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Abstract: Understanding efficiency in high dimensional linear models is a
longstanding problem of interest. Classical work with smaller dimensional
problems dating back to Huber and Bickel has illustrated the clear bene-
fits of efficient loss functions. When the number of parameters p is of the
same order as the sample size n, p ≈ n, an efficiency pattern different from
the one of Huber was recently established. In this work, we study relative
efficiency of sparsity linear models with p � n. In the interest of deriv-
ing the asymptotic mean squared error for l1 regularized M-estimators, we
propose a novel, robust and sparse approximate message passing algorithm
(RAMP), that is adaptive to the error distribution. Our algorithm includes
many non-quadratic and non-differentiable loss functions. We derive its
asymptotic mean squared error and show its convergence, while allowing
p, n, s → ∞, with n/p ∈ (0, 1) and n/s ∈ (1,∞). We identify new patterns
of relative efficiency regarding l1 penalized M estimators. We show that
the classical information bound is no longer reachable, even for light–tailed
error distributions. Moreover, we show new breakdown points regarding
the asymptotic mean squared error. The asymptotic mean squared error of
the l1 penalized least absolute deviation estimator (P-LAD) breaks down
at a critical ratio of the number of observations per number of sparse pa-
rameters in the case of light-tailed distributions; whereas, in the case of
heavy-tailed distributions, the asymptotic mean squared error breaks down
at a critical ratio of the optimal tuning parameter of P-LAD to the optimal
tuning parameter of the l1 penalized least square estimator.
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1. Introduction

In recent years, scientific communities face major challenge with the size and
complexity of the data generated. The size of such contemporary datasets and
the number of variables collected makes the search for, and exploitation of, spar-
sity vital to their statistical analysis. Moreover, the presence of heterogeneity,
outliers and anomalous data in such samples is very common. However, statisti-
cal estimators that are not designed for both sparsity and robustness to the data
irregularities simultaneously will give biased results, depending on the “magni-
tude” of the deviation and on the “sensitivity” of the method. An example of
an early work on robust statistics is [12, 11]. Specifically, they argue that robust
estimators based on a minimization of non-differentiable loss functions are in-
sensitive to changes not involving the parameters. Subsequently, [39] [25], [24]
and [9] laid the comprehensive foundations of a theory of robust statistics. In
particular, Huber’s seminal work on M-estimators [26] established asymptotic
properties of a class of M-estimators in the situation where the number of pa-
rameters, p, is fixed and the number of samples, n, tends to infinity. Since then,
numerous important steps have been taken toward analyzing and quantifying
robust statistical methods – notably in the work of [40, 17, 44], among others.
Even today, there exist several (related) mathematical concepts of robustness
(see [35]). This illustrates diverse and rich aspects of robustness. However, its
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intricate dependence on the dimensionality of the parameter space hasn’t been
explored much.

Modern dataset, where number of parameters is larger than the number of
samples led statisticians to move away from the M-estimators and to consider
the penalized M-estimators. To further the focus on penalized M-estimators, we
consider a linear regression model:

Y = Axo +W (1.1)

with Y = (Y1, ..., Yn)
T ∈ R

n a vector of responses, A ∈ R
n×p a known design

matrix, xo ∈ R
p a vector of parameters; the noise vector W = (W1, ...,Wn)

T ∈
R

n having zero-mean components each with distribution F = Fw and a density
function fw. When p ≥ n a form of sparsity is imposed on the model param-
eters xo, i.e., it is imposed that supp(xo) = {1 ≤ j ≤ p : xoj �= 0} with
|supp(xo)| = s. Early work on penalized estimators include least squares loss
(LS) with l1-penalty, Lasso, [38], concave penalty, SCAD [21], MCP [45], adap-
tive l1 penalty [48], elastic net penalty [47], and many more. However, when the
error distribution Fw deviates from the normal distribution, the l2 loss function
is typically changed to the − log fw. Unfortunately, in applications the error
distribution Fw is unknown and a method that adapts to many different dis-
tributions is needed. Following classical literature on M-estimators, penalized
robust methods such as penalized Quantile regression [7], penalized Least Ab-
solute Deviation estimator [41], AR-Lasso estimator [22], robust adaptive Lasso
[1] and many more, have been proposed. These methods penalize a convex loss
function ρ

x̂(λ) ≡ argmin
x∈Rp

L(x) = argmin
x∈Rp

n∑
i=1

ρ(Yi −AT
i x) + λ

p∑
j=1

|xj |. (1.2)

From hereon, we refer to x̂(λ) as the l1 penalized M-estimator. Despite the
substantial body of work on robust M-estimators, there is very little work on
robust properties of l1 penalized M-estimators. Robust assessments of penalized
statistical estimators customarily are made ignoring model selection. Typical
properties discussed are model selection consistency or tight upper bounds on
the statistical estimation error (e.g., [14, 36, 22, 23, 31, 32, 30, 42, 16]). In
particular, the existing work has been primarily reduced to the tools that are
intrinsic to Huber’s M-estimators. In order to do that, the authors establish a
model selection consistency and then reduce the analysis to this selected model
assuming that that is the true model. However, this analysis is dissatisfactory,
as the necessary assumptions for the model selection consistency are far too
restrictive. Hence, departures from such considerations are highly desirable. This
is where our work makes progress as our robustness analysis does not assume
restrictive Irrepresentable condition (and hence perfect model selection).

This enables us to answer question like: in high dimensional regime, which
estimator is preferred? In the low-dimensional setting, several independent lines
of work provide reasons for using distributionally robust estimators over their
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least-squares alternatives [27]. However, in high dimensional setting, it remains
an open question, what are the advantages of using a complicated loss function
over a simple loss function such as the squared loss? Can we better understand
how differences between probability distributions affect penalized M-estimators?
One powerful justification exists, using the point of view of statistical efficiency.
Huber’s proposed measure of robustness [26] allows a comparison of estimators
by comparing their asymptotic variance; one caveat is that the two estimators
need to be consistent up to the same order. For cases with p ≥ n little or
nothing is known about the asymptotic variance of the robust estimator (1.2)
as p → ∞ whenever n → ∞. Moreover, the penalized M-estimator is biased and
shrinks many coefficients to zero. For such estimators, the set of parameters for
which Hodge’s super–efficiency occurs is not of measure zero. Hence, asymptotic
variance may not be the most optimal criterion for comparison. This suggest
that a different criterion for comparison needs to be considered in the high
dimensional asymptotic regime where n → ∞, p → ∞ and n/p → δ ∈ (0, 1).
We examine the asymptotic mean squared error (AMSE). AMSE is an effective
measure of efficiency as it combines both the effect of the bias and of the variance
[17]. However, in p 
 n regime, it is not obvious that the asymptotic mean
squared error will satisfy the classical formula.

AMSE was studied in [5, 29] for the case of ridge regularization, with the
penalty ‖x‖22, and when p ≤ n but p ≈ n. In this setting AMSE is equal to the
asymptotic variance of x̂(λ). They discovered a new Gaussian component in the
AMSE of x̂(λ) that cannot be explained by the traditional Fisher Information
Matrix. To analyze AMSE for the case of no-penalization, with p ≈ n, [20]
utilized the techniques of Approximate Massage Passing (AMP) and discovered
the same Gaussian component. The advantage of the AMP framework is that
it provides an exact asymptotic expression of the asymptotic mean squared
error of the estimator instead of an upper bound. For the case of the least
squares loss with p ≥ n, [4] make a strong connection between the penalized
least squares and the AMP algorithm of [19]. However, the AMP algorithm of
[4] cannot recover the signal when the distribution of the noise is arbitrary. For
this settings, we design a new, robust and sparse Approximate Message Passing
(RAMP) algorithm.

Our proposed algorithm belongs to the general class of first-order approxi-
mate massage passing algorithms. However, in contrast to the existing methods
it has three-steps. It has iterations that are based on gradient descent with an
objective that is scaled and min regularized version of the original loss function
ρ. Moreover, it allows non-differentiable loss functions. The three–step estima-
tion method of RAMP is no longer a simple proxy for the one-step M estimation.
Due to high dimensionality with p ≥ n, such a step is no longer adequate. Our
proof technique leverages the powerful technique of the AMP proposed in [3];
however, we require a more refined analysis here in order to extend the results to
one involving non-differentiable and robust loss functions while simultaneously
allowing p ≥ n. We relate the proposed algorithm to the Lasso penalized M
estimators when p 
 n and show that a solution to one may lead to the solu-
tion to the other. We show its convergence while allowing non-differentiable loss
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functions and p, n, s → ∞, with n/p → δ ∈ (0, 1) and n/s → a ∈ (1,∞). This
enabled us to derive the AMSE of a general class of l1 penalized M-estimators
and to study their relative efficiency.

We show that the AMSE depends on the distribution of the effective score and
that it takes a form much different than the classical one, in that it also depends
on the sparsity s. Moreover, we present a new study of the relative efficiency of
the penalized least squares method and the penalized least absolute deviation
method. We discover regimes where one is more preferred than the other and
that do not match classical findings of Huber. Several important insights follow
immediately: relative efficiency is considerably affected by the model selection
step; the most optimal loss function may no longer be the negative log likelihood
function; the sparsest high dimensional estimators have an additional Gaussian
component in their asymptotic mean squared error that does not disappear
asymptotically. Moreover we find that the l1 penalized least squares (P-LS)
is preferred over the l1 penalized least absolute deviations (P-LAD) when the
error distribution is “light-tailed” with a new breakdown point for which the two
methods are indistinguishable; furthermore, we find that P-LS is never preferred
over P-LAD when the error distribution is “heavy-tailed”.

We briefly describe the notation. We use 〈u〉 ≡
∑m

i=1 ui

m to denote the average
of the vector u ∈ R

m. Moreover, if given f : R → R and v = (v1, ..., vn)
T ∈

R
m, we define f(v) ∈ R

m ≡ (f(v1), ..., f(vm)). Its subgradient f ′(v) is taken
coordinate-wise and is (f ′(v1), . . . , f

′(vm)). For bivariate function f(u, v), we
define ∂1f(u, v) to be the partial derivate with respect to the first argument;
similarly ∂2f(u, v), is the partial derivate with respect to the second argument.
We use ‖ · ‖1 to denote l1 and ‖ · ‖2 to denote the l2 norm. We define the sign
function as sign(v) = 1{v > 0} − 1{v < 0}, and zero whenever v = 0. We set
δ = n/p and ω = E‖X0‖0 with a vector X0 following a px0 distribution. We
set ω = s/p and θ denotes the nonnegative thresholding parameter. Moreover,
η : R × R+ → R be the soft thresholding function η(x, θ) = x − θ if x > θ,
η(x, θ) = 0 if −θ ≤ x ≤ θ and η(x, θ) = x+ θ if x < −θ.

This paper investigates the effects of the l1 penalization on robustness prop-
erties of the penalized estimators, in particular, how to incorporate bias induced
by the penalization in the exploration of robustness. We present a new approx-
imate massage passing algorithm (RAMP) that is adaptable to different loss
functions and sparsity simultaneously; including the one of Least Absolute De-
viation (LAD) and Quantile loss (see Section 2). Section 3 studies a number
of important theoretical results concerning the RAMP algorithm as well as its
convergence properties and its connections to the penalized M-estimators. Sec-
tion 4 studies Relative Efficiency and establishes lower bounds for the AMSE.
Moreover, this section also presents results on relative efficiency of P-LAD es-
timator with respect to P-LS estimator. Section 6 contains detailed numerical
experiments on a number of RAMP losses, including LS, LAD, and a number of
Quantile losses, and a number of error distributions, including normal, mixture
of normals and student. In 6.1- 6.3, we demonstrate how to use RAMP method
in practice, its convergence properties and the study of state-evolution equation
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where we find that the RAMP works extremely well. In 6.4, we demonstrate
properties of the RAMP algorithm with varying error distribution. Lastly, in
6.5 we present analysis and new patterns of relative efficiency between P-LS
and P-LAD estimators where we consider p ≤ n, s < n, p ≥ n and s ≈ n.

2. Robust sparse approximate message passing (RAMP) algorithm

We propose an iterative algorithm called RAMP, for “robust approximate mes-
sage passing” that begins from the initial estimate x0 = 0 ∈ R

p and guarantees
a sparse estimator at its final iteration. Let the loss function ρ : R → R+ to be
a non-negative convex function with a subgradient

ρ′(x) = {y|ρ(z) ≥ ρ(x) + y(z − x), for all z ∈ R} .

For b > 0 let G(z, b) denote the rescaled, min regularized effective score function,
i.e.,

G(z; b) =
δ

ω
bρ′(Prox(z, b)), (2.1)

with the proximal mapping operator Prox(z, b) defined as:

Prox(z, b) = arg min
x∈R

{
bρ(x) +

1

2
(x− z)2

}
. (2.2)

Lemma 5 (see Supplemental Materials) shows the reason behind the use of
the effective score G(z, b) in the RAMP algorithm. In particular it shows that
for every λ = θω/(bδ), the solution to the penalized M-estimator problem (1.2)
corresponds to the fixed point solution of the RAMP algorithm described be-
low. For all convex and closed losses ρ, the operator Prox(z, b) exists for all
b and is unique for big enough b and all z. The proximal mapping operator
is widely used in non-differentiable convex optimization in defining proximal-
gradient methods. The parameter b controls the extent to which the proximal
operator maps points towards the minimum of ρ, with smaller values of b pro-
viding a smaller movement towards the minimum. Finally, the fixed points of
the proximal operator of ρ are precisely the minimizers of ρ; for appropriate
choice of b, the proximal minimization scheme converges to the optimum of ρ,
with least geometric and possibly superlinear rates ([8]; [33]).

2.1. RAMP algorithm

The RAMP algorithm below applies to sparse estimation with p ≥ n and loss
functions ρ that are not necessarily differentiable and those that do not necessar-
ily satisfy restricted strong convexity condition [36] (a condition typically used
in the literature). The extension is significantly complicated, as the set of fixed
points of the proximal operator is no longer necessarily sparse. Important ex-
amples of such loss functions ρ are absolute deviation and quantile loss, as they
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are neither differentiable nor do they satisfy restricted strong convexity con-
dition. Each iteration t = 1, 2, 3, . . . is defined through a three-step procedure
to update its estimate xt ∈ R

p. We name the iteration steps as the Adjusted
Residuals, the Effective Score and the Estimation Step.

Adjusted Residuals: Using the previous estimate xt−1 and a current esti-
mate xt, compute the adjusted residuals zt ∈ R

n

zt = Y −Axt +
1

δ
G(zt−1; bt−1)

〈
∂1η

(
xt−1 +ATG(zt−1; bt−1); θt−1

)〉
(2.3)

where δ = n/p < 1. We add a rescaled product to the ordinary residuals Y −
Axt, that explicitly depends on n, p and s. This step can be recognized as
proximal gradient descent [6] in the variable x of the function ρ using the stepsize〈
∂1η

(
xt−1 +ATG(zt−1; bt−1); θt−1

)〉
/ω.

Effective Score: Choose the scalar bt from the following equation, such that
the empirical average of the effective score G(z; b) has the slope 1,

1 =
1

n

n∑
i=1

∂1G(zti ; bt). (2.4)

As n/s > 1, for differentiable losses ρ previous equation has at least one solu-
tion, as G(z; b) is continuous in b and takes values of both 0 and ∞. Whenever,
∂1G is not continuous it can be defined uniquely in the form

bt =
1

2
(b+t + b−t )

where b+t = sup{d > 0 : 1
n

∑n
i=1 ∂1G(zti ; d) > 1} and b−t = sup{d < 0 :

1
n

∑n
i=1 ∂1G(zti ; d) < 1}. For non-differentiable losses ρ, we consider two adapta-

tions. First, we allow parameter bt, which controls the amount of min regulariza-
tion of the robust loss ρ function, to be adaptive with each iteration t. Second,
we consider a population equivalent of the (2.4) first, then design an estimator
of it and solve the fixed point equation. In more details, for non-differentiable
losses we propose to consider

1 = ν̂(bt), (2.5)

for a consistent estimator ν̂ = ν̂(bt) of a population parameter ν defined as

ν(bt) = ∂1E
[
G(zt; bt)

]
.

A particular form of ν̂ depends on the choice of the loss function ρ and the
density of the error term fW .

Estimation: Using the regularization parameter bt determined by the pre-
vious step, update the estimate xt as follows,

xt+1 = η
(
xt +ATG(zt; bt); θt

)
, (2.6)

with the soft thresholding function η.
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Remark 1. The estimation step of the algorithm introduces the thresholding
step needed for inducing sparsity in the estimator. However, in contrast to the
existing methods the estimation step is adjusted with the appropriately scaled
score function G, (2.1). The three–step estimation method of RAMP is no longer
a simple proxy for the one-step M estimation. Furthermore, the residuals require
additional scaling, i.e, a factor proportional to the fraction of sparse elements
of the current iterate, in other words,

〈
∂1η

(
xt−1 +ATG(zt−1; bt−1); θt−1

)〉
(see

Lemma 4 below). Unlike least squares problems [19], rescaling of δ/ω in the
above term is absolutely crucial for the convergence of the proposed algorithm.

To the best of our knowledge, RAMP algorithms is the first that simulta-
neously allows robustness in the loss function and shrinkage in the estimators
simultaneously. Robust AMP of [20] merely applies to the p ≤ n case; when
p > n, the second step of their algorithm fails to iterate and the other two stages
do not match with (1.2). RAMP algorithm has a different Adjusted Residuals
step that incorporates sparsity directly and a different Effective Score step to
allow δ < 1. One may attempt to apply the AMP of [20] to a modified proximal
mapping operator (2.2) by including the l1 norm (penalty) directly. However,
such an algorithm would not be a generalized AMP algorithm and its solution
can be shown doesn’t converge to the penalized M-estimator (1.2).

2.2. Examples

In the following we present a few examples of RAMP algorithm for different
choices of the loss function ρ. Let Φ(z, b) = ωG(z; b)/δ.

Example 1. [Absolute Deviation Loss] The Absolute Deviation loss function
is defined as ρ(x) = |x|. We obtain

Prox(z, b) =

{
0, z ∈ (−b, b)

z − b sign(z), otherwise
. (2.7)

Observe that the form above is equivalent to the soft thresholding operator.
Moreover, the Absolute Deviation effective score function becomes,

Φ(z, b) =

{
z, z ∈ (−b, b)

b sign(z), otherwise
.

Since EΦ(z, b) = E [z1(|z| ≤ b)] + bP(|z| > b), Condition (R), guarantees that

νω/δ = Fz(b)− Fz(−b)− bfz(b) + bfz(−b),

for Fz, fz denoting the distribution and density functions of z. Given a set of
adjusted residuals zt1, . . . , z

t
n, provided by (2.3) at any iteration t, bt is a solution

to an implicit function equation (2.5)

s/n = F̂ t
z(b)− F̂ t

z(−b)− bf̂ t
z(b) + bf̂ t

z(−b).
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Example 2. [Quantile Loss] Let τ be a fixed quantile value and such that
τ ∈ (0, 1). The quantile loss function is defined as ρτ (x) = |x|

(
(1 − τ)1{x <

0} + τ1{x > 0}
)
= τx+ + (1 − τ)x−, for x+ = max{x, 0} and x− = min{x, 0}.

Hence,

Prox(z, b) =

⎧⎨
⎩

z − bτ, z > bτ
z − b(τ − 1), z < b(τ − 1)

0, otherwise
, (2.8)

and with it that the Quantile score function becomes,

Φ(z, b, τ) =

⎧⎨
⎩

z, z ∈ (bτ − b, bτ)
bτ, z > bτ

b(τ − 1), z < bτ − b
.

For the case of the quantile loss νω/δ = E∂1Φ(z, b, τ). Adding Condition (R)
to the setup, we obtain ν = ∂1EΦ(z, b, τ). Narrowing the focus to EΦ(z, b, τ) we
obtain EΦ(z, b, τ) = E [z1(z ≤ bτ)]+E [z1(z ≥ b(τ − 1))]+ bτP(z > bτ)+ b(τ −
1)P(z < b(τ − 1)). Now, refining the equation for ν we obtain

ν = Fz(bτ)− Fz(b(τ − 1))− bτfz(bτ) + b(τ − 1)fz(b(τ − 1)),

for Fz, fz denoting the distribution and density functions of z. Given a set of
adjusted residuals zt1, . . . , z

t
n, provided by (2.3) at any iteration t, and a fixed

τ ∈ (0, 1), bt is a solution to an implicit equation

s/n = F̂ t
z(bτ)− F̂ t

z

(
b(τ − 1)

)
−bτ f̂ t

z(bτ) + b(τ − 1)f̂ t
z

(
b(τ − 1)

)
.

In practice, F̂ t
z(bτ) typically takes the form of an empirical cumulative distri-

bution function F̂ t
z(bτ) =

1
n

∑n
i=1 1{zti ≤ bτ}. In contrast, there are numerous

consistent estimators of fz(bτ). For instance, by the asymptotic linearity results
of Lemma 9, we consider

1

h
√
n

n∑
i=1

[
Φ(zti + n−1/2h; bτ)− Φ(zti − n−1/2h; bτ)

]
,

for a bandwidth parameter h > 0. In practice, it is difficult to obtain estimators
F̂ t
z(bτ) and f̂ t

z(bτ) that are continuous functions of b. Hence, to solve the fixed
point equations we implement a simple grid search and set b to be the average
of the the first value of b on the grid for which the estimated function is bellow
s/n and the the last value of b on the grid for which the estimated function is
above s/n.

3. Theoretical considerations

In order to establish theoretical properties, we will impose a number of condi-
tions on the density of the error term W , a class of robust loss functions ρ and a
design matrix A. Although we assume that the error terms Wi’s have bounded
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density, we allow for densities with possibly unbounded moments and we do not
assume any a-priori knowledge of the density f .

Condition (D): Let W1, . . . ,Wn be i.i.d. random variables with the distri-
bution function F . Let F have two bounded derivatives f and f ′ and f > 0 in
a neighborhood of r1, · · · , rk, appearing in Condition (R)(i) below.

Condition (R): Let i = 1, . . . , n. The loss function ρ is convex with sub-
differential ρ′. Moreover, (i) for all u ∈ R, ρ′(u) is an absolutely continuous
function which can be decomposed as

ρ′(u) = υ1(u) + υ2(u) + υ3(u)

where υ1 has an absolutely continuous derivative υ′
1, υ2 is a continuous,piecewise

linear continuous function, constant outside a bounded interval and υ3 is a non-
decreasing step function. In more details, υ′

2(u) = αν , and υ3(u) = κν , for rν <
u ≤ rν+1, ν = 1, · · · , k, for α0, . . . , αk, κ0, . . . , κk ∈ R with α0 = αk = κ0 =
κk = 0 and −∞ = r0 < r1 < · · · < rk < rk+1 = ∞, and −∞ = κ0 <
κ1 < · · · < κk < κk+1 = ∞. Additionally, (ii) for all u ∈ R, |ρ′(u)| ≤ k0,
where k0 is positive and bounded constant and (iii) the functional h(t) =∫
ρ(z − t)dF (z) has unique minimum at t = 0. Finally, (iv) for some δ > 0

and η > 1, E
[
sup|u|≤δ |v

′′

1 (z + u)|
]η

is finite; where, v
′

1(z) = (d/dz)v1(z) and

v
′′

1 (z) = (d2/dz2)v1(z).

Condition (i) depict explicitly the trade–off between the smoothness of φ and
smoothness of F . This assumption covers the classical Huber’s and Hampel’s
loss functions. Although we allow for not necessarily differentiable loss functions,
we consider a class of loss functions for which the sub-differential ρ′ is bounded,
a condition that is easily satisfied by many loss functions such are lad, quan-
tile and Tukey’s bi-squared loss. Condition (iii), is to assure uniqueness of the
population parameter that we wish to estimate. Condition (iv) is essentially a
moment condition that holds, for example, if v

′′

1 is bounded and either v
′′

1 (z) = 0
for z < a or z > b with −∞ < a < b < ∞, or E|W |2+ε < ∞ for some ε > 0.

Condition (A): The design matrix A is such that Aij are i.i.d and follow
Normal distribution N (0, 1/n) for all 1 ≤ i ≤ n and 1 ≤ j ≤ p.

While this setting is admittedly specific, the careful study of such
matrix ensembles has a long tradition both in statistics and communications
theory and is borrowed from the AMP formulation [4]. It simplifies
the analysis significantly and can be relaxed if needed. In particular,
it implies the Restricted Eigenvalue condition of [10]; that is, κ(s, c) =

minJ⊂{1,...p},|J|≤s minv �=0,‖vJc‖1≤c‖vJ‖1

‖Av‖2√
n‖vj‖2

> 0 with high probability, as

long as the sample size n satisfies n > c′(1 + 8c)2s log p/κ(s, c)2, for some uni-
versal constant c′. The integer s here plays the role of an upper bound on
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the sparsity of a vector of coefficients X0. Note that, with c ≥ 1, the square
submatrices of size ≤ 2s of the matrix 1

n

∑n
i=1 A

T
i Ai are necessarily positive

definite.

3.1. State evolution of RAMP

In State Evolution (SE) formalism ([18],[19]), the asymptotic distribution of the
residual and the asymptotic performance of the estimator can be measured while
allowing p → ∞. The parameter τ̄2t can be considered as the state of the AMP
algorithm. Moreover, the asymptotic mean squared error (AMSE), defined as

AMSE = lim
p→∞

1

p

p∑
i=1

(xt
i − x0,i)

2,

is a function of a state evolution parameter τ̄2t . We show that RAMP converges
and we offer how to compute τ̄t, through a new iteration scheme adjusted for
p ≥ n and not differentiable losses ρ.

Lemma 1. Let Conditions (R), (D) and (A) hold. Then, the RAMP algorithm
defined by the equations (2.3), (2.4) and (2.6) belongs to the general recursion of
[3]. Let σ̄2

0 = 1
δEX

2
0 and let X0 and W follow density pX0 and fW respectively,

where EW 2 = σ2. Let Z be a standard normal random variable. Then, for
all t ≥ 0 the sequence {τ̄2t }t≥0 is obtained by the following iterative system of
equations:

τ̄2t = E [G(W + σ̄tZ; bt)]
2
, (3.1)

where

σ̄2
t =

1

δ
E [η(X0 + τ̄t−1Z, θ)−X0)]

2
, (3.2)

is a state of the RAMP algorithm (2.3), (2.4) and (2.6).

In more details, define the sequence τ̄2t by setting σ̄2
0 = 1

δE[X
2
0 ] and with it

τ̄20 = δ2

ω2E[Φ(W−σ̄0Z; b(τ̄20 ))]. Then, the solution to the iterative equations (3.1)
and (3.2), τ̄2t , can be defined as the solution to the iterative system of equations

τ̄2t+1 = V(τ̄2t , b(τ̄
2
t ), θ(τ̄

2
t ))

for

V(τ2, b, θ) =
δ2

ω2
E[Φ(W + σZ; b)], σ2 =

1

δ
E [η(X0 + τZ, θ)−X0)]

2
.

Lemma 2. Let ρ be a convex function and let Conditions (R), (D) and (A)
hold. For any σ2 > 0 and α > αmin, the fixed point equation

τ2 = V
(
τ2, b(τ2), ατ

)
admits a unique solution τ∗ = τ∗(α) for all smooth loss functions ρ. Moreover,
limt→∞ τt = τ∗(α). Further, the convergence takes place at any initial solution
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and is monotone. Additionaly, for all non-smooth loss functions the fixed point
equation above, admits multiple solutions τ∗ = τ∗(α). In such cases, the conver-
gence take place but it depends on the initial solution and is monotone for each
initialization.

Remark 2. The display above offers explicit expressions of the additional Gaus-
sian variable Z, its effects on the fixed points τ∗ and σ∗ and the loss function
ρ. In the case of a simple Lasso estimator, with G being a rescaled least squares
loss, τ̄2t becomes σ2 + δ−1

E [η(X0 + τ̄t−1Z, θ)−X0]
2
[3].

Lemma 3. Let Conditions Let Conditions (R), (D) and (A) hold. Let σ̄ be a
fixed point of the recursion (3.1)-(3.2). For all twice differentiable losses ρ,

ω

δ
= E [∂1Φ (W + σ̄Z; b)] ,

where W and Z have FW and N (0, 1) distributions, respectively. Let fC−Φ(C;b)

denote the density of the random variable C−Φ(C; b) for C = W − σ̄tZ. Let the
bandwidth, h, for the consistent estimator ν̂ be such that h → 0 and nh → ∞.
Then, for the non-necessarily differentiable losses ρ,

ω

δ
= E [∂1v1 (W + σ̄Z; b)] +

k−1∑
ν=1

ανb
(
fC−Φ(C;b)(rν+1)− fC−Φ(C;b)(rν)

)
,

where v1 is defined in Condition (R).

3.2. Asymptotic mean squared error

We say a function ψ : R2 → R is pseudo-Lipschitz if there exist a constant L > 0
such that for all x, y ∈ R

2: |ψ(x)− ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)‖x− y‖2.
Theorem 1. Let Conditions (R), (D) and (A) hold and let ψ : R×R → R be a
pseudo-Lipschitz function. Moreover, X0 follows px0 , which is a non-degenerate
distribution. Then, almost surely

lim
p→∞

1

p

p∑
i=1

ψ(xt+1
i , x0,i) = E{ψ(η(X0 + τ̄tZ; θt), X0)},

for all τ̄t and σ̄t defined by the recursion (3.1)-(3.2) and θt = ατ̄t.

Next, we measure the L2 norm distance between the RAMP iteration and
the penalized estimator.

Theorem 2. Let Conditions (R), (D) and (A) hold. Let x̂(λ) be the l1 penalized
M-estimator and let {xt} be the sequence of estimates produced by the RAMP
algorithm with θt = α(λ)τ̄t with τ̄t satisfying (3.1)-(3.2). Then,

lim
t→∞

lim
p→∞

1

p
||xt − x̂(λ)||22 = 0,
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for all λ > 0 satisfying

λ =
ατ̄

bδ
P(|X0 + τ̄Z| ≥ ατ̄), (3.3)

with τ̄ defined in Lemma 3 and α = α(λ).

Previous theorem extends the existing work on approximate message passing
with shrinkage factors, as the latter only focuses on least squares losses. Our
result above allows both non-differentiable but also loss functions that do not
necessarily satisfy a restricted strong convexity condition - as both least absolute
deviation and quantile losses don’t. Per results above, we see that for an optimal
value of λ there exists an optimal value of α so that the optimally tuned l1
penalized estimator is approximated by an an optimally tuned RAMP solution.

Theorem 3. Let Conditions (R), (D) and (A) hold. Denote with x̂ the penal-
ized M-estimator. Let ψ : R× R → R be a pseudo-Lipschitz function. Then, we
conclude

lim
p→∞

1

p

p∑
i=1

ψ(x̂i(λ), x0,i) = E {ψ (η (X0 + τ̄Z;α(λ)τ̄) , X0)} ,

for α = α(λ) and all λ satisfying (3.3) and τ̄ defined in Lemma 3.

Remark 3. This result offers not only an upper bound on AMSE(x̂, x0), but also
an exact expression of it for an appropriate choices of the tuning parameters.
Note the optimal choice of λ truly depends on the loss function (through τ̄).
Choosing ψ(x, y) = (x− y)2, we obtain the AMSE path of the RAMP

AMSE(xt, x0) = lim
p→∞

1

p

p∑
i=1

(xt
i − x0,i)

2 = E [η (X0 − τ̄tZ;α(λ)τ̄)−X0]
2
. (3.4)

4. Relative efficiency

The robustness properties of sparse, high-dimensional estimators are difficult
to quantify due to the shrinkage effects and the subsequent bias in estimation.
Shrinkage is known to lead to the super-efficiency phenomena in the domain
of classical efficiency studies. Hence, efficiency cannot distingush between two
biased estimators. However, relative efficiency, can capture both the size of the
bias and the variance together leading to a relevant robustness evaluation.

According to Theorem 3, the asymptotic mean squared error of penalized
M -estimators is

δE

[
η

(
X0 + τ̄tZ, λ

δ

ω
bt

)
−X0

]2
, (4.1)

with the expectation taken with respect to X0 and Z and

τ̄2t =

E

[
Φ2 (W + σ̄tZ; bt)

]
[
EΦ′(W + σ̄tZ; bt)

]2 . (4.2)
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Remark 4. Observe that whenever 1/δ = O(1/n) i.e., p ≤ n and p does not
grow with n, σ̄2

t = τ̄2t−1. Specifically, when p = o(n), the bias in estimation
disappears [20]. In contrast, we observe that Gaussian Z component or the esti-
mation bias never disappear with 1/δ = p/n ≥ 1. This indicates that efficiency,
with p ≥ n, never converges to the low-dimensional case unless perfect model
selection is achieved. Whenever we allow deviations of model selection consis-
tency the additional Z component has a substantial role in both the size of the
asymptotic variance and the asymptotic bias, even if s � n.

The following result computes the asymptotic lower bound of the variance
and AMSE of the RAMP estimator.

Theorem 4. Suppose that W has a well-defined Fisher information matrix
I(FW ). Let τt and σt be the state evolution parameters following equations
(3.1) and (3.2). Assume X0 is not identically zero, PX0{X0 �= 0} > 0 and
let E‖X0‖0 = s/n. Then, under conditions (R), (D) and (A) (i) for every
iteration t of the RAMP algorithm (2.3), (2.4), (2.6), state variable τt satisfies

τ2t ≥ ω

δ

1 + σ2
t I(FW )

I(FW )
;

(ii) for a fixed point solution (τ∗, σ∗) of the RAMP algorithm with all α ≥
αmin > 0

τ∗2 ≥ s

n− s

1

I(FW )
;

(iii) for fixed values of α = α(λ) and X0, with θ = ατ , there exist functions ν1,
ν2 that are convex and increasing, respectively, and are such that the asymptotic
mean squared error mapping for high dimensional problems satisfies:

AMSE(τ∗2, b(τ∗2), ατ∗) = ν1(τ)τ
2 + ν2(τ),

with

ν1(τ) = 1 + α2 − EX0

[
α2

(
Φ(α− X0

τ
)− Φ(−α− X0

τ
)

)

−
(
α+

X0

τ

)
φ(α− X0

τ
)−

(
α− X0

τ

)
φ(−α− X0

τ
)

]
and ν2(τ) = EX0

[
X2

0

(
Φ(α− X0

τ )− Φ(−α− X0

τ )
)]
.

Remark 5. Recall that traditional lower bound of M -estimators with pfixed and
p ≤ n and n → ∞ is 1/I(FW ) and is such that asymptotic mean squares error is
equal to the variance and is achievable. Theorem 4 implies that under diverging
p and s and n, such that p 
 n ≥ s, traditional lower bound is not achiev-
able for all s ≥ n/2, i.e., for all “dense” high dimensional problems. Hence,
we observe a new phase transition regarding robustness in high dimensional and
sparse problems. The effect of sparsity is extremely clear. If the problem is sig-
nificantly sparse, with n/s < ∞, then the traditional information bound may
be achieved, whereas for all other problems the traditional information bound
cannot be achieved, as there is inflation in the variance.
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5. Relative efficiency of l1-penalized least squares and l1-penalized
absolute deviations

Next, we study the relative efficiency of the l1 penalized least squares (P-LS
from hereon) estimator, with respect to the l1 penalized least absolute deviation
(P-LAD from hereon) estimator.

Remark 6. From the results above, we can clearly compute the asymptotic mean
squared error of the P-LS and P-LAD as the recursive equations

τ2P-LS = σ2
W + σ2

P-LS, (5.1)

τ2P-LAD =
E

[
(W + σP-LADZ)

2
1 {|W + σP-LADZ| ≤ b}

]
+ b2P (|W + σP-LADZ| > b)

P2 (|W + σP-LADZ| ≤ b)
.

(5.2)

Here, both σP-LAD and σP-LS satisfy the equation of (3.2) with τP-LAD and τP-LS,
respectively.

Notice that in, sparse, high dimensional setting, the distribution of the X0

can be represented as a convex combination of the Dirac measure at 0 and
a measure that doesn’t have mass at zero. Let us denote with Δ and U two
random variables, each having the two measures above. Then, the asymptotic
mean squared error satisfies

δσ2 = δτ2

(
(1− ω)(EZη(Z,α))

2 + ωE(U,Z)

[
η

(
U

τ
+ Z;α

)
− U

τ

]2)
.

We will explore this representation to study the relative efficiency of P-LS and
P-LAD estimators. The relative efficiency of P-LS vs. P-LAD is defined as the
quotient of their asymptotic mean squared errors. By results of previous sections,
this amounts to the quotient of σ2

P-LS/σ
2
P-LAD. To evaluate this quotient, we study

the behavior of σ2
P-LS/σ

2
W and σ2

P-LAD/σ
2
W independently. In order to do so, we

need a preparatory result below.

Theorem 5. Let Conditions (R), (D) and (A) hold. Let σ̄2
P-LAD be a fixed point

solution to the state-evolution system of equations (3.1) and (3.2), with a loss
ρ(x) = |x| . Let σ2

W be a variance of the error term W (1.1). Then, τ2P-LAD → 0
and σ2

P-LAD → 0, whenever σ2
W → 0 and τ2P-LAD → ∞ and σ2

P-LAD → ∞, whenever
σ2

W → ∞.

Next, we consider a class of distributions fW such that σ2
W exists and consider

state variable σ2
P-LAD as a function of σ2

W . We provide limiting behavior when
both p, n → ∞ of both P-LS and P-LAD. We separate the analysis further into
two cases: the case of “light tailed distributions” and the case of “heavy-tailed
distribution.”

Theorem 6. Let Conditions (R), (D) and (A) hold. Let σ̄2
P-LAD and σ̄2

P-LS be
a fixed point solution to the state-evolution system of equations (3.1) and (3.2)
with a loss ρ(x) = |x| and a loss ρ(x) = (x)2, respectively and an optimal choice
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of the tuning parameters λLAD and λLS. Let σ
2
W be a variance of the error term

W (1.1). In turn, if M(ω) < δ,

lim
σ2
W→0

lim
p→∞

σ̄2
P-LS

σ2
W

=
1

1−M(ω)/δ
, lim

σ2
W→0

lim
p→∞

σ̄2
P-LAD

σ2
W

= ∞,

with M(ω) = infτ

{
(1− ω)Eη2(Z; τ) + ω supμ≥0 E (η(μ+ Z; τ)− μ)

2
}
, where

E is with respect to Z.

Remark 7. A recent work [46] proved that M(ω)/δ ≥ ω/δ. Together with the
results of Lemma 6, we can see that the LAD method has less efficiency than the
LS method for all of ω < δ. In other situations where ω → δ, both limits on the
right hand side of Lemma 6 are infinity and the two methods are inseparable.
Classically, the LS method is more efficient than the LAD method. However,
with high dimensional asymptotic, where s → n, the breakdown point is where
M(ω) = δ, that is,

sup

{
ω : inf

τ

[
(1− ω)Eη2(Z; τ) + ω sup

μ≥0
E (η(μ+ Z; τ)− μ)

2
]
< δ

}
.

Next, we provide limiting behavior of both P-LS and P-LAD in cases where
σ2
W → ∞; that is, in the case of “heavy tailed distributions.”

Theorem 7. Let Conditions (R), (D) and (A) hold. Let σ̄2
P-LAD and σ̄2

P-LS be
a fixed point solution to the state-evolution system of equations (3.1) and (3.2)
with a loss ρ(x) = |x| and a loss ρ(x) = (x)2, respectively and an optimal choice
of the tuning parameters λLAD and λLS. Let σ

2
W be a variance of the error term

W (1.1). Then, if Γ < δ,

lim
σ2
W→∞

lim
p→∞

σ̄2
P-LS

σ2
W

=
1

1− Γ(αLS)/δ
, lim

σ2
W→∞

lim
p→∞

σ̄2
P-LAD

σ2
W

=
Γ(αLAD)

δ
,

with α = α(λ), (3.3) and Γ(α) = Eη2(Z;α), with E is with respect to Z.

The result above is a path-dependent result, in the sense that it holds for
every value of α as well; that is, for a sequence of λ values we can find an
accompanying sequence of α values and the limits above would still apply (note
that the right hand sides depend on α explicitly).

Remark 8. As 1/(1 − Γ(α)/δ) ≥ Γ(α)/δ and Γ is an increasing function,
optimal P-LAD is more efficient than the optimal P-LS if αLS and αLAD are
such that αLS ≥ αLAD. However, the size of the optimal tuning parameter are
unknown in general, hence further studies need to be developed.

6. Numerical examples

Within this section, we would like to show the finite sample performance of
RAMP.
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6.1. Tuning parameter selection & implementation

The policy to choose for thresholds θt is based on [19], which sets θt = ατ̄t, where
α is taken to be fixed. We choose a grid of α within an interval [αmin, αmax].
For each α, we get the RAMP estimator xt and SE iterative parameters τ̄t and
σ̄t. We use these parameters to evaluate the AMSE(xt, x0) and then tune the
optimal α by minimizing AMSE(xt, x0). In other words, τ̄t is calculated by the
recursion τ̄2t = V(σ̄2, ατ̄t), where V is the right hand side of equation (3.1) and
σ̄ is calculated from equation (3.2). A number of simulation sections substitute
θ(α) to be λ as a tuning parameter based on Lemma 5, in order to do a path-
wise comparison between RAMP and penalized estimator. However, relative
efficiency is always studies for only optimally tuned RAMP and optimally tuned
penalized estimator. In the simulations each element of A is i.i.d. and follows
N(0, 1/n). Unless otherwise stated we consider a fixed ratio δ = 0.64. The
distribution of the true parameter is set as P(x0 = 1) = P(x0 = −1) = 0.064
and P(x0 = 0) = 0.872.

6.2. Existence and uniqueness of state evolution parameters

In this section only we work with α = 2 to illustrate the worst case behavior
of the RAMP alpgorithm. We fix p = 500 and focus on Gaussian distribution
N (0, 0.2) for the errorsW . Results of the state evolution equations are presented
in Figures 1 and 2 below, where in the Gaussian setting above, we consider the
least absolute deviation loss and the quantile losses with τ = 0.7 and τ = 0.3.
We observe that the unique value of the state-evolution recursions is easily found
even for the non-differentiable losses, under the recommendations of Section 2.
Figure 1 shows how τ̄2t evolves to the fixed point near 2.264, 2.933, 3.378 for
the case of the least absolute deviations and quantile losses, respectively. Simul-
taneously the mapping V(τ̄2, b, θ) evolves to the fixed points near 2.260, 2.926,
3.359 for all non-differentiable losses. Moreover, Figure 2 illustrates that the loss
is not great, even when we start from the randomly chosen starting α value.

6.3. Limit behavior of the parameters of RAMP

We assess the limit behaviors of parameters of different loss functions to express
the iterations of the RAMP algorithm. The error W follows N(0, 0.2) and the
sample size is 320. We use ω = s/p = 0.128 based on the setting of the px0 into
equation (2.3) to generate b. We generate a series of α, and regard the threshold
θt = α ∗ τ̄t. Then, we use the iteration of σ̄t, τ̄t from Lemma 1 to find the stable
point τ̄∗ with stopping at |τ̄t − τ̄t−1| < tol, where tol is a small positive number
and is taken to be 10−6 here. Lastly, we use the expression of λ = ατ̄∗ω

bδ and the
expression of AMSE in Theorem 2 to find the AMSE(xt, x0). The penalized M -
estimators theory suggest cross-validation for the optimal values of λ. For such
value we find its corresponding AMSE(xt, x0) and present it in Table 1 below.
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Fig 1. Existence and uniqueness of τ̄2 with non-differentiable loss functions: the absolute loss
and the quantile losses with τ = 0.7 and τ = 0.3, respectively.

Fig 2. Comparative plot of the mapping V(τ̄2) with different loss functions with the error W
following standard normal distribution and with fixed δ = 0.64 and p = 500.

Table 1

Convergence of RAMP iteration with different loss function

Loss Function b optimal λ iteration steps τ̄∗
2

AMSE

Square Loss 0.2711864 0.6970546 8 0.3265822 0.0810126
Huber Loss 0.2714135 0.6261463 12 0.3431436 0.09150527
Absolute Loss 0.4990769 1.91523 8 2.0276825 0.0943257
Quantile Loss 0.7319994 1.402867 11 2.821827 0.1177329

Table 1 compares several necessary parameters in the iteration of the RAMP
algorithm. We contrast four different loss functions: Least Squares loss, Huber
loss, Least Absolute Deviation loss and Quantile Loss. The results presented in
the table are averages over 100 repetitions. We notice that within only twenty
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iteration steps, the RAMP algorithm becomes stable no matter of the loss func-
tion considered. Furthermore, we present values of a number of parameters of
the RAMP algorithm: min-regularization b, regularization λ and state evolution
τ̄∗. We observe that they all differ according to the loss function considered, il-
lustrating that there is no universal choice of the above parameters that works
uniformly well for all loss function.

Additionally, we present Figure 3 and show the empirical convergence of
asymptotic variance AVAR(xt, x0) with respect to the tuning parameter λ and
different loss functions. The plots illustrate the bias-variance decomposition.
For example, that when λ becomes larger, the AVAR(xt, x0) of RAMP de-
creases dramatically and stabilizes around 0.136 for the case of Least Squares
loss and Normal errors W . The reason AVAR(xt, x0) becomes fixed on 0.12
is because the RAMP algorithm shrinks the estimator xt to be the zero vec-
tor for which AMSE(xt, x0) = ||xt||22 = 0.064 + 0.064 = 0.128 and asymptotic
Bias2 = 0.008, when λ is large enough. We also see that for the optimal value of
λ the AVAR of P-LS and P-LAD changes depending on the error distribution:
for Normal errors, the optimal AVAR of P-LS ≤ than that of P-LAD (notice
that the tuning is done independently and that the scale of λ is different); for
Student errors we observe that the optimal AVAR of P-LS is ≥ than that of
P-LAD.

6.4. Robustness of RAMP with respect to the error distribution

Further, we know that using square loss to solve problem (1.2) is very sensitive
with respect to the error distribution, which is the reason we release the loss
function from the least squares loss to the general convex loss function satisfy-
ing Condition (R). We consider the robustness of the solution when the tail of
error in model varies. We considered n = 640 observations and compared five
scenarios for the error vector w: (a) light–tailed distribution: Normal N (0, 0.2),
Mixnormal 0.5N (0, 0.3) + 0.5N (0, 1) and (b) heavy–tailed distribution: t8, t4,
MixNormal 0.7N (0, 1) + 0.3N (0, 3) and Cauchy(0, 1). The Mixture of Normals
distribution generates samples from different normal distributions with corre-
sponding probability and samples are centered to have mean zero.

Results of this experiment are presented in Figure 4. A few observations
immediately follow. The Lasso estimator is sensitive to the heavy tail error
distribution whereas, the Huber loss and the Least Absolute Deviation loss
perform better as the tail of the error distribution becomes heavier. Moreover,
with larger tails the Least Absolute Deviation loss is clearly preferred over both
the Huber and the Least Squares loss, whereas situation reverses when the tails
are light. The Mixture of Normals errors are particularly difficult due to the
bimodality of the error distribution. We see that in both light and heavy tales
cases of Mixture distribution, Huber Loss is preferred over the Least Squares
loss. Lastly, as the tails becomes even heavier, all estimators face the problem
of estimating the unknown parameter accurately.
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Fig 3. AVAR(xt, x0) compared to AVAR(x̂(λopt), x0) under Normal (first row) and Student
t4 (second row) error distributions and two loss functions: least square (first column) and
least absolute deviation (second column)
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Fig 4. AMSE(xt, x0) under various error distribution settings

6.5. Relative efficiency

We use RAMP iteration to calculate the relative efficiency of the Least square
estimator versus the Least absolute estimator. It is known that the least square
estimator is preferable in normal error assumption, but the least absolute esti-
mator beats the least square estimator in double-exponential error assumption
under classical low-dimensional setting.

In Table 2, we fix p = 50 and discuss the comparison of relative efficiency
between the low-dimensional case (where p < n) and the high-dimensional dense
case (where p ≈ n). We discuss the AMSE(xt, x0) with a different ratio of p

n
(10, 8, 3, 1.6, 1.4, 1.2) under two error settings (which are N(0, 0.2) and double
exponential (0, 1)). When we implement the equations (3.1), (3.2) and (3.4), we
consider η function to be an identity function and ω is 1, because neither the
penalty nor the sparsity is needed.

From the first two rows of Table 2, we see that in a Normal error setting,
the Least Square estimator is preferable and the relative efficiency of the Least
Square estimator vs. the Least Deviation estimator is around 2

π . Further, we
can see that in the Double exponential error setting, the Least Square esti-
mator performs worse. This result matches the classical inference. From the
last two rows, we can see that the Least Squares estimator is preferable when-
ever error is Normal or Double Exponential. This result is foreseen by [20] and
[29].

Remarkably, in Table 3, we discuss a high-dimensional and sparse case (p >
n). We fix δ = 0.64 and p = 500 and consider optimally tuned (cross-validation)
P-LS and P-LAD. For the number of the non-zeros in true parameter, s, we
choose a variety of options which range from low-sparsity, 25, to high sparsity,
300. From the first two rows of Table 3, we see that in a Normal error setting,
P-LS estimator is no longer preferred in all settings. When the sparsity, s, is high
and reaches n, P-LAD estimator is preferred, whereas when the sparsity, s, is
low, P-LS estimator is preferred. However, from the last two rows, in the setting
of the Laplace distribution, we see that P-LAD estimator is always preferred no
matter of the size of s. This contradicts the findings of Table 2 and shows that
model selection affects the choice of the optimal loss function.
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Table 2

Relative efficiency of Square Loss estimator v.s. Absolute Loss estimator under various low
dimensional setting

Relative Efficiency Least Squares Least Deviations

p < n , with fixed p = 50 and varying n

δ = 10 δ = 8 δ = 3 δ = 10 δ = 8 δ = 3

Normal 0.204 0.234 0.308 0.395 0.439 0.568
Laplace 2.362 2.376 3.119 1.415 1.792 1.578

p ≈ n , with fixed p = 50 and varying n

δ = 1.6 δ = 1.4 δ = 1.2 δ = 1.6 δ = 1.4 δ = 1.2

Normal 0.489 0. 643 1.102 0.946 0.962 1.192
Laplace 5.544 7.276 12.475 7.014 11.351 17.929

Table 3

Relative efficiency of penalized Square Loss estimator with λ1,opt v.s. penalized Absolute
Loss estimator λ2,opt under various high dimensional and sparsity setting

Relative Efficiency Least Squares Least Deviations

p > n and s < n, with fixed p = 500 and δ = 0.64 and varying s/n

ω = 0.05 ω = 0.1 ω = 0.2 ω = 0.05 ω = 0.1 ω = 0.2

Normal 0.042 0.0839 0.139 0.0458 0.113 0.183
Laplace 0.0437 0.0914 0.192 0.0322 0.0745 0.177

p > n and s ≈ n, with p = 500 and fixed δ = 0.64

ω = 0.5 ω = 0.55 ω = 0.6 ω = 0.5 ω = 0.55 ω = 0.6

Normal 0.394 0.458 0.468 0.385 0.432 0.477
Laplace 0.522 0.531 0.584 0.207 0.245 0.289

7. Proofs

In this section we collect all the detailed proofs of the main and auxiliary results.

7.1. Preliminaries

The last term 〈∂1η(ATG(zt−1; bt−1) + xt−1; θ)〉 in step 1 of RAMP iteration
(equation (2.3)) is a correction of the residual, called Onsager reaction term.
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This term is generated from the theory of belief propagation in factor graphical
models. Adding the Onsager reaction term in each iteration is the main differ-
ence from AMP iteration and soft thresholding iteration. The intuition of this
term in each step is considering undersampling and sparsity simultaneously. The
following Lemma 4 shows the relationship between the Onsager reaction term
and in Donoho’s [19] term the undersampling–sparsity.

Similarly to [20] and [29] we use min regularization to regularize the squared
loss with the robust loss ρ. This introduces the family of regularizations of
the robust loss ρ as follows: ρ(b, z) = min

x∈R

{
bρ(x) + 1

2 (x− z)2
}
. Moreover,

the proximal operator Prox(z, b) admits the subgradient characterization: if
Prox(z, b) = u then z − u ∈ bρ′(u).

Lemma 4. Let (z∗, b∗, x̂∗) be a fixed point of the RAMP equations (2.3), (2.4)
and (2.6) having b∗ > 0. According to the definition of η(x), the correction
term 〈∂1η(ATG(z; b) + x; θ)〉 evaluated at the fixed point (z∗, b∗, x̂∗) is equal to
‖x̂∗‖0/p, i.e.,to ω.

7.2. Proofs of the main results

Proof of Theorem 4. Let I(FW ) be a well defined information matrix of the
errors, Wi. If the distribution of the errors Wi is a convolution D = FW ◦
N(0, σ2), then,

EDΨ′ = ω/δ.

Let the score function for the location of D be denoted with LD. Then, the
information matrix of D can be represented as I(D) = E[L2

D] and EDΨ′ =
EGΨLD. In turn, simple Cauchy-Swartz inequality provides

τ2t =
ω

δ
EGΨ

2 ≥ ω

δ

|EGΨLD|2
E[L2

D]
=

ω

δ

(EDΨ′)2

I(D)
=

ω

δ

1

I(FW ◦N(0, σ2
t ))

.

By Lemma 3.5 of [20], the lower bound can be further reduced to

τ2t ≥ ω

δ

1 + σ2
t I(FW )

I(FW )
.

The proof is finalized by obtaining a lower bound of σt.

σ2
t =

1

δ
E [η(X0 + τt−1Z, θ)−X0)]

2
.

For θ = ατt−1, Proposition 1.3 of [4] shows that σ2
t is a strictly concave function

for α > αmin > 0 and X0 �= 0 and an increasing function of τ2. Hence, σ2
t > τ2t−1

for small τ2t−1 and σ2
t < τ2t−1 for large τ2t−1. Hence,

τ2t ≥ ω

δ

1 + τ2t−1I(FW )

I(FW )
≥ ω

δ

1 + ω/δ

I(FW )
.
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Iterating previous equation k times, we obtain that for t > k

τ2t ≥ ω

δ

1 + ω/δ + (ω/δ)2 + · · ·+ (ω/δ)k

I(FW )
.

When k → ∞, τ2t → τ∗2, we obtain

τ∗2 ≥ ω/δ

1− ω/δ

1

I(FW )
=

s

n− s

1

I(FW )
.

Part (iii). Utilizing the scale-invariance property of the soft-thresholding
function η, we obtain that

ν1(τ) = α2
P

(∣∣∣∣Z +
X0

τ

∣∣∣∣ ≥ α

)
− 2αE

[
Zsign(Z)1

{∣∣∣∣Z +
X0

τ

∣∣∣∣ ≥ α

}]

+ E

[
Z21

{∣∣∣∣Z +
X0

τ

∣∣∣∣ ≥ α

}]
,

ν2(τ) = E

[
X2

01

{∣∣∣∣Z +
X0

τ

∣∣∣∣ ≤ α

}]
.

Let us first focus on the second component, i.e., ν2(τ). The derivative of ν2(τ)
is

∂ν2(τ)

∂τ
= EX0

[
X3

0

τ2

(
φ(α− X0

τ
)− φ(−α− X0

τ
)

)]
.

By observing that the last term on the RHS is non-negative for all X0 > 0 and
negative for all X0 < 0, we conclude that ν2(τ) is an increasing function.

We conclude the proof with the analysis of the first term, ν1(τ). The dis-
plays above imply that the first and the last term of ν1(τ) together lead to
E
[
(Z2 + α2)1

{∣∣Z + X0

τ

∣∣ ≥ α
}]

, whereas the middle term can be written as

2αE

[
Z1

{
Z ≤ α− X0

τ

}]
+ 2αE

[
Z1

{
Z ≤ −α− X0

τ

}]
.

By Stein’s lemma we know that the previous expression is equal to

2αEX0

[
φ(α− X0

τ
)− φ(−α− X0

τ
)

]
.

Furthermore, utilizing the variance computation of a truncated random variable,
conditional on X0, it is easy to check that

E

[
Z21

{
Z +

X0

τ
≤ α

}]
= 1−

(
α− X0

τ

)
φ

(
α− X0

τ

)
.

The rest of terms can be computed similarly. Combining all of the above we
obtain

ν1(τ) = EX0

[
α2 + 1− α2

[
Φ(α− X0

τ
)− Φ(−α− X0

τ
)

]
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−α

[
φ(α− X0

τ
) + φ(−α− X0

τ
)

]
− X0

τ

[
φ(α− X0

τ
)− φ(−α− X0

τ
)

]]
.

Evaluating the derivative of ν1(τ), we obtain

∂ν1(τ)

∂τ
= EX0

[
X0

τ2

(
1− X2

0

τ2

)(
φ(α− X0

τ
)− φ(−α− X0

τ
)

)]
.

Hence, for small τ2 the expression above is negative and for large values of τ2

it is positive. It follows that, ν1(τ) is a convex function of τ2.

Proof of Theorem 5. Notice that in sparse, high dimensional setting, the dis-
tribution of the X0 can be represented as a convex combination of the Dirac
measure at 0 and a measure that doesn’t have mass at zero. Let us denote with
Δ and U two random variables, each having the two measures above. Let

Ψα(τ) =
1− ω

δ
Eη2(Z,α) +

ω

δ
E

[
η

(
U

τ
+ Z;α

)
− U

τ

]2
.

First, we prove that whenever σ2
W → 0 then τ2P-LAD → 0 as long as

limτ→0 Ψα(τ) �= 0. To accomplish this, let’s prove that limτ→0 Ψα(τ) �= 0 and
look at the relationship between τP-LAD and σW .

Notice that by the result of Theorem 4 [46], we conclude

lim
τ→0

Ψα(τ) =
ω

δ
,

which is different from 0 whenever s �= 0.
Observe that whenever σ2

W →0, it holds that Y →σ2
P-LADZ and f(W ; τ2P-LAD)→

0. In this case

τ2P-LAD

(
1−Ψ−1

α g̃(τ2P-LAD)
)
= b2

P
(∣∣τ2P-LADΨαZ

∣∣ > b
)

P2 (|τ2P-LADΨαZ| ≤ b)
, (7.1)

where

g̃(τ2P-LAD)P
2
(∣∣τ2P-LADΨαZ

∣∣ ≤ b
)

= EZ

[
Z2

(
FW (b− τP-LADΨ

1/2
α Z)− FW (−b− τP-LADΨ

1/2
α Z)

)]
.

Hence, g̃(0) = EZ

[
Z2 (FW (b)− FW (−b))

]
= FW (b) − FW (−b) < ∞. In turn,

by plugging in τP-LAD = 0 it satisfies both sides of the equation (7.1).

Proof of Theorem 6. Notice that in sparse, high dimensional setting, the dis-
tribution of the X0 can be represented as a convex combination of the Dirac
measure at 0 and a measure that doesn’t have mass at zero. Let us denote with
Δ and U two random variables, each having the two measures above. Let

Ψα = Ψα(τP-LAD) =
1− ω

δ
Eη2(Z,α) +

ω

δ
E

[
η

(
U

τP-LAD

+ Z;α

)
− U

τP-LAD

]2
.
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We first discuss the P-LAD estimator. By the state-evolution recursion, (3.2)

τ2P-LADΨα = σ2
P-LAD. (7.2)

Let Y = W + σ2
P-LADZ. According to (4.2),

τ2P-LAD =
E[Y 21|Y | ≤ b] + b2P(|Y | > b)

P2(|Y | ≤ b)
. (7.3)

Next observe that E[Y 21|Y | ≤ b] = E[W 21|Y | ≤ b] + σ2
P-LADE[Z1|Y | ≤ b];

moreover, E[Y 21|Y | ≤ b] = σ2
W −E[W 21|Y | > b]+σ2

P-LADE[Z1|Y | ≤ b]. Plugging
into (7.3) we obtain

τ2P-LAD = σ2
P-LAD

E[Z1|Y | ≤ b]

P2(|Y | ≤ b)
+

σ2
W − E[W 21|Y | > b]

P2(|Y | ≤ b)
+ ξ(b) (7.4)

for

ξ(b) = b2
P
(∣∣W + σ2

P-LADZ
∣∣ > b

)
P2 (|W + σ2

P-LADZ| ≤ b)
.

Let

g(τ2P-LAD) =
E[Z1|Y | ≤ b]

P2(|Y | ≤ b)
, f(W ; τ2P-LAD) =

σ2
W − E[W 21|Y | > b]

P2(|Y | ≤ b)
,

then
τ2P-LAD = σ2

P-LADg(τ
2
P-LAD) + f(W ; τ2P-LAD) + ξ(b). (7.5)

Substituting (7.1) in (7.2) we obtain

σ2
P-LAD

σ2
W

=
Ψα

1− g(τ2P-LAD)Ψα

[
f(W ; τ2P-LAD)

σ2
W

+
ξ(b)

σ2
W

]
. (7.6)

By Stein’s lemma and some algebra we arrive at the representation of g(τ2P-LAD)
and f(W ; τ2P-LAD), as

g(τ2P-LAD) = EZ

[
Z2 (FW (b− σP-LADZ)− FW (−b− σP-LADZ))

]
/P2(|Y | ≤ b),

f(W ; τ2P-LAD) = EW

[
W 2

(
Φ

(
b−W

σP-LAD

)
− Φ

(
−b−W

σP-LAD

))]
/P2(|Y | ≤ b).

Let us first focus on the case of σ2
W → 0. By Lemma 5 we conclude that

τ2P-LAD → 0 and σ2
P-LAD → 0. Hence,

lim
σ2
W→0

σ2
P-LAD

σ2
W

= lim
τ→0,σ2

W→0

Ψα(τ)

1− g(τ)Ψα(τ)

[
f(W ; τ)

σ2
W

+
ξ(b)

σ2
W

]
.

We proceed to show that the last term in the display above is converging to ∞.
Observe that whenever σ2

W → 0, it holds that Y → σ2
P-LADZ and

ξ(b) → b2
P
(∣∣τ2Ψα(τ)Z

∣∣ > b
)

P2 (|τ2Ψα(τ)Z| ≤ b)
.
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Furthermore, with σP-LAD → 0 and b > 0, it holds that ξ(b) → 0. For φ de-
noting the density of the standard normal, the application of L’Hõpital’s rules
guarantees

lim
σ→0,σ2

W→0

ξ(b)

σ2
W

= b2 lim
σ→0,σ2

W→0

φ(b/σ)σ−2 + φ(−b/σ)σ−2

4σW

,

which implies ξ(b)
σ2
W

→ ∞ as σW → 0.

We finish the proof by discussing the P-LS estimator. By Lemma 1 we see
that the special case of the RAMP algorithm, when the loss function ρ(x) = (x)2

is the approximate message passing algorithm of [4]. Hence, results that apply
to the algorithm in [4] apply. In particular, a recent work [46] discusses the

properties of limσ2
W→0

σ̄2
P-LS

σ2
W

in their Theorem 7.

Proof of Theorem 7. We will use the notation defined in the proof of Lemma
6. We first discuss the Penalized LAD estimator. Based on the representation
proved in Lemma 6

lim
σ2
W→∞

σ2
P-LAD

σ2
W

= lim
τ→∞,σ2

W→∞

Ψα(τ)

1− g(τ)Ψα(τ)

[
f(W ; τ)

σ2
W

+
ξ(b)

σ2
W

]
.

It suffices to discuss the limiting properties of the first, second and the third
term in the right hand side above. Let us discuss the last term first. Observe
that we can rewrite

lim
τ→∞,σ2

W→∞

ξ(b)

σ2
W

= lim
σ→∞

ξ(b)

σ2
= lim

σ→∞

b2
P(|W+σ2

P-LADZ|>b)
P2(|W+σ2

P-LADZ|≤b)
EΦ2(W+σ2

P-LADZ,b)

P2(|W+σ2
P-LADZ|≤b)

= b2 lim
σ→∞

b2P
(∣∣W + σ2

P-LADZ
∣∣ > b

)
EΦ2(W + σ2

P-LADZ, b)
= 1,

where in the last step we used the fact that when τ → ∞, W + σ2
P-LADZ → ∞

EΦ2(∞, b) = b2 lim
σ→∞

1{W + σ2Z ≥ b} = b2.

Next, we discuss the limit of Ψα(τ). Corollary 6 of [46] guarantees that
limτ→∞ Ψα(τ) = Eη2(Z;α)/δ, that is, Ψα(∞) = Γ/δ.

In the following, we analyze the limit of

g(τ) =
EZ

[
Z2FW (b− σZ)− Z2FW (−b− σZ)

]
P2 (|W + σZ| ≤ b)

as τ → ∞. In view of the fact that, both the numerator and denominator of
g(τ) converge to 0 when τ → ∞, we use the L’Hõpital’s rule in determining its
limit. Therefore,

lim
τ→∞

g(τ) = lim
τ→∞

EZ

[
−Z3fW (b− σZ) + Z3fW (−b− σZ)

]
2P (W + σZ ≤ b) (FW (b− σZ) + 1− FW (−b− σZ))

.
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Moreover, the last expression still needs L’Hõpital’s rule. Hence,

lim
τ→∞

g(τ) = lim
τ→∞

EZ

[
Z4f ′

W (b− σZ)− Z4f ′
W (−b− σZ)

]
2(FW (b− σZ) + 1− FW (−b− σZ))

= 0.

The proof is finalized by the analysis of f(W ; τ)/σ2
W , when σ2

W → ∞ and τ → ∞.
We begin with the following representation of f(W ; τ),

f(W ; τ) =
EW

[
W 2ΦZ(

b−W
σ ) +W 2 −W 2ΦZ(

−b−W
σ )

]
P2 (|W + σZ| ≤ b)

.

We observe that in the limit when τ → ∞, of the above expression takes the
form 0/0; hence, we apply the L’Hõpital’s rule to obtain

lim
σ→∞,σ2

W→∞

f(W ; τ)

σ2
W

= lim
σ→∞,σ2

W→∞(
EW

[
−W 2φZ(

b−W
σ )(b−W )/σ2 −W 2φZ(

−b−W
σ )(b+W )/σ2

])
/2σW

2P (|W + σZ| ≤ b)EW

[
−φZ(

b−W
σ )(b−W )/σ2 − φZ(

−b−W
σ )(b+W )/σ2

]
= lim

σ→∞,σ2
W→∞

1

4

EW

[
W 2φZ(

b−W
σ )(b−W )2 −W 2φZ(

−b−W
σ )(b+W )2

]
/σ

E2
W

[
−φZ(

b−W
σ )(b−W )− φZ(

−b−W
σ )(b+W )

]
+ o(1)

= lim
σ→∞,σ2

W→∞

1

64b2
EW

[
W 2φZ(

b−W
σ )(b−W )2 −W 2φZ(

−b−W
σ )(b+W )2

]
/σ

E2
Z [−σZfW (σZ)]

+ o(1)

where in the last step we used the change of variables to go from EW to EZ .
The last expression converges to zero as both σ → ∞, σ2

W → ∞.

Lemma 5. Let (z∗, b∗, x̂∗) be a fixed point of the RAMP equations (2.3), (2.4)
and (2.6), having b∗ > 0. Then, x̂∗ is a solution to the penalized M-estimator
problem (1.2) with λ = θ∗ω

b∗δ
. Vice versa, any minimizer x̂(λ) of the problem

(1.2) corresponds to one (or more) RAMP fixed points of the form
(
z∗,

θ∗ω
λδ , x̂∗

)
.

7.3. Proofs for examples

7.3.1. Equation (2.7)

According to (2.2), we observe that proximal mapping operator satisfies
bρ′(Prox(z, b))+Prox(z, b)−z ∈ 0. We consider Prox(z, b) �= 0 first. We observe
that Prox(z, b) < 0, when z < −b and Prox(z, b) > 0 when z > b. This indi-
cates that sign(Prox(z, b)) = sign(z). Substituting it in the previous equation,
we get Prox(z, b) = z − b sign(z). Next, we observe that when Prox(z, b) = 0
we have ∂(b|x|)/∂x = bξ, where ξ ∈ (−1, 1). Substituting it in the proximal
mapping equation, we get z ∈ (−b, b). Above all,
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7.3.2. Equation (2.8)

The family of min regularized loss function is then defined as follows

ρ(z, b, τ) ≡ min
x∈R

{
bρτ (x) +

1

2
(x− z)2

}
.

Similarly, as before, bρ′(Prox(z, b)) +Prox(z, b)− z ∈ 0. Now, we first consider
Prox(z, b) �= 0, in which case we obtain

ρ′(Prox(z, b))=sign (Prox(z, b))

(
(1−τ)1{Prox(z, b)<0}+τ1{Prox(z, b)>0}

)
.

Next, we observe that when Prox(z, b) = 0 we have ∂(ρτ (x))/∂x = bξ((1 −
τ)1{x < 0}+τ1{x > 0}), where ξ ∈ (−1, 1). Analyzing the positive and negative
parts separately, we see that ∂(ρτ (x))/∂x = bτξ and ∂(ρτ (x))/∂x = b(1 − τ)ξ,
respectively.

7.4. Proofs of preliminary statements

Proof of Lemma 4. Let (x,z) be a fixed point of the RAMP algorithm iteration.
Then the fixed point conditions at x read as

x = η(ATG(z; b)+x; θ) =

⎧⎨
⎩

x+ATG(z, b)− θ, if x+ATG(z, b) > θ
0, if −θ ≤ x+ATG(z, b) ≤ θ
x+ATG(z, b) + θ, if x+ATG(z, b) < −θ

.

They imply that for all x + ATG(z, b) > θ, x = x + ATG(z, b) − θ, or in other
terms that ATG(z, b) = θ. Similarly, x+ATG(z, b) < θ, x = x+ATG(z, b) + θ,
or using different terms, that ATG(z, b) = −θ. For the middle term, we observe
that x = 0, if and only if −θ < ATG(z, b) < θ. Hence,

ATG(z, b) = θv, (7.7)

where v ∈ R
p with each element vi =

{
sign(xi) if xi �= 0
(−1, 1) if xi = 0

. Therefore, the

correction term defined as the average of the first derivative of η(ATG(z, b) +
x; θ), becomes:

〈∂1η(ATG(z; b) + x; θ)〉 = 〈1{|ATG(z, b)| �= θ}〉 = 〈1{x �= 0}〉 = ||x||0
p

= ω.

Proof of Lemma 5. The fixed point condition at z reads

z = Y −Ax+
1

δ
G(z; b)〈∂1η(ATG(z; b) + x; θ)〉.
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Moreover, from Lemma 4 we conclude 〈∂1η(ATG(z; b) + x; θ)〉 = ω, and hence
z = Y − Ax + 1

δωG(z; b). By definition of the rescaled effective score G, we
conclude z = Y − Ax+ Φ(z; b), which shows that Y − Ax = z − Φ(z; b). Then,
we have that the left hand side of the KKT condition becomes

AT ρ′(Y −Ax) = AT ρ′(z − Φ(z; b))
(i)
= AT ρ′(Prox(z, b))

(ii)
= ATΦ(z, b)/b

(iii)
=

θvω

δb
. (7.8)

The equations (i) and (ii) are derived from the definition of Φ(z; b), equation
(iii) is based upon the proof of Lemma 4, equation (7.7). Hence,

ATG(z, b) = ATΦ(z, b)δ/ω = θv

so that ATΦ(z, b)/b = θvω
δb . Plugging θ = λbδ

ω into equation (7.8), we have
AT ρ′(Y −Ax) = λv.

7.5. Proofs of section 3.1

Proof of Lemma 1. This is an immediate application of state evolution as de-
fined in [3], which considers general recursions. Hence, it suffices to show that
the proposed algorithm is a special case of it. In the original notation of [3], the
generalized recursions studied are

bt = Aqt − λtm
t−1 (7.9)

ht+1 = ATmt − ξtq
t (7.10)

where
qt = ft(h

t), mt = gt(bt, w). (7.11)

The two scalars ξt and λt are defined as

ξt = 〈g′t(bt, w)〉 (7.12)

and

λt =
1

δ
〈f ′

t(h
t)〉, (7.13)

where〈·〉 denotes an empirical mean over the entries in a vector and derivatives
are with respect to the first argument. According to [3], the state evolution
recursion involves two variables: τ̄2t = Eg2t (σ̄tZ,W ) and σ̄t =

1
δEf

2
t (τ̄t−1Z). To

see that the RAMP algorithm in (2.6), (2.4) and (2.3) is a special case of this
recursion, we specify the above components of the general recursion to be

ht+1 = x0 −ATG(zt, bt)− xt (7.14)

qt = xt − x0 (7.15)

zt = w − bt (7.16)
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mt = −G(zt, bt) (7.17)

gt(s, w) = −G(w − s, bt) (7.18)

ft(s) = η(x0 − s; θ)− x0, (7.19)

with the initial condition being q0 = x0. Now, we verify that the simplification of
the above series of equations (7.14)-(7.19) offer the RAMP algorithm iterations.
We discuss the first step of the algorithm and then the third, whereas we leave
the discussion of the second step as the last. We observe

xt (7.15)
= qt + x0

(7.11)
= ft(h

t) + x0
(7.19)
= η(x0 − ht; θ)− x0 + x0

(7.14)
= η(x0 − x0 + (ATG(zt−1, bt−1)) + xt−1; θ)

= η(xt−1 +ATG(zt−1, bt−1); θ),

which is the first step of our algorithm. Also,

zt
(7.16)
= w − bt

(7.9)
= w −Aqt + λtm

t−1 (7.15)
= w −A(xt − x0) + λtm

t−1

(1.1)
= Y −Ax0 −A(xt − x0) + λtm

t−1 = Y −Axt + λtm
t−1

(7.17)(7.13)
= Y −Axt +

1

δ
〈f ′

t(h
t)〉(−G(zt, bt))

= Y −Axt +
1

δ
G(zt, bt)〈−η′(x0 − ht; θ)〉, (Since 〈f ′

t(h
t)〉=〈−η′(x0 − ht; θ)〉)

which is the third step of our algorithm. Further, we need to show that ht+1 in
the above special recursion satisfies the equation of ht+1 in general AMP, which
means we need ht+1 = ATmt − ξtq

t = x0 − (ATG(zt, bt))− xt. Therefore,

ht+1 = ATmt − ξtq
t (7.17)

= −ATG(zt, bt)− ξtq
t

(7.15)
= −ATG(zt, bt)− ξt(x

t − x0) = x0 − (ATG(zt, bt))− xt.

This equation is only true when ξt = 1. Moreover, by the definition of G, we
conclude that

ξt
(7.12)
= 〈G′(zt, bt)〉 =

δ

ω
〈Φ′(zt, bt)〉 = 1

Therefore, we showed that the RAMP algorithm is a special case of general
recursion, and we can conclude that the Theorem 2 of [3] applies and provides

σ̄2
t

(3.2)
=

1

δ
E(η(X0 − τ̄t−1Z, θ)−X0))

2

τ̄2t
(3.1)
= E(G(W − σ̄tZ); bt)

2.

The proof is then completed by a simple observation that Z and −Z have the
same distribution.



RAMP algorithm 3925

Proof of Lemma 2. The statement of the lemma follows if we successfully show
that (a) the total first derivative of V(τ2, b(τ), ατ) is strictly positive for τ2 large
enough; (b) the function V is concave for all smooth loss functions ρ and not for
non-smooth loss functions ρ; and (c) the limτ→∞ V

′(τ2, b(τ), ατ2) is a strictly
decreasing function of α.

Part (a).

According to the definition of Φ and Condition (R), we can represent ∂V(τ2,b,θ)
∂(τ2,θ)

as

δ2

ω2

∂

∂(τ2, θ)
E[Φ(W + σZ; b)]

=
δ2

ω2

∂

∂(τ2, θ)

[
bEυ1(W + σZ) + b

k∑
ν=1

ανP {rν ≤ Prox(W + σZ, b) ≤ rν+1}
]

=
δ2

ω2

[
bE

[
υ′
1(W + σZ)

∂σ

∂(τ2, θ)
Z

]

+b

k∑
ν=1

ανEX0,Z

(
f(r̄ν+1)

∂r̄ν+1

∂(τ2, θ)
− f(r̄ν)

∂r̄ν
∂(τ2, θ)

)]
(7.20)

where Prox′ is derivative of the Prox function with respect to its first argument,
f is the density of W and r̄ν+1 is such that

r̄ν+1 − Φ(r̄ν+1 + σZ; b) = rν+1 − σZ.

By integrating the implicit relation above we obtain

∂r̄ν+1

∂(τ2, θ)
= −Z

∂σ

∂(τ2, θ)

∂P̄ rox(r̄ν+1 + σZ; b)

∂(τ2, θ)
. (7.21)

Observe that Prox is a strongly convex function with bounded level sets. [4]
derive σ to be concave and for large τ2 strictly increasing. Hence, r̄ν+1 + σZ

can be made large and positive for large values of τ2. In turn, E ∂r̄ν+1

∂(τ2,θ) can be

made strictly positive for large values of τ2. Together with Condition (D) and
convexity of ρ we are ready to conclude that ∂

∂(τ2,θ)E[Φ(W + σZ; b)] is strictly

positive for large τ2.
By changing the order of differentiation and expectation (allowed by bound-

edness of functions considered given by Condition (R)), we obtain that b is
defined as a solution to the equation ∂1E[Φ(W + σZ; b)] = ω

δ (see Lemma 3 for
details). More specifically,

bE

[
υ1(W + σZ)

∂σ(τ2, θ)

∂τ2
Z

]

+ b

k∑
ν=1

ανEX0,Z

(
f(r̄ν+1)

∂r̄ν+1

∂τ2
− f(r̄ν)

∂r̄ν
∂τ2

)
=

ω

δ
. (7.22)
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Moreover, as before, in Equation (7.20)

δ2

ω2

∂

∂b
E[Φ(W + σZ; b)]

=
δ2

ω2

[
E [υ1(W + σZ)] +

k∑
ν=1

ανEX0,Z

(
f(r̄ν+1)

∂r̄ν+1

∂τ2
− f(r̄ν)

∂r̄ν
∂τ2

)]
∂b(τ2)

∂τ2
.

(7.23)

We focus on the last part of the above display. The total derivative of (7.22)
provides the implicit equation for ∂b

∂τ2 ,

bE

[
υ′
1(W + σZ)

∂2σ(τ2, θ)

∂(τ2)2
Z

]

+b

k∑
ν=1

ανEX0,Z

(
f ′(r̄ν+1)

∂r̄ν+1

∂τ2
− f ′(r̄ν)

∂r̄ν
∂τ2

+ f(r̄ν+1)
∂2r̄ν+1

∂(τ2)2
− f(r̄ν)

∂2r̄ν
∂(τ2)2

)

+

[
E

[
υ1(W + σZ)

∂σ(τ2, θ)

∂τ2
Z

]

+

k∑
ν=1

ανEX0,Z

(
f(r̄ν+1)

∂r̄ν+1

∂τ2
− f(r̄ν)

∂r̄ν
∂τ2

)]
∂b(τ2)

∂τ2
= 0. (7.24)

Next, we observe that υ1 can be made positive for large τ2 and that υ′
1 is positive.

By (7.21) we can see that ∂r̄ν
∂τ2 > 0, ∂2r̄ν

∂(τ2)2 ≥ 0, and ∂2r̄ν
∂(τ2)2 < ∂2r̄ν+1

∂(τ2)2 (curvature

of a convex function decays away from the origin). Moreover, [4] prove that σ is

strictly concave for α > 0. All of the above implies that ∂σ(τ2,θ)
∂τ2 > 0 for large τ2;

∂2σ(τ2,θ)
∂(τ2)2 ≥ 0. Condition (D) guarantees f > 0. Hence, ∂b

∂τ2 can be made positive

for large τ2. Next, it suffices to observe that the total derivative of V(τ2, b, θ) is
given by the sum of the above marginal derivatives, all of which can be made
positive.

Part(b).
Careful inspection of the second derivative of V(τ2, b, θ) provides details (by
the same arguments above) that the second derivative is negative, i.e., that the
function V is concave for all smooth ρ and not necessarily negative for all non-
smooth loss functions ρ. We show the analysis for one of the marginals as the
analysis for the rest is done equivalently.

ω2

δ2
∂2

V(τ2, b, θ)

∂(τ2)2

=
∂

∂τ2

[
bE

[
υ′
1(W + σZ)

∂σ

∂τ2
Z

]
+ b

k∑
ν=1

ανEX0,Z

(
f(r̄ν+1)

∂r̄ν+1

∂τ2
− f(r̄ν)

∂r̄ν
∂τ2

)]

=bE

[
υ

′′

1 (W + σZ; b)Z2

(
∂σ(τ2, θ)

∂τ2

)2

+ υ′
1(W + σZ)Z

∂2σ(τ2, θ)

∂(τ2)2

]
︸ ︷︷ ︸

T1
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+b
∑k

ν=1 ανEX0,Z

(
f ′(r̄ν+1)

(
∂r̄ν+1

∂τ2

)2

−f ′(r̄ν)
(
∂r̄ν
∂τ2

)2
+ f(r̄ν+1)

∂2r̄ν+1

∂(τ2)2
− f(r̄ν)

∂2r̄ν
∂(τ2)2

)
︸ ︷︷ ︸

T2

Next, we show that the above display is negative for all smooth ρ. Observe that
for all smooth losses ρ, T2 = 0 and otherwise T2 �= 0. Hence, for the smooth
losses, it suffices to show that T1 ≤ 0. Condition (R) provides that Eυ′′

1 and
υ′
1 is negative. Furthermore, Z has a symmetric density and σ is concave [3];

hence, T1 < 0.
Let us know focus on non-smooth loss functions. As f is a continuous density,

f(r̄ν+1) < f(r̄ν) for all r̄ν , r̄ν+1 ≥ 0 and f(r̄ν+1) > f(r̄ν) otherwise. Moreover,
for symmetric densities f ′(r̄ν+1) > 0 for all r̄ν+1 < 0. Moreover, f ′(r̄ν+1) >
f ′(r̄ν) for all r̄ν+1 > r̄ν and r̄ν+1, r̄ν < 0 . Opposite inequalities will hold on
the positive axis with f ′(r̄ν+1) < 0 for all r̄ν+1 > 0. Additionally, as r̄ν is
a proxy for a Prox−1, it is concave with a negative second derivative (Prox
is a convex function). Therefore, the marginal derivative above is necessarily
negative. Hence the sign of T2 will alternate between negative and positive.

Part(c).
For part (c), the result of [4] provides that

lim
τ→∞

σ′(τ2, ατ) = f(α).

Moreover, they show that σ is strictly concave for α > 0. Hence, σ will converge
to some σmin when τ → ∞.

Hence, ∂V(τ2, b(τ), α(τ)) will converge to

(δ/ω)2f(α)E2
[
Φ(W + σminZ; b)∂1Φ(W + σminZ; b)

]
×
[
1− ∂11E [ Φ(W + σminZ; b)Z]

∂21E [Φ(W + σminZ; b)]

]
.

[4] show that f(α) is decreasing function of α. Hence, the above limit is as
well.

Proof of Lemma 3. This proof relies on Lemma 1 and a simple modification
of Theorem 2 of [3]. This theorem provides a state evolution equation for a
general recursion algorithm. As Lemma 1 establishes a connections between
our algorithm and general recursion, the proof is then a simple application of
Theorem 2 of [3], with a simple relaxation of its conditions.

Let τ̄t and σ̄t be defined by recursion (3.1)-(3.2). By Lemma 1 and with bti
defined therein (7.9), Theorem 2 of [3] states

lim
n→∞

1

n

n∑
i=1

ψ(bti,Wi) = E [ψ(σ̄tZ,W )] (7.25)
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for any pseudo-Lipschitz function ψ : R2 → R of order k and for all Wi with
bounded 2k − 2 moments. Careful inspection of the proof of Lemma 5 of [3]
shows that if ψ is a function that is uniformly bounded, the restriction on the
moments of Wi is unnecessary. A version of Hoeffding’s inequality suffices, as
applied to independent and not-necessarily equally distributed random variables
(see Theorem 12.1 in [13]).

Next, we split the analysis into two cases: Φ is differentiable and Φ is not
differentiable. For the first case, it suffices to observe that by Lemma 1 we have
bti = Wi − zti , with zti defined in (2.3). Next, we choose ψ to be

ψ(s, t) = ∂1Φ(t− s; b).

Then, ψ(bti,Wi) = ∂1Φ(Wi −Wi + zti ; b) and by Condition (R) ψ is a uniformly
bounded function. Thus, application of the result above provides

lim
n→∞

1

n

n∑
i=1

∂1Φ(z
t
i ; b) = E [∂1Φ(W − σ̄tZ; b)] .

The proof then follows by observing that the right hand side is equal to ω/δ by
(2.4).

Next, we discuss the case of non-differentiable losses ρ. Let h be a bandwidth
parameter of an estimator of ν(b). We define

Sn(h) =

n∑
i=1

[
Φ(zti + n−1/2h; b)− Φ(zti ; b)

]
for h ∈ [0, C] for some constant C: 0 < C < ∞. We set So

n(h) = Sn(h)−ESn(h),
for h ∈ [0, C]. Moreover, by Condition (R) (i) Φ(zti ; b) = bv1(Prox(zti , b)) +
bv2(Prox(zti , b)). Absolutely-continuous term ν1 can be handled as the above
case; hence, without loss of generality we can assume it is equal to zero. Hence,

Sn(h) =

n∑
i=1

k−1∑
ν=1

b
[
1
{
Prox(zti + n−1/2h, b) ∈ (rν , rν+1)

}
−1

{
Prox(zti , b) ∈ (rν , rν+1)

}]
and

ESn(h) = b

k−1∑
ν=1

[
P

{
Prox(zti + n−1/2h, b) ∈ (rν , rν+1)

}
−P

{
Prox(zti , b) ∈ (rν , rν+1)

}]
.

As Prox(z, b) = z − Φ(z, b), we know the term above can be further written as

ESn(h) =

n∑
i=1

b

k−1∑
ν=1

[
P

{
zti + n−1/2h− Φ(zti + n−1/2h, b) ∈ (rν , rν+1)

}
−P

{
zti − Φ(zti , b) ∈ (rν , rν+1)

}]
.
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Then, by the same arguments as for (7.25) we obtain n−1/2So
n(h) → N (0, γ2(h)),

for h ∈ [0, C], in distribution, where for each h ∈ [0, C], and

γ2(h) = b

k−1∑
ν=1

αν lim
n→∞

1

n

n∑
i=1

h
[
fzt

i−Φ(zt
i ,b)

(rν+1)− fzt
i−Φ(zt

i ,b)
(rν)

]
.

Then, by the arguments of (7.25) we conclude

γ2(h) = bh

k−1∑
ν=1

αν [fW−σ̄tZ(rν+1)− fW−σ̄tZ(rν)] .

The right hand side of the equality above is finite by the Condition (R). To
establish a uniform statement, we need to establish the compactness or tightness
of the sequence n−1/2Sn(h) for h ∈ [0, C]. This follows by noticing that the
sequence is a sequence of differences of two, univariate, empirical distribution
functions, both of which weakly converge to a Wiener function (see Lemma 5.5.1
in [28]). Hence,

sup
|h|≤C

n−1/2
n∑

i=1

[
Φ(zti + h; b)− Φ(zti ; b) + hbγ∗] = OP (n

−τ ) (7.26)

where τ = 1/2 for continuous ψ and τ = 1/4 for discontinuous ψ. In the display

above γ∗ =
∑k

ν=1 (αν − αν−1) fW−σ̄tZ(rν). By the definition ω/δ is the deriva-
tive of a consistent estimator of ν(b) = ∂1EΦ(z

t, bt). Because of the equation
above, we see that

ω/δ = b

k∑
ν=1

(αν − αν−1) fW−σ̄tZ(rν),

for all consistent estimators of ν(b) with a bandwidth choice of h → 0 and
nh → ∞.

7.6. Proofs for section 3.2

Proof of Theorem 1. The proof is split into two parts. In the first step, we show
that the proposed algorithm belongs to the class of generalized recursions as
defined in [3]. The result is presented in Lemma 1.

In the second step, we utilize conditioning technique and the result of The-
orem 2 of [3] designed for generalized recursions. For an appropriate sequence
of vectors ht

i of generalized recursions and a x0 the true regression coefficient,
they show

lim
p→∞

1

p

p∑
i=1

ψ(ht+1
i , x0,i) = E [ψ(τ̄∗t Z,X0)] (7.27)
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for a pseudo-Lipschitz function ψ. We now proceed to identify xt for a suitable
ht
i of the proposed RAMP algorithm. By definition of RAMP,

xt+1 (i)
= η(xt +ATG(zt, bt); θ)

(ii)
= η(x0 − x0 + xt +ATG(zt, bt); θ)

(iii)
= η(x0 − ht+1), (7.28)

where equation (i) is because of the iteration RAMP, the equation (ii) is plus
and minus a same term and the equation (iii) is the special choice of ht+1 in
equation(7.14). Therefore, combining xt in equation (7.28) and equation (7.27),
we obtain

lim
p→∞

1

p

p∑
i=1

ψ(xt
i, xi,0) = lim

p→∞

1

p

p∑
i=1

ψ(η(x0,i − ht
i; θ), x0,i)

= E[ψ(η(X0 − τ̄∗t Z; θ), X0)]

Proof of Theorem 2. In order to prove this result we designed a series of Lemmas
4−15 provided in the Appendix . The main part of the proof is provided by the
results of Lemma 6. In the next steps we apply Lemma 6 to the specific choice
of vectors x = xt and r = |x̂− xt|. We show there exist constants c1, ..., c5 > 0,
such that for each ε > 0 and some iteration t, Conditions (C1)−(C6) of Lemma
6 hold with probability going to 1 as p → ∞.

Condition (C1). We need to show ‖|xt − x̂‖|2 ≤ c1
√
p. Lemma 1 proves that

the RAMP algorithm is a special case of a general iterative and recursive scheme,
as defined in [3]. From (7.27) we choose ψ(a, b) = a2 and obtain

lim
t→∞

lim
p→∞

||xt||2
p

= E{η(X0 + τ̄∗Z; θ∗)}2 < ∞.

Moreover, we observe that ||x̂||2
p < ∞ by assumptions of the Theorem.

Condition (C2). By the definition of x̂ as the minimizer of the L, we conclude
that L(x̂) < L(x) for any x �= x̂ and this applies for x = xt.

Condition (C3). We need to show ||sg(L, xt)||2 ≤ ε
√
p. By the definition of

the RAMP iteration

xt =

⎧⎨
⎩

ATG(zt−1, bt−1) + xt−1 + θt−1, if ATG(zt−1, bt−1) + xt−1 ≥ θt−1

ATG(zt−1, bt−1) + xt−1 − θt−1, if ATG(zt−1, bt−1) + xt−1 ≤ −θt−1

0 otherwise
.

This indicates that when xt = 0

|ATG(zt−1, bt−1) + xt−1|
θt−1

≤ 1,

and that in cases of xt �= 0

ATG(zt−1, bt−1) + xt−1 = xt + sign(xt)θt−1.
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Therefore, the subgradient sg(L, xt) must satisfy

sg(L, xt) ≡
{

λsign(xt)−AT ρ′(Y −Axt), if xt �= 0

λATG(zt−1,bt−1)+xt−1

θt−1
−AT ρ′(Y −Axt), if xt = 0

. (7.29)

Moreover, by equation (2.3) and Lemma 1

Y −Axt = zt − Φ(zt−1, bt−1).

Then,

AT ρ′(Y −Axt) = AT ρ′(zt − Φ(zt−1, bt−1))

= AT ρ′(Prox(zt, bt) + Φ(zt, bt)− Φ(zt−1, bt−1)),(7.30)

where we used the fact that zt −Φ(zt−1, bt−1) = Prox(zt, bt). Adding equation
(7.30) to (7.29) and the expression of sg(L, xt), we conclude

sg(L, xt) = λst −AT ρ′(Prox(zt, bt) + Φ(zt, bt)− Φ(zt−1, bt−1)), (7.31)

where

st =

{
sign(xt) , if xt �= 0

ATG(zt−1,bt−1)+xt−1

θt−1
, if xt = 0

.

Now, we rewrite sg(L, xt) as follows

sg(L, xt) =
1

θt−1

[
λθt−1s

t − λδb

ω
AT ρ′(Prox(zt, bt) + Φ(zt, bt)− Φ(zt−1, bt−1))

]

+
1

θt−1

[
λδb

ω
− θt−1

]
AT ρ′(Prox(zt, bt) + Φ(zt, bt)− Φ(zt−1, bt−1)).

Then, by the non-negativity of θt−1 and triangular inequality

1
√
p

∥∥sg(L, xt)
∥∥
2

≤ λ

θt−1
√
p

∥∥∥∥λθt−1s
t − λδb

ω
AT ρ′(Prox(zt, bt) + Φ(zt, bt)− Φ(zt−1, bt−1))

∥∥∥∥
2︸ ︷︷ ︸

A

+
|λδbω − θt−1|

θt−1

∥∥AT ρ′(Prox(zt, bt) + Φ(zt, bt)− Φ(zt−1, bt−1))
∥∥
2︸ ︷︷ ︸

B

.

We consider the bound of B first.
Observe that Prox(zt, bt) = zt − Φ(zt, bt). Then, utilizing (7.25) and (7.26),

we observe that there exists a 0 < q <
√
p such that ‖Prox(zt, bt) + Φ(zt, bt)−

Φ(zt−1, bt−1)‖2 ≤ q. We define M ≡ sup
‖z‖2≤q

ρ′′(z), where ρ′′(z) = v′1(z). Then, by
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Condition (R) (i)-(ii) and (iv) we know that M < ∞. Then by Taylor expansion
and Triangle inequality, we conclude

B ≤
|λδbω − θt−1|

θt−1

× 1
√
p

[
‖+AT ρ′(Prox(zt, bt))‖2 +M‖A‖2‖Φ(zt, bt)− Φ(zt−1, bt−1)‖2

]
.

Moreover,

|λδbω − θt−1|
θt−1

1
√
p
||AT ρ′(Prox(zt, bt))||2 =

|λδbω − θt−1|
θt−1bt

1
√
p
||ATΦ(zt, bt)||2

≤
|λδbω − θt−1|

θt−1bt

1
√
p
σmax(A)||Φ(zt, bt)||2

Next, we observe that the state evolution (by Lemma 3 and Theorem 1) guar-
antees,

lim
p→∞

||Φ(zt, bt)||2
p

< ∞.

Moreover, σmax(A) is almost surely bounded as p → ∞ []. Hence, we conclude

lim
t→∞

lim
p→∞

σmax(A)‖Φ(zt, bt)− Φ(z)‖2√
p

= 0.

Furthermore, using Lemma 5 we obtain

lim
t→∞

lim
p→∞

|λδbtω − θt−1|
θt−1bt

=
λδb∗

ω − θ∗

θ∗b∗
= 0.

Therefore, B converges to 0 when p → ∞.

Now we consider A. From equation (7.29), we conclude that

θt−1s
t − δbt

ω
AT ρ′(Prox(zt, bt)) = θt−1s

tst − δ

ω
ATΦ(zt, bt) = xt − xt−1.

Plugging into A, we obtain

A ≤ λ

θt−1
√
p
‖xt − xt−1‖2 +

λδbt
ωθt−1

√
p
Mσmax(A)

∥∥Φ(zt, bt)− Φ(zt−1, bt−1)
∥∥
2
.

The convergence of the second term is by the convergence of the term B and
the first term is converging to 0 by the convergence of the RAMP algorithm –
that is the result of Theorem 1 holds. Therefore, A converges to 0 when p → ∞.
This finishes the proof of Condition (C3).

Condition (C4). This result follows from Lemma 12 provided in the Appendix.
Condition (C5). Let A ∈ Rn×p be a matrix with i.i.d. entries such that

E{Aij} = 0, E{A2
ij} = 1/n, and n = pδ. Let σmax(A) be the largest singular
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value of A and σmin(A) be its smallest non-zero singular value. Then, [2] provide
a general result that claims

lim
p→∞

σmax(A) =
1 +

√
δ√

δ
, lim

p→∞
σmin(A) =

1−
√
δ√

δ
. (7.32)

Condition (C6). Assumption (R) is guaranteeing the validity of (C6).
Conditions (C1)-(C6) are checked and the proof is completed.

7.7. Auxiliary results

This section gathers results used throughout the proofs. They are of secondary
interest, so we present them in this Appendix section.

Lemma 6. Let r and x be vectors in R
p, L defined in Problem (1.2) and

sg(L, x) ∈ ∂L(x) the subgradient of L with respect to x. For any c1, ...c5 > 0, if
the following Conditions 1-5 hold, then there exists a function ξ(ε, c1, ..., c5) → 0
as ε → 0 such that ||r||2 ≤ √

pξ(ε, c1, ..., c5).
The conditions are: (C1) ‖r‖2 ≤ c1

√
p; (C2) L(x + r) ≤ L(x); (C3) There

exists a sg(L, x) ∈ ∂L(x) with ||sg(L, x)||2 ≤ √
pε; (C4) Let v ≡ 1

λ [
∑p

i=1 ρ
′(Yi−

AT
i x)Ai+sg(L, x)] ∈ ∂||x||1, and S(c2) ≡ {i ∈ [p] : |vi| ≥ 1−c2}. Then, for any

S′ ⊆ [p], |S′| ≤ c3p, we have σmin({A}S(c2)∪S′) ≥ c4; (C5) The maximum and

minimum non-zero singular value of A satisfy 1
c5

≤ σmin(A)
2 ≤ σmax(A)

2 ≤ c5;
(C6) For all such vectors r, the loss function ρ satisfies Ei = E(v′1(Wi)) ≥ k1
for a constant k1 > 0.

Proof of Lemma 6. The proof follows the strategy of Lemma 3.1. of [4], with
nontrivial adaptation to a class of general loss functions.

Let S = supp(x) ⊆ [p], where supp(x) ≡ {i|xi �= 0} and [p] = {1, 2, ..., p} and
let S̄ be its complement. Let r be the vector that satisfies Conditions (C1) and
(C2), i.e., it is such that ‖r‖2 ≤ √

p and L(x+ r)− L(x) ≥ 0. Observe that we
can decompose the Lasso penalty as follows

‖x+ r‖1 − ‖x‖1 = ‖xS + rS‖1 − ‖xS‖1 + ‖rS̄‖1, (7.33)

as xS = x and r = rS + rS̄ .
Let us define a vector v as

v ≡ 1

λ
[

p∑
i=1

ρ′(Yi −AT
i x)Ai + sg(L, x)] (7.34)

By observing that the subgradients of L(x) satisfy sg(L, x)=λ∂||x||1−
∑n

i=1 ρ
′(Yi−

AT
i x)Ai, we obtain that vS = ∂||xS ||1. Moreover, by adding and subtracting

〈v, r〉

‖rS̄‖1 ≥ −p〈∂‖xS‖1, rS〉+ (‖rS̄‖1 − p〈vS̄ , rS̄〉) + p〈v, r〉) (7.35)

where 〈u, v〉 ≡ 1
m

∑m
i=1 uivi, denotes the scalar product for u, v ∈ R

m.
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By observing that L(x+ r)− L(x) ≥ 0 and by plugging in all of the above
inequalities, we conclude

0
(iii)

≥ λ

(
‖xS + rS‖1 − ‖xS‖1

p
− 〈∂‖xS‖1, rS〉

)
+ λ

(
‖rS̄‖1
p

− 〈vS̄ , rS̄〉
)

+ λ〈v, r〉 −Δn (7.36)

where (iii) follows from plugging equations (7.33) and (7.35) in L(x+r)−L(x)≥
0 and where

pΔn =

n∑
i=1

[
ρ(Yi −AT

i x−AT
i r)− ρ(Yi −AT

i x)
]
.

Next, we observe that

λ〈v, r〉 = 〈sg(L, x), r〉+ p−1
n∑

i=1

ρ′(Yi −AT
i x)(A

T
i r). (7.37)

Let γn be a sequence of positive numbers. We define the following event

En =

{∣∣∣∣
∑n

i=1 ρ
′(Yi −AT

i x)(A
T
i r)

p

∣∣∣∣ ≤ γn : ∀‖r‖2 ≤ √
p

}
. (7.38)

Then, conditionally on E we have

γn
(iii)

≥ λ

(
‖xS + rS‖1 − ‖xS‖1

p
− 〈∂‖xS‖1, rS〉

)
+ λ

(
‖rS̄‖1
p

− 〈vS̄ , rS̄〉
)

+ λ〈sg(L, x), r〉 −Δn. (7.39)

We discuss the last term first. We rewrite pΔn as

pΔn = Vn(r) + nEv1(r),

where Vn(r) =
∑n

i=1[vi(r)− Evi(r)], with vi(r) = ρ(Yi −AT
i x−AT

i r)− ρ(Yi −
AT

i x).
Let ηn be a sequence of positive numbers. Then, we consider the following

event

Vn =
{
|Vn(r)| ≤ ηn : ‖r‖22 ≤ p

}
.

Conditioning on this event, the inequality (7.36) becomes

γn + ηn
(iii)

≥ λ

(
‖xS + rS‖1 − ‖xS‖1

p
− 〈∂‖xS‖1, rS〉

)
(7.40)

+λ

(
‖rS̄‖1
p

− 〈vS̄ , rS̄〉
)
+ λ〈sg(L, x), r〉+ n

p
Ev1(r).
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Moreover, Cauchy Schwartz Inequality tells that:

−||sg(L, x)||2||r||2
p

≤ −〈sg(L, x), r〉 ≤ ||sg(L, x)||2||r||2
p

.

Using Conditions (C1) and (C3), inequality (7.40) becomes

λ

(
‖xS + rS‖1 − ‖xS‖1

p
− 〈sign(xS), rS〉

)
+ λ

(
‖rS̄‖1
p

− 〈vS̄ , rS̄〉
)

+
n

p
Ev1(r) ≤ c1ε+ γn + ηn.

The first two terms of the above right hand side are non-negative (proven by
arguments identical to the Lemma 3.1 in [4]). For the last term we employ results
of Lemma 9 to obtain

n

p
E[ρ(Yi −AT

i x−AT
i r)− ρ(Yi −AT

i x)]

≥ −n

p
E[ψ(Wi)A

T
i r] +

n

p
κ[AT

i r]
2 − oP (1).

In the display above, the first term disappears; for the second one

2κ = Ev′1(Wi) + γ,

for γ defined in Lemma 9. According to Lemma 9 and Condition (C6), we
conclude that γ is strictly positive. Therefore, there exists a constant C > 0
such that

1

p
C‖Ar‖22 ≤ c1ε+ γn + ηn + oP (1) := ξ1(ε). (7.41)

To complete the proof we need to show that ξ1(ε) → 0 and then employ
arguments similar to Lemma 3.1 in [4]. This can be done by effectively bounding
the size of the events En and Vn.

The size of ηn can be found by choosing appropriate sequence un of Lemma 7.
For un =

√
(log p)2/(pn) we obtain that ηn = nun = (log p)

√
n/

√
p is sufficient

to guarantee that P (Vn) ≥ 1− exp{−2 log p/κ2}.
Similarly, the size of γn can be found by choosing appropriate sequence un of

Lemma 8. For un =
√
(log p)2/(pn) we obtain that ηn = nun = (log p)

√
n/

√
p

is sufficient to guarantee that P (En) ≥ 1− exp{−2 log p/κ2}.

Lemma 7. Let |ρ′(u)| ≤ κ for all u ∈ R and some constant κ < ∞. Then,
for all vectors r, such that ‖r‖2 ≤ √

p and for any sequence of positive numbers
un ≥ 0 we have

P

(∣∣∣∣∣
n∑

i=1

vi(r)− Evi(r)

∣∣∣∣∣ ≥ npun

)
≤ exp

{
−2

n2pu2
n

κ2 log p

}
, (7.42)

for vi(r) = ρ(Yi −AT
i xo −AT

i r)− ρ(Yi −AT
i xo).
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Proof of Lemma 7. Let Vn(r) =
∑n

i=1[vi(r)− Evi(r)]. We begin by observing

p−1
Vn(r) ≤

n∑
i=1

p−1 |vi(r)− Evi(r)|,

for vi(r) = ρ(Yi −AT
i xo −AT

i r)− ρ(Yi −AT
i x). Then, by a Taylor expansion of

the loss function ρ around, we conclude

|ρ(Yi −AT
i xo −AT

i r)− ρ(Yi −AT
i xo)| ≤ |Hi(c)A

T
i r|

for Hi(c) = sup|u|≤c ρ
′(Wi − u). By Hoelder’s inequality we conclude

|vi(r)− Evi(r)| ≤ |Hi(c)− EHi(c)|
∣∣〈AT

i r〉
∣∣ .

We proceed to bound each term in the RHS above, independently. For the first
term, we observe that for a positive, bounded constant κ, the boundedness of
the sub-gradient provides |Hi(c)− EHi(c)| ≤ κ. For the second term, as Aij are
Gaussian with variance 1/n, by the weighted Bernstein inequality

P
(
1/p

∣∣〈AT
i r〉

∣∣ ≥ an
)
≤ P

⎛
⎝ p∑

j=1

|Aijrj | ≥ pan

⎞
⎠

≤ exp

{
− p2a2n
4
∑p

j=1 A
2
ijr

2
ij + 2Cpmaxj |Aij |/3

}

≤ exp

{
−p2na2n
4‖r‖22

}
. (7.43)

For all r such that ‖r‖2 ≤ √
pc1, the right hand side is smaller than exp{−pna2n/

4c1}. Hence, a choice of an =
√
log p/(np) leads that

p−1|vi(r)− Evi(r)| = OP

(√
log p

np

)
.

This, in turn, guarantees that 1
pVn(r) is a sum of n terms, each of which is

oP (1). By Hoefding’s inequality for bounded random variables, for any positive
sequence of un

P

(
1

p
|Vn(r)| ≥ nun

)
≤ exp

{
−2

n2u2
n

κ2
∑n

i=1
log p
np

}
≤ exp

{
−2

pn2u2
n

κ2 log p

}
.

Lemma 8. Let |ρ′(u)| ≤ κ for all u ∈ R and some constant κ < ∞. Then, for
a positive sequence of un ≥ 0 we have

P

(
|〈�L(xo), r〉| ≥ un

)
≤ exp

{
− npu2

n

2κ2(log p)

}
.
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Proof of Lemma 8. Let

�L(xo) =
n∑

i=1

ρ′(Yi −AT
i xo)A

T
i

and observe that E � L(xo) = 0 by the vanishing property of the true score
function Eρ′(Yi −AT

i xo) = 0. Hence,

〈�L(xo), r〉 = p−1
n∑

i=1

ρ′(Yi −AT
i xo)(A

T
i r)

and is such that E〈�L(xo), r〉 = 0. By a triangular inequality and the bounded
sub-gradient assumption

|〈�L(xo), r〉| ≤ κ

n∑
i=1

qi(r)

with

qi(r) = p−1

p∑
j=1

|Aijrj |.

Then, Eqi(r) = 0 as A is a mean zero design matrix. From Lemma 7, equation
(7.43), we conclude that

P

(
n∑

i=1

qi(r) ≥ un

)
≤ exp

{
− u2

n

2(log p)/(np)

}
.

Lemma 9. Consider the model (1.1) with Conditions (R), (D) and (A) satis-
fied. Let r be a vector in R

p such that ‖r‖22 ≤ Cp for a constant C: 0 < C < ∞.
Then,

sup
‖r‖2≤

√
p

p−1

∣∣∣∣∣
n∑

i=1

[
ρ(Yi −AT

i x−AT
i r)− ρ(Yi −AT

i x)
]

+rT
n∑

i=1

Aiρ
′(Yi −AT

i x)− γrT
n∑

i=1

AT
i Air

∣∣∣∣∣ = oP (1), (7.44)

as n and p → ∞, with 2γ = Ev′1(W ) +
∑k

ν=1(αν − αν−1)fW (rν).

Proof of Lemma 9. It suffices to prove

sup
‖r‖2≤

√
p

∥∥∥∥∥
n∑

i=1

Ai

[
ψ(Yi −AT

i x−AT
i r)− ψ(Yi −AT

i x)
]

+γ

n∑
i=1

AT
i Air

∥∥∥∥∥
∞

= OP (
√
p log p/n) (7.45)
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where 2γ = Ev′1(W ) +
∑k

ν=1(αν − αν−1)fW (rν), together with
|
∑n

i=1 AijΨ(Wi)| = OP (1), for all j = 1, . . . , p. The above, in turn, implies
through integration over r the statement (7.44).

Let j = 1, . . . , p. We first argue that |
∑n

i=1 AijΨ(Wi)| = OP (1): by Condi-

tion (D), Aij = OP (
√

1/n) and by Condition (R), |n−1/2
∑n

i=1 Ψ(Wi)| = OP (1)
(bounded random variables no matter of the size of Wi – consequence of Theo-
rem 12.1 [13]).

Next, we prove (7.45). For that end, define a stochastic process

Sn(r) =

n∑
i=1

Ai

[
ψ(Yi −AT

i x−AT
i r)− ψ(Yi −AT

i x)
]

for r ∈ [−C
√
p, C

√
p]p, for some C: 0 < C < ∞. We let ψ = v1 + v2 and

denote the absolute continuous and step-function components by v1 and v2,
respectively.

Case I: ψ = v2 (i.e., v1 = 0).
Without loss of generality, we assume that there is a single jump-point. We

set v2(y) to be 0 or 1 according to y being ≤ 0 or > 0. By the vector structure in
(7.45), it suffices to show that for each coordinate of Sn(r) the uniform asymp-
totic linearity result holds for r ∈ [−C

√
p, C

√
p]p. To simplify the notation, we

consider only the first coordinate and drop the subscript 1 in Sn1(r):

S0
n(r) = Sn(r)− ESn(r),

where ESn(r) =
∑n

i=1 Ai1

[
FW (0)− FW (AT

i r)
]
. By Taylor expansion, we have

FW (0) − FW (AT
i r) = fw(0)A

T
i r + f ′

W (ξ)[AT
i r]

2, for ξ ∈ (0, AT
i r). Moreover,

by (7.43), |AT
i r| = OP (

√
p log p/n) and by Condition (D), Aij = OP (

√
1/n) .

Therefore, ∣∣∣∣∣
n∑

i=1

Ai1f
′
W (ξ)[AT

i r]
2

∣∣∣∣∣ = OP ((p log p)/n).

Hence, by Hoefding’s inequality, Theorem 12.1 of [13], we have

|S0
n(r)| = OP (

√
p log p/n),

for r ∈ [−C
√
p, C

√
p]p. To prove uniform asymptotic linearity we resort to the

known weak convergence properties of the empirical cumulative distribution
functions to the Brownian motion [28] or by uniform decompositions of the
work of [7].

Case II: ψ = v1 (i.e., v2 = 0). Note that for every r ∈ [−C
√
p, C

√
p]p, by a

second-order Taylor’s expansion,

ψ(Yi −AT
i x−AT

i r)− ψ(Yi −AT
i x) = v′1(Yi −AT

i x)[−AT
i r] +R

where the remainder term

R = 1/2

∫ Yi−AT
i x−AT

i r

Yi−AT
i x

(Yi −AT
i x−AT

i r− t)2v
′′

1 (t)dt ≤
1

2!
[AT

i r]
2
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as v
′′

1 (t) ≤ C for all t ∈ [Yi − AT
i x, Yi − AT

i x − AT
i r] and by (7.43), is of the

order OP (p(log p/n)).
Now, it can be easily shown that for any r1 and r2 of distinct points

Var (Sn(r1)− Sn(r2)) ≤
n∑

i=1

A2
i1E

[
ψ(Yi −AT

i x−AT
i r)− ψ(Yi −AT

i x)
]2
(7.46)

≤ K‖r1 − r2‖22 (7.47)

uniformly in r1, r2, for a constant K: 0 < K < ∞. Also, the boundedness of v′1
we have

E

[
Sn(r1)− Sn(r2)−

n∑
i=1

Ai1A
T
i (r1 − r2)

]
(7.48)

≤
n∑

i=1

A2
i1E

[
ψ(Yi −AT

i x−AT
i r)− ψ(Yi −AT

i x)
]2

(7.49)

≤ K1‖r1 − r2‖2 (7.50)

uniformly in r1, r2, for a constant K1: 0 < K1 < ∞. With all of the above we
conclude

Sn(r1)− Sn(r2)−
n∑

i=1

Ai1A
T
i (r1 − r2) = OP (

√
p). (7.51)

To prove the compactness, we shell consider increments of Sn(r) over small
blocks. For r2 > r1, the increments of Sn(·) over the block B = B(r1, r2) is

Sn(B) = Sn(r2)− Sn(r1) =

n∑
i=1

Aiψi(Wi;B)

for i = 1, . . . , n and

ψi(Wi;B) = ψi(Wi −AT
i r2)− ψi(Wi −AT

i r1).

As AT
i r2 and AT

i r1 are of the order of OP (
√

p log p/n) and ψ is a bounded

function, we have ψi(Wi;B) = OP (
√

p log p/n). Moreover, ψi(Wi;B) = 0 if any
of the arguments lay in the same interval. Hence,

sup {|Sn(B(−K, r2))| : −K ≤ r2 ≤ K} ≤
n∑

i=1

|Ai1|K (‖Air1‖1 + ‖Air2‖1) Ii

where Ii are independent, non-negative indicator variables with

EIi ≤ K1 (‖Air1‖1 + ‖Air2‖1)

for a constant K1: 0 < K1 < ∞. Hence,

Var {sup {|Sn(B(−K, r2))| : −K ≤ r2 ≤ K}} = O(
√

p log p/n).
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The following lemma is a simple modification of Lemma 5.3 of [4]; hence, we
omit the proof.

Lemma 10. Let S ⊆ [p] be measurable on the σ−algebra σt generated by
{z0, ..., zt−1} and {x0+ATG(z0, b0), ..., x

t+ATG(zt, bt)}; assume |S| ≤ p(δ−c)
for some c > 0. Then, there exists a1 = a1(c) > 0 and a2 = a2(c, t) > 0, such
that min

S′
{σmin(AS∪S′) : S′ ⊆ [p], |S′| ≤ a1p} ≥ a2 with probability converging

to 1 as p → ∞.

We apply this lemma to a specific choice of the set S. Defining

vt ≡ 1

θt−1
(xt−1 +ATG(zt−1, bt−1)− xt).

Lemma 11. Fix γ ∈ (0, 1) and let St(γ) ≡ {i ∈ [p] : |vti | ≥ 1−γ} for γ ∈ (0, 1).
For any ξ > 0 there exists t∗(ξ, γ) such that for all t2 > t1 > t∗,

lim
p→∞

P{|St2\St1 | ≥ pξ} = 0.

Proof of the Lemma 11 follows exact steps as Lemma 3.5 in [4]. The change
is in the definition of the appropriate set St(γ).

The Lemma 10 and Lemma 11 imply the following important result.

Lemma 12. There exist constants γ1 ∈ (0, 1), γ2 = a1(c)/2, γ3 = a2(c, tmin) >
0 and tmin < ∞ such that, for any t ≥ tmin,

min{σmin(ASt(γ1)∪S′) : S′ ⊆ [p], |S′| ≤ γ2p} ≥ γ3,

with probability converging to 1 when p → ∞.

Proof of Lemma 12. Observe that the σ algebra σt, contains{x0, ..., xt} by de-
sign of the RAMP algorithms. Therefore, it contains the vector vt. By Lemma
3, the empirical distribution of (x0−ATG(zt−1, bt)−xt−1, x0) converges weakly
to (τ̄t−1Z, x0). Now we need to check if St(γ) ≤ p(δ − c)

lim
p→∞

|St(γ)|
p

= lim
p→∞

1

p

p∑
i=1

1{ 1
θt−1

|xt−1
i +[ATG(zt−1,bt−1)]i−xt

i|≥1−γ}

= lim
p→∞

1

p
1{ 1

θt−1
|x0−ht−η(x0−ht,θt−1)|≥1−γ}

= P

{
1

θt−1
|X0 + τ̄t−1Z − η(X0 + τt−1Z, θt−1)| ≥ 1− γ

}
. (7.52)

Because

|X0 + τ̄t−1Z − η(X0 + τt−1Z, θt−1)| =
{

θt−1 |X0 + τ̄t−1Z| ≥ θt−1

|X0 + τ̄t−1Z| others
,

from the equation (7.52), we conclude

lim
p→∞

|St(γ)|
p

= E{η′(X0+ τ̄t−1Z, θt−1)}+P

{
(1− γ) ≤ 1

θt−1
|X0 + τ̄t−1Z| ≤ 1

}
.
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The fact that ω < δ, the first term will be strictly smaller than δ for large enough
t. And the second term converges to 0. Therefore, we can choose constants
γ1 → (0, 1) and c > 0 such that

lim
p→∞

P{|St(γ1)| < p(δ − c)} = 1.

for all t larger than some tmin. For any t≥ tmin, apply Lemma 10 for some a1 and
a2. Fix c>0 and a1. Let ξ=a1/2 in Lemma 11, tmin=max(tmin, t∗(a1/2, γ1)).
We have

min{σmin(ASt(γ1)∪S′) : S′ ⊆ [p], |S′| ≤ a1p} ≥ a2,

together with lim
p→∞

P{|St\Stmin | ≥ pa1/2} = 0.

Proof of Theorem 3. The result of Theorem 3 follows the same arguments as
those of [4]; we observe that ||xt+1||22/p, ||x̂||22/p are bounded and that

lim
p→∞

1

p

p∑
i=1

ψ(x̂i, x0,i) = lim
t→∞

lim
p→∞

p∑
i=1

ψ(xt+1
i , x0,i).

By Theorem 2, we have ||xt+1||22/p is bounded. Moreover, an upper bound on
||x̂||22/p is guaranteed by the conditions.
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