
λh.

Then P(λ) is 	-monotone if and only if λ � λ�

Some simple calculation gives the following values: λ1 = 1, λ2 = 2 −
√
2 �

0.585, λ3 � 0.415, λ4 � 0.322, λ5 � 0.264. Therefore the considered Poisson dis-
tributions P(λ) are {4, 3, 2, 2, 1}-monotone when λ belongs to {0.3, 0.35, 0.45, 2−√
2, 0.7}. When λ = 1, the Poisson distribution is not strictly decreasing.
Moreover, for k = 3, we consider an other shape for the distribution p when

p is not k-monotone. More precisely we study the behaviour of the l2-loss of p̂
k

when (−1)kΔkp(i) < 0 for only one i ∈ N, as Rα = −αQ3
2 + (1 + α)Q3

10 with
α ∈ {0.2, 0.1, 0.05, 0.01}.

For each distribution p, we considered several values for the sample size n:
n ∈ {20, 50, 100, 250, 500, 1000}. In some cases we also considered very large
values of n in order to illustrate the asymptotic framework. We denote by p̃n
the empirical estimator and by p̂kn, respectively p̂∗kn , the least-squares estimator
of p on the set of k-monotone probabilities, respectively sequences. For each
simulation configuration, 1000 random samples were generated.

6.2. Global fit

To assess the quality of the estimators for estimating the distribution p we
consider the l2-loss and the Hellinger loss. We have also considered the total
variation loss, but the results are not shown because they are very similar to
those obtained for the l2-loss.

6.2.1. Estimators comparison based on the l2-loss

The l2-loss between p and any estimator of p, say q̂, is defined as the expectation
of the l2-error, l2(p, q̂) = E(‖p− q̂‖22).

Spline distributions We first compared the quality of the fit of the estima-
tors p̂kn and p̃n by computing for each simulated sample ‖p− p̂kn‖22 and ‖p− p̃n‖22.
The l2-losses were estimated by the mean of 1000 independant replications of the
l2-errors. In all simulation configurations, the l2-losses are decreasing towards 0
when n increases. In what follows we will consider the ratios l2(p, p̂

k
n)/l2(p, p̃n)

to compare the estimators.
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Fig 1. Spline distributions: ratio between the l2-loss of p̂kn and the l2-loss of p̃n versus the
sample size n: for k = 2 in “—”, k = 3 in “- -”, k = 4 in “...”. Each subfigure corresponds
to the results obtained with p = Q�

j , for � ∈ {2, 3, 4, 10}.

The results for the spline distributions Q�
j are presented on Figure 1. When

n is small, p̂kn has smaller l2-loss than p̃n whatever the value of k. When n tends
to infinity, we have to consider two cases according to the discrepancy between
k which defines the degree of monotonocity of the estimator, and 	 which is the
degree of monotonicity of p. As it was expected considering Theorem 3, when
k � 	, the ratio is smaller than 1.

Moreover we note that the smaller the deviation 	−k is, the smaller the ratio.
In particular when k = 	, the ratio tends to a constant strictly smaller than 1,
while when k < 	, the ratio tends to 1. For example, when 	 = 4, k = 3, the
ratio of the l2-losses equals 0.45 for n = 10000 and 0.80 for n = 100000. This
illustrates the benefit to choosing the correct k, i.e. k = 	, instead of k < 	, and
matches our intuition. Indeed, the sets Sk being nested, we are ledding to think
that one could gain in l2-loss when we project the empirical estimator on the
set S� instead on the set Sk with k < 	.
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Fig 2. Poisson distribution with parameter λ = 0.35: ratio between the l2-loss of p̂kn and the
l2-loss of p̃n versus the sample size n: for k = 2 in “—”, k = 3 in “- -”, and k = 4 in “...”.

When k > 	, the ratio tends to infinity. For example, when 	 = 2, k = 3,
the ratio of the l2-losses equals 9.93 for n = 10000 and 259 for n = 100000.
This result was expected because the empirical estimator p̃n is consistent while
our estimator is not. Indeed, following Theorem 5, p̂kn converges in probability
to pSk , the projection of p on Sk. Since p is 	-monotone and k > 	, the l2-loss
l2(p, p̂

k
n) is greater than a strictly positive constant whereas l2(p, p̃n) converges

to 0. Therefore the ratio of the l2-losses converges to infinity.

Poisson distribution The results for the Poisson distribution are similar
to those obtained for the spline distributions except that the asymptotic is
achieved for smaller values of the sample size n. Only the case λ = 0.35, where
the corresponding Poisson distribution is 3-monotone, is presented in Figure 2.
It appears that when k = 2 the ratio of l2-losses tends to one, when k = 3 it
tends to a value close to 0.9, and when k = 4 it tends to infinity.

Comparaison between p̂ and p̂∗ Now we compare the l2-losses for the
estimators p̂kn, p̂

∗k
n and p̃n for k = 3 and k = 4 (recall that for k = 2, p̂∗kn = p̂kn).

The ratios l2(p, p̂
∗k
n )/l2(p, p̃n) behave similarly to the ratios l2(p, p̂

k
n)/l2(p, p̃n)

(not shown).
Next we compare the values of the l2 losses for p̂∗kn and p̂kn. When we con-

sider the spline distributions Q�
j with l = 2 and l = 3, the difference between

the l2 losses are not significant (they are smaller than 2-times their empirical
standard-error calculated on the basis of 1000 simulations). When l increases,
the distribution p is more hollow and it appears that l2(p, p̂

∗k
n ) is greater than

l2(p, p̂
k
n), see Table 2.

Distributions Rα In this paragraph we take k = 3. When looking into model
misspecification we face the problem of the deviation from k-monotonicity. A
natural issue is to consider the case where the true distribution p is k-monotone
except for only one i ∈ N where (−1)kΔkp(i) < 0. We assess the l2-loss of
the estimator p̂ in case of such a misspecification, when k = 3 and p = Rα =
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Table 2

Spline distributions: difference (×1000) between the l2-loss of p̂∗kn and the l2-loss of p̂kn, for
different values of n, for k = 3 in green and k = 4 in blue. The symbol “-” is for

non-significant result.

n = 20 n = 100 n = 1000
p = Q4

10 - - -
- - 0.06

p = Q10
10 0.89 0.13 0.02

0.92 0.24 0.01

Fig 3. Mixture of splines with shape Rα = αQ̄3
2 + (1 + α)Q̄3

10: In the right: distributions of
the Rα and in the left: ratio between the l2-loss of p̂kn and the l2 loss of p̃n versus the sample
size n: α = 0 in “—”, α = 0.01 in “- -”, α = 0.05 in “- -”, α = 0.1 in “...” and α = 0.2 in
“- -”.

αQ̄3
2 + (1+α)Q̄3

10 is 3-monotone except for i = 2. Figure 3 illustrate the results
for the different values of α.

When n is small, p̂kn has smaller loss than p̃n, although the distributions
Ralpha are not k-monotone when α > 0. When α � 0.05 and n tends to infinity
the ratio between the l2-loss of p̂kn and the l2-loss of p̃n increases (except for
α = 0, when the model is not misspecified) whereas when α is small enough
(α � 0.01) the ratio stay small. The bigger α is, the more the distribution
deviates from de 3-monotonicity and the more the l2-loss is.

6.2.2. Estimators comparison based on the Hellinger loss

Let us now consider the Hellinger loss defined, for any estimator q̂, as H(p, q̂) =

E
(
‖√p−

√
q̂‖22

)
.

Spline distributions The results for the spline distributions Q�
j are similar to

those obtained for the l2-loss, except that the ratios H(p, p̂kn)/H(p, p̃n) are not
necessary smaller than 1 when k � 	, see Figure 4 for the Triangular distribution
Q2

j .

Poisson distribution In the case of the Poisson distributions the differences
between the l2-loss and the Hellinger loss are more obvious. As it is illustrated
by Figure 5, if 	 the degree of monotonicity of p is strictly greater than k, then
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Fig 4. Triangular distribution Q2
j : ratio between the Hellinger loss of p̂kn and the Hellinger

loss of p̃n versus the sample size n: for k = 2 in “—”, k = 3 in “- -”, and k = 4 in “...”.

Fig 5. Poisson distributions: ratio between the Hellinger loss of p̂kn and the Hellinger loss of
p̃n versus the sample size n: for k = 2 in “—”, k = 3 in “- -”, and k = 4 in “...”. Each

subfigure corresponds to the results obtained with p = P(λ) for λ ∈
{
0.3, 0.35, 0.45, 2−

√
2
}
.

The degree of monotonicity of these distributions is given by �.
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the ratio is smaller than 1 (see case (a) with k = 2, 3 and case (b) with k = 2). If
k = 	, then H(p, p̃kn) is smaller than H(p, p̂n) if the distribution p is “	-monotone
enough”, that is to say if the parameter λ of the Poisson distribution is such
that λ� − λ is large enough, where λ� has been defined in Property 8, see for
example cases (c) and (d) with k = 2, where λ2 = 2−

√
2.

6.3. Some characteristics of interest

We consider the estimation of some charactéeristics that may be of interest as the
entropy, the variance and the probability at 0. For each of these characteristics
denoted L(p), we measure the performance in terms of the root mean squared
error of prediction calculated as follows:

RMSEP =
√
BIAS2 + SE2,

where BIAS and SE are the estimated bias and standard-error of the estimator
based on the simulations. Let L̂ be an estimator of L(p), then BIAS = L̂· − L,

where L̂· =
∑

s L̂s/1000 with L̂s being the estimate of L(p) at simulation s, and

SE2 =
∑

s(L̂s − L̂·)
2/1000.

6.3.1. Entropy

The entropy is defined as

Ent(f) =

∞∑
i=0

f(i) log(f(i)).

We compare the estimators Ent(p̂kn) and Ent(p̃n) by the ratio of their RMSEP.
The results differ according to the family of distributions. For the spline dis-
tributions Q�

j , see Figure 6, it appears that if k < 	, then Ent(p̂kn) has smaller
RMSEP than Ent(p̃n). However, when k = l, the ratio of the RMSEP’s increases
and reaches an asymptote greater than 1. For example, in Figure 6, case (b) with
k = 3, the ratio tends to 0.96, in case (c) with k = 4, the ratio tends to 1.93.
In fact, if we consider the space of 	-monotone distributions with maximum
support j, the distribution Q�

j may appear as a “limiting case” in this space,

in that it admits only one 	-knot in j. It seems that for these Q�
j distributions,

the projection on the space of 	− 1-monotone discrete probabilities give better
results than on the space of 	-monotone discrete probabilities.

For the Poisson distributions, see Figure 7, when n is small, the estima-
tor based on the emprirical distribution, Ent(p̃n), has a smaller RMSEP than
Ent(p̂kn). When n is large the RMSEP ratio tend to one if k � 	, and tend to
infinity if k > 	.

6.3.2. Probability mass in 0

We compare the performances of p̂kn(0) and p̃n(0) by comparing the correspond-
ing renormalized SE and BIAS.
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Fig 6. Spline distributions: ratio between the RMSEP of Ent(p̂kn) and the RMSEP of Ent(p̃n)
versus the sample size n: for k = 2 in “—”, k = 3 in “- -”, k = 4 in “...”. Each subfigure
corresponds to the results obtained with p = Q�

j , for � ∈ {2, 3, 4, 10}.

The results for the spline distributions are presented in Table 3.
When k � l, p̂kn(0) has smaller SE than p̃n(0). Its bias is greater in abso-

lute value and always negative, but the RMSEP stays smaller. For each k, the
variations of

√
nSE/p(0) versus n are very small and tend to stabilize around

a value that increases with l − k.
When k > l, p̂kn(0) keeps a smaller RMSEP than p̃n(0) for small n. But, when

n increases the absolute bias as well as the standard error increase.
The results for the Poisson distributions are similar and omitted.

6.3.3. Variance

We compare the estimators of the variance of p, denoted var(p̂kn) and var(p̃n)
comparing the ratio of their RMSEP. The results are similar for the spline
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Fig 7. Poisson distributions: ratio between the RMSEP of Ent(p̂kn) and the RMSEP of Ent(p̃n)
versus the sample size n: for k = 2 in “—”, k = 3 in “- -”, k = 4 in “...”. Each subfigure
corresponds to the results obtained with p = P(λ) with λ ∈ {0.3, 0.35}.

Table 3

Spline distributions:
√
nSE/p(0),

√
n|BIAS|/p(0) and

√
nRMSEP/p(0) for p̃n(0) in black,

p̂kn(0) for k = 2 in red, k = 3 in green and k = 4 in blue.

n = 20 n = 100 n = 1000
SE BIAS RMSEP SE BIAS RMSEP SE BIAS RMSEP

p = Q2
10 2.25 7e-4 2.25 2.234 0.002 2.234 2.284 0.017 2.284

1.800 0.181 1.809 1.819 0.170 1.82 1.745 0.162 1.752
1.757 0.157 1.764 1.783 0.188 1.792 2.231 0.334 2.255
1.742 0.155 1.748 1.780 0.196 1.790 2.622 0.408 2.653

p = Q4
10 1.634 0.008 1.634 1.601 0.013 1.601 1.626 0.006 1.626

1.362 0.143 1.369 1.389 0.120 1.394 1.488 0.052 1.489
1.354 0.137 1.361 1.372 0.132 1.378 1.439 0.088 1.442
1.340 0.135 1.347 1.353 0.136 1.359 1.362 0.109 1.366

p = Q10
10 1.010 2e-4 1.010 0.98 6e-4 0.98 0.984 0.006 0.984

0.884 0.058 0.886 0.934 0.022 0.934 0.982 0.006 0.982
0.886 0.057 0.888 0.919 0.039 0.920 0.957 0.009 0.957
0.887 0.053 0.889 0.921 0.042 0.922 0.940 0.018 0.940

distributions and the Poisson’s distributions and we present only the RMSEP
for the spline distributions Ql

j in Figure 8.
When k = l, the ratio of the RMSEP tends to a constant smaller than 1

when n tends to infinity. Conversely if we are not in a good model (k > l) the
ratio of the RMSEPs tends to infinity when n tends to infinity.

When k < l and n large the ratio of the RMSEPs increases with l − k and
goes beyond 1. For example for k = 3 and l = 4 the ratio of the RMSEPs is
equal to 0.68 when n = 10000, while if l = 10 the ratio is greater than 1 as soon
as k � 3 and n � 1000.

When k > l the ratio of the RMSEPs tends to infinity when n tends to
infinity.

When n is small var(p̂kn) has smaller RMSEP than var(p̃n) whatever the value
of k and l.
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Fig 8. Spline distributions: ratio between the RMSEP of var(p̂kn) and the RMSEP of var(p̃n)
versus the sample size n: for k = 2 in “—”, k = 3 in “- -”, k = 4 in “...”. Each subfigure
corresponds to the results obtained with p = Q�

j , for � ∈ {2, 3, 4, 10}.

6.4. About the mass of the non-constrained estimator p̂∗k

We were also interested in the estimation of the mass of the non-constrained
estimator p̂∗k. Figures 9 and 10 illustrate the results for the spline distributions
with n = 20 and n = 100. As expected the mass is always larger than 1 and
whatever k, the distribution of the mass comes closer to one when n increases
(compare figures 9 and 10). The larger l is, the smaller the median and the
dispersion around the median are. On the other hand when k increases the
distributions are more scattered and their medians move away from 1 (compare
the lines of each figure).

6.5. Conclusion

Let us consider the case where p is l-monotone and p̂kn is the least-squares
estimator of p on Sk for k � l. In this case the model is well-specified.
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Fig 9. Splines distributions; n = 20: Boxplot of the mass of p̂∗k for k = 3 at the top and
k = 4 at bottom. Each column corresponds to the results obtained with p = Ql

j for l = 2, 4, 10.

Concerning the l2-loss, the total variation loss and the estimation of p∗(0),
p̂kn performs better than the empirical estimator p̃n. Moreover the superiority
of the performance of p̂kn is larger when n is small.

Concerning the Hellinger loss, or the estimation of the variance and the en-
tropy, we get the following results. For small n, as before, the least-squares
estimator is always better than the empirical estimator p̃n. When n is large, p̂kn
and p̃n behave similarly. If p is a frontier distribution in Sl, as for example the
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Fig 10. Repartition of the mass of p̂∗k for n = 100. Each column represents the estimation
of a different probability p explained in subtitle. The first line is for the mass of p̂∗3 and the
second line for the mass of p̂∗4.

Poisson distribution with λ = λl or a spline distribution Ql
j , then p̂l−1

n performs

better than p̂ln. If not, then p̂ln performs better than p̂kn for all k � l.

Finally, for all considered criteria, the estimator p̂kn performs better than p̂∗kn
when n is small and both estimators perform similarly when n is large.

Let us now consider the case of p is l-monotone and k > 	. When n is
small the estimator under constraint of k-monotonocity performs better than
the empirical estimator for all criterion except the estimation of the entropy.
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When n is large the estimator under shape constraint is biaised and the the
empirical estimator performs better. In the particular case where p = Rα we
can measure how misspecified the model is. In this case we showed that the
more the model is misspecified the worst is the l2-loss.

7. Proofs

For all discrete function f , let Q(f) = 1
2‖f − p̃‖2. When no confusion is possible

we write p̂ instead of p̂k.

7.1. Proofs of the theorems

7.1.1. Proof of Theorem 1 page 6: Characterization of p̂

Let us first prove that p̂ satisfies 1. or equivalently, that for all integer l the
following inequality is satisfied:

F k
p̂ (l)− F k

p̃ (l) � β(f)mk
l . (13)

By definition β(p̂) = 〈p̂, p̂− p̃〉, then (13) is equivalent to:

1

mk
l

(F k
p̂ (l)− F k

p̃ (l))−
∞∑
i=0

p̂(i)(p̂(i)− p̃(i)) � 0. (14)

Let us rewrite this equation by considering limits of the directionnal deriva-
tives.

For all ε ∈]0, 1], l � 0 we define a function qεl as follows:

qεl(i) = (1−ε)p̂(i)+ε
Q̄k

l (i)

mk
l

=

{
(1− ε)p̂(i) + ε

mk
l

Q̄k
l (i) if i ∈ {0, . . . , l}

(1− ε)p̂(i) if i � l + 1.
(15)

The function qεl is a k-monotone probability then, using the first point of
Lemma 5 (see Section 7.4) with qε = qεl we obtain:

∞∑
i=0

(p̂(i)− p̃(i))
Q̄k

l (i)

mk
l

−
∞∑
i=0

p̂(i)(p̂(i)− p̃(i)) � 0.

Now, using Lemma 6 (see Section 7.4) we have that for all k � 2 and for all
positive discrete measure f :

∀l ∈ N
∗,

∞∑
i=0

f(i)Q̄k
l (i) =

l∑
i=0

f(i)Q̄k
l (i) = F k

f (l).

We choose f = p̂ and we obtain exactly (14).
Let us now show that p̂ satisfies 2.. Let l be a k-knot of p̂, we need to show that

Inequality (14) is an equality. As before we consider qεl defined at Equation (15)
and show that qεl is a k-monotone probability for ε nonpositive small enough.
Thanks to the following equality:
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(−1)kΔkQ̄k
l (i) =

{
0 if i �= l

1 if i = l

we get:

(−1)kΔkqεl(i) =

{
(1− ε)(−1)kΔkp̂(l) + ε/ml if i = l

(1− ε)(−1)kΔkp̂(i) if i �= l.

Because p̂ is k-monotone, (−1)kΔkqεl(i) � 0 for ε nonpositive small enough and
i �= l. As l is a k-knot of p̂, (−1)kΔkp̂(l) > 0 then (−1)kΔkqεl(i) � 0. Then qεl
is a k-monotone probability for ε nonpositive small enough and therefore using
Lemma 5 (see Section 7.4) with qε = qεl we obtain:

∞∑
i=0

(p̂(i)− p̃(i))
Q̄k

l (i)

mk
l

−
∞∑
i=0

p̂(i)(p̂(i)− p̃(i)) � 0,

which together with (14) give that the left hand side of the equation is exactly
0.

Conversely assuming that f is a k-monotone probability that satisfies:

F k
f (l)− F k

p̃ (l)

mk
l

� β(f), (16)

with equality if l is a k-knot of f , we have to show that f = p̂. By definition of
p̂ we need to show that for all k-monotone probability g we have Q(g) � Q(f).

Let g be a k-monotone probability. Using Lemma 7 (see Section 7.4):

Q(g)−Q(f) =
1

2
‖g − f‖22 + 〈f − p̃, g − f〉

� 〈f − p̃, g − f〉

=

∞∑
i=0

(g(i)− f(i))(f(i)− p̃(i))

=

∞∑
i=0

(−1)kΔk(g − f)i(F
k
f (i)− F k

p̃ (i)).

The function g is k-monotone then for all i, (−1)kΔkg(i) � 0 and using (16)
and lemma 7 (see Section 7.4):

Q(g)−Q(f) �
∞∑
i=0

(−1)kΔkg(i)(F k
f (i)− F k

p̃ (i))

−
∞∑
i=0

(−1)kΔkf(i)(F k
f (i)− F k

p̃ (i))

�
∞∑
i=0

(−1)kΔkg(i)β(f)mk
i −

∞∑
i=0

(−1)kΔkf(i)(F k
f (i)− F k

p̃ (i))
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� β(f)

∞∑
i=0

(−1)kΔkg(i)mk
i − β(f).

Moreover g being a k-monotone probability, according to Property 2, we have
the decomposition on the spline basis:

∞∑
i=0

(−1)kΔkg(i)mk
i = 1.

Finally for all k-monotone probability g we find:

Q(g)−Q(f) � β(f)− β(f) = 0.

By unicity of the projection we have f = p̂.

7.1.2. Proof of Theorem 2 page 6: Support of p̂

Proof of 1.: The support of p̂ is finite Let us first consider the case where
β(p̂) = 0. According to Property 5 this is equivalent to p̂ = p̂∗.

The result is proved by contradiction. Let us assume that p̂ has an infinite
support then we can build a discrete function p̄ satisfying the following proper-
ties:

i) p̄ � p̂.

ii) for all i � s̃, p̄(i) = p̂(i).

iii) there exists i such as p̄(i) < p̂(i).

iv) p̄ is k-monotone and non-negative,

with s̃ the maximum of the support of p̃.
For this p̄ we have the inequality ‖p̄− p̃‖2 < ‖p̂− p̃‖2 which contradicts the

definition of p̂ = p̂∗.
The probability p̄ is constructed as follows.
We define for all j ∈ {1, . . . , k − 1} and for all i ∈ N, the jth derivative

function qj of p̂:

q1(i) = −p̂(i+ 1) + p̂(i) = −Δ1p̂(i),
q2(i) = −q1(i+ 1) + q1(i) = Δ2p̂(i),

...
qk−1(i) = −qk−2(i+ 1) + qk−2(i) = (−1)k−1Δk−1p̂(i)

(17)

We have qj+1(i) = Δ1qj(i) so for all i ∈ N:

(−1)kΔkp̂(i) = (−1)k−1Δk−1(q1(i)) = . . . = Δ1qk−1(i).

Then p̂ is k-monotone (and non-negative) if and only if qk−1 is non-increasing
(and non-negative).

Because p̂ has an infinite support, all the functions qj have infinite suppport
too. Moreover for all i ∈ N we have the following inequalities:
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Fig 11. Functions qk−1(i) and q̄k−1(i) versus i (k odd).

p̂(i) = −
i−1∑
h=0

q1(h) + p̂(0),

∀j ∈ {1, . . . , k − 2}, qj(i) = −
i−1∑
h=0

qj+1(h) + qj(0).

The next step is to modify qk−1 to q̄k−1 such that if q̄j is defined as:

q̄j(i) = −
i−1∑
h=0

q̄j+1(h) + qj(0), ∀j ∈ {1, . . . , k − 2},

and if p̄ is defined as:

p̄(i) = −
i−1∑
h=0

q̄1(h) + p̂(0), ∀j ∈ {1, . . . , k − 2}, (18)

then p̄ satisfies i)ii)iii)iv).
The function qk−1 has an infinite support and is non-increasing, therefore it

has an infinity of 1-knots (points where qk−1 is strictly non-increasing).
Assume first that k is odd (k � 3). Let i0 be a 1-knot of qk−1 such that

i0 > s̃. We define q̄k−1 as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̄k−1(i) = qk−1(i) if i �= i0, i0 + 1

q̄k−1(i0) = qk−1(i0)− ε

q̄k−1(i0 + 1) = qk−1(i0 + 1) + ε.

(19)

where ε is some positive real number chosen such that q̄k−1 is still non-increasing.
For example take ε = (q̄k−1(i0) − q̄k−1(i0 + 1))/2. The function q̄k−1 is shown
at Figure 11.

Then the distribution p̄ defined at Equation (18) satisfies iv).
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To show the properties i) to iii), we will use the following equality whose
proof is straightforward and omitted:

∀i ∈ N, p̂(i)− p̄(i) = (−1)k−1
i−1∑
h1=0

h1−1∑
h2=0

. . .

hk−2−1∑
hk−1=0

(
qk−1(hk−1)− q̄k−1(hk−1)

)
,

(20)

where the indice hk−1 is in the set {0, . . . , i−k+1} which is empty if i � k− 1.
Let i � s̃. According to Equation (20) we get p̂(i) − p̄(i) � 0 because

q̄k−1(hk−1) = qk−1(hk−1) for all hk−1 ∈ {0, . . . , s̃ − k + 1}. Then the point
ii) is true.

Let i = i0 + k− 1. Noting that qk−1(hk−1) = q̄k−1(hk−1) except in hk−1 = i0
we get

p̂(i)− p̄(i) = (−1)k−1(qk−1(i0)− q̄k−1(i0)) = +ε (because k is odd).

and point iii) is shown.
It remains to show that p̄ � p̂. By construction of q̄k−1, the primitive of qk−1

is greater than the primitive of q̄k−1, and because p̂(i)− p̄(i) is nonnegative and
the following equality:

p̂(i)− p̄(i) =

i−1∑
h1=0

. . .

hk−3−1∑
hk−2=0

⎛⎝hk−2−1∑
hk−1=0

qk−1(hk−1)−
hk−2−1∑
hk−1=0

q̄k−1(hk−1)

⎞⎠ .

we get point i).
If k is even the proof is based on another construction of q̄k−1. Let us first

recall that i is a 1-knot of qk−1 if Δ1qk−1(i) = qk−1(i + 1) − qk−1(i) is strictly
negative (because k is even). We have two cases:

Case 1: There exists (i0, i1) such that s̃ � i0 < i1, i1 − i0 � 2, Δ1qk−1(i0) and
Δ1qk−1(i1) are strictly negative and Δ1qk−1(i) = 0. The probability q̄k−1 is
defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q̄k−1(i) = qk−1(i) if i < i0 + 1, i > i1

q̄k−1(i0 + 1) = qk−1(i0) + ε

q̄k−1(i1) = qk−1(i1)− ε

q̄ is an affine function on [i0 + 1, i1].

Case 2: For all i � s̃ + 1, Δ1qk−1(i) < 0. let i0 = s̃ + 1, then the probability
q̄k−1 is defined as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

q̄k−1(i) = qk−1(i) if i < i0 + 1, i > i0 + 2

q̄k−1(i0 + 1) = qk−1(i0) + ε

q̄k−1(i0 + 2) = qk−1(i0 + 2)− ε.
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Fig 12. Functions qk−1(i) and q̄k−1(i) versus i (k even).

The functions q̄k−1 are presented in Figure 12. The rest of the proof is similar
to the one when k is odd.

Therefore, Theorem 2 is proved in the case β(p̂) = 0. Assume now that
β(p̂) �= 0. By Theorem 1 we know that if l is a k-knot of p̂, β(p̂) is written as
follows:

F k
p̂ (l)− F k

p̃ (l)

mk
l

= β(p̂). (21)

Let us proved that if the support of p̄ is infinite then β(p̂) = 0. Indeed if the
support of p̄ is infinite, p̄ has an infinite numbers of k-knots and Equation (21)
is true for an infinite numbers of integers l.

Moreover by Equation (11) the term mk
l is a polynomial function in the

variable l with degree k and by Lemma 9 (see Section 7.4) the term F k
p̂ (l)−F k

p̃ (l)
is a polynomial function with degree less than k − 1. Therefore the left side in
Equation (21) tends to zero when l tends to infinity, showing that β(p̂) = 0.

Proof of 2.: k-knots’ repartition beyond s̃−k+2 Let us assume that k is
odd and prove that if ŝ � s̃+1 then Δkp̂(r) = 0 for all r ∈ [s̃− k+2, ŝ− 2]. We
consider q1, . . . , qk−1 the derivative functions of p̂ defined as before in Equation
(17).

As ŝ is a k-knot of p̂ there exist two consecutive 1-knots between r and s̃.
This allows to define the function q̄k−1 and p̄ as before in Equation (18) and
Equation (19).

By construction q̄k−1 is non-increasing (and nonnegative) and therefore p̄
is k-monotone (and nonnegative). Moreover p̄ is lower than p̂, equal to p̂ on
{0, . . . , s̃} and for i = r+k−1 we have p̄(i) < p̂(i). Moreover r+k−1 > s̃ because
r ∈ {s̃− k + 2,. . . ,ŝ− 1}. It follows that ‖p̄− p̃‖2 < ‖p̂− p̃‖2 which contradicts
the definition of p̂. Therefore p̂ does not have any k-knot on {s̃−k+2,. . . ,ŝ−1}.

The proof is similar when k is even.
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Remark 1. The second case requires qk−1(r + 2) > 0 for q̄ to be nonnegative.
That is to say we need that r + 2 � ŝ. This is the reason why the two sets
{s̃− k + 2,. . . ,ŝ− 2} and {s̃− k + 2,. . . ,ŝ− 1} are different if k is odd or k is
even.

7.1.3. Proof of Theorem 4 page 7: Comparison between the moments of p̃ and
the moments of p̂

Let q a sequence and let ε a real number such that (1−ε)p̂+εq is a k-monotone
probability. Using Lemma 5 (see Section 7.4) we obtain:

∞∑
i=0

(p̂(i)− p̃(i))q(i)−
∞∑
i=0

p̂(i)(p̂(i)− p̃(i)) � 0.

By definition β(p̂) = 〈p̂, p̂− p̃〉 therefore we have for all k � 2:

∞∑
i=0

(p̂(i)− p̃(i))q(i) � β(p̂).

For q(i) = |i − a|u+/m(a, u) we get the result. Moreover for q = δ0 we find
p̂(0)− p̃(0) � β(p̂).

7.1.4. Proof of Theorem 5 page 8: Rate of convergence of p̂

The proof is based on Lemma 6.2 of Jankowski and Wellner (2009) [21]. First we
assume that r = 2. Banach’s Theorem for projection on a closed convex set says
that the projection on the set of k-monotone probabilities is 1-lipschitzienne.
Then if pSk

is the projection of p on the set Sk we have:
√
n‖pSk

− p̂‖2 �
√
n‖p− p̃‖2

We need to show that
√
n‖p − p̃‖2 = OP(1), or equivalently that the series

Wn =
√
n(p− p̃) is tight in L2(N). Using Lemma 6.2 of Jankowski and Wellner

(2009), we have to show that:⎧⎪⎨⎪⎩
sup
n∈N

E
[
‖Wn‖22

]
< ∞,

lim
m→∞

sup
n∈N

∑
j�m E

[
‖Wn‖2

]
= 0.

This is easily verified by noting that var(p̃(j)) = p(j)(1− p(j))/n. Then for all
r ∈ [2,∞],

√
n‖pSk

− p̂‖r � √
n‖pSk

− p̂‖2 = OP(1).

7.1.5. Proof of Theorem 6 page 8: The case of a finite support for p

First part For all integer i, by the strong law of large numbers p̃(i) tends
a.s. to p(i). Because the maximum of the support s of p is finite we have the
following result:
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a.s. lim
n→∞

‖p̃− p‖22 = lim
n→∞

s∑
i=0

(p̃(i)− p(j))2 = 0.

Then by Theorem 3 we get that for all integer i:

a.s. lim
n→∞

(p̂(i)− p(i))2 � lim
n→∞

‖p̂− p‖22 � lim
n→∞

‖p̃− p‖22 = 0.

It follows that:

a.s. lim
n→∞

[
(−1)kΔkp̂(j)− (−1)kΔkp(j)

]
= 0.

Because (−1)kΔkp(j) > 0, almost surely for n large enough (−1)kΔkp̂(j) > 0,
which proves that j is a k-knot of p̂.

Second part If ŝ � s the theorem is true. We assume now that ŝ > s.
Let us first consider the case where k is odd. Thanks to the second point of

Theorem 2, if we note s̃ the maximum of the support of p̃ then p̂ has no k-knot
on {s̃− k + 2, . . . , ŝ− 2}.

Moreover as s̃ � s, p̂ has no k-knot in {s− k+2, . . . , ŝ− 2} (this set may be
empty).

The function p is k-monotone and s is a k-knot of p, then by Theorem 6
almost surely there exists n0 such as for all n � n0, s is a k-knot of p̂.

It follows that (almost surely) s is not in the set {s − k + 2, . . . , ŝ − 2} and
therefore s � ŝ− 1 or ŝ � s+ 1.

The proof of the result in the case where k is even is similar.

7.1.6. Proof of Theorem 8 page 12: Stopping criterion when k ∈ {3, 4}

We first show that p̂ satisfies the four properties stated in 1. We know by The-
orem 1 that it satisfies 1.(a) and 1.(b). Moreover by Lemma 8 (see Section 7.4)
it satisfies 1.(d). It remains to show 1.(c).

For ε a real number, and for any j ∈ {2, k − 1}, the function qε is defined as
follows:

qε(i) = (1− ε)p̂(i) + ε
Q̄j

ŝ+1(i)

mj
ŝ+1

where Q̄j
s+1 is defined at Equation (1).

The function qε is a k-monotone probability for ε small enough. Indeed
(−1)kΔkQ̄j

ŝ+1(i) is strictly nonpositive only for i = ŝ. Moreover (−1)kΔkp̂(ŝ) =

p̂(ŝ) > 0 then for ε smaller enough, (−1)kΔkqε(ŝ) = (1−ε)p̂(ŝ)−εQj
ŝ+1(i)/m

j
ŝ+1

is nonnegative.
Using Lemma 5 (see Section 7.4) we obtain:

∞∑
i=0

(p̂(i)− p̃(i))
Q̄k

l (i)

mk
l

−
∞∑
i=0

p̂(i)(p̂(i)− p̃(i)) � 0.
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By Lemma 6 (see Section 7.4) and the fact that β(p̂) = 〈p̂, p̂ − p̃〉 we deduce
that:

F j
p̂ (ŝ+ 1)− F j

p̃ (ŝ+ 1)

mj
ŝ+1

� β(p̂),

which is exactly 2.(c).
Reciprocally we assume now that f satisfies 1. and we show that f = p̂, which

by Theorem 1, is equivalent to show that

F k
f (l)− F k

p̃ (l) � β(f)mk
l ,

for all l ∈ N with equality if l is a k-knot of f .
This is true for l � s + 1 because f satisfies 2.(a) and 2.(b). Because f has

no k-knot after s it remains to show that the inequality is true for l � s+ 2.
We begin with the case k = 3. Because s � s̃ and f and p̃ are probabilities,

applying Theorem 4, we obtain that for all l � s+ 1,

F 3
f (l)− F 3

p̃ (l) =

3∑
j=2

Q3−j+1
l−1 (s+ 1)

(
F j
f (s+ 1)− F j

p̃ (s+ 1)
)

=
(
F 3
f (s+ 1)− F 3

p̃ (s+ 1)
)
+ (l − s− 1)

(
F 2
f (s+ 1)− F 2

p̃ (s+ 1)
)
.

As f satisfies 1.(a) we have:

F 3
f (l)− F 3

p̃ (l) � β(f)m3
s+1 + (l − s− 1)

(
F 2
f (s+ 1)− F 2

p̃ (s+ 1)
)
.

Moreover as f satisfies 1.(c) we have:

F 3
f (l)− F 3

p̃ (l)

� β(f)m3
s+1 + (l − s− 1)β(f)m2

s+1 = β(f)
(
m3

s+1 + (l − s− 1)m2
s+1

)
.

Finally, because β(f) � 0 by 1.(d), it remains to show that:

m3
s+1 + (l − s− 1)m2

s+1 � m3
l . (22)

By Equation (11), Equation (22) may be written as follows:

(s+ 4)(s+ 3)(s+ 2)

6
+ (l − s− 1)

(s+ 3)(s+ 2)

2
� (l + 3)(l + 2)(l + 1)

6
.

After some calculations, we can show that (22) is satisfied if and only if P3(l) � 0
where P3 is the polynomial function P3(l) = (l− s)(l− (s+1))(l+2s+7). This
is true because l � s+ 1.

Let us now prove the case k = 4. By Theorem 4 we obtain for all l � s+ 1:

F 4
f (l)− F 4

p̃ (l) =
(
F 4
f (s+ 1)− F 4

p̃ (s+ 1)
)
+ (l − s− 1)

(
F 3
f (s+ 1)− F 3

p̃ (s+ 1)
)

+Q3
l−1(s+ 1)

(
F 2
f (s+ 1)− F 2

p̃ (s+ 1)
)
.
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Let AI(s) = Πi∈I(s+ i), then using Equation (11) we need to show that:

A[3,5](s) + 4A[3,4](s)(l − s− s) + 6(l − s− 1)(l − s− 2)A{3}(s)

�
(l + 1)A[1,4](l)

s+ 2
. (23)

After some calculations, we can show that (23) is satisfied if and only if P4(l) � 0
where P4 is the polynomial function

P4(l) = A[1,4](l)− 6(l − (s+ 1))(l − (s+ 2))A[2,3](s)

+ 4(l − (s+ 1))A[2,4](s)−A[2,5](s).

We have P4(l + 1) − P4(l) = 4(P3(l + 1) + 3(s + 2)(s + 3)) and P4(s + 2) =
12(s+ 3)(s+ 4) > 0 then P4(l) � 0 because l � s+ 2.

7.2. Proof of the algorithm: Estimating π on a finite support

We show the following theorem for the algorithm described in Section 4:

Theorem 9. The algorithm described at Table 1 page 10 returns p̂L in a finite
number of steps.

7.2.1. Proof of Theorem 9

During step 1 the set S is a subset of {0, . . . , L} and π is the minimizer of Ψ on
the set S.

The criterion allowing us to determine if π = π̂L (and to stop the algorithm)
is given by Lemma 2 (see Section 7.2.2).

In order to show that the algorithm returns π̂L in a finite number of steps
we need to show the both assertions:

• Assertion 1: Going from Step 2 to Step 1 is done in a finite number of
runs.

• Assertion 2: If πm denotes the value of π at iteration m of the algorithm,
then (Ψ(πm)) converges to the minimum of Ψ on the set of probabilities
with support on {0, . . . , L} that is to say to π̂L.

At Step 2 the set S′ may be reduced up to one element, but it can not be
empty because the minimizer of Ψ on a singleton is non-negative. That proves
Assertion 1.

Let us show Assertion 2 by proving that for all m ∈ N
∗, Ψ(πm+1) < Ψ(πm).

Let S be the support of πm at iteration m, and let j ∈ {0, . . . , L} be an integer
such as DδjΨ(πm) < 0. We have S′ = S + j and Ψ(πS′) < Ψ(πS) by Lemma 4
(see Section 7.2.2).

We consider two cases:
1: If πS′ is a nonnegative measure we go to Step 1 with π = πS′ . In other

terms πm+1 = πS′ and therefore Ψ(πm+1) < Ψ(πm) = Ψ(πS).
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2: If πS′ is not a nonnegative measure the algorithm iterates inside Step 2 and
πS′ is updated at each loop. We need to verify that at the end of this iterative
procedure:

Ψ(πS′′) < Ψ(πS).

Let r be the number of times when we go in Step 2 during the m-th loop and
let S′′

h be the value of the set S′′ the h-th time we go in Step 2. We have
πm+1 = πS′′

h
.

We show by induction the following property:

HRh : Ψ(πS′′
h
) < Ψ(πS).

Thanks to the property 2. in Lemma 4 (see Section 7.2.2) the property HR1

is true. Assume now that HRh is true for some h � r− 1, Ψ(πS′′
h
) < Ψ(πS). Let

l and ε be defined as follows:

l = argmin
i∈S′

{ ai
ai − πS′′

h
(i)

, pour i, πS′′
h
(i) < ai},

ε =
al

al − πS′′
h
(l)

.

Then (1 − ε)πS + επS′′
h
is a 1-mass function with support S′′

h+1 = S′′
h − {l}. It

follows, by convexity of Ψ that:

Ψ(πS′′
h+1

) � Ψ((1− ε)πS + επS′′
h
)

� (1− ε)Ψ(πS) + εΨ(πS′′
h
).

Thanks to HRh, it follows that:

Ψ(πS′′
h+1

) < Ψ(πS),

and HRh+1 is true.
Then HRr is true, that is to say Ψ(πm+1) < Ψ(πm) for all integer m, and

(Ψ(πm))m∈N) converges when m tends to infinity (because it is a nonincreasing
and bounded sequence). The limit is the minimum of Ψ because the nondecreas-
ing is strict.

7.2.2. Proof of the lemmas used in the proof of Theorem 9

The proof of Theorem 9 is based on the following lemmas whose proofs are given
afterwards. All the notations used in this section were defined in Section 4.

Lemma 1. Let π and μ be two probabilities with support on the set {0, . . . , L}.
Then we have the following equality:

DμΨ(π) =

L∑
j=0

μ(j)DδjΨ(π).

Lemma 2. There is equivalence between:

1. π = π̂L.
2. ∀j ∈ {0, . . . , L}, DδjΨ(π) � 0.



36 J. Giguelay

Moreover if π = π̂L then for all j ∈ supp(π) we have DδjΨ(π) = 0.

Lemma 3. Let MS be the set of positive measure π whose support is included
in the set S. Let πS and πS′ be defined as follows:

πS = argmin∑
j∈S π(j)=1

π∈MS

(
Ψ(π)

)
,

π′
S = argmin

π∈MS

⎛⎝Ψ(π) + λS(
∑
j∈S

π(j)− 1)

⎞⎠ .

Then we have πS = π′
S.

The proof of the following lemma is in Durot and al. [13]:

Lemma 4. Let πS =
∑

i∈S aiδi be the minimizer of Ψ over the set of nonneg-
ative sequences with support S ⊂ {0, . . . , L}.

Let j an integer such that j /∈ S and DδjΨ(πL) < 0.
Let π∗

S′ =
∑

i∈S′ biδi be the minimizer of Ψ over the set of sequences with
support S′ = S + {j}.

Then, the two following results hold:

1. Ψ(πS′) < Ψ(πS).
2. Assume that bi for some i ∈ S is strictly nonpositive and let:

l = argmin
1∈S′

{ ai
ai − bi

, pour i, bi < ai}.

If πS′′ is the minimizer of Ψ over the set of sequences with support S′′ =
S′ − {l}, then Ψ(πS′′) < Ψ(πS).

Proof of Lemma 1 Let μ be a probability with support included in {0, . . . , L}.
We write μ =

∑L
j=0 μ(j)δj then, for L � s̃:

DμΨ(π) = lim
ε↘0+

1

ε

(
Ψ
(
(1− ε)π + εμ

)
−Ψ(π)

)
= lim

ε↘0+

1

ε

⎛⎝ L∑
i=0

(
L∑

l=0

[(1− ε)π(l) + εμ(l)]Qk
l (i))− p̃(i)

)2

−
L∑

i=0

(
L∑

l=0

π(l)Qk
l (i))− p̃(i)

)2
⎞⎠

= lim
ε↘0+

1

ε

L∑
i=0

[
2ε

(
L∑

l=0

(μ(l)− π(l))Qk
l (i)

)(
L∑

l=0

π(l)Qk
l (i)− p̃(i)

)]

+ε2

(
L∑

l=0

(μ(l)− π(l))Qk
l (i)

)2
⎤⎦
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=2

L∑
i=0

(
L∑

l=0

μ(l)Qk
l (i)−

L∑
l=0

π(l)Qk
l (i)

)(
L∑

l=0

π(l)Qk
l (i)− p̃(i)

)
.

In particular for μ = δj we find:

DδjΨ(π) = 2

L∑
i=0

(
Qk

j (i)−
L∑

l=0

π(l)Qk
l (i)

)(
L∑
l=i

π(l)Qk
l (i)− p̃(i)

)
.

Then, by noting that
∑

j μ(j) = 1 we have the following equalities:

L∑
j=0

μ(j)DδjΨ(π)

= 2
L∑

i=0

⎛⎝ L∑
j=0

μ(j)

(
Qk

j (i)−
L∑

l=0

π(l)Qk
l (i)

)⎞⎠(
L∑
l=i

π(l)Qk
l (i)− p̃(i)

)

= 2

L∑
i=0

⎛⎝ L∑
j=0

μ(j)Qk
j (i)−

L∑
l=0

π(l)Qk
l (i)

⎞⎠(
L∑
l=i

π(l)Qk
l (i)− p̃(i)

)

and the lemma is proved.

Proof of Lemma 2 We first show that π̂L satisfies 2.
For all 0 < ε < 1 and j ∈ {0, . . . , L} the function (1 − ε)π̂L + εδj is a

probability and then by definition of π̂L we have the following inequality:

lim
ε↘0+

1

ε

(
Ψ((1− ε)π̂L + εδj)−Ψ(π̂L)

)
� 0,

which leads to DδjΨ(π̂L) � 0, showing the point 2.
Reciprocally, for π a probability that satisfies 2., let us show that π = π̂L.

Precisely we show that for all probability μ with support on {0, . . . , L} we have
Ψ(μ)−Ψ(π) � 0. Because Ψ is convex we have:

DμΨ(π) = lim
ε↘0+

1

ε

(
Ψ
(
(1− ε)π + εμ

)
−Ψ(π)

)
� lim

ε↘0+

1

ε

(
(1− ε)Ψ(π) + εΨ(μ))−Ψ(π)

)
� Ψ(μ)−Ψ(π),

and by Lemma 1 we have:

DμΨ(π) =

L∑
j=0

μ(j)DδjΨ(π).

Because π satisfies 2., DμΨ(π) � 0, and finally Ψ(μ)−Ψ(π) � 0 and π = π̂L.
To conclude assume now that j ∈ supp(π̂L). Then the function (1+ε)π̂L−εδj

is a probability for ε positive small enough, and we have the following inequality:
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−DδjΨ(π) = lim
ε↘0+

1

ε

(
Ψ((1 + ε)π̂L − εδj)−Ψ(π̂L)

)
� 0,

which concludes the proof of the lemma.

Proof of Lemma 3 Let πS be the solution of the first problem of minimiza-
tion. Let QS and HS be defined as in Section 4. The KKT’s conditions give us
that πS is the unique sequence that satisfies:

∃λS ∈ R,

{ ∑
j∈S πS(j) = 1

∂
∂πL(πS , λS) = 0

(24)

where L is the Lagrange’s function:

L(π, λ) = Ψ(π) + λ(
∑
j∈S

π(j)− 1).

The partial derivative function of L is:

∂

∂π
L(π, λ) = −QT

S (p̃−QSπ) + λQT
S I,

where I is the vector with L+ 1 components equal to 1. We have

πS = (QT
SQS)

−1QT
S (p̃− λSI) and QSπS = HS(p̃− λSI),

leading to:

1 =< QSπS , I >=< HS p̃, I > −λS < HI, I > .

Finally we obtain:

λS =
< Hp̃, I > −1

< HI, I >
.

Then for all π with support included on S we have L(πS , λS) � L(π, λS) and
πS is solution for the second problem:

πS = argmin
supp(π)⊂S

(
L(π, λS)

)
.

Because we are considering strictly convex minimization problems, we get πS =
π

′

S .

7.3. Proof of properties

7.3.1. Proof of Property 2 page 4: The link between k-monotonicity and
(k − 1)-monotonicity

We show this result by iteration. First a convex (or 2-monotone) discrete func-
tion on L1(N) is nonincreasing (see [24]).
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Let now k � 3. Let p ∈ L1(N) be a k-monotone function. We denote q the
following discrete function:

∀i ∈ N, q(i) = (−1)k−2Δk−2p(i).

The function q is in L1(N) and Δ2q(i) = (−1)kΔkp(i) � 0 for all i ∈ N.
Therefore q is convex and nonincreasing.

It follows that for all i ∈ N, (−Δ1)((−1)k−2Δk−2p(i)) = q(i) − q(i + 1) � 0
i.e. (−1)k−1Δk−1p(i) � 0 and p is (k − 1)-monotone.

7.3.2. Proof of Property 4 page 11

We prove this property by induction. First for k = 2, we have the following
equalities:

F 2
f (l)− F 2

p̃ (l) =

l∑
h1=0

h1∑
h2=0

(f(h2)− p̃(h2))

=

s∑
h1=0

h1∑
h2=0

(f(h2)− p̃(h2)) +

l∑
h1=s+1

h1∑
h2=0

(f(h2)− p̃(h2))

= F 2
f (s)− F 2

p̃ (s) +

l∑
h1=s+1

s∑
h2=0

(f(h2)− p̃(h2))

= F 2
f (s)− F 2

p̃ (s) + (F 1
f (s)− F 1

p̃ (s))(l − s)+.

Because Q̄2
l−1(s) = (l − s)+ the property is true for k = 2.

Assume now that the property is true until the rank k − 1. We have the
following properties:

F k
f (l)− F k

p̃ (l) =
l∑

h=0

(F k−1
f (h)− F k−1

p̃ (h))

=

s∑
h=0

(F k−1
f (h)− F k−1

p̃ (h)) +

l∑
h=s+1

(F k−1
f (l)− F k−1

p̃ (l))

= F k
f (s)− F k

p̃ (s) +

l∑
h=s+1

( k−1∑
j=1

Q̄k−1−j+1
h−1 (s)

(
F j
f (s)− F j

p̃ (s)
))
.

The last equality is obtained by iteration. Using the definition of the Qk
j we get:

Q̄k−j
h−1(l) = Q̄k−j

l−1 (l − h+ s)

= Q̄k−j+1
l−1 (l − h+ s)− Q̄k−j+1

l−1 (l − h+ s+ 1),

and the following equalities:

F k
f (l)−F k

p̃ (l) = F k
f (s)− F k

p̃ (s) +

k−1∑
j=1

(
F j
f (s)− F j

p̃ (s)
)
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×
1∑

h=s+1

(
Q̄k−j+1

l−1 (l − h+ s)− Q̄k−j+1
l−1 (l − h+ s+ 1)

)
= F k

f (s)−F k
p̃ (s) +

k−1∑
j=1

(
F j
f (s)− F j

p̃ (s)
)(
Q̄k−j+1

l−1 (s)− Q̄k−j+1
l−1 (l)

)
.

Because Q̄k−j+1
l−1 (l) = 0 and Q̄k−k+1

l−1 (s) = 1, we finally obtain:

F k
f (l)− F k

p̃ (l) =

k∑
j=1

Q̄k−j+1
l−1 (s)

(
F j
f (s)− F j

p̃ (s)
)
.

7.3.3. Proof of Property 5 page 13: Link between p̂ and p̂∗

The following property gives a characterization of the estimator p̂∗:

Property 9. Let f ∈ L1(N). There is an equivalence between:

1. • For all l ∈ N we have F k
f (l) � F k

p̃ (l).

• If l is a k-knot of f , then the previous inequality is an equality.
2. f = p̂∗.

The proof is similar to the proof of Theorem 1 and is omitted. Property 5 is
deduced from Property 9.

7.3.4. Proof of Property 6 page 13: The mass of p̂∗ is greater than or equal 1

Let smax the maximum of ŝ∗ and s̃ (the maxima of the supports of p̂∗ and p̃
respectively), then using Property 4, for all l � smax we have:

F k
p̂∗(l)− F k

p̃ (l) =

k∑
j=1

Q̄k−j+1
l−1 (smax)

(
F j
p̂∗(smax)− F j

p̃ (smax)
)
.

Because the quantities Q̄j
l−1(smax) are polynomial functions of l − smax with

degree j − 1, we get:

F k
p̂∗(l)− F k

p̃ (l) =F 1
p̂∗(smax)− F 1

p̃ (smax)
(l − smax)

k−1

(k − 1)!
+ o(lk−1)

=(

smax∑
j=0

p̂∗(j)− 1)
(l − smax)

k−1

(k − 1)!
+ o(lk−1).

If
∑smax

j=0 p̂∗(j) < 1 then, when l tends to infinity, the right-hand term tends
to −∞ and the left-hand term is non-negative by Property 9. Therefore∑smax

j=0 p̂∗(j) � 1.



Probability estimation under k-monotonicity constraint 41

7.3.5. Proof of the projection of δ1 onto S3 in Section 5

Our purpose is to show that the projection of δ1 on the cone S3 has a mass
strictly greater than one. After some computational results, we guess that this
projection is written as f = αQ̄3

5 + βQ̄3
6. We will now establish a necessary and

sufficient condition which makes sure that f is p̂∗3. This condition is given in
Property 9 (see Section 7.3.3).

We search α and β such as f = αQ̄3
5 + βQ̄3

6 satisfies the stopping criterion.
For this p we have f = (21α+28β, 15α+21β, 10α+15β, 6α+10β, 3α+6β, α+
3β, β, 0 . . .). With elementary calculations we obtain the following necessary
conditions for α and β:

S1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F 3
p (0) = 21α+ 28β � 0 = F 3

δ1
(0)

F 3
p (1) = 78α+ 105β � 1 = F 3

δ1
(1)

F 3
p (2) = 181α+ 246β � 3 = F 3

δ1
(2)

F 3
p (3) = 336α+ 461β � 6 = F 3

δ1
(3)

F 3
p (4) = 546α+ 756β � 10 = F 3

δ1
(4)

F 3
p (5) = 812α+ 1134β � 15 = F 3

δ1
(5)

F 3
p (6) = 1134α+ 1596β � 21 = F 3

δ1
(6)

F 3
p (7) = 1512α+ 2142β � 28 = F 3

δ1
(7)

and

S2 =

{
F 1
p (7) = 61α+ 89β � 1 = F 1

δ1
(7)

F 2
p (2) = 378α+ 546β � 7 = F 2

δ1
(7)

and

S3 =

⎧⎪⎪⎨⎪⎪⎩
(−1)3Δ3p(i) = 0 if i > 8 or if i < 5

(−1)3Δ3p(6) = 2β

(−1)3Δ3p(5) = 2α.

The condition S1 assure that f satisfies 1., S2 that p satisfies 2.(c) and S3 that
p satisfies 2.(b).

If we assume that α and β are strictly nonnegative we find the more restrictive
necessary condition:

S4 =

{
812α+ 1134β = 15

1134α+ 1596β = 21
=

{
812α+ 1134β = 15

54α+ 76β = 1,

whose unique solution is {
α = 3

238

β = 1
238 .



42 J. Giguelay

Reciprocally if we take α and β like before then f satisfies the conditions S1,
S2 and S3. Using Property 9 it follows that f is the projection of δ1 on the set
of 3-monotone sequences.

Let us recall that mk
j is the mass of Q̄k

j . Then the mass of f is equal to

m(f) = αm3
5 + βm3

6 = 3
238 × 56 + 1

238 × 84 = 1.058824.

7.3.6. Proof of Property 7 page 13: The mass of p̂∗ converges to 1

Let ε > 0 be a real number. Since the set of k-monotone probabilities is included
in the set of decreasing probabilities there exists an integer sε such as for all
k-monotone probability q, the following inequality is true:

∞∑
i=sε+1

q(i) � ε/4.

Let p be a discrete k-monotone probability. The following inequalities are true:

∣∣ ∞∑
i=0

p̂∗(i)− 1
∣∣ �

∣∣ sε∑
i=0

(p̂∗(i)− p(i))
∣∣+ ∣∣ ∞∑

i=sε+1

(p̂∗(i)− p(i))
∣∣

�
sε∑
i=0

|p̂∗(i)− p(i)|+ ε/2.

Moreover, by Theorem 3 ‖p− p̂∗‖2 � ‖p− p̃n‖2 almost surely and therefore we
have:

lim
n→∞

∞∑
i=0

(p̂∗(i)− p(i))2 = 0.

Then almost surely for all i ∈ N we have lim
n→∞

(p̂∗(i) − p(i)) = 0 and

lim
n→∞

∑sε
i=0 |p̂∗(i)− p(i)| = 0. Finally almost surely we have:

lim
n→∞

∣∣ ∞∑
i=0

p̂∗(i)− 1
∣∣ = 0.

7.3.7. Proof of Property 8 page 14: k-monotonicity for the Poisson law

We prove that the Poisson distribution P(λ) is l-monotone if and only if λ � λl.
The distribution q = P(λ) is l-monotone if and only if for all i ∈ N we have
(−1)kΔkq(i) � 0. We have for all l ∈ N the following equalities:

(−1)kΔkq(i) =

l∑
h=0

(−1)h(lh)
λh+ie−λ

(h+ i)!
=

λie−λ

(h+ l)!
Rl(λ, i)

where Rl is the polynomial function defined as follows:
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Rl(λ, i) =

l∑
h=0

(−1)h(lh)λ
h(h+ l) . . . (h+ i+ 1).

Therefore a necessary condition for P(λ) to be l-monotone is Rl(λ, 0) nonnega-
tive which is equivalent to Pl(λ) nonnegative where Pl(λ) is defined as follows:

P�(λ) =

�∑
h=0

(−1)h
(	!)2

h!((	− h)!)2
λh.

Conversely, because i ↪→ Rl(λ, i) is an increasing function for λ ∈ [0, 1], the
condition is sufficient.

When λ tends to infinity, Pl(λ, 0) tends to +∞ then Pl(λ) is nonnegative
until the smallest root of Pl which is nonnegative. In other terms the previous
condition is true in particular for λ � λl.

7.4. Proofs of the technical lemmas

Let us first state technical lemmas used in the proofs given before. Their proofs
are given afterwards.

Lemma 5. Let q be a sequence. For all ε real number we note qε = (1−ε)p̂k+εq.
We note also D(p̂k, p̃, q) =

∑∞
i=0

(
p̂k(i)− p̃(i)

)
q(i)−

∑∞
i=0

(
p̂k(i)− p̃(i)

)
p̂k(i).

1. We assume that for all ε > 0 the sequence qε is a k-monotone probability.
Then D(p̂k, p̃, q) � 0.

2. We assume that for all ε < 0 the sequence qε is a k-monotone probability.
Then D(p̂k, p̃, q) � 0.

Lemma 6. For all integer k � 2, for all l ∈ N and for all f ∈ P, the following
assumption is true:

l∑
i=0

f(i)Q̄k
l (i) = F k

f (l). (25)

Lemma 7. For all k � 0, for all f ∈ Sk, for all g ∈ L1(N):

∞∑
i=0

f(i)g(i) =
∞∑
i=0

(−1)kΔkf(i)F k
g (i).

In particular for all f ∈ Sk the coefficient β(f) defined at Equation (5) satisfies:

β(f) =

∞∑
i=0

f(i)(f(i)− p̃(i)) =

∞∑
i=0

(−1)kΔkf(i)
(
F k
f (i)− F k

p̃ (i)
)
.

Lemma 8. The coefficient β(p̂) defined at Equation (5) is always non-positive

Lemma 9. Let k � 2. Let f ∈ L1(N), s ∈ N and l � s. The following equality
is true:

F k
f (l)− F k

p̃ (l) =
(l − s)k−1

(k − 1)!
(F 1

f (s)− F 1
p̃ (s)) + o(lk−1).
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Proof of Lemma 5 We proove the first point. The function qε is a k-monotone
probability and p̂k minimizes Q on the set of k-monotone probabilities then for
all ε > 0 we have Q(qε) � Q(p̂k) and:

lim inf
ε↘0

1

ε
(Q(qε)−Q(p̂k)) � 0,

that is equivalent to:

lim inf
ε↘0

1

ε

( ∞∑
i=0

(
(1− ε)p̂k(i) + εq(i)− p̃(i)

)2 − ∞∑
i=0

(p̂k(i)− p̃(i))2

)
� 0.

Therefore we have the following inequality:

lim inf
ε↘0

1

ε

( ∞∑
i=0

[
(p̂k(i)− p̃(i))2 + 2ε

(
p̂k(i)− p̃(i)

)(
q(i)− p̂k(i)

)
+ε2

(
q(i)− p̂k(i)

)2]− ∞∑
i=0

(p̂k(i)− p̃(i))2

)
� 0,

leading to:

lim inf
ε↘0

1

ε

(
ε2

∞∑
i=0

(q(i)− p̂k(i))2 + 2ε

∞∑
i=0

(p̂k(i)− p̃(i))(q(i)− p̂k(i))

)
� 0,

and finally to:

∞∑
i=0

(p̂k(i)− p̃(i))q(i)−
∞∑
i=0

(p̂k(i)− p̃(i))p̂k(i) � 0.

The proof of the second point is similar. The function qε is a k-monotone prob-
ability and p̂k minimizes Q on the set of k-monotone probabilities then for all
ε < 0 we have Q(qε) � Q(p̂k) and:

lim inf
ε↘0

1

ε
(Q(qε)−Q(p̂k)) � 0,

The following calculations are the same that for the first point.

Proof of Lemma 6 The lemma is proved by induction. Let us first consider
k = 2. Let f be a positive sequence and l ∈ N. We have:

F 2
f (l) =

l∑
h=0

h∑
i=0

f(i) =

l∑
i=0

l∑
h=i

f(i) =

l∑
i=0

f(i)(l + 1− i) =

l∑
i=0

f(i)Q̄2
l (i),

and Equation (25) is shown. Assume that Equation (25) is true for k − 1 � 2.
We have the following equalities:

F k
f (l) =

l∑
h=0

F k−1
f (h) =

l∑
h=0

h∑
i=0

f(i)Q̄k−1
h (i) =

l∑
i=0

f(i)

l∑
h=i

Q̄k−1
h (i).

Using Pascal’s Triangle and the definition of Q̄k
j , we get:
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F k
f (l) =

l∑
i=0

f(i)

l∑
h=i

(
Q̄k

h(i)− Q̄k
h(i+ 1)

)
=

l∑
i=0

f(i)
( l∑
h=i

Q̄k
h(i)−

l∑
h=i

Q̄k
h−1(i)

)
where the last equality comes from Q̄k

h(i + 1) = Q̄k
h−1(i) with the convention

Q̄k
0 = 0. Finally we obtain:

F k
f (l) =

l∑
i=0

f(i)
(
Q̄k

l (i)
)
,

and the lemma is shown.

Proof of Lemma 7 The lemma is proved by induction. First it is true for
k = 0 with the convention Δ0f(i) = f(i) = F 0

f (i). Assume now that the result
if true for some k − 1 � 0. We have the following inequalities:

∞∑
i=0

Δkf(i)F k
g (i) =

∞∑
i=0

(Δk−1f(i+ 1)−Δk−1f(i))F k
g (i)

=

∞∑
i=1

Δk−1f(i)F k
g (i− 1)−

∞∑
i=0

Δk−1f(i)F k
g (i)

=

∞∑
i=1

Δk−1f(i)[F k
g (i− 1)− F k

g (i)]−Δk−1f(0)F k
g (0)

=−
∞∑
i=1

Δk−1f(i)F k−1
g (i))−Δk−1f(0)F k−1

g (0)

because F k
g (0) =

∑0
h1=0 . . .

∑0
hk=0 g(hk) = f(0) = F k−1

g (0).

Remark 2. This sums are well-defined because thanks to Lemma 6 ((see Section
7.4) we have:

∞∑
l=0

|F k
g (l)Δ

kf(l)| =
∞∑
l=0

l∑
i=0

g(i)Q̄k
l (i)(−1)kΔkf(l)

=

∞∑
i=0

( ∞∑
l=i

(−1)kΔkf(l)Q̄k
l (i)

)
g(i).

By Property 3 (see Section 2) we have the equality:

f(i) =

∞∑
l=0

(−1)kΔkf(l)Q̄k
l (i).

Then
∑∞

l=i(−1)kΔkf(l)Q̄k
l (i) � 1 and finally:
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∞∑
l=0

|F k
f (l)Δ

kf(l)| �
∞∑
i=0

f(i) < ∞.

It follows that
∑∞

i=0 Δ
kf(i)F k

g (i) = −
∑∞

i=0 Δ
k−1f(i)F k−1

g (i) and the lemma
is proved.

Proof of Lemma 8 We note ŝ and s̃ the maxima of the supports of p̂ and p̃
respectively. We note smax = max(ŝ, s̃). We use Property 4 with f = p̂ and we
obtain that for all l � smax + 1:

F k
p̂ (l)− F k

p̃ (l) =
k∑

j=1

Q̄k−j+1
l−1 (smax)

(
F j
p̂ (smax)− F j

p̃ (smax)
)

=

k∑
j=2

Q̄k−j+1
l−1 (smax)

(
F j
p̂ (smax)− F j

p̃ (smax)
)
.

The last equality comes from F 1
p̂ (smax) = F 1

p̃ (smax) = 1 because p̂ and p̃ are
probabilities and smax is greater than p̂ and p̃.

Because the quantities Q̄j
l−1(smax) are polynomial functions with degree j−1

in the variable l − smax we write F k
p̂ (l)− F k

p̃ (l) in the following form:

F k
p̂ (l)− F k

p̃ (l) =
(F 2

p̂ (smax)− F 2
p̃ (smax))

(k − 2)!
(l − s)k−2 + o(lk−2).

Thanks to Equation (11), mk
l is a polynomial function with degree k and we

have the following limit:

lim
l→∞

F k
p̂ (l)− F k

p̃ (l)

mk
l

= 0.

Moreover for all l ∈ N the characterization of p̂ gives us:

F k
p̂ (l)− F k

p̃ (l)

mk
l

� β(p̂).

Necessarily β(p̂) � 0.

Proof of Lemma 9 We show this result by induction. For k = 2 the result is
shown in [13]. Assume that the result is true for some k − 1 � 2. We have the
following equalities:

F k
f (l)− F k

p̃ (l)

=

l∑
h=0

(
F k−1
f (h)− F k−1

p̃ (h)
)
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=

s∑
h=0

(
F k−1
f (h)− F k−1

p̃ (h)
)
+

l∑
h=s+1

(
F k−1
f (h)− F k−1

p̃ (h)
)

=
(
F k
f (s)− F k

p̃ (s)
)
+

l∑
h=s+1

(
(h− s)k−2

(k − 2)!

(
F 1
f (s)− F 1

p̃ (s)
)
+ o(hk−2)

)

=
(l − s)k−1

(k − 1)!
(F 1

f (s)− F 1
p̃ (s)) + o(lk−1).

The last equality is due to a result of Bernoulli for Faulhaber’s sum: the k-th
sum of Faulhaber is denoted by Sk and defined as follows:

Sk(m) =

m∑
i=1

ik.

It is shown that:

Sk(m) =
1

k + 1

k∑
j=0

Cj
k+1Bjm

k+1−j =
1

k + 1

(
mk+1 +

k + 1

2
mk + . . .

)
where the Bj are Bernoulli’s numbers (with the convention B1 = 1

2 ). A proof of
this result can be found in [10].
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