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1. Introduction

In recent years, there has been ever increasing interest in statistical methods
addressing the problem of structural stability in a time series environment.
The literature on change-point detection is vast, including many different time
series models, both short and long range dependent, sequential and retrospective
detection, single or multiple change-points. Here, we consider one of the most
widely applied time series models, the causal linear process, which is defined as
follows: for i ∈ Z,

Xi =
∑
j≥0

ajξi−j (1)

where (ξj : j ∈ Z) is a sequence of independent and identically distributed
(i.i.d.) random variables and (aj : j ∈ N) is an absolutely summable sequence of
constants. When E[ξ2i ] is finite, the summability of the coefficients ensures that
linear model has a summable covariance structure (i.e. is short range dependent).
However, the model we consider is much more general and includes a wide range
of stationary ARMA time series, many of which are non-mixing. Further, our
methods can be applied to discretely observed continuous time models such as
the Lévy driven Ornstein-Uhlenbeck process, where the sampled process can be
represented as a discrete-time AR(1) process (cf. [1]).

The goal is to detect a change in the marginal distribution of the linear
process (X1, ..., Xn) at an unobserved time [nθn], θn ∈ (0, 1). Our approach is
retrospective and the test statistics are based on the sequential empirical distri-

bution F[ns](x) :=
1

[ns]

∑[ns]
i=1 I(Xi ≤ x), for −∞ < x < ∞ and 0 ≤ s ≤ 1. The
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novelty of our approach is in its generality - our change point model incorporates
any change in the innovations (ξi) and/or the coefficients (ai). Furthermore, the
change point can be data-dependent. Provided that the nature of the change
ensures a change in the marginal distribution of the Xi’s, it will be reflected in
the asymptotic behaviour of the sequential empirical distribution, thereby en-
suring consistency of the proposed test statistics. Our conditions are mild and
in fact it is not required that E[|Xi|] be finite - all that is needed is the exis-
tence of a moment of some order δ > 0 for the innovations (ξi) combined with
a corresponding condition on summability of the coefficients (ai). In contrast
with most of the literature on short range dependent time series, we impose
no conditions on mixing or association, and indeed our model includes many
non-mixing sequences. A classic example due to Ibragimov is the following: let
the ξi’s be i.i.d. N(0, 1) and let ai be the coefficient of zi in the power series
expansion of the function h(z) = (1 − z)p, where p > 4 is non-integer. In this
case, |ai| = O(i1−p) but (Xi) is not strong mixing (cf. [10]). Therefore, we take
a different approach to change-point detection for linear processes.

As noted above, the time-change literature in a time series framework is
vast. In most of the literature, the tests developed detect a specific change (in
location, scale, covariance structure, or spectrum, as a few examples). A good
review and discussion may be found in [16] and [6]. For instance, a linear model
is considered in [2] and although mixing is not required, the summability and
moment conditions imposed are stronger than ours and the change considered
is reflected in the covariance structure of the process. On the other hand, for
a change in the marginal distribution, the most relevant references are [8] and
[11].

The test statistics that we propose here are also discussed in [8] and [11].
In all cases, the key to studying the asymptotic behaviour of the test statis-
tics is a functional central limit theorem (FCLT) for the sequential empirical
process both with and without a change point. The simple model considered in
[8] is a change from one stationary time series to another at a fixed time, with
no assumptions about the relation between the pre- and post-change time se-
ries. Both short and long range dependent time series are considered. However,
it is assumed a priori that appropriate FCLTs are satisfied by the sequential
empirical process. Conditions under which this is true are discussed briefly for
independent observations, mixing sequences, converging alternatives and long
memory processes. In the case of the linear model, there is a detailed analysis of
the long range dependent case when there is a change in the coefficients (ai), but
not in the innovations (ξi). Here our model includes, but is not limited to, short
range dependent linear processes and we are able to prove the necessary FCLTs
both with and without a change point. As noted above, we can incorporate
changes in both the coefficients and innovations at the same time. Furthermore,
we allow random change points.

On the other hand, the change point model in [11] is more complex. While
no specific time series model is imposed, there are very precise conditions on
the alternative, which involves a gradual change in the marginal distribution
at a specific rate throughout the observation period. These conditions control
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not only the way in which the marginal distribution changes, but also impose
restrictions on changes in the bivariate distributions P (Xi ≤ x,Xi+h ≤ y). Fur-
thermore, very strong mixing conditions are imposed on the time series (Xi).
The requisite FCLTs are verified, and under further mixing assumptions a boot-
strap procedure is proposed that produces suitable critical values for the test
statistics. While these results are highly nontrivial and of significant theoretical
interest, the mixing conditions exclude a wide range of linear processes and can
be difficult to verify in practice.

As evidenced by [8] and [11], there is inevitably a trade-off between the model
and the conditions required for the FCLTs - the more general the model, the
more stringent the conditions. By restricting ourselves to the linear process, we
are able to strike a balance whereby the alternative is as broad as possible - it
is simply a change from one linear process to any other linear process - while at
the same time the FCLTs can be proven under much weaker conditions than in
[11] (see Comment 2.2.5).

We are able to avoid mixing conditions when deriving the asymptotic be-
haviour of the empirical distribution by using an elegant martingale method
introduced by Gordin [9], which allows one to approximate the empirical pro-
cess

√
n(Fn(x) − F (x)) with a martingale, and then apply one of the classical

martingale central limit theorems. This was the approach taken by Doukhan
and Surgailis, who in [5] proved an invariance principle for the empirical pro-
cess of the linear model under the moment and summability conditions alluded
to above. Under exactly the same conditions, we are able to extend the FCLT of
[5] to the sequential empirical process of the linear model both with and without
a change point. It is the martingale approach that allows us to simultaneously
incorporate arbitrary changes in both the coefficients and the innovations, as
well as a possibly random change point.

We proceed as follows: we introduce the stationary linear model and the
simple conditions of [5] in the next section. Our main results, functional central
limit theorems for the sequential empirical process both with and without a
change-point, will then be stated. We end Section 2 with an analysis of the
asymptotic behaviour under the null and the alternative hypotheses of both
a Kolmogorov-Smirnov type statistic and a Cramér-Von Mises statistic under
two different scenarios. In Section 3, the proposed framework and performance
of the tests will be illustrated by simulations for both scenarios. Concluding
comments and directions for further research are presented in Section 4, and all
proofs appear in Section 5.

2. Main results

For the linear model Xi =
∑

j≥0 ajξi−j defined in (1), let F and Fξ denote the
respective distribution functions of X0 and ξ0. In the sequel, we will proceed
under the following assumptions as in Doukhan and Surgailis [5].

Assumptions 2.1. 1. Let {aj , j ∈ Z} be a sequence of non-random weights,
infinitely many of which are non-zero, satisfying
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j≥0

|aj |γ < ∞ for some γ ∈ (0, 1].

2. There exist constants C < ∞ and Δ ∈
(
2

3
, 1

]
such that for all u ∈ R

|E exp(iuξ0)| ≤
C

(1 + |u|)Δ .

3. E[|ξ0|4γ ] < ∞, where γ ∈ (0, 1] is as in 1 above.

Comments 2.2. 1. We have that V ar(Xi) < ∞ if and only if E[ξ20 ] < ∞.
In this case, Xi has short memory (is short range dependent) in the sense
that the covariances are summable since

∑∞
j=1 |aj | < ∞. However, while

our model includes short memory processes, it is much more general since
γ can take on any value in (0, 1], and consequently Xi may have infinite
expectation.

2. Remark that the more general the moment condition in Assumption 2.1.3,
the more restrictive the summability condition Assumption 2.1.1.

3. Assumption 2.1.2 implies that the distribution function of ξ0 satisfies the
Hölder condition |Fξ(x) − Fξ(y)| < C|x − y|Δ. It also implies that the
distribution function of a partial sum of the ajξi−j terms is differentiable
with a bounded density satisfying a uniform Lipschitz condition, provided
that sufficient terms with non-zero aj are included in the moving average
(cf. [5]). Obviously, the distribution F of X0 is uniformly Lipschitz as well.
We note that Doukhan and Surgailis assumed that Δ ∈

(
1
2 , 1
]
, but there

is a small error in the tightness argument in [5]. In fact, the right hand
side of equation (17) of [5] should be CN2|x− y|3Δ/2. 1

4. The assumption that infinitely many coefficients (ai) are non-zero is not
required if Fξ has a uniformly Lipschitz derivative. In this case, all the
results that follow remain valid.

5. Any linear process with Gaussian innovations and summable coefficients
satisfies Assumptions 2.1. More generally, if the innovations have a bounded
density and finite second moment, then Assumptions 2.1 are satisfied
if |ak| = O(k−(2+ρ)) for some ρ > 0. However, as pointed out in the
introduction, such a linear process is not necessarily mixing. Further-
more, even if the linear process can be shown to be strong mixing, for
ak = O(k−(2+ρ)), the sharpest bounds on the mixing coefficients given in

[10] are α(k) = O(k−
2
3ρ). However, Assumption A of [11] requires that∑∞

j=1 j
2α(j)δ/(4+δ) < ∞ for some δ ∈ (0, 2), and so is far more restrictive

than the summability condition 2.1.1.

Before we state the functional central limit theorems for the sequential em-
pirical process, we need to introduce some basic notation:

Ri(x) := I(Xi ≤ x)− F (x),

1We thank Professor Donatas Surgailis for this clarification, made in a private communi-
cation.
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Fn(x) :=
1

n

n∑
i=1

I(Xi ≤ x).

We consider the weak convergence, denoted by
D→, of random elements taking

values in the space D(R× [0, 1]) equipped with Skorokhod’s J1-topology (cf. [3]
and [12] for more details).

2.1. The sequential empirical CLT under the null hypothesis

Define now the two-parameter sequential empirical process for (x, s) ∈ R× [0, 1]:

Wn(x, s) :=
[ns]√
n
(F[ns](x)− F (x))

=
1√
n

[ns]∑
i=1

Ri(x).

Here we provide a sequential version of the functional central limit theorem of
[5].

Theorem 2.3. Assume Assumptions 2.1 hold. Then, as n → ∞,

Wn(·, ·) D→ W (1)(·, ·),

where W (1)(·, ·) is a centred Gaussian process with finite covariance

σ((x, s), (y, t)) = (s ∧ t)
∑
i∈Z

Cov (R0(x), Ri(y))

= (s ∧ t)
∑
i∈Z

Cov (I(X0 ≤ x), I(Xi ≤ y)) .

The proof of Theorem 2.3 appears in Section 5. While the martingale tech-
niques of [5] are readily adapted to prove convergence of the finite dimensional
distributions, it will be seen that the proof of tightness becomes more complex.

2.2. The sequential empirical CLT under the alternative

In this section, we consider the following change-point model. Let {θn, n ∈ N}
be a sequence of random variables in [0, 1], converging in probability to a non-
random θ. We have a causal linear process with a change-point at [nθn]. More

precisely, consider the following stationary processes for i ∈ Z and a
(1)
j , a

(2)
j ∈ R:

Yi =
∑
j≥0

a
(1)
j ξi−j and Zi =

∑
j≥0

a
(2)
j ξ′i−j ,

where the vectors (ξi, ξ
′
i) are i.i.d. We do not make any assumption about the

relation between ξi and ξ′i - they can have any sort of dependence structure.
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We make the assumption that θn is either independent of the innovations or
that [nθn] is a stopping time with respect to the filtration generated by the
innovations.

Denote by F and G the respective distribution functions of Y0 and Z0. Bor-
rowing the notation of [8], we write Xn := (X1, ..., Xn) ∈ Ψn(θn, F,G) if

Xi =

{
Yi for 1 ≤ i ≤ [nθn]
Zi for [nθn] < i ≤ n.

(2)

The model considered here is very general and readily includes fixed change-
points (θn = θ), random change points, as well as the so-called “converging

alternatives” θn
p→ 0 or 1 as n → ∞. The change-point can be data dependent.

Our model includes any change in the parameters and/or the innovations. Pro-
vided that the nature of the change ensures that F �= G, it should be detected
by the test statistics proposed in the next section. In the case of no change, we
write Xn ∈ Ψn(F ).

Now consider the asymptotic behavior of the sequential empirical distribution

F[ns](x) =
1

[ns]

∑[ns]
i=1 I(Xi ≤ x). Define, for 0 ≤ s ≤ 1

H(n)(x, s) := (s ∧ θn)F (x) + (s− θn)
+G(x),

where s+ = max(0, s). For (x, s) ∈ R× [0, 1], let

W ′
n(x, s) :=

1√
n

(
[ns]F[ns](x)− nH(n)(x, s)

)

=
1√
n

⎡
⎣[ns]∑

i=1

I(Xi ≤ x)− nH(n)(x, s)

⎤
⎦ .

Define

RF
i (x) := I(Yi ≤ x)− F (x),

RG
i (x) := I(Zi ≤ x)−G(x).

Theorem 2.4. Given the model described above, assume that both Yi and Zi

satisfy Assumptions 2.1. Further, assume that for all n, [nθn] is either inde-
pendent of or is a stopping time with respect to the filtration generated by the

innovations (ξi, ξ
′
i) and that θn

P→ θ where θ ∈ [0, 1] is a constant. Then, for
Xn ∈ Ψn(θn, F,G), as n → ∞,

W
′

n(·, ·)
D→ W (2)(·, ·),

where W (2)(·, ·) is a centred Gaussian process with finite covariance

σ((x, s), (y, t)) = (s ∧ t ∧ θ)
∑
i∈Z

Cov
(
RF

0 (x), R
F
i (y)

)
+ ((s ∧ t)− θ)+

∑
i∈Z

Cov
(
RG

0 (x), R
G
i (y)

)
.
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The proof of Theorem 2.4 appears in Section 5.

Comment: Note that under the null hypothesis, θn = 1 for all n. In this case,
comparing Theorems 2.3 and 2.4, we have

|W ′

n(x, s)−Wn(x, s)| =
ns− [ns]√

n
F (x) ≤ 1√

n
and W (1) = W (2).

2.3. The test statistics

We consider appropriate test statistics under two scenarios - first, we assume
that the pre-change model is known, and second, that the pre-change model is
unknown. In each case, we propose both Kolmogorov-Smirnov and Cramér von
Mises-type test statistics. In each instance we find appropriate critical values
and show consistency under the alternative. All proofs appear in Section 5.

Scenario 1: The pre-change model is known.

In this scenario, prior information may ensure that the linear model before
the change is known, and in particular, F is specified. In this case, the null
hypothesis and alternative are

H0 : {Xn ∈ Ψn(F )}
H1 : {∃θn ∈ [0, 1), ∃G �= F such that Xn ∈ Ψn(θn, F,G)}.

The test is based on the process:

V (1)
n (x, s) =

n− [ns]√
n

(
F ∗
n−[ns](x)− F (x)

)
,

where

F ∗
n−m(x) =

1

n−m

n∑
i=m+1

I(Xi ≤ x)

is the empirical distribution function based on Xm+1, . . . , Xn.

To test the pair (H0, H1), consider the following statistics based on V
(1)
n (·, ·):

• Kolmogorov-Smirnov statistic:

T1 = sup
(x,s)∈R×[0,1]

∣∣∣V (1)
n (x, s)

∣∣∣ .
• Cramér-Von Mises statistic:

T2 =

∫ 1

0

∫
R

∣∣∣V (1)
n (x, s)

∣∣∣2 dFn(x)ds.

We reject the null hypothesis H0 for large values of Ti, for i = 1, 2.
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Proposition 2.5. Under the null hypothesis H0 and the assumptions of Theo-
rem 2.3, we have for every c > 0

lim
n→∞

P{T1 > c} = P

{
sup

(x,s)∈R×[0,1]

∣∣∣W (1)(x, s)
∣∣∣ > c

}
, (3)

lim
n→∞

P{T2 > c} = P

{∫ 1

0

∫
R

|W (1)(x, s)|2dF (x)ds > c

}
, (4)

where W (1)(·, ·) is the limiting process in Theorem 2.3.

The following proposition deals with consistency of the test statistics T1 and

T2. Note that under the converging alternative θn
p→ 1, the test statistics will

be consistent provided that the rate of convergence of θn is slower than 1/
√
n.

Proposition 2.6. Suppose the sequence {θn : n ∈ N} satisfies one of the fol-
lowing assumptions:

1. θn
p→ θ and θ ∈ [0, 1)

2. θn
p→ 1 and

√
n(1− θn)

p→ ∞.

Then under the assumptions of Theorem 2.4, if Xn ∈ Ψn(θn, F,G) where F �=
G, Ti

p→ ∞ as n → ∞, for i = 1, 2.

Finally, we note that since the pre-change model is assumed to be known,
appropriate critical values can be determined empirically by simulation. This
will be illustrated and the performance of the test statistics will be compared
in Section 3 for various examples.

Scenario 2: The pre-change model is unknown.

In practice, the more common situation is that there are no assumptions
made about the pre-change model. In this case, the hypothesis and alternative
become

H0 : {∃F such that Xn ∈ Ψn(F )}
H1 : {∃θn ∈ (0, 1), ∃F �= G such that Xn ∈ Ψn(θn, F,G)}.

In this case, the test statistics will be based on the following process:

V (2)
n (x, s) :=

[ns](n− [ns])

n
3
2

(
F[ns](x)− F ∗

n−[ns](x)
)

(5)

which compares the (suitably weighted) empirical distributions before and after
[ns], for 0 ≤ s ≤ 1:

F[ns](x)− F ∗
n−[ns](x) =

1

[ns]

[ns]∑
i=1

I(Xi ≤ x)− 1

n− [ns]

n∑
i=[ns]+1

I(Xi ≤ x).
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To test the pair (H0, H1), we use the following statistics:

• Weighted Kolmogorov-Smirnov statistic:

T3 = sup
(x,s)∈R×[0,1]

∣∣∣V (2)
n (x, s)

∣∣∣ .
• Weighted Cramér-Von Mises statistic:

T4 =

∫ 1

0

∫
R

∣∣∣V (2)
n (x, s)

∣∣∣2 dFn(x)ds.

Again, we reject the null hypothesis H0 for large values of Ti, for i = 3, 4.

Proposition 2.7. Under the null hypothesis H0 and the assumptions of Theo-
rem 2.3, we have for every c > 0

lim
n→∞

P{T3 > c} = P

{
sup

(x,s)∈R×[0,1]

∣∣∣W (1)(x, s)− sW (1)(x, 1)
∣∣∣ > c

}
, (6)

lim
n→∞

P{T4 > c} = P

{∫ 1

0

∫
R

|W (1)(x, s)− sW (1)(x, 1)|2dF (x)ds > c

}
, (7)

where W (1)(·, ·) is the limiting process in Theorem 2.3.

We next deal with consistency of the test statistics T3 and T4. There are now

two cases of converging alternatives to consider: θn
p→ 0 and θn

p→ 1. As before,
the test statistics are consistent under a converging alternative provided that
the rate of convergence of θn is slower than 1/

√
n.

Proposition 2.8. Suppose the sequence {θn : n ∈ N} satisfies one of the fol-
lowing assumptions

1. θn
p→ θ and θ ∈ (0, 1)

2. θn
p→ 0 and

√
nθn

p→ ∞
3. θn

p→ 1 and
√
n(1− θn)

p→ ∞.

Then under the assumptions of Theorem 2.4, if Xn ∈ Ψn(θn, F,G) where

F �= G, Ti
p→ ∞ as n → ∞, for i = 3, 4.

Finally, we observe that since there are no assumptions made about the
pre-change model, the problem of finding suitable critical values for the test
statistics is much more difficult for this scenario. We end this section with a
brief discussion of the moving block bootstrap and a heuristic explanation of
how it can be applied to yield consistent tests. The technical details and a
rigorous justification of the technique are lengthy and complex, and are therefore
reserved for a separate publication.

For the remainder of this discussion, we strengthen Assumption 2.1.1 slightly
and assume that

∑
j≥0 j|aj |γ < ∞, while 2.1.3 can be weakened to E[|ξ0|2γ ] < ∞

for some γ ∈ (0, 1] (these assumptions are made for both the pre- and post-
change sequences (Yi) and (Zi)). We note that these conditions are satisfied by
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the example discussed in Comment 2.2.5 and also by a wide range of non-mixing
linear processes.

We will be using the same version of the moving block bootstrap (MBB) as
presented in [15] and [7]. Consider first a sequence Xi, i = 1, · · · , n such that
n = lk for some integers l and k. Secondly, we extend our sample of size n by the
first l − 1 observations, namely, X1, · · · , Xl−1 to define the extended sequence
Xni, i = 1, · · · , n+ l − 1 as follows:

Xni :=

{
Xi if 1 ≤ i ≤ n
Xi−n if n+ 1 ≤ i ≤ n+ l − 1.

Let In1, In2, · · · , Ink be independent and identically distributed random vari-
ables each having uniform distribution on {1, 2, · · · , n}. The intuitive idea be-
hind the MBB is to concatenate k randomly chosen blocks of size l of the form
{XnInj , Xn,Inj+1, · · · , Xn,Inj+l−1}, 1 ≤ j ≤ k, and construct the bootstrap sam-
ple of size n,(

X
(b)
1 , · · · , X(b)

n

)
= (Xn,In1 , · · · , Xn,In1+l−1, · · · , Xn,Ink

, · · · , Xn,Ink+l−1) .

(8)
The (non-sequential) bootstrapped empirical process is defined as follows: for

x ∈ R,

W (b)
n (x) :=

√
n
[
F (b)
n (x)− Fn(x)

]
, (9)

where

F (b)
n (x) :=

1

n

n∑
i=1

I(X
(b)
i ≤ x) =

1

k

k∑
j=1

1

l

Inj+l−1∑
i=Inj

I(Xni ≤ x) (10)

is the bootstrapped empirical distribution.
This representation suggests the following definition of a sequential bootstrapped
empirical process:

W (b)
n (x, s) :=

√
n

k

[ks]∑
j=1

⎡
⎣1
l

Inj+l−1∑
i=Inj

I(Xni ≤ x)− Fn(x)

⎤
⎦ . (11)

The bootstrapped versions T
(b)
3 and T

(b)
4 of the Kolmogorov and Cramér-Von

Mises statistics T3 and T4 are calculated as before, using the bootstrapped
process

V (b,2)
n (x, s) :=

l[ks](k − [ks])

k
√
n

(
F

(b)
l[ks](x)− F

(∗,b)
lk−l[ks](x)

)
(12)

= W (b)
n (x, s)− [ks]

k
W (b)

n (x, 1), (13)

where F
(b)
l[ks](x) and F

(∗,b)
lk−l[ks](x) are the bootstrapped empirical distributions

based respectively on X
(b)
1 , . . . , X

(b)
l[ks] and X

(b)
l[ks]+1, . . . , X

(b)
n .
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As in [15], we assume the following relationship between the block lengths
ln and the number of blocks kn. Following the notation used in [15], we write
an 
 bn to indicate an = O(bn).

Assumption 2.9. Let (ln) and (kn) be sequences of natural numbers satisfying

nh 
 ln 
 n
1
3−a for some 0 < h <

1

3
− a, 0 < a <

1

3
, (14)

ln = l2k for 2k ≤ n < 2k+1, ln → ∞ as n → ∞ and n = knln.

Let W (F )(·, ·) and W (G)(·, ·) denote, respectively, the limiting Gaussian pro-
cesses of Theorem 2.3 for the Yi’s and Zi’s. It can be argued that that for almost
all realizations X1(ω), X2(ω), ..., as n → ∞,

W (b)
n (x, s)

D≈
√
θnW

(F )(x, s) +
√
1− θnW

(G)(x, s) (15)

+
√

lnθn(1− θn)(F (x)−G(x))B(s), (16)

where B is a standard Brownian motion on [0, 1].

We have two situations. First, if lnθn(1 − θn)
p→ 0, we have a converging

alternative: θn
p→ θ = 0 or θ = 1. In this case, the asymptotic distribution

of W
(b)
n is determined by (15). In particular, W

(b)
n converges weakly almost

surely to W (F ) if θ = 1 and to W (G) if θ = 0. This is proven in [6] (the
doctoral thesis of the first author), where it is pointed out that if, for instance,
nh−1/2 
 θn 
 n−1/3 or analogously nh−1/2 
 1 − θn 
 n−1/3 for some
0 < h < 1/6, then both test statistics T3 and T4 based on the original sample
converge to infinity, while their bootstrapped counterparts converge weakly to
finite limits. This allows us to tabulate critical values by constructing repeated
moving block bootstrap samples.

In the second situation, θn
p→ θ ∈ (0, 1). In this case, the asymptotic be-

haviour of W
(b)
n is dominated by (16). Specifically, we have that almost surely,

l−1/2
n W (b)

n (x, s)
D→
√

θ(1− θ)(F (x)−G(x))B(s).

Recalling that ln 
 n
1
3−a, it is clear that l

−1/2
n T3 and l−1

n T4 both diverge, while

l
−1/2
n T

(b)
3 and l−1

n T
(b)
4 converge weakly to finite limits, ensuring that the tests

are consistent using bootstrapped critical values.

3. Simulations

In this section, Examples 1-4 illustrate the performance of the proposed test
statistics for Scenario 1, in which the pre-change model is known. Although a
detailed investigation of Scenario 2 will appear separately, we briefly demon-
strate the sequential bootstrap technique via simulations in Examples 5 and
6.
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In our simulation studies, we will consider the following stationary autore-
gressive processes {

Yi = ρ1Yi−1 + ξi
Zi = ρ2Zi−1 + ξ′i,

where the vectors of innovations (ξi, ξ
′
i) are i.i.d. and ρ1, ρ2 < 1 (a

(i)
j = ρji , i =

1, 2). The change-point model satisfies

Xi =

{
Yi if 1 ≤ i ≤ [nθn]
Zi if [nθn] < i ≤ n.

3.1. Scenario 1

In Examples 1-4 (Scenario 1), we will investigate both normal and Cauchy inno-
vations, since Assumption 2.1 is satisfied in both cases with γ ∈ (0, 1] for normal
innovations and γ ∈ (0, 1/4) for Cauchy innovations. For both the normal (Ex-
ample 1) and Cauchy (Example 2) cases, we will consider separately changes in
location or scale of the innovations, and a change in the coefficients.

We observe that our model assumes an abrupt change from one stationary
process to another at [nθn]. A more natural assumption for the AR(1) model
would be a change from ρ1 to ρ2 or from ξi to ξ

′

i at [nθn] (see (17)), in which case
stationarity would be lost immediately after the change-point. This violation of
the stationarity assumption is investigated in Examples 3 and 4 for normal and
Cauchy innovations, respectively.

In all cases, we will assume that θn = 0.5, and the change occurs at [0.5n].
We compare the performance of the two test statistics, the Kolmogorov-

Smirnov (K.S.) and Cramér-Von Mises (C.V.M). The nominal level of signifi-
cance is α = 5% and critical values were determined by 100,000 simulations of
each test statistic. For the analysis of power, each simulation was repeated 400
times.

3.1.1. Example 1

Here we investigate the performance of our test statistics in detecting a change
in an AR(1) process with normal innovations. We consider changes in the mean
or variance of the innovations and finally in the coefficient ρ1.

The parameters used throughout this analysis are: n = 5000 for the sample
size and θn = 0.5 for the break location.

• Change in the mean of the innovations:

In this case, we consider the following model with ρ1 = ρ2 = 0.5:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ N (0, 1) and ξ′i ∼ N (μ, 1).

Zi = 0.5Zi−1 + ξ′i
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We consider μ = 0 under the null hypothesis and μ = −0.5, −0.4, −0.3, −0.2,
−0.1, 0.1, 0.2, 0.3, 0.4, 0.5 under the alternative. The performance of the K.S
and C.V.M test statistics for this case are illustrated in Fig. 1.

Fig 1. Detection of a change in the mean of the normal innovations

• Change in the variance of the innovations:

In this case, we consider the following model with ρ1 = ρ2 = 0.5:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ N (0, 1) and ξ′i ∼ N (0, σ2).

Zi = 0.5Zi−1 + ξ′i

We consider σ2 = 1 under the null hypothesis and σ2 = 0.5, 0.6, 0.7, 0.8, 0.9,
1.1, 1.2, 1.3, 1.4, 1.5 under the alternatives. The empirical size and the power
performance of the tests are illustrated in Fig. 2.

Fig 2. Detection of a change in the variance of the normal innovations
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• Change in the coefficients:

In this case, we consider⎧⎨
⎩

Yi = ρ1Yi−1 + ξi
where ξi ∼ N (0, 1) and ξ′i ∼ N (0, 1).

Zi = ρ2Zi−1 + ξ′i

Under the null hypothesis, ρ1 = ρ2 = 0.5. Furthermore, ρ2 varies from 0.1 to
0.9 under the alternatives. The size and the power of the tests in this case are
illustrated in Fig. 3 for both the K.S and C.V.M statistics. The power function
is now quite asymmetric and we observe lower power when ρ2 < ρ1. This is
possibly due to the fact that the larger the value of ρ1, the greater the influence
of an extreme value of ξi (and therefore, Yi) on subsequent values Yi+1, Yi+2, ...,
and hence on the simulated critical value of the test statistic. For ρ2 < ρ1,
extreme values of ξ

′

i will have less influence on Zi, Zi+1, Zi+2, ... and on the
value of the test statistic.

Fig 3. Detection of a change in the coefficients

3.1.2. Example 2

Similar to the preceding example, we will be considering now a stationary au-
toregressive model with Cauchy innovations. The break point will be chosen
again at θn = 0.5 with a sample size n = 3000.

• Change in the location parameter:

The model to be considered in this case is as follows:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ C(0, 1) and ξ′i ∼ C(a, 1).

Zi = 0.5Zi−1 + ξ′i
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Under the null hypothesis, we consider the location parameter a = 0 and
a = −0.5, −0.4, −0.3, −0.2, −0.1, 0.1, 0.2, 0.3, 0.4, 0.5 under the alternatives.
The empirical size and the power performance of the K.S. and C.V.M. statistics
are shown in the next figure.

Fig 4. Detection of a change in the location of the Cauchy innovations

• Change in the scale parameter:

In this case, we consider the following model:⎧⎨
⎩

Yi = 0.5Yi−1 + ξi
where ξi ∼ C(0, 1) and ξ′i ∼ C(0, b).

Zi = 0.5Zi−1 + ξ′i,

The scale parameter is b = 1 under the null hypothesis and b = 0.5, 0.6, 0.7,
0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5 under the alternatives.

Fig 5. Detection of a change in the scale of the Cauchy innovations



Change-point detection in a linear process 3961

• Change in the coefficients:

Here, we consider a model analogous to that of Fig. 3, but with Cauchy
innovations:⎧⎨

⎩
Yi = ρ1Yi−1 + ξi

where ξi ∼ C(0, 1) and ξ′i ∼ C(0, 1).
Zi = ρ2Zi−1 + ξ′i

The performance of the K.S and C.V.M tests for this case are illustrated in the
following figure. We note less asymmetry than in the case of normal innovations.

Fig 6. Detection of a change in the coefficients

Examples 1 and 2 illustrate that we are able to deal with the change-point
problem in a unified fashion, allowing us to detect a change-point in any of the
components of the model that result in a change in the marginal distribution.
In all cases, we can see that the rejection rate under the null hypothesis is close
to the nominal level of significance α = 0.05 and that we achieve good power
under the alternatives. We note that contrary to what is frequently observed, the
Cramér-Von Mises statistic does not consistently outperform the Kolmogorov-
Smirnov statistic. In fact, the performance of the test statistics is overall very
similar and often indistinguishable except when testing for a change in the
coefficient in the normal case where the empirical power showed considerable
asymmetry.

Moreover, we note that the sample sizes chosen for these examples, while
quite large, are appropriate for many types of financial data. In fact, we ob-
served from many more simulations not presented here that a shift in location
is easily detected with much smaller sample sizes. Furthermore, when there is
a switch from normal innovations to Cauchy, and vice versa, almost perfect
power is achieved. This is not surprising, since the change would involve mov-
ing from innovations with finite variance to ones with infinite variance, or vice
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versa. Indeed, in this situation the tests perform well with much smaller sample
sizes. However, we observe that the degree of asymmetry in the empirical power
increases as the sample size decreases.

3.1.3. Example 3

Our change-point model assumes an immediate change from one stationary
process to another at the time of the change. We now investigate the behaviour
of our test statistics if the assumption of stationarity after the change-point is
violated.
In particular, we consider the following model:

Xi =

{
ρ1Xi−1 + ξi if 1 ≤ i ≤ [nθn]
ρ2Xi−1 + ξ′i if [nθn] < i ≤ n.

(17)

Despite the fact that we now have a gradual change and stationarity of the
process is lost after [nθn], we will see that our testing approach still allows us
to detect simultaneously any change in the coefficients of the process, the mean
or the variance of the innovations.

For comparison, we will be using the same parameters for each case as in the
previous examples. We begin with normal innovations and consider first a shift
in the mean as in Example 1.

Fig 7. Detection of a change from μ=0
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The following figures show the empirical size and the power performance of the
tests when there is a change, respectively, in the variance of the innovations or
in the coefficient of the AR(1) model (17) with normal innovations.

Fig 8. Detection of a change from σ2 = 1

Fig 9. Detection of a change from ρ1 = 0.5 in the normal case

3.1.4. Example 4

Similarly to Fig. 4, Fig. 5 and Fig. 6, the following figures illustrate the perfor-
mance of the tests in the case of the Cauchy innovations in the AR(1) model
(17).
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Fig 10. Detection of a change from a=0

Fig 11. Detection of a change from b = 1

In comparing Examples 1 and 2 with Examples 3 and 4, we see that even
when the assumption of stationarity is violated after the change, the tests still
perform very well. Convergence to stationarity for the post-change process is
rapid enough that it does not affect the power in these particular examples.
Naturally, with small samples the pre-change parameters have a greater influ-
ence and therefore power is lost and more asymmetry is observed in the power
functions.
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Fig 12. Detection of a change from ρ1 = 0.5 in the Cauchy case

3.2. Scenario 2

In Examples 5 and 6, we briefly consider Scenario 2, when the pre-change model
is unknown. We illustrate the performance of the K.S. and C.V.M. statistics T3

and T4 assuming Gaussian innovations in the AR(1) model, using the sequential
bootstrap described at the end of Section 2.3.
Let us first recall our change-point model

Xi =

{
Yi if 1 ≤ i ≤ [nθn]
Zi if [nθn] < i ≤ n,

where Yi and Zi are two stationary autoregressive processes defined as in the
preceding scenario {

Yi = ρ1Yi−1 + ξi
Zi = ρ2Zi−1 + ξ′i,

where the vectors of innovations (ξi, ξ
′
i) are i.i.d.

In both Examples 5 and 6, we assume that the pre-change innovations are
N (0, 1) and examine power for a change in the mean, a change in the vari-
ance, and a change in the coefficient ρ1. More extensive simulations will appear
separately with a rigorous theoretical justification of the sequential bootstrap
procedure.

In both examples, we consider a sample size n = 10000, block length ln = 5,
number of blocks kn = 2000, and number of bootstrap replications B = 500.

The simulations are made at a nominal level of significance α = 5% and each
case is performed p = 400 times for the power analysis.
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3.2.1. Example 5

Here we consider a converging alternative and assume that θn = 0.05. The next
two figures illustrate the power of the test statistics when there is a change in
the mean and the variance. We assume ρ1 = ρ2 = 0.5.

Fig 13. Detection of an early change from μ = 0

Fig 14. Detection of an early change from σ2 = 1

The next two figures illustrate detection of a change in the coefficients when
θn = 0.05. In the first, we assume that ρ1 = 0.75 and in the second, we assume
ρ1 = −0.75.



Change-point detection in a linear process 3967

Fig 15. Detection of an early change from ρ1 = 0.75

Fig 16. Detection of an early change from ρ1 = −0.75

3.2.2. Example 6

Finally, we reproduce the simulations of Example 5, but with the non-converging
alternative θn = 0.50. The next four figures can be compared with Figures 13,
14, 15 and 16, respectively.
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Fig 17. Detection of a change from μ = 0

Fig 18. Detection of a change from σ2 = 1

From Example 5 it can be observed that the test statistics achieve accept-
able power under a converging alternative. Example 6 illustrates much better
performance when the alternative is not converging, despite the fact that the
bootstrap test statistics diverge. We see that the Cramér-von Mises statistic
out-performs the Kolmogorov-Smirnov statistic when there is a change in the
coefficient with a converging alternative, but otherwise the two statistics achieve
very similar power. Once again, we observe that this unified approach allows us
to detect virtually any sort of change in the model that results in a change in
the marginal distribution.
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Fig 19. Detection of a change from ρ1 = 0.75

Fig 20. Detection of a change from ρ1 = −0.75

4. Conclusion

In this paper we have investigated the behaviour of the sequential empirical pro-
cess of a causal linear model under a time change. We have proven a functional
CLT (Theorem 2.4) under very general conditions that include non-mixing pro-
cesses and random time changes. This allows us to test the hypothesis of no
change against the very general alternative that the marginal distribution of
the linear process changes at some unobserved time. We have proposed appro-
priate test statistics under two scenarios, first when the pre-change model is
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specified and second, when it is not. The performance of the test statistics is
investigated for the first scenario under various types of changes. The tests are
shown to continue to perform well when the change is more gradual and the
assumption of stationarity after the change is violated. For the second scenario,
a bootstrap procedure is proposed and illustrated via simulations.

There are many open questions and directions for future research that are
beyond the scope of this paper.

• When the pre-change model is specified, critical values for the test statis-
tics are easily found by Monte Carlo techniques. However, when the model
before the change is unknown, bootstrap techniques are required. This is
a complex question addressed in [6] and a detailed justification of the
discussion in Scenario 2 will be the subject of a separate publication.

• Our model includes a random change-point [nθn] under the assumption

that θn
P→ θ where θ ∈ [0, 1] is a constant. Conditions under which this

occurs should be investigated. Further, a random limit can likely be intro-
duced into the model, as in [4], pp. 144-145.

• The tests proposed here are retrospective. Sequential methods should be
investigated.

• The spatial causal linear process has been studied in [13]. Detection of a
change-point or change-set for this process is currently under investigation.

5. Proofs

Throughout this section, C will denote a generic constant which may be different
at each appearance.

5.1. Proof of Theorem 2.3

We will prove

(a) Convergence of finite dimensional distributions of Wn using the Cramér-
Wold device.

(b) Tightness of the sequence Wn(·, ·).

First we introduce some notation. Let F i be the σ-algebra

F i = {ξj : j ≤ i},

and for h ≥ 0 define the martingale differences

Ui,h(x) := P (Xi ≤ x|F i−h)− P (Xi ≤ x|F i−h−1).

The Ui,h(x) are stationary in i for a fixed h. Furthermore,

E[Ui,h(x)Uj,h′(y)] = 0 for i− h �= j − h′, x, y ∈ R. (18)
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Define for N < ∞,

RN
i (x) :=

N∑
h=0

Ui,h(x)

= I(Xi ≤ x)− P (Xi ≤ x|F i−N−1). (19)

We observe that:

RN
i (x)

a.s.→ I(Xi ≤ x)− P (Xi ≤ x| ∩
�
F�)

= Ri(x), (20)

where the first and the second lines follow respectively using the reverse mar-
tingale convergence theorem and the 0-1 law.

Thus,

Ri(x) = lim
N→∞

RN
i (x) =

∑
h≥0

Ui,h(x).

almost surely and in Lp for all p > 0, and

Wn(x, s) =
1√
n

[ns]∑
i=0

Ri(x) =
1√
n

[ns]∑
i=0

∞∑
h=0

Ui,h(x). (21)

Proof of (a): convergence of finite dimensional distributions
The proof follows the same lines as in [5], and so we give only a brief outline.

For full details, refer to [6]. Let

WN
n (x, s) =

1√
n

[ns]∑
i=0

RN
i (x).

Exactly as is proven in [5], the limiting finite dimensional distributions ofWn(·, ·)
as n → ∞ are the same as those of WN

n (·, ·) as first n → ∞ and then N → ∞.
Furthermore, define

MN
i (x) :=

N∑
h=0

Ui,i+h(x).

For each x, (MN
i (x),Fi) is a martingale difference sequence. Using arguments

similar to those in [5], it can be shown that there exist bj > 0 independent of
N such that

∑
j∈Z

bj < ∞ and |Cov(RN
0 (x), RN

j (y))| < bj . Therefore, letting

σN (x, y) := E
[
MN

0 (x)MN
0 (y)

]
=
∑
j∈Z

Cov(RN
0 (x), RN

j (y)), (22)

then

σN (x, y) → σ(x, y) =
∑
j∈Z

Cov(R0(x), Rj(y)) < ∞, as N → ∞. (23)
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Define the martingale QN
n (x, s) := 1√

n

∑[ns]
i=1 M

N
i (x). As shown in [5], for

N, x, s fixed

WN
n (x, s)−QN

n (x, s)
p→ 0

as n → ∞. Therefore, the limiting finite dimensional distributions as n → ∞ of
(Wn(x, s), x ∈ R, s ∈ [0, 1]) are the same as those of (QN

n (x, s), x ∈ R, s ∈ [0, 1])
as first n → ∞ and then N → ∞.

The Cramér-Wold device and McLeish’s martingale CLT ([14], Theorem 2.3)
are used to verify convergence of the finite dimensional distributions of QN

n (·, ·).
We illustrate the proof by showing the result for only two points since the
general proof follows similarly. Let s ≤ t and consider aQN

n (x, s) + bQN
n (y, t) =

1√
n

∑[nt]
i=1 K

N
i (x, y) where

KN
i (x, y) = aI(i ≤ [ns])MN

i (x) + bMN
i (y).

We have

1. {KN
i (x, y),F i} is a martingale difference sequence.

2. For a fixed N , max
1≤i≤[nt]

∣∣∣∣ 1√
n
KN

i (x, y)

∣∣∣∣ ≤ C√
n
.

3.
1

n

[nt]∑
i=1

(KN
i (x, y))2

a.s.→ sE
[(
aMN

0 (x)+ bMN
0 (y)

)2]
+(t−s)E

[(
bMN

0 (y)
)2]

,

by the ergodic theorem.

Applying Theorem 2.3 of McLeish [14] and combining that with equation (22)
leads to

aQN
n (x, s) + bQN

n (y, t)
d→ N(0, σ2

N ), as n → ∞, (24)

where

σ2
N = a2s

∑
j∈Z

Cov(RN
0 (x), RN

j (x)) + 2ab(s ∧ t)
∑
j∈Z

Cov(RN
0 (x), RN

j (y))

+b2t
∑
j∈Z

Cov(RN
0 (y), RN

j (y)). (25)

Finally, let N → ∞ and convergence of the finite dimensional distributions of
Wn(·, ·) follows from (23) and (24).

Proof of (b): tightness
The proof of (b) is presented in more detail because demonstrating tightness

of the sequential process Wn(·, ·) in D(R× [0, 1]) is more complex than the non-
sequential case considered in [5] and involves extending some arguments in [4]
to two dimensions. For complete details, see [6].

Let T = R × [0, 1], x = (x, s), y = (y, t) and define the uniform modulus of
continuity for δ > 0:

w(Wn, δ) := sup {|Wn(x)−Wn(y)| : x,y ∈ T, ‖x− y‖ ≤ δ} ,
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where ‖x‖ = max(|x|, |s|). We will prove that for each positive ε and η there
exists a δ, 0 < δ < 1, such that for all n sufficiently large

P {w(Wn, δ) ≥ ε} ≤ η. (26)

This is sufficient for tightness (cf. [3] and [12]).
The increment of Wn around a block A = (x, y]× (s, t] ⊂ R× [0, 1] is defined

to be

Wn(A) = Wn(x, s)−Wn(x, t)−Wn(y, s) +Wn(y, t).

The proof of (26) is based on the following two lemmas.

Lemma 5.1. Let A = (x, y] × (s, t] be a block such that |x − y| ≤ 1. Under
Assumptions 2.1,

E
[
W 4

n(A)
]
≤ C

(
(|t− s||x− y|)

3Δ
2 +

1

n
(|t− s||x− y|)Δ +

1

n2
|x− y|Δ

)
.

The proof of Lemma 5.1 is lengthy and technical, and so we defer it to the
end of the section. It is used to prove the following lemma, which extends an
argument of Billingsley ([4], pg 198-199) to two dimensions.

Lemma 5.2. If Assumptions 2.1 hold, then there exists 0 < δ < 1 such that

P

⎧⎪⎨
⎪⎩ sup

x≤y≤x+δ

s≤t≤s+δ

|Wn(y, t)−Wn(x, s)| ≥ 5ε

⎫⎪⎬
⎪⎭ < ηδ2, (27)

for all sufficiently large n.

Proof Recall that |x − y| ≤ 1 and assume without loss of generality that

0 < ε < 1. If
ε

n
≤ (|x− y||t− s|)

3Δ
4 , then from Lemma 5.1 we have

E
[
W 4

n(A)
]

≤ C

ε2
(|t− s| |x− y|)

3Δ
2 , (28)

and the so called condition (β, γ) in [3] is satisfied with β = 3Δ
2 and γ = 4. Let

p be a number satisfying
( ε
n

) 2
3Δ ≤ p ≤ 1, and remark that for i, j = 1, . . . ,m

|x+ ip− x| 3Δ4 |s+ jp− s| 3Δ4 ≥ p
3Δ
2 ≥ ε

n
.

Now apply the argument used in the proof of Theorem 1 of [3] to get

P

{
max
i,j≤m

|Wn(x+ ip, s+ jp)−Wn(x, s)| ≥ λ

}
≤ C

ε2λ4

(
m2p2

) 3Δ
2

≤ C

ε2λ4
(mp)3Δ. (29)
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We now show that for x ≤ y ≤ x+ p and s ≤ t ≤ s+ p

|Wn(y, t)−Wn(x, s)| ≤ |Wn(x+ p, s+ p)−Wn(x, s)|+ C
√
np+

1√
n
. (30)

Let

Un(x, s) =

[ns]∑
i=1

I(Xi ≤ x)

be the number among X1, . . . , X[ns] that satisfy Xi ≤ x. Then, recalling that F
is Lipschitz,

|Un(y, t)− [nt]F (y)− Un(x, s) + [ns]F (x)|
≤ |Un(x+ p, s+ p)− [n(s+ p)]F (x+ p)− Un(x, s) + [ns]F (x)|

+np+ 1 + n (F (x+ p)− F (x))

≤ |Un(x+ p, s+ p)− [n(s+ p)]F (x+ p)− Un(x, s) + [ns]F (x)|
+Cnp+ 1,

and (30) follows immediately. Therefore,

sup
x≤y≤x+mp

s≤t≤s+mp

|Wn(y, t)−Wn(x, s)|

≤ max
1≤i,j≤m

sup
x−(i−1)p≤y≤x+ip

s−(j−1)p≤t≤s+jp

|Wn(y, t)−Wn(x, s)|

≤ 3 max
1≤i,j≤m

|Wn(x+ ip, s+ jp)−Wn(x, s)|+ C
√
np+

1√
n
.

We know that
1√
n
< ε for all sufficiently large n. In addition, if

( ε
n

) 2
3Δ ≤ p <

ε

C
√
n
, (31)

then (29) applies and we get

P

⎧⎪⎨
⎪⎩ sup

x≤y≤x+mp

s≤t≤s+mp

|Wn(y, t)−Wn(x, s)| ≥ 5ε

⎫⎪⎬
⎪⎭

≤ P

{
3 max
1≤i,j≤m

|Wn(x+ ip, s+ jp)−Wn(x, t)|+ Cp
√
n+

1√
n
≥ 5ε

}

≤ P

{
max

1≤i,j≤m
|Wn(x+ ip, s+ jp)−Wn(x, s)| ≥ ε

}

≤ C

ε6
(mp)3Δ. (32)
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Choose δ such that
Cδ3Δ−2

ε6
< η, then (27) follows from (32) provided there

exists a real p satisfying (31) and an integer m such that δ = mp. This is
equivalent to the existence of an integer m such that

Cδ

(√
n

ε

)
< m ≤ δ

(n
ε

) 2
3Δ

,

which is true for all sufficiently large n. This completes the proof of Lemma 5.2.�

Returning to the proof of (b) and arguing as in the proof of Theorem 8.3 in
[4], we define

Ax,s =

⎧⎪⎨
⎪⎩ sup

x≤y≤x+δ

s≤t≤s+δ

|Wn(y, t)−Wn(x, s)| ≥ 5ε

⎫⎪⎬
⎪⎭ ,

and

A∗ =

⎧⎪⎪⎨
⎪⎪⎩ sup

|x−y|<δ

|t−s|<δ

|Wn(y, t)−Wn(x, s)| ≥ 20ε

⎫⎪⎪⎬
⎪⎪⎭ .

If |x− y| < δ and |t− s| < δ then it follows that A∗ ⊂
⋃

i,j<δ−1

Aiδ,jδ. Therefore,

for n sufficiently large, we get

P

⎧⎪⎪⎨
⎪⎪⎩ sup

|x−y|<δ

|t−s|<δ

|Wn(y, t)−Wn(x, s)| ≥ 20ε

⎫⎪⎪⎬
⎪⎪⎭ = P (A∗)

≤
∑

i,j<δ−1

P (Aiδ,jδ)

≤ (1 + [δ−1])2ηδ2

≤ 4η,

which is (26) except for the factors preceding ε and η. This concludes the proof
of (b), thereby completing the proof of Theorem 2.3. �

We now return to the proof of Lemma 5.1.

Proof of Lemma 5.1:
Given a function g(x), x ∈ R, define g(x, y) = g(y) − g(x) and suppose for

instance that s ≤ t. Then

Wn(A) =
1√
n

[nt]∑
i=[ns]+1

Ri(x, y) =
1√
n

[nt]∑
i=[ns]+1

∑
h≥0

Ui,h(x, y).
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Next define for k ≤ [nt]

Vk(x) =

[nt]∑
i=([ns]+1)∨k

Ui,i−k(x).

We will make use of the methodology and the results obtained in [5]. First, we
establish a formula for the fourth moment via the sums Vk(x).

Write

Wn(A) =
1√
n

∑
k≤[nt]

[nt]∑
i=([ns]+1)∨k

Ui,i−k(x, y) =
1√
n

∑
k≤[nt]

Vk(x, y).

Hence

W 4
n(A) =

1

n2

⎛
⎝ ∑

k≤[nt]

Vk(x, y)

⎞
⎠

4

=
1

n2
(4I1 + 6I2 + 4I3 + I4),

where

Ij =
∑

k≤[nt]

⎛
⎝ ∑

�≤k−1

V�(x, y)

⎞
⎠

4−j

(Vk(x, y))
j
, for j = 1, 2, 3, 4.

Remark that Vk(x, y) is Fk-measurable and E[Vk(x, y)|Fk−1] = 0, hence

E[I1] = 0. (33)

For the other terms, we will use the following inequalities proven in [5].

For h > h0, |Ui,h(x, y)| ≤ C|x− y||ah|γ(1 + |ξi−h|γ).
(34)

For 0 ≤ h ≤ h0 and p ≥ 1, E[|Ui,h(x, y)|p|F i−h−1] ≤ C|x− y|Δ. (35)

Consider now the term I2 and remark that for k ≤ −h0

E[V 2
k (x, y)|Fk−1] ≤ C|x− y|2

[nt]∑
i,j=[ns]+1

|ai−k|γ |aj−k|γ . (36)

On the other hand, for −h0 < k ≤ [nt], we need to take into consideration the
position of i − k and j − k with respect to h0. In each case, we will make use
of equation(s) (34) and (or) (35), the fact that ξk is independent of Fk−1, and
E[|ξ0|2γ ] < ∞. After straightforward calculations we get for −h0 < k ≤ [nt],

E[V 2
k (x, y)|Fk−1] ≤ C

[nt]∑
i,j=[ns]+1

|x− y|2|ai−k|γ |aj−k|γ
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+ C

[nt]∧(h0+k)∑
i,j=([ns]+1)∨k

|x− y|Δ

+ C

[nt]∑
i=[ns]+1

[nt]∧(h0+k)∑
j=([ns]+1)∨k

|x− y|Δ|ai−k|γ . (37)

Denote the upper bounds found in (36) and (37) by T
(1)
k and T

(2)
k respectively

and define

Tk =

{
T

(1)
k if k ≤ −h0

T
(2)
k otherwise.

By orthogonality we obtain for k ≤ [nt]

E

⎡
⎢⎣
⎛
⎝ ∑

�≤k−1

V�(x, y)

⎞
⎠

2
⎤
⎥⎦ =

∑
�≤k−1

E
[
V 2
� (x, y)

]
≤
∑

�≤[nt]

E
[
V 2
� (x, y)

]
.

Therefore,

E[I2] =
∑

k≤[nt]

E

⎡
⎢⎣
⎛
⎝ ∑

�≤k−1

V�(x, y)

⎞
⎠

2

E[V 2
k (x, y)|Fk−1]

⎤
⎥⎦

≤

⎛
⎝ ∑

k≤[nt]

Tk

⎞
⎠

2

(38)

≤ C

⎧⎪⎨
⎪⎩
∑

k≤[nt]

|x− y|2
⎛
⎝ [nt]∑

i=[ns]+1

|ai−k|γ
⎞
⎠

2

+
∑

−h0<k≤[nt]

[nt]∧(h0+k)∑
i,j=([ns]+1)∨k

|x− y|Δ

+
∑

−h0<k≤[nt]

[nt]∑
i=[ns]+1

[nt]∧(h0+k)∑
j=([ns]+1)∨k

|x− y|Δ|ai−k|γ
⎫⎬
⎭

2

≤ C([nt]− [ns])2|x− y|2Δ. (39)

From (38) and (39), we deduce the following inequality which will be used later
in the proof: ∑

k≤[nt]

Tk ≤ C([nt]− [ns])|x− y|Δ. (40)

Next, consider

E[I3] = E

⎡
⎣ ∑
k≤[nt]

⎛
⎝ ∑

�≤k−1

V�(x, y)

⎞
⎠V 3

k (x, y)

⎤
⎦ .
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In what follows, we will use equations (34) and (35) repeatedly in addition to
having ξk independent of Fk−1 and E[|ξ0|4γ ] < ∞.

If k ≤ −h0, then

E[
∣∣V 3

k (x, y)
∣∣ |Fk−1] ≤

[nt]∑
i1,i2,i3=([ns]+1)∨k

E

⎡
⎣ 3∏
j=1

|Uij ,ij−k(x, y)||Fk−1

⎤
⎦

≤ C|x− y|3
[nt]∑

i=[ns]+1

|ai−k|γ . (41)

If −h0 < k ≤ [nt], then we need to consider the position of ij − k with respect
to h0 for j = 1, 2, 3. We get in this case,

E[
∣∣V 3

k (x, y)
∣∣ |Fk−1] ≤

[nt]∑
i1,i2,i3=([ns]+1)∨k

E

⎡
⎣ 3∏
j=1

|Uij ,ij−k(x, y)||Fk−1

⎤
⎦

≤ C

[nt]∑
i1,i2,i3=([ns]+1)∨(h0+k+1)

|x− y|3
3∏

�=1

|ai�−k|γ

+ C

[nt]∧(h0+k)∑
i1,i2,i3=([ns]+1)∨k

|x− y|Δ

+ C

3∑
j=1

[nt]∧(h0+k)∑
ij=([ns]+1)∨k

[nt]∑
i�,ip=([ns]+1)∨(h0+k+1)

�,p∈{1,2,3}\{j},�<p

|x− y|Δ|ai�−k|γ |aip−k|γ

+ C

3∑
j=1

[nt]∑
ij=([ns]+1)∨(h0+k+1)

[nt]∧(h0+k)∑
i�,ip=([ns]+1)∨k

�,p∈{1,2,3}\{j},�<p

|x− y|Δ|aij−k|γ

Therefore,

E[
∣∣V 3

k (x, y)
∣∣ |Fk−1] ≤ C

[nt]∑
i=[ns]+1

|x− y|3|ai−k|γ

+ C

[nt]∧(h0+k)∑
i1,i2,i3=([ns]+1)∨k

|x− y|Δ

+ C
3∑

j=1

[nt]∧(h0+k)∑
ij=([ns]+1)∨k

[nt]∑
i�,ip=[ns]+1

�,p∈{1,2,3}\{j},�<p

|x− y|Δ|ai�−k|γ |aip−k|γ

+ C

3∑
j=1

[nt]∑
ij=[ns]+1

[nt]∧(h0+k)∑
i�,ip=([ns]+1)∨k

�,p∈{1,2,3}\{j},�<p

|x− y|Δ|aij−k|γ . (42)
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Denote the upper bounds defined in (41) and (42) by B
(1)
k and B

(2)
k respectively

and define

Bk =

{
B

(1)
k if k ≤ −h0

B
(2)
k otherwise.

Then,

∑
k≤[nt]

Bk =
∑

k≤−h0

B
(1)
k +

∑
−h0<k≤[nt]

B
(2)
k

= C
∑

k≤[nt]

[nt]∑
i=[ns]+1

|x− y|3|ai−k|γ

+ C
∑

−h0<k≤[nt]

[nt]∧(h0+k)∑
i1,i2,i3=([ns]+1)∨k

|x− y|Δ

+ C
∑

−h0<k≤[nt]

3∑
j=1

[nt]∧(h0+k)∑
ij=([ns]+1)∨k

[nt]∑
i�,ip=[ns]+1

�,p∈{1,2,3}\{j},�<p

|x− y|Δ|ai�−k|γ |aip−k|γ

+ C
∑

−h0<k≤[nt]

3∑
j=1

[nt]∑
ij=[ns]+1

[nt]∧(h0+k)∑
i�,ip=([ns]+1)∨k

�,p∈{1,2,3}\{j},�<p

|x− y|Δ|aij−k|γ

≤ C
∑

k≤[nt]

[nt]∑
i=[ns]+1

|x− y|3|ai−k|γ + C([nt]− [ns])|x− y|Δ

≤ C([nt]− [ns])|x− y|Δ. (43)

Therefore, (40) and (43) imply that

E[I3] ≤
∑

k≤[nt]

E

⎡
⎣
∣∣∣∣∣∣
∑

�≤k−1

V�(x, y)

∣∣∣∣∣∣E[|V 3
k (x, y)||Fk−1]

⎤
⎦

≤
∑

k≤[nt]

BkE
1
2

⎡
⎢⎣
⎛
⎝ ∑

�≤k−1

V�(x, y)

⎞
⎠

2
⎤
⎥⎦

≤
∑

k≤[nt]

Bk

⎛
⎝ ∑

�≤[nt]

T�

⎞
⎠

1
2

≤ C([nt]− [ns])
3
2 |x− y| 3Δ2 . (44)

Finally, consider

E[I4] =
∑

k≤[nt]

E
[
V 4
k (x, y)

]
.
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We use (34) and (or) (35) in what follows. Since ξk is independent of Fk−1 and
E[|ξ0|4γ ] < ∞, observe that for k ≤ −h0

E
[
V 4
k (x, y)|Fk−1

]
=

[nt]∑
i1,i2,i3,i4=([ns]+1)∨k

E

⎡
⎣ 4∏
j=1

Uij ,ij−k(x, y)|Fk−1

⎤
⎦

≤ C|x− y|4
[nt]∑

i=[ns]+1

|ai−k|γ . (45)

For −h0 < k ≤ [nt], the upper bound will depend on the position of ij − k with
respect to h0 for j = 1, 2, 3, 4. Thus,

E[V 4
k (x, y)|Fk−1] =

[nt]∑
i1,i2,i3,i4=([ns]+1)∨k

E

⎡
⎣ 4∏
j=1

Uij ,ij−k(x, y)|Fk−1

⎤
⎦

≤ C

[nt]∑
i=[ns]+1

|x− y|4|ai−k|γ + C

[nt]∧(h0+k)∑
i1,i2,i3,i4=([ns]+1)∨k

|x− y|Δ

+ C

4∑
j=1

[nt]∧(h0+k)∑
ij=([ns]+1)∨k

[nt]∑
i�,ip,im=[ns]+1

�,p,m∈{1,2,3,4}\{j},�<p<m

|x− y|Δ
4∏

�=1
��=j

|ai�−k|γ

+ C

4∑
j=1

[nt]∑
ij=[ns]+1

[nt]∧(h0+k)∑
i�,ip,im=([ns]+1)∨k

�,p,m∈{1,2,3,4}\{j},�<p<m

|x− y|Δ|aij−k|γ

+ C
4∑

j,�=1

j<�

[nt]∑
ij ,i�=[ns]+1

[nt]∧(h0+k)∑
ip,im=([ns]+1)∨k

p,m∈{1,2,3,4}\{j,�},p<m

|x− y|Δ|aij−k|γ |ai�−k|γ . (46)

Denote the upper bounds found above in (45) and (46) respectively by J
(1)
k and

J
(2)
k and define

Jk =

{
J
(1)
k if k ≤ −h0

J
(2)
k otherwise.

Then, straightforward calculations lead to

∑
−h0<k≤[nt]

J
(2)
k ≤ C

∑
−h0<k≤[nt]

[nt]∑
i=[ns]+1

|x− y|4|ai−k|γ + C([nt]− [ns])|x− y|Δ.

Moreover, using (45) we obtain

E[I4] ≤
∑

k≤−h0

J
(1)
k +

∑
−h0≤k≤[nt]

J
(2)
k
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≤ C
∑

k≤[nt]

[nt]∑
i=[ns]+1

|x− y|4|ai−k|γ + C([nt]− [ns])|x− y|Δ

≤ C([nt]− [ns])|x− y|Δ. (47)

Combining (33), (39), (44) and (47) completes the proof of Lemma 5.1. �

5.2. Proof of Theorem 2.4

Recall that

RF
i (x) := I(Yi ≤ x)− F (x),

RG
i (x) := I(Zi ≤ x)−G(x),

and define

ϕn1(x, s) :=
[ns]− ns√

n
F (x)

ϕn2(x, s) :=

[
[nθn]− nθn√

n
(F (x)−G(x)) +

[ns]− ns√
n

G(x)

]
.

We have

W
′

n(x, s ∧ θn) =
1√
n

[ns]∑
i=1

RF
i (x)I(i ≤ [nθn]) + ϕn1(x, s) (48)

W
′

n(x, s)−W
′

n(x, s ∧ θn) =
1√
n

[ns]∑
i=[ns]+1

RG
i (x)I(i > [nθn]) + ϕn2(x, s). (49)

Clearly, as n → ∞, we have

sup
x∈R

s∈[0,1]

ϕn1(x, s) → 0 and sup
x∈R

s∈[0,1]

ϕn2(x, s) → 0.

Next, let W (F ) and W (G) denote the Gaussian limits in Theorem 2.3 for the
Yi’s and Zi’s, respectively. Using the random time change argument of [4], pp.

144-145, since θn
p→ θ, it is easily seen that

W
′

n(·, · ∧ θn)
D→ W (F )(·, · ∧ θ) (50)

and
W

′

n(·, ·)−W
′

n(·, · ∧ θn)
D→ W (G)(·, (· − θ)+). (51)

If it can be shown that the limiting processes in (50) and (51) are independent,
the proof is complete since

W
′

n(·, ·)
D→ W (F )(·, · ∧ θ) +W (G)(·, (· − θ)+),
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and the Gaussian limit on the right has the correct covariance structure.
It remains to show independence of the limits in (50) and (51). If for all n,

[nθn] is a stopping time with respect to the innovations, define Gi := σ{(ξj , ξ′j),
j ≤ i}. On the other hand, if for all n, [nθn] is independent of the innovations,
let Gi := σ{(ξj , ξ′j), j ≤ i} ∨ σ{θn, n ≥ 1}. Denoting FF

i := σ{ξj , j ≤ i} and

FG
i := σ{ξ′j , j ≤ i}, define the martingale differences

UF
i+h,i(x) = P (Yi+h ≤ x|FF

i )− P (Yi+h ≤ x|FF
i−1),

UG
i+h,i(x) = P (Zi+h ≤ x|FG

i )− P (Zi+h ≤ x|FG
i−1).

Now let Fh (respectively, Gh) denote the distribution function of
∑h

j=0 a
(1)
j ξ−j

(respectively,
∑h

s=0 a
(2)
j ξ′−j). By stationarity and independence we have the fol-

lowing:

UF
i+h,i(x) = Fh−1(x− Yi)− Fh(x− Yi)

= P (Yi+h ≤ x|Gi)− P (Yi+h ≤ x|Gi−1)

and

UG
i+h,i(x) = Gh−1(x− Zi)−Gh(x− Zi)

= P (Zi+h ≤ x|Gi)− P (Zi+h ≤ x|Gi−1).

As in the proof of Theorem 2.3, let

MN,F
i (x) =

N∑
h=0

UF
i,i+h(x) and MN,G

i (y) =

N∑
h=0

UG
i,i+h(y).

Therefore, since [nθn] is a G-stopping time,

(MN,F
i (x)I(i ≤ [nθn]),Gi) and (MN,G

i (y)I(i > [nθn]),Gi)

are orthogonal martingale difference sequences for each x, y.
Finally, applying the arguments in the proof of Theorem 2.3 to (48) and (49),

it is straightforward that the finite dimensional distributions of(
W

′

n(·, · ∧ θn),W
′

n(·, ·)−W
′

n(·, · ∧ θn)
)

converge to those of

lim
N→∞

lim
n→∞

1√
n

⎛
⎝ [n·]∑

i=1

MN,F
i (·)I(i ≤ [nθn]),

[n·]∑
i=1

MN,G
i (·)I(i > [nθn])

⎞
⎠ .

By orthogonality of the martingales, the limiting Gaussian processes W (F ) and
W (G) in (50) and (51) are therefore independent, completing the proof of The-
orem 2.4. �

Comment: In the proof above, the time change argument found in [4] is appli-

cable provided that θn
p→ θ - there is no requirement that [nθn] be a stopping

time. The assumption that [nθn] is a G-stopping time is used only to ensure
independence of W (F ) and W (G).
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5.3. Proof of Proposition 2.5

By stationarity and Theorem 2.3, under H0 we have

V (1)
n (x, s) = Wn(x, 1)−Wn (x, s)

d
= Wn

(
x, 1− [ns]

n

)
D→ W (1)(x, 1− s).

Applying the continuous mapping theorem,

T1
d→ sup

(x,s)∈R×[0,1]

∣∣∣W (1)(x, 1− s)
∣∣∣ = sup

(x,s)∈R×[0,1]

∣∣∣W (1)(x, s)
∣∣∣ ,

and (3) follows immediately.

Similarly, since (V
(1)
n (·, ·), Fn(·)) D→ (W (1)(·, 1 − ·), F (·)), by the continuous

mapping theorem

T2
d→
∫ 1

0

∫
R

|W (1)(x, 1− s)|2dF (x)ds =

∫ 1

0

∫
R

|W (1)(x, s)|2dF (x)ds.

and (4) follows. �

5.4. Proof of Proposition 2.6

Recalling that

H(n)(x, s) = (s ∧ θn)F (x) + (s− θn)
+G(x),

we have

V (1)
n (x, s) = K(1)

n (x, s) +An(x, s),

where

K(1)
n (x, s) := Wn(x, 1)−Wn(x, s)

An(x, s) :=
1√
n

[
nH(n)(x, 1)− nH(n)(x, s)− (n− [ns])F (x)

]

=
√
n(1− (θn ∨ s))(G(x)− F (x)) +

[ns]− ns√
n

F (x).

By Theorem 2.4 K
(1)
n (·, ·) D→ W (2)(x, 1)−W (2)(x, s). On the other hand, if the

assumptions of Proposition 2.6 are satisfied by the sequence {θn : n ∈ N}, then
sup

(x,s)∈R×[0,1]

|An(x, s)|
p→ ∞ as n → ∞, and by the continuous mapping theorem

it is immediate that both T1
p→ ∞ and T2

p→ ∞ as n → ∞. �
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5.5. Proof of Proposition 2.7

Remark that

V (2)
n (x, s) = Wn (x, s)−

[ns]

n
Wn(x, 1).

Hence,

V (2)
n (·, ·) D→ W (1) (x, s)− sW (1)(x, 1).

Therefore, using arguments similar to those in Proposition 2.5, we get

T3
d→ sup

(x,s)∈R×[0,1]

∣∣∣W (1)(x, s)− sW (1)(x, 1)
∣∣∣ ,

and

T4
d→
∫ 1

0

∫
R

|W (1)(x, s)− sW (1)(x, 1)|2dF (x)ds.

This completes the proof of Proposition 2.7. �

5.6. Proof of Proposition 2.8

We have
V (2)
n (x, s) = K(2)

n (x, s) +Bn(x, s),

where

K(2)
n (x, s) := W

′

n(x, s)−
[ns]

n
W

′

n(x, 1)

Bn(x, s) :=
√
nH(n)(x, s)− [ns]√

n
H(n)(x, 1)

=
√
n [(s(1− θn)) ∧ (θn(1− s))] (F (x)−G(x))

+
ns− [ns]√

n
H(n)(x, 1).

As in the proof of Proposition 2.6, by Theorem 2.4 K
(2)
n (·, ·) D→ W (2)(x, s) −

sW (2)(x, 1). On the other hand, if the assumptions of Proposition 2.8 are satis-

fied by the sequence {θn : n ∈ N}, then sup
(x,s)∈R×[0,1]

|Bn(x, s)|
p→ ∞ as n → ∞,

and by the continuous mapping theorem it is immediate that both T3
p→ ∞ and

T4
p→ ∞ as n → ∞. �
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