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Abstract: Hierarchically associated covariates are common in many fields,
and it is often of interest to incorporate their information in statistical infer-
ence. This paper proposes a novel way to explicitly integrate the information
of a given hierarchical tree of covariates in high-dimensional model selection.
Specifically, a set of hierarchical scores is introduced to quantify the hierar-
chical positions of the terminal nodes of the given hierarchical tree, where a
terminal node represents either a single covariate or a group of covariates.
These scores are then used to weight the corresponding penalty terms in a
model selection approach. We show that the proposed estimation approach
has a hierarchical grouping property, namely, two highly correlated covari-
ates that are close to each other in the hierarchical tree will be more likely
included or excluded together in the model than those which are far away.
We also prove model selection consistency of the proposed estimator both
between and within groups. The theoretical results are illustrated by simu-
lation and also a real data analysis on the Systemic Lupus Erythematosus
(SLE) dataset.
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1. Introduction

Consider the ordinary linear regression model with n observations and p covari-
ates:

y = Xβ + ε, (1.1)

where y is an n-dimensional response vector, X = (x1, . . . ,xp) is an n × p
deterministic design matrix, β = (β1, . . . , βp)

T is the corresponding regression
coefficients and ε is the vector of independent random errors. We assume that
p is very large and β is sparse, under which setting there is a large body of
literature on developing consistent model selection approaches in the past two
decades. Examples include Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001;
Fan and Lv, 2011), SIS (Sure independence screening) and two-scale method
(Fan and Lv, 2008), MCP (Zhang, 2010) and many others. In many cases, there
are high correlations among the covariates xi’s. A number of publications have
shown that the correlation should be taken into account to produce a stable and
consistent result; see, e.g., Elastic Net (Enet) method (Zou and Hastie, 2005),
the OSCAR (octagonal shrinkage and clustering algorithm for regression) ap-
proach (Bondell and Reich, 2008), the Mnet method (Huang et al, 2010), the SLS
method (Huang et al, 2011), among others. Indeed, structured information in
covariates is important in covariate selection. For instance, Yuan and Lin (2006)
studied a Group-Lasso method that introduced the concept of group sparsity
where individual covariates are grouped for selection. The benefit of grouping
is greater regularization and improvements in the prediction power due to the
stability in the presence of highly correlated covariates. Similarly, there are pub-
lications on the use of hierarchical information in covariate selection. In those
studies, the purpose of hierarchical structure is to impose the prioritization of
the covariates and their ancestors being selected. Examples include composite
absolute penalty (CAP) (Zhao et al, 2009), structured covariate selection with
sparsity-inducing norms (Jenatton et al, 2011), structured covariate selection
and estimation (Yuan et al, 2009), A LASSO for hierarchical interactions (Bien
et al, 2013) and learning with structured sparsity (Huang et al, 2011).

In this work, we focus on a different type of hierarchical structure which is
particularly common in hierarchical clustering analysis: instead of represent-
ing the priority of the covariates, the hierarchy contains the information on
the split (or merge if agglomerative) sequences of clusters (i.e. groups of co-
variates). To avoid ambiguity, throughout the rest of this paper, “hierarchical
structure” refers to this type of information. For instance, in cell biology and
genetic studies, genes are often organized into groups based on their biological
characteristics or genetic functions, and in many studies the groups are orga-
nized in hierarchical layers; see, e.g., (Nei, 1973; Beibbarth and Speed, 2004). See
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Subsection 1.1 for additional examples. It is prudent to utilize this type of infor-
mation in our analysis to seek important gene predictors. However, to the best
of our knowledge, the question on how to utilize the hierarchy information in
model selection problems is still open, even though hierarchical structures are
common in many applications. Specifically, we introduce a novel hierarchical
scoring system to quantify the hierarchical positions and, based on it, develop a
new high-dimensional model selection approach to incorporate the information
of given covariate hierarchical trees. The advantage of our approach is that the
hierarchical information can influence the final outcome of the analysis, leading
to better scientific and statistical interpretations which are fully consistent with
the given hierarchical structure.

Our motivation comes from the peripheral-blood mononuclear cell (PBMC)
study reported in Chaussabel et al. (2008). The objective of the study is to elimi-
nate the trivial genes and identify the important genes which can be used to pre-
dict the Systemic Lupus Erythematosus disease-activity index (SLEDAI) among
4779 potential candidates with 47 individual samples. According to Chaussabel
et al. (2008), those 4779 genes are distributed among 28 modules (groups).
The transcripts within each module are highly correlated. On top of these 28
modules, we can also obtain a hierarchical structure with each terminal node
representing a single module; see Figure 1. The challenge is how to take advan-
tage of the information presented in the hierarchical structure and use it in a
model selection procedure which selects covariates at both group and individual
levels.

Fig 1. Hierarchical structure for the SLE dataset. Each of the 28 terminal nodes contains a
group (module) of genes.

We use an Enet-type penalty throughout to illustrate our developments. This
simplifies our presentation and keeps our focus on the main goal of incorporating
the information contained in a covariate hierarchical tree. An Enet estimator is

β̂ = argminβ‖y −Xβ‖22 + λ1‖β‖1 + λ2β
Tβ; (1.2)
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cf. Zou and Hastie (2005). The Enet approach encourages sparsity and grouping
simultaneously. It also consistently selects the true model under certain condi-
tion; c.f., Jia and Yu (2010). Here and throughout the paper, we use l1, l2 and l∞
norms. In particular, for a vector a = (a1, . . . , ap)

T , the l1, l2 and l∞ norms are
denoted by ‖a‖1 =

∑
i |ai|, ‖a‖2 = (

∑
i a

2
i )

1/2 and ‖a‖∞ = maxi |ai|, respec-
tively. We also denote ‖A‖2 = sup‖a‖2=1 ‖Aa‖2 and ‖A‖∞ = sup‖a‖∞=1 ‖Aa‖∞
for a matrix A.

In order to integrate information of the covariate hierarchical tree, we propose
a scoring system to quantify the positions of the terminal nodes in the given
hierarchical tree. For ease of presentation and also avoiding other complications,
we first start with a simple case in which each terminal node of the hierarchical
tree represents only one covariate. In this setting, each covariate will be assigned
a score which is derived from the hierarchical structure. The set of scores quan-
tify the hierarchical information among the covariates, and we integrate them
into the Enet penalty function. It can be shown that the resulting procedure not
only performs model selection and estimation simultaneously, but also enjoys
a desired feature, called hierarchical grouping property, which can be generally
described as follows:

• Two highly correlated covariates which are “close” to each other in the
hierarchical tree will more likely be included or dropped together from the
model than those that are “far away”.

A formal definition of this hierarchical grouping property will be provided in
Section 2.1.

In practice, the terminal nodes of many hierarchical trees contain multiple
covariates; see, e.g., Breiman et al. (1984) and also our motivating example of
SLE study mentioned above. We extend our development for the simply setting
in the first part to the more complicated case in which each terminal node can
contain potentially multiple covariates (thus a terminal group of covariates).
Given a hierarchical structure, we assign each terminal group a score and prove
that with an appropriate choice of group penalty function, the resulting proce-
dure still retain the hierarchical grouping property for the terminal nodes. That
is, the procedure will include or exclude together those highly correlated termi-
nal groups (nodes) which are “close” in the hierarchical structure. Furthermore,
we prove that the proposed estimator has model selection consistency at both
levels, i.e., between-terminal-groups and within-terminal-groups.

The rest of the paper is organized as follows. The remaining of this section
(Section 1.1) introduces several terminologies and notations to be used through-
out the paper. In Section 2, we define the “hierarchical grouping property” and
construct the “hierarchical score” along with the corresponding “hierarchical
Elastic Net” estimator for the simplified case in which each terminal node rep-
resents only one covariate. We also prove that the proposed estimator has the
“hierarchical grouping property” and can provide consistent result in model se-
lection. Section 3 extends the results to the general case in which each terminal
node corresponds to a group of covariates. Computational algorithm is presented
in Section 4. Numerical studies including simulations and a real data analysis
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are carried out in Section 5. Further remarks, including potential extensions of
the method to other types of penalty functions, are provided in Section 6. We
relegate technical proofs to the Appendix.

1.1. Terminologies and notations

Consider a hierarchical structure represented by an upside-down tree; for exam-
ple, Figure 2 (a) or (b). The top of the tree is the root and we refer to the nodes
at the bottom of the upside-down tree as terminal nodes. The nodes (splits)
in between are the internal nodes which, viewed from the bottom to the top,
show how individual covariates are grouped and how the groups are merged into
supergroups. The concept depth is defined for each node (split) as its position
in the sequence of splitting when viewed from the top to the bottom. The root
node, which represents the first split, has depth 1. Then the node representing
the second split has depth 2, etc. See the trees in Figure 2 (a) and (b), in which
we have marked the depths of their splits on the vertical coordinate. We assume
in this paper that the hierarchical tree structure is known and all internal nodes
have distinct depths, i.e. the split or merge is sequential. In real applications,
the depth values can be obtained from different ways. For instance, in a biolog-
ical evolutionary tree, each splitting of lineages of species can be arranged in
chronological order. In this case, the depth values can be derived from the time
of origination of each new species. Also, classical divisive hierarchical clustering
algorithms recursively divide one of the existing clusters into two sub-clusters at
each iteration (cf., e.g., Breiman et al. (1984)). In this case, the iteration order
can be used to define the depths. How to handle the uncertainty of the tree
structure (especially when the tree is generated from a computer algorithm) is
not a topic of the current paper; Section 6 contains further discussions.

Fig 2. Hierarchical trees used to simulate data in Example 1 of Section 4. Each of the six
terminal nodes in (a) and (b) has only one covariate, i.e., x1, ...,x6, respectively.

In addition, following Zou and Hastie (2005) and others, we assume that each
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covariate has been standardized to have l2-norm n before data analysis:

n∑
i=1

xij = 0 and ‖xj‖22 =

n∑
i=1

x2
ij = n, for j = 1, . . . , p. (1.3)

2. Hierarchical covariate selection when a terminal node contains
only a single predictor

This section considers the simple case in which each terminal node of the
given hierarchical tree contains only one covariate. We design in Subsections 2.1
and 2.2 a set of positive hierarchical scores sj for covariates xj , for j = 1, . . . , p,
to reflect the structure of a given tree. We use these hierarchical scores as a set of
weights on the Enet penalty terms (1.2), and propose the following Hierarchical
Enet (HEnet) estimator:

β̂ = argminβ‖y −Xβ‖22 + λ1‖S−1β‖1 + λ2β
TS−1β. (2.1)

Here, (λ1, λ2) are the tuning parameters and S = diag{s1, . . . , sp}. In the special
case when all sj ≡ 1, (2.1) reduces back to the conventional Enet estimator (1.2).
This Hierarchical Enet (HEnet) estimator has several desirable properties.

2.1. Hierarchical grouping property

We define below the notion of ancestors, which will be used to determine the
closeness of a pair of covariates in a given tree.

Definition 2.1 (Ancestors & closeness). For a covariate xj in a given hierar-
chical structure, we define ancestors of the covariate xj , denoted by Axj , as the
set of depths associated with the splits in the hierarchical tree that lead to the
terminal node xi. We also define ancestors of a set of covariates B = {xi, i ∈ I},
denoted by AB , as the common ancestors of xi over i ∈ I, i.e., AB = ∩i∈IAxi .
In addition, we call xj is closer to xi than to xk in the hierarchy tree, if xi and
xj share more ancestors than xi and xk, i.e., A{xi,xj} ⊃ A{xi,xk}.

For examples, the ancestors of covariate x1 (corresponding to the terminal
node 1) in Figure 2 (a) are the set of nodes (splits) with depths 1, 3, 5, so
Ax1 = {1, 3, 5}. The ancestors of covariate x3 (corresponding to the terminal
node 3) are Ax3 = {1, 3}. The ancestors of the set of covariates {x1,x3} are
A{x1,x3} = {1, 3, 5} ∩ {1, 3} = {1, 3}. Similarly, in Figure 2 (b), the ancestors of
covariate x1, x3 and covariate set {x1,x3} are Ax1 = {1}, Ax3 = {1, 2, 3} and
A{x1,x3} = {1} ∩ {1, 2, 3} = {1}, respectively. Also, in Figure 2 (a), x1 is closer
to x3 than to x4, because A{x1,x3} = {1, 3} ⊃ A{x1,x4} = {1}. In Figure 2 (b),
x5 is closer to x3 than to x1, because A{x3,x5} = {1, 2, 3} ⊃ A{x1,x5} = {1},
etc.

Now, we formally state the hierarchical grouping property as follows.
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Definition 2.2 (Hierarchical grouping property). We call predictor co-
variates grouped, if they are selected or dropped together by a model selection
procedure. A hierarchical grouping property refers to:

P1. For two covariates that share the same ancestors, if they are also highly
correlated, then they tend to selected or dropped together by the model
selection procedure.

P2. For any three covariates, say xi,xj ,xk, with cor(xi,xj) = cor(xi,xk) > 0,
if xj is closer to xi than to xk in a hierarchy tree, then xi and xj tend to
be grouped together with a higher chance than that of xi and xk.

The P1 property is similar to the conventional grouping property discussed
in Zou and Hastie (2005) and Bondell and Reich (2008): highly correlated co-
variates tend to be selected or dropped together from the estimated model. The
P2 property is in compliance with hierarchical structure: a pair of covariates
that are closer (i.e., share more ancestors) in the hierarchy will be more likely
grouped in the estimated model than those that are farther away (i.e., share
fewer ancestors), provided that both pairs have the same correlation. Here, the

interpretation of “more likely” is that |β̂i − β̂j | has a smaller upper bound than

|β̂i − β̂k|’s.
To achieve the goal of hierarchical grouping property, the proposed hierarchi-

cal scores (i.e., si’s) used in our proposed approach (2.1) need to satisfy certain
conditions, as discussed in the following:

Recall that the conventional Enet estimator in (1.2) has group properties. In
particular, by taking derivatives of the right hand side of (1.2) with respect to
βj and βk, respectively, we have

−2xT
j {y −Xβ̂}+ λ1sgn{β̂j}+ 2λ2β̂j = 0

−2xT
k {y −Xβ̂}+ λ1sgn{β̂k}+ 2λ2β̂k = 0

assuming β̂j β̂k �= 0. Under the condition β̂j β̂k > 0, subtracting above two

equations and combining with the fact that ‖y −Xβ̂‖2 ≤ ‖y‖2, we have

|β̂j − β̂k| ≤
‖y‖2
λ2

‖xj − xk‖2 =
‖y‖2
λ2

√
2n(1− φjk) (2.2)

where φjk = cor(xj ,xk). The inequality (2.2) indicates that as φjk → 1, |β̂j −
β̂k| → 0; thus, the grouping property in Enet is realized.

Similarly, for the HEnet approach (2.1), by taking derivative on the right
hand side, we have after a simple calculation,

−2sjx
T
j {y −Xβ̂}+ λ1sgn{β̂j}+ 2λ2β̂j = 0.

Thus, parallel to (2.2), we have

|β̂j − β̂k| ≤
‖y‖2
λ2

‖sjxj − skxk‖2 ≤ ‖y‖2s(p)
λ2

√
2n(1− ϕjkφjk), (2.3)
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where s(p) = max1≤i≤p si and

ϕjk =
2sjsk
s2j + s2k

= 1− (sj − sk)
2

s2j + s2k
. (2.4)

By definition (2.4), we always have 0 ≤ ϕjk ≤ 1. When s(p) is upper bounded,
the only difference in the upper bound between (2.2) and (2.3) is the scaling
term ϕjk which, under a careful design of si’s to be specified below, could lead
to desired hierarchical grouping property defined above. The inequality (2.3) is
key step of our development, and we will formally state the inequality (2.3) in
Theorem 2.2 in Subsection 2.3.

Based on (2.3) and (2.4), the hierarchical grouping property P1 and P2 can
be related to the following two (sufficient) conditions on the hierarchical scores
si, respectively:

C1. For any given pair of predictors xj and xk, sj = sk if and only if they
have exactly the same ancestors.

C2. For any given predictors xi, xj and xk, if the ancestors of xi and xk

are a subset of the ancestors of xi and xj , then min(si/sj , sj/si) >
min(si/sk, sk/si).

Formally, we have the following lemma. A proof is provided in the Appendix.

Lemma 2.1. Under the setting described above, we have (i) Condition C1 en-
sures hierarchical grouping property P1; and (ii) Condition C2 ensures hierar-
chical grouping property P2.

The remaining question is how to construct a set of hierarchical scores si’s
that satisfies conditions C1 and C2. We provide a method to construct such
scores next in Section 2.2.

2.2. Construction of hierarchical scores

For a given terminal node with covariate xi, we define a binary vector vi ∈ R
p−1

such that, for l = 1, . . . , p− 1, the lth element of vi is:

vi(l) =

{
1 if l ∈ Axi ,
0 otherwise.

(2.5)

Here, Axi is the set of ancestors of xi defined in Section 2.1. For example,
corresponding to the terminal node x1 in Figure 2 (a), Ax1 = {1, 3, 5}. Thus,
by (2.5), the binary vector v1 = (1, 0, 1, 0, 1). Similarly, corresponding to the
predictor x3 in Figure 2 (a), Ax3 = {1, 3} and, by (2.5), the binary vector
v3 = (1, 0, 1, 0, 0).

We define the hierarchical score si for the terminal node of the predictor xi as:

si =

{(
1

τ
,
1

τ2
, . . . ,

1

τp−1

)
vi

}α

=

{ p−1∑
l=1

τ−lvi(l)

}α

. (2.6)
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Here, τ and α are positive constants to be further explained. This set of scores si
are bounded above by max1≤i≤p si ≤ (

∑p−1
l=1 τ−l)α = {(τ−1−τ−p)/(1−τ−1)}α.

The following theorem states that the scores si defined in (2.6) satisfy Con-
ditions C1 and C2 for any τ ≥ 3 and α > 0. A proof of the theorem is given
in the appendix. Note that, the requirement that τ ≥ 3 and α > 0 also ensures
that the mapping from vi to si is one-to-one.

Theorem 2.1. Suppose all the internal nodes have different depths in the given
tree. If τ ≥ 3 and α > 0, then the scores si defined in (2.6) satisfies Conditions
C1 and C2.

From (2.6), we can show that the absolute score difference of two different
predictors (for example, in Figure 2 (a), |s1−s3| = τ−5α) is a decreasing function
of τ . So the choice of τ = 3 numerically maximizes the differentiation among
the scores of the covariates. Based on this consideration, we fix τ = 3 in all of
our numerical studies.

For the parameter α > 0, we treat it as a tuning parameter. In particular,
the score si is decreasing in α and it also has the following properties:

• When α → 0, all scores si ≡ 1 and thus all scale weights ϕij ≡ 1. In this
case, the hierarchical tree structure is not taken into account in (2.3) and
the HEnet estimator (2.1) is just the conventional Enet estimator (1.2).

• When α → ∞, only covariates sharing same ancestors have ϕij = 1 and
otherwise ϕij = 0. So only the covariates with the same ancestors are
considered for grouping and the hierarchical structure is strictly enforced.

Clearly, the tuning parameter α controls the extent to which the hierarchical
structure impacts the regression parameter estimates. More details on how we
choose α in our developments can be found in Sections 4 and 5.

2.3. Theoretical results

The proposed HEnet estimator in (2.1) can be re-expressed as

β̂ = argminβ

⎧⎨
⎩‖y −

p∑
j=1

βjxj‖22 + λ1

p∑
j=1

|βj |+ δβ2
j

sj

⎫⎬
⎭ , (2.7)

where δ = λ2/λ1 is a new tuning parameter replacing λ2. We formally state the
result derived in Section 2.1 in the following theorem.

Theorem 2.2 (Hierarchical grouping property). Let β̂ be the estimator in

(2.7). Suppose β̂iβ̂j > 0, then

|β̂i − β̂j | ≤
‖y‖2
λ1δ

‖sixi − sjxj‖2 ≤
√
n‖y‖2s(p)
λ1δ

√
2(1− ϕijφij)

where s(p) = max1≤i≤p si, ϕij = 2sisj/(s
2
i + s2j ) and φij = cor(xi,xj).
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Theorem 2.2 entails the hierarchical grouping property for the proposed
HEnet estimator. For instance, suppose xi and xj are highly correlated and,
without loss of generality, we assume φij ≈ 1 (if φij ≈ −1 then consider

−xj). Then, Theorem 2.2 indicates that |β̂i − β̂j | ≤ C
√
1− ϕij where C =√

2n‖y‖2s(p)/(λ1δ). If xi and xj are also close (i.e., ϕij ≈ 1) in the hierarchical

structure, it follows that |β̂i − β̂j | ≈ 0. Thus, the upper bound in Theorem 2.2
provides the same quantitative description of the grouping effect as in Zou and
Hastie (2005) and Bondell and Reich (2008). In the case when ϕij < 1, the
addition of the ϕij term channels the information of the hierarchical structure
into the grouping process.

We show next that the proposed HEnet estimator in (2.1) or (2.7) also has the
property of model selection consistency under a sparsity assumption. Without
loss of generality, we assume that the first q true parameters β0

j �= 0 for j ∈
{1, . . . , q} and the rest p − q true parameters β0

j = 0 for j ∈ {q + 1, . . . , p}.
Write β0

(1) = (β0
1 , . . . , β

0
q )

T and β0
(2) = (β0

q+1, . . . , β
0
p)

T = (0, . . . , 0)T . Also, let
X(1) and X(2) be the first q and last p − q columns of the design matrix X,
respectively, and Σij = XT

(i)X(j)/n, for i, j ∈ {1, 2}.
We define below a Hierarchical Elastic Irrepresentable Condition (HEIC):
HEIC. There exists a positive constant η < 1 such that∥∥∥S(2)Σ21Σ̃

−1
11 S

−1
(1)

{
sgn(β0

(1)) + 2δβ0
(1)

}∥∥∥
∞

≤ 1− η, (2.8)

where S(1) = diag(s1, . . . , sq), S(2) = diag(sq+1, . . . , sp) and Σ̃11 = Σ11+
λ1δ
n S−1

(1) .

Intuitively, the HEIC condition imposes a regularization constraint on the re-
gression coefficients of X2 on X1 with hierarchical scores. The HEIC condition
is an extension of the simple Elastic Irrepresentable Condition (EIC) proposed
by Jia and Yu (2010):

EIC. There exists a positive constant η < 1 such that∥∥∥Σ21(Σ11 +
λ1δ

n
I)−1(sgn(β0

(1)) + 2δβ0
(1))
∥∥∥
∞

≤ 1− η. (2.9)

Specially, when all the scores si ≡ 1, we have S(1) = Iq, S(2) = Ip−q, and in this
case the HEIC condition is exactly the EIC condition.

Jia and Yu (2010) proved model selection consistency of the conventional
Enet estimator by assuming EIC. Similarly, under HEIC, we have the following
theorem. A proof of the theorem is given in the appendix.

Theorem 2.3 (Model selection consistency). Suppose ε ∼ N(0, σ2I). Then,

under the HEIC condition, HEnet estimator β̂ satisfies

P (sgn(β̂(1)) = sgn(β0
(1)), β̂(2) = 0) → 1, as n → ∞,

provided that the tuning parameters λ1 and δ are chosen such that

(a) 1
β∗

{√
σ2 log(q)
nCmin

+ ‖Σ̃−1
11 S

−1
(1)(

λ1δ
n β0

(1) +
λ1

2nsgn(β
0
(1)))‖∞

}
→ 0, where Cmin is
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minimum eigenvalue of Σ̃11, β∗ = min{|β0
(1)|}, and |β0

(1)| = (|β0
1 |, . . . , |β0

q |)
(b)
√

n log(p− q) = o(λ1).

On the other hand, if the HEnet estimator β̂ is sign consistent (for some
(λ1, δ)), then we have that (2.8) holds with η = 0, i.e.,∥∥∥S(2)Σ21Σ̃

−1
11 S

−1
(1)

{
sgn(β0

(1)) + 2δβ0
(1)

}∥∥∥
∞

≤ 1. (2.10)

Since, for any fixed α in (2.6), all the si’s are bounded, the incorporation of
the hierarchical scores in the Enet-type of penalty does not introduce additional
complexity in the theoretical development compared to the original problem
considered in Jia and Yu (2010), except that we need to include extra terms
involving hierarchical scores.

3. Hierarchical covariate selection when a terminal node contains
multiple predictors

When p is large, building a large hierarchical tree with each terminal node
representing only one covariate typically causes overfitting problems. Many re-
searchers have suggested to prune large hierarchical trees to prevent the overfit-
ting problems yet still capture important structures; c.f., Breiman et al. (1984).
The terminal nodes on a pruned tree often contain multiple covariates. In the ex-
ample of the SLE dataset described in Section 1, all the 4779 covariates (genes)
are divided into 28 modules (terminal nodes) with each module (node) having
more than one gene. Indeed, the terminal nodes in most hierarchical clusters
contain more than one member, whether it is by pruning, by its natural struc-
ture, or by other means.

The grouping by terminal nodes in a hierarchical tree imposes an additional
layer of complication to our model selection problem. Let us call the group of
covariates formed by a terminal node as a terminal group. We need to consider
two levels of model selections: selection of the terminal groups and also selection
of the covariates within each terminal group. We define an important covariate
as any covariate with non-zero true coefficient and we also define an important
terminal group as any terminal group with at least one important covariate. Our
goal of model selection is to identify both the important terminal groups (ter-
minal nodes) and also the important covariates (inside each important terminal
node), while taking into account the given hierarchical tree structure.

In this section, we extend the developments in Section 2 to deal with this more
general and also more challenging case. Under this context, the scoring scheme
proposed in Section 2.2 is applied to the hierarchy of the terminal groups (termi-
nal nodes), and thus every terminal group (terminal node) has an assigned score.

As pointed out by a reviewer, HEnet could be directly applied in this case by
duplicating the weights for covariates within each group. This is similar to the
situation where one uses lasso for a sparse group lasso problem (Simon et al ,
2013), ignoring the grouping structure. Although we have not carefully investi-
gated the effect of using HEnet in this case, we believe ignoring group structure
would be inferior, as has been demonstrated in the group lasso literature.
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3.1. Group Hierarchical Enet

Consider again the linear model (1.1). Suppose now the p covariates are clus-
tered in a hierarchical tree of K terminal nodes. Let Gk, k = 1, . . . ,K be the K
non-overlapping subsets of the indices (1, . . . , p) of covariates corresponding to
the K terminal nodes. Denote by pk = |Gk| the size of the kth subset Gk, so we

have
∑K

k=1 pk = p. To simplify the notations and also without loss of general-
ity, we assume the p × 1 vector of regression coefficient β = (β1, · · · , βp)

T are
arranged according to terminal groups, so that we can rewrite (β1, · · · , βp) =
(β11, . . . , β1p1 , . . . , βk1, . . . , βkpk

), for βkj , j = 1, . . . , pk; k = 1, . . . ,K. Corre-
spondingly, we re-write X = (x11, . . . ,x1p1 , . . . ,xk1, . . . ,xkpk

).
Following Wang et al (2009), we introduce a coefficient γk for the terminal

group Gk by reparameterizing the β’s as:

βkj = γkθkj , k = 1, . . . ,K, j = 1, . . . , pk. (3.1)

Here, the parameter γk ≥ 0 is a group level coefficient for the terminal group
Gk, and the parameters θkj , j = 1, . . . , pk reflect different coefficients within

Gk. When γk > 0, parameters (γ∗
k , θ

∗
k1, . . . , θ

∗
kpk

)
def
= (cγk, θk1/c, . . . , θkpk

/c) and
parameters (γk, θk1, . . . , θkpk

) are indistinguishable under model (1.1), for any
non-zero constant c �= 0. So we have a parameter identifiability problem. To
resolve the problem, we impose the following constraint:

pk∑
j=1

θ2kj = 1 for any k ∈ {k : γk > 0}. (3.2)

An explicit expression of γk and θkj can be derived based on (3.1) and (3.2).
Specifically, when there is at least one nonzero βkj in kth group,

γk =

√√√√ pk∑
j=1

β2
kj and θkj =

βkj

γk
=

βkj√∑pk

j=1 β
2
kj

; (3.3)

Otherwise, in the case with βkj = 0 for all j = 1, . . . , pk, we set γk = 0 and
θkj = 0 for j = 1, . . . , pk. Without loss of generality, we assume in our theoretical
derivation that γk > 0, k = 1, . . . , r, for the first r clusters and γk = 0, k =
r+1, . . . ,K, for the remaining K−r clusters. Furthermore, we let qk = |{(k, j) :
βkj �= 0}| be the number of nonzero coefficients in the kth terminal group

and write q =
∑K

k=1 qk. In another words, qk is the number of the important
covariates in the kth terminal node and q is the total number of the important
covariates in the entire model. We assume a sparsity condition that q � n.

Similar to the HEnet discussed in Section 2, we propose to consider a penal-
ized likelihood estimator

(γ̂, θ̂) = argminγ,θ‖y −
K∑

k=1

pk∑
j=1

γkθkjxkj‖22 (3.4)

+λ1

{ K∑
k=1

γk + δγ2
k

sk

}
+ λ2

K∑
k=1

γk‖θk‖1
sk

,
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subject to the constraint (3.2). Here, λ1, λ2 and δ are the tuning parameters,

and θk = (θk1, . . . , θkpk
)T . In (3.4), the first penalty term

{∑K
k=1

γk+δγ2
k

sk

}
is

an Enet-type of penalty but on the terminal-group-level (terminal-node-level)
parameter γk, which encourages a sparse group selection. The second penalty

term
∑K

k=1
γk‖θk‖1

sk
is a LASSO-type penalty on coefficients θk, which encourages

a selection of important covariates within each terminal group (terminal node).
We refer the estimator obtained from (3.4) as the Group Hierarchical Enet

(GHEnet) estimator. This GHEnet estimator is an extension of HEnet estimator
defined in (2.7). Specifically, if there is only one predictor within each group,
i.e. pk = 1 for all k = 1, . . . ,K, we go back to the simplified case discussed in
Section 2. Note that, in this special case, the reparameterization (3.1) becomes

βk1 = γksign(βk1) with γk = |βk1| and θk1 = sign(βk1) for k = 1, . . . ,K.

Plugging the above into (3.4), it leads us back to (2.7).

3.2. Theoretical results

3.2.1. Hierarchical grouping property

Denote by x̃k =
∑pk

j=1 θ̂kjxkj , for k = 1, . . . ,K, where θ̂kl are the elements

of θ̂. The definition (3.4) and the constraint (3.2) imply that ‖x̃k‖22 = n for
{k : γ̂i > 0}. We may view x̃k as an “overall predictor vector” that represents
terminal group Gk. If we define a correlation of the terminal groups (terminal

nodes) Gk and Gk′ as φkk′ = cor(x̃k, x̃k′) =
∑pk

j=1

∑pk′
j′=1 θ̂kj θ̂k′j′cor(xkj ,xk′j′),

a weighted average of the correlation coefficients of all paired individual predic-
tors between nodes Gk and Gk′ . By treating x̃k’s as xi’s in (2.7), we provide
below in Theorem 3.1 a hierarchical grouping property for the terminal groups
(terminal nodes). A proof of Theorem 3.1 is given in the appendix.

Theorem 3.1. (i) Let (θ̂, γ̂) be the estimator in (3.4). Suppose γ̂kγ̂k′ > 0, then

|γ̂k − γ̂k′ | ≤ ‖y‖2
λ1δ

‖skx̃k − sk′ x̃k′‖2 +
λ2

2λ1δ

∣∣∣‖θ̂k‖1 − ‖θ̂k′‖1
∣∣∣

≤ ‖y‖2
λ1δ

‖skx̃k − sk′ x̃k′‖2 +
λ2 max1≤k≤K

√
pk

2λ1δ
.

Furthermore, if λ2 max1≤k≤K
√
pk = o(n), we have

|γ̂k − γ̂k′ | ≤
√
n‖y‖2
λ1δ

(
‖skx̃k − sk′ x̃k′‖2√

n
+ op(1)

)
.

(ii) Suppose further that the predictors are orthogonal within each group such
that xT

kjxkj′ = 0 for j �= j′. Then, we can bound the term ‖skx̃k − sk′ x̃k′‖2/
√
n

by s(K)
√
2(1− ϕkk′φkk′) and

|γ̂k − γ̂k′ | ≤
√
n‖y‖2s(K)

λ1δ

(√
2(1− ϕkk′φkk′) + op(1)

)
.
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Here, s(K) = max1≤k≤K sk and ϕkk′ = 2sksk′/(s2k + s2k′), for any 1 ≤ k, k′ ≤ K.

Comparing with Theorem 2.2, the additional term in the inequalities of The-
orem 3.1 comes from the derivative of the Lasso penalty on individual level coef-
ficients. This additional term for the individual level coefficients is dominated by
the original term for grouping of terminal nodes when λ2 max1≤k≤K

√
pk = o(n).

Thus, asymptotically, we have a similar statement of the hierarchical grouping
property as the the simplified case discussed in Section 2. In particular, if two
terminal groups, say k and k′, are highly correlated (i.e., φkk′ ≈ 1) and they also
are close in the hierarchical tree (i.e., ϕkk′ ≈ 1), then we have |γ̂k − γ̂k′ | ≈ 0.
Using the terminology in Definition 2.2, the terminal nodes Gk and Gk′ are
grouped.

In the simple case with only one covariate for each terminal node, Theorem 3.1
reduces back to Theorem 2.2. So it is a generalization of Theorem 2.2.

Theorem 3.1 only concern about γ̂k and γ̂k′ . We can also compare β̂k with
β̂k′ , where β̂a (a = k or k′) is the pa-vector for the coefficients in the terminal
group a. A proof of Theorem 3.2 is given in the appendix.

Theorem 3.2. Let β̂
(1)
k be a r × 1 subvector of β̂k and β̂

(1)
k′ be a r × 1 subvec-

tors of β̂k′ , both of which contain r nonzero coefficients, with r ≤ min{qk, qk′}.
Let X

(1)
k and X

(1)
k′ be the corresponding submatrices of Xk and Xk′ contain-

ing the columns associated with the nonzero coefficients, where Xk and Xk′ are
the submatrices of X containing the predictors in the terminal groups k and

k′ respectively. Suppose also sgn(β̂
(1)
k ) = sgn(β̂

(1)
k′ ) component-wise (otherwise

change signs of the predictors). We have

‖β̂(1)
k − β̂

(1)
k′ ‖2 ≤ ‖y‖2

λ1δ
‖skX(1)

k − sk′X
(1)
k′ ‖F ,

where ‖.‖F for a matrix denotes its Frobenius norm.

3.2.2. Model selection consistency

To show that the GHEnet approach also has model selection consistency, we
express (3.4) in terms of β. By plugging (3.3) into (3.4), we have:

Pn(β) = ‖y −Xβ‖22 + λ1

K∑
k=1

‖βk‖2 + δ‖βk‖22
sk

+ λ2

K∑
k=1

‖βk‖1
sk

(3.5)

where βk = (βk1, . . . , βkpk
)T . Let us denote by the true regression coefficients

β0
kj = γ0

kθ
0
kj for k = 1, . . . ,K, j = 1, . . . , pk. Also, the true parameter values

γ0
k > 0 for k = 1, . . . , r and γ0

k = 0 for k = r + 1, . . . ,K. We note that the
proposal is reminiscent of sparse group lasso, with the important difference being
that we try to take into account hierarchical structure information, besides that
has an extra bridge penalty based on elastic net approach.

Define A = {(k, j) : β0
kj �= 0} the index set of all important covariates

and define B1 = {(k, j) : γ0
k > 0, β0

kj = 0} the index set of non-important
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covariates within important terminal groups, and B2 = {(k, j) : γ0
k = 0} the

index set of non-important terminal groups. Set B = B1 ∪ B2, which is the
index set of all non-important covariates. Furthermore, corresponding to the set
A, we denote by a |A| × |A| diagonal score matrix SA = diag{sk | (k, j) ∈ A},
a n × |A| design matrix XA = (xkj , (k, j) ∈ A), and the vector of nonzero
coefficients βA = (βkj , (k, j) ∈ A)T . Similarly, corresponding to the set B, we
have SB = diag{sk | (k, j) ∈ B} and XB = (xkj , (k, j) ∈ B). Finally, we denote
ΣAA = XT

AXA/n, and ΣBA = XT
BXA/n. Similar notations are defined when B

is replaced by B1 or B2.
We propose below a Generalized Hierarchical Elastic Irrepresentable Condi-

tion (GHEIC), an extension of the HEIC discussed in Section 2.3:
GHEIC. There exists a positive constant η, η′ with η′ < η such that

‖λ1

λ2
SBΣBAΣ

−1S−1
A ‖∞ < η′ (3.6)∥∥∥∥SBΣBAΣ

−1S−1
A

(
2λ1δ

λ2
β0
A + sgn(β0

A)

)∥∥∥∥
∞

< (1− η), (3.7)

where Σ = ΣAA + λ1δ
n S−1

A .
The second condition (3.7) in GHEIC mimics the HEIC condition by imposing a
regularization constraint on the hierarchical-score-weighted regression coefficient
of XB on XA. The first condition (3.6) in GHEIC is introduced due to the L2-
norm term in the penalty function (3.5). Also, in the GHEIC, we only require
Σ to be invertible instead of ΣAA. We further note that (3.6) can be trivially
satisfied if we choose λ2 large enough, although λ2 should also satisfy condition
(a) in Theorem 3.3 below. A simple sufficient condition for both (3.6) and (3.7) is

‖SBΣBAΣ
−1S−1

A ‖∞ <

(
λ1

λ2
+

2λ1δ

λ2
‖β0

A‖∞ + 1

)−1

.

Theorem 3.3 below establishes the covariate selection consistency of the
GHEnet estimator. A proof of the theorem is given in the appendix.

Theorem 3.3 (Model selection consistency). Suppose ε ∼ N(0, σ2I). As-

sume GHEIC (3.6) and (3.7) hold. Then, the GHEnet estimator β̂ satisfies:

P (sgn(β̂A) = sgn(β0
A), β̂B = 0) → 1, as n → ∞,

provided that the tuning parameters λ1, λ2 and δ are chosen such that

(a) 1
β∗

{√
σ2 log(q)
nCmin

+ (λ1/n)‖Σ−1S−1
A ‖∞ + ‖Σ−1S−1

A (λ1δ
n β0

A + λ2

2nsgn(β
0
A))‖∞

}
→ 0, where Cmin is minimum eigenvalue of Σ and β∗ = min{|β0

A|};
(b)
√

n log(p− q) = o(λ2).

4. Computational algorithm

In this section, we focus on the computational issues and modify two existing
computing algorithms in the literature to obtain the HEnet and GHEnet estima-
tors proposed in (2.7) and (3.4). Algorithm A below modifies the conventional
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Enet algorithm by Zou and Hastie (2005) for the Enet estimator to obtain the
HEnet estimator. Algorithm B follows Wang et al (2009) and provides an al-
gorithm for the GHEnet estimator. Since the hierarchical scores proposed in
(2.6) are bounded and positive, the algorithms can be justified following simple
algebra and the existing literature (i.e., Zou and Hastie (2005) and Wang et al
(2009)); thus the proofs are omitted here.

We have the following two algorithms for a given data set (y,X) and known
hierarchical scores (s1, . . . , sp).

Algorithm A (HEnet estimation)

Step 1: Define an artificial data set (y∗,X∗) by

X∗ =

(
XS√

λ1δS
1/2

)
, y∗ =

(
y
0

)
,

where S = diag(s1, . . . , sp).
Step 2: Solve the lasso problem for all λ1,

β̂∗ = argmaxβ‖y∗ −X∗β‖22 + λ1

p∑
j=1

|βj |.

Step 3: Output β̂j = β̂∗
j sj , j = 1, . . . , p.

Algorithm B (GHEnet estimation)

Step 1: Obtain an initial value γ
(0)
k for each γk; for example, γ

(0)
k = 1.

Also, set m = 1.
Step 2: At the mth iteration,

(a) Let x̃kj = γ
(m−1)
k xkj and estimate θ

(m)
kj by

θ
(m)
kj = argminθ‖y −

K∑
k=1

pk∑
j=1

θkj x̃kj‖22 + λ2

K∑
k=1

pk∑
j=1

γ
(m−1)
k |θkj |

sk

subject to
∑pk

l=1 θ
2
kj = 1 for {k : γ

(m−1)
k > 0}, and set θ

(m)
kj = 0 for

{k : γ
(m−1)
k = 0};

(b) Let x̃k =
∑pk

j=1 θ
(m)
kj xkj and estimate γ

(m)
k by

γ
(m)
k = argminγ‖y−

K∑
k=1

γkx̃k‖22+λ1{
K∑

k=1

γk(1 + ‖θ(m)
k ‖1λ2/λ1)

sk
+δ

K∑
k=1

γ2
k

sk
}.

Step 3: Set m = m + 1, and repeat Steps 2 and 3 until the algorithm
converges.

Note that setting θ
(m)
kj = 0 for {k : γ

(m−1)
k = 0} in Step 2(a) of algorithm B will

not cause any problem to the minimizations because the objective function is

independent of θkj for {k : γ
(m−1)
k = 0}. The two minimizations in Step 2 (a)
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and (b) of Algorithm B can be solved using a constrained quadratic program-
ming algorithm. In addition, the values of the tuning parameters λ = (λ1, δ)
in Algorithm A or (λ1, δ, λ2) in Algorithm B are critical. The results are cer-
tainly sensitive to the choice of these values. In practice, these can be chosen
via the AIC criterion AIC(λ) = log(‖y−Xβ̂(λ)‖22/n)+2‖β̂(λ)‖0/n, or the BIC
criterion BIC(λ) = log(‖y −Xβ̂(λ)‖22/n) + log(n)‖β̂(λ)‖0/n. Here, ‖β̂‖0 is the

number of non-zero β̂’s. In the our numerical studies in the next section, the
tuning parameters are chosen using the BIC criterion, which appears to perform
satisfactorily in our numerical results.

In the above algorithms, we assume that the hierarchical scores si are pro-
vided. In our numerical examples, the hierarchical trees are given and we use
(2.6) to calculate si with τ = 3 plus a given α. As discussed in Section 2.2, the
parameter α can be viewed as a tuning control of the “degree” on how much the
hierarchical structure is allowed to impact our estimation. It may be selected
based on empirical studies. An illustrative example is provided in the following
numerical studies section.

5. Numerical studies

5.1. Simulation studies

Two simulation examples are carried out to evaluate the performance of the
proposed methods. In Example 1, we consider a small scale dataset to test the
HEnet estimator proposed in Section 2, in which each terminal node contains
only one covariate. In Example 2, we investigate the performance of GHEnet
estimator proposed in Section 3 by considering a relatively large dataset. The
second example mimics the motivating Systemic Lupus Erythematosus (SLE)
data example, in which each terminal node contains multiple covariates. In both
examples, several simulation settings are considered to cover different scenarios
and α values. The number of repetitions in each simulation setting is 1000.

5.1.1. Example 1

The data in this example consist of n = 20 samples with p = 6 covariates. The
true parameter β = (0, 0, 0, 3, 3, 3) and σ = 1. Thus the true model is

y = x4β4 + x5β5 + x6β6 + ε.

We consider two scenarios with different hierarchical and covariance structure:
Scenario 1. The covariates are assumed to have a balanced hierarchical

structure as in Figure 2 (a). Each row vector of the design matrix X is generated
from the standard normal distribution with covariance matrix Cov(xi,xj) =
0.91{i �=j} for (i, j) ∈ {1, 2, 3} and (i, j) ∈ {4, 5, 6}. For any other pair of (i, j),
Cov(xi,xj) = 0.

Scenario 2. The covariates are assumed to have an unbalanced hierarchical
structure as Figure 2 (b). Each row vector of the design matrix X is generated
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from the standard normal distribution with covariance matrix Cov(xi,xj) =
0.91{i �=j} .

In our proposed approach, we have a tuning parameter α to control how
much impact the hierarchy tree will have on the model selection results. When
α = 0, si ≡ 1. In this case, the tree has no impact and the HEnet reduces to the
conventional Enet. Note that, the scale weight defined in (2.4) ϕjk =

2sjsk
s2j+s2k

is a

decreasing function of α. In addition, ϕjk = 1 for α = 0 and limα→∞ ϕjk = 0 for
any pair of (xj ,xk) with different ancestors. We plot ϕjk against α for all pairs
(j, k) in Figure 3. For each plot, the upper shade corresponds to the 75% or
higher quantiles of all ϕjk and the lower shade is the 50% or lower quantiles of
all ϕjk, at each fixed α value and over the range of 0 ≤ α ≤ 40. We use the plots
for assist us choosing the tuning α value empirically. For scenario 1, we first
pick α = 15 (marked with a vertical red line) which represents the largest range
of ϕjk meanwhile keeping the smallest ϕjk away from 0. Then we pick α = 8
(marked with the second vertical red line) to test the impact of different ranges
of ϕjk on the model selection. Similarly, we choose α ∈ {5, 10} for Scenario 2.
We also include α = 0.1 case in both Scenario to illustrate the idea that almost
no hierarchy is contributed to the model selection result for small α.

We benchmark our proposed HEnet estimators, with several α values, against
three existing estimators: Enet, Lasso and OSCAR. The numerical results are
summarized in Table 1. The notation PS

ij represents the frequency on which xi

and xj being selected together, and the notation PD
ij represents the frequency

on which xi and xj being dropped from the model together. We can see that for
Scenario 1, PS

45, P
S
46, P

S
56 are very close under Enet, Lasso, OSCAR and HEnet

with α = 0.1 because pairwise correlations are the same within important co-
variates and (almost) no hierarchical structure is considered. When α increases
to 8 and 15, the hierarchy impacts on the model selection result. Specifically,
in Figure 2 (a) and among the

(
3
2

)
= 3 pairs of the three important covariates

{x4,x5,x6}, the pair {x5,x6} is closer than the other two. Such structure leads
to higher value of PS

56 than PS
45 and PS

46, i.e. {x5,x6} is more likely selected
together than other two pairs of important covariates. Similar results are found
in PD

12, P
D
13, P

D
23 with α ∈ {8, 15} for the pairs of non-important covariates. In

particular, {x1,x2} is more likely dropped together than the other two pairs,
because they are closer in the hierarchical structure.

For Scenario 2, we also have the similar results. The PS
45, P

S
46, P

S
56 are very

close under Enet, Lasso, OSCAR and HEnet with α = 0.1. The pair {x5,x6}
are closer than other two pairs of important covariates on the hierarchical tree
from Figure 2 (b). Thus PS

56 is higher than PS
45 and PS

46 with α = 5 or 10.
For the non-important covariates, {x2,x3} is closer than other two pairs thus
is more likely dropped together. Overall, the hierarchical grouping property of
our proposed estimator is well illustrated by the above results.

We use two measures, sensitivity and specificity, to evaluate the covariate
selection performance. Sensitivity is defined as the proportion of the selected
covariates that are the important covariates. Specificity is defined as the propor-
tion of the excluded covariates that are unimportant covariates. From Table 1,
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Table 1

Frequency of group selection, selection specificity and sensitivity under the settings of
Example 1

Scenario 1

Important Pairs Non-important Pairs
Method PS

45/P
D
45 PS

46/P
D
46 PS

56/P
D
56 PS

12/P
D
12 PS

13/P
D
13 PS

23/P
D
23 Spec. Sens.

Enet .741/.006 .737/.014 .724/.009 .071/.719 .067/.717 .061/.709 .823 .866
HEnet(α = .1) .739/.007 .735/.014 .726/.008 .071/.721 .067/.718 .061/.712 .824 .867
HEnet(α = 8) .672/.015 .685/.011 .793/.002 .051/.829 .050/.815 .048/.809 .882 .849
HEnet(α = 15) .654/.007 .667/.011 .828/.001 .047/.843 .046/.827 .045/.820 .892 .860

Lasso .745/.006 .746/.013 .733/.009 .078/.680 .075/.677 .066/.670 .800 .870
OSCAR .744/.006 .744/.013 .730/.008 .076/.681 .074/.679 .066/.672 .801 .870

Scenario 2

Important Pairs Non-important Pairs
Method PS

45/P
D
45 PS

46/P
D
46 PS

56/P
D
56 PS

12/P
D
12 PS

13/P
D
13 PS

23/P
D
23 Spec. Sens.

Enet .595/.039 .615/.040 .613/.034 .124/.398 .118/.396 .133/.392 .640 .784
HEnet(α = .1) .612/.034 .629/.038 .626/.033 .096/.410 .097/.409 .134/.398 .665 .794
HEnet(α = 5) .625/.015 .650/.020 .718/.012 .007/.713 .008/.708 .057/.725 .872 .837
HEnet(α = 10) .661/.015 .688/.021 .730/.011 .005/.740 .005/.748 .073/.768 .890 .826

Lasso .591/.039 .612/.042 .609/.039 .122/.401 .117/.399 .131/.394 .642 .782
OSCAR .568/.047 .592/.048 .582/.051 .125/.409 .119/.397 .131/.393 .640 .766

there is no significant advantage of HEnet in Scenario 1 in terms of sensitivity
and specificity. HEnet with α = 5, 10 outperform others in Scenario 2.

Fig 3. Plot of the scale weight ϕ as a function of α. The left panel is for Scenario 1 and right
panel is for Scenario 2.

5.1.2. Example 2

The second example consists of n = 50 samples with p = 4000 covariates, which
is the similar size as the SLE dataset. The covariates are distributed among
20 terminal groups (G1, . . . , G20) with 200 covariates in each group. The true
parameters are β1,j = β2,j = β3,j = 2, for j = 1, . . . , 10 and all other βk,j = 0.
Also, σ = 0.25. Thus the true model is

y =
10∑
i=1

x1,iβ1,i +
10∑
i=1

x2,iβ2,i +
10∑
i=1

x3,iβ3,i + ε.
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Each row vector of the design matrix X is generated from the standard normal
distribution with covariance matrix Cov(xki,xk′j) = 0.71{i �=j} ·0.91{k �=k′} , k, k′ =
1, . . . , 20, i, j = 1, . . . , 200. We assume that a hierarchical structure on top of
the 20 terminal groups is as Figure 4.

Fig 4. Hierarchical structure for Example 2.

We still denote by PS
ij and PD

ij the frequencies on which terminal groups
Gi and Gj are selected or dropped together, respectively. Here, we define a
terminal group being selected if and only if at least one of the covariates in
the group is selected. To demonstrate the hierarchical grouping property of our
proposed GHEnet estimator, we calculate PS

ij and PD
ij for the important group

pairs {i, j} = {1, 2}, {1, 3}, {2, 3} and the pairs among the non-important groups
{4, . . . , 20}. We benchmark our proposed estimator with α ∈ {0, 0.1, 0.2, 0.3, 0.4,
1, 20} against a Group Lasso and Sparse-Group Lasso (SGL) approach where
the covariates are pre-grouped by the same terminal groups (as a set of parallel
groups) with the hierarchical information ignored. The choice of α is based
on a similar empirical study as Example 1 (the details are omitted to avoid
repetitions). We use GEnet to indicate GHEnet with α = 0, i.e., no hierarchical
structure is considered. Note that GEnet is also similar to SGL with added
advantage in dealing with strongly correlated covariates attributed to the ridge
penalty.

From Table 2, PS
12, P

S
13 and PS

23 are not materially different under GEnet, as
well as, Group Lasso and SGL because between-group correlations are the same
within important groups and no hierarchical structure is considered. When α
increases, the fact that {G1, G3} is closer than the other two pairs ({G1, G2} and
{G2, G3}) on Figure 4 leads to higher value of PS

13 than those of PS
12 and PS

23.
This result indicates that {G1, G3} is more likely selected together than other
two pairs of important groups. Similar results can be found in non-important
group pairs PS

ij and PD
ij with {i, j} ∈ {4, . . . , 20} (due to space limitation, the
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numerical results are not reported in Table 2 but is available by request to the
first author). These results demonstrate the proposed GHEnet estimator has
indeed the hierarchical grouping property.

We also report in Table 2 the sensitivity and specificity at both terminal-
group and individual levels to assess the model selection performance. Both
GHEnet and Group Lasso perform well with the terminal group specificity reach-
ing 100%. GHEnet outperforms Group Lasso in covariate selection specificity,
since Group Lasso tends to select a larger model and can not perform selec-
tions within given groups. GHEnet performs slightly better than SGL in terms
of group and covariate specificity. The terminal group sensitivity of GHEnet is
better than Group Lasso and SGL for small α values. But for relatively large
α, the terminal group sensitivity of GHEnet is relatively small as expected,
since the hierarchical tree structure is used in the selection and it impacts the
selection process. The covariate selection sensitivity is also relatively low for
GHEnet because GHEnet performs model selection at covariate level and the
performance deteriorates when the correlation between those covariates is high.
Such behavior is consistent with the HEnet example above. On the other hand,
Group Lasso and SGL either selects all the covariates or a large number of
covariates within selected groups resulting in high covariate sensitivity. In ad-
dition and as we can anticipate, incorporating group structure is generally bad
for variable sensitivity, and incorporating hierarchical information is generally
bad for the overall group sensitivity. GEnet without taking into account the
hierarchical structure works well in this example in terms of variable selection
due to that group 2 is far away from groups 1 and 3 and thus with large α group
2 tends to be not selected together with the other two groups.

Example 2 used groups with equal sizes for illustration. Based on our observa-
tion from a number of cases (including the real data example), the performance
under unbalanced group sizes appears to be similar (as long as the sample sizes
are not extremely unbalanced). For the interest of space, an example of unbal-
anced group sizes is omitted in the simulation study.

In summary, the above simulation studies in both examples have demon-
strated the hierarchical grouping property and model selection consistency of
our proposed estimators.

5.2. Analysis of SLE dataset in PBMC study

In the blood genomic studies reported in Chaussabel et al. (2008), PBMC sam-
ples are obtained from n = 47 individuals with Systemic Lupus Erythemato-
sus (SLE) condition. Transcriptional profiles were generated with Affymetrix
U133A and U133B GeneChips (> 44000 probe sets). The gene intensity sig-
nal is assessed and normalized using Microarray Suite, Version 5.0 for each
probe set. Then logarithmic transformation is performed on the gene intensity
level. Among these 44000+ transcripts, 4779 of them considered “present” are
selected as the input of the module-construction algorithm. Total 28 modules
(terminal groups) are formed. Within each module, the transcripts are coor-
dinately expressed, i.e. highly correlated and usually have similar functions.
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Table 2

Frequency of covariates being grouped, selection specificity and sensitivity under the settings
of Example 2

Important Pairs Specificity Sensitivity
Method PS

12/P
D
12 PS

13/P
D
13 PS

23/P
D
23 Grp Var Grp Var

GEnet .910/.000 .914/.000 .917/.003 1.000 .992 .956 .562
GHEnet(α = .1) .886/.000 .949/.000 .889/.002 1.000 .992 .953 .560
GHEnet(α = .2) .796/.002 .960/.001 .801/.000 1.000 .992 .926 .541
GHEnet(α = .3) .465/.001 .988/.000 .468/.004 1.000 .991 .819 .446
GHEnet(α = .4) .212/.000 .996/.000 .212/.002 1.000 .990 .736 .373
GHEnet(α = 1) .000/.001 .998/.000 .000/.001 1.000 .990 .666 .309
GHEnet(α = 20) .000/.000 1.000/.000 .000/.000 1.000 .990 .666 .309
Group Lasso .788/.008 .797/.010 .792/.009 1.000 .807 .892 .892

SGL .843/.026 .862/.023 .860/.030 0.939 .934 .914 .873

Note: GEnet corresponds to α = 0 in (3.4), i.e. no hierarchical information is considered.

A hierarchical clustering algorithm is applied with “complete” linkage on the
correlation structure among these 28 modules, and the resulting hierarchy tree
structure is shown in Figure 1. On average, each terminal node represents about
170 transcripts. The goal is to identify the modules and the transcripts within
these modules that are potentially related to the individual’s disease index: SLE
disease-activity index (SLEDAI).

Our approach is to use regression analysis under the framework of Section 3.
We treat the SLEDAI as the response covariate and all the transcripts as the
predictors. Also, the interaction between different modules can be captured by
hierarchical clustering. We deploy our proposed GHEnet procedure to perform
the gene selection at both module and individual level. Since unlike the simu-
lation studies we don’t know which modules or transcripts are truly important
in this dataset, we are not able to report PS

ij , P
D
ij , sensitivity and specificity for

our model selection. To examine the impact of hierarchical scores, we perform
a sensitivity analysis by trying different α values.

Summarized in Table 3 Part I are the selected modules and number of genes
for α ∈ {0, 0.01, 0.1, 5, 10}. Table 3 Part II lists the functionality of these mod-
ules. The choice of α is based on an empirical study similar to that produces
Figure 3 of Example 1. From Table 3 Part I, we can see how the identified mod-
ules evolve as α increases. The module identification results are the same for
α = 0 and α = 0.01. As α increases, the hierarchical structure starts impacting
the module selection results as expected: modules #7, #20, #12 are dropped
sequentially. The detailed sequential information can help better design confir-
matory experiments for medical researchers.

We would like to comment that the example is used to demonstrate how we
can take into account the hierarchical structure in a real data analysis and how
a hierarchical structure can impact the analysis outcomes. The actual impact
and implications depend on whether the hierarchical structure is informative
with respect to the underlying true covariate structure. Without any input from
experts with domain knowledge, it is difficult to interpret the biological meanings
and implications of the analytic results.
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Table 3

Part I: Sensitivity Analysis: identified Modules under different α′s

Modules # of Genes

α = 0 #7, #10, #12, #20 37
α = 0.01 #7, #10, #12, #20 37
α = 0.1 #10, #12, #20 37
α = 5 #10, #12 32
α = 10 #10 24

Part II: Functionality of selected modules

Module Functionality

#7 MHC/Ribosomal proteins. Almost exclusively formed by genes encoding MHC class
I molecules (HLA-A,B,C,G,E)+Beta 2-microglobulin (B2M) or ribosomal proteins
(RPLs,RPSs).

#10 Neutrophils. This set includes genes encoding innate molecules that are found in
neutrophil granules (lactotransferrin: LTF, defensin: DEAF1, bacterial permeability
increasing protein: BPI, cathelicidin antimicrobial protein: CAMP.).

#12 Ribosomal proteins. Includes genes encoding ribosomal proteins (RPLs, RPSs),
Eukaryotic Translation Elongation Factor-family members (EEFs), and Nucleolar
proteins (NPM1, NOAL2, NAP1L1).

#20 Interferon-inducible. This set includes interferon-inducible genes: antiviral molecules
(OAS1/2/3/L, GBP1, G1P2, EIF2AK2/PKR, MX1, PML), chemokines
(CXCL10/IP-10), signaling molecules (STAT1, STAt2, IRF7, ISGF3G).

6. Concluding remarks

In this paper, we develop a new methodology to incorporate hierarchical struc-
tures among the covariates in model selection problems. We construct hierar-
chical scores from a known hierarchical tree and use them as weights on the
penalty function in Elastic net approach. The resulting estimator is proved to
have a desirable hierarchical grouping property, and at the same time provides
consistent model selection. Although we present our idea through Elastic net
penalty, the construction of hierarchical score is independent of the choice of
penalty functions. We believe we can combine the hierarchical scores with other
types of penalty function which encourages grouping, for example the OSCAR
and other procedures.

There are a few questions that are worth further investigation regarding the
construction of hierarchical trees, the scoring weights and the development.
First, we have found a specific way of constructing hierarchical scores si that
possess desired properties. It is conceivable that other weights with the same
desired properties may exist. But the si constructed in Section 2.2 is the only
set that we can find so far that is easy to construct and also intuitive. Second,
the internal nodes are assumed to have distinct depths throughout the devel-
opment. Sometimes some of these depths can be tied with equal values. In this
case, our scoring method may not directly apply depending on the situations.
For example, consider a full binary tree in which the ancestors of all terminal
nodes have the same depths, and we would have assigned the same scores to all



3798 W. Qiao et al.

terminal nodes by the present method. The equal weights do not reflect that
some pairs of terminal nodes are closer than others, which may be viewed un-
desirable depending on the applications. To overcome the problem, one may
alternate and break the ties, i.e., equal depth values, to reflect the hierarchy
of closeness before applying our method. Of course, it is also of interest to in-
vestigate whether we can find appropriate scoring method without alternating
these tie values. Third, we treat α as a tuning parameter because the proposed
methodology is not intended to improve the model selection performance but
rather to provide a practical way to incorporate the hierarchical information.
The parameter α control the impact of hierarchical information on the model
selection outcome. User of this approach is recommended to try different level
of α to produce sequential information. Such information can help better de-
sign, for example in confirmatory experiments for medical researchers. On the
other hand, in some situations, it may be desirable to have a data-driven way of
choosing α which we leave as future works. Fourth, we assumed the hierarchical
tree is given and fixed, while in practice it is typically constructed from data and
thus random. How to take into account the uncertainty in the tree structure is
an important but challenging problem. Finally, in the theoretical results in this
paper, we only focus on consistency of model selection. In some applications,
the identification of important covariates is perhaps more important than the
estimation of the values of the coefficients. Furthermore, one could also study
the convergence rate (or even minimax rate) of the estimators, for which sparse
eigenvalue conditions may be needed.

Appendix

A.1. Proof of Lemma 2.1

Proof of Lemma 2.1. (i) When sj = sk, we have ϕjk = 1 and thus |β̂j − β̂k| → 0
as φjk → 1 by (2.3) and (2.4). Therefore, if a pair of predictors have the same
ancestors, they are likely grouped together if they are also highly correlated.
Thus, Condition C1 ensures P1.

(ii) When we have min(si/sj , sj/si) > min(si/sk, sk/si), we have 1 ≥ ϕij >
ϕik ≥ 0 by (2.4). It follows that 1− ϕijφij < 1− ϕikφik if φij = φik > 0. Thus,
in this case and by (2.3), xi and xj are more likely grouped than xi and xk (in

the sense that |β̂i − β̂j | has a smaller upper bound than |β̂i − β̂k|’s as in (2.3)).
The conclusion in (ii) follows.

A.2. Proof of Theorem 2.1

Proof of Theorem 2.1. Let’s first prove α = 1 case, where

si =

p−1∑
l=1

vi(l)τ
−l, for i = 1, . . . , p.
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By definition of the binary vector v, if xj and xk have the same ancestors,
we have vj = vk. It follows immediately sj = sk. Conversely, when τ ≥ 3,
there is a unique one-to-one correspondence between the score si and its binary
vector representation vi. Thus, if sj = sk, we have vj = vk. It follows that the
predictors xj and xk have the same ancestors. We have proved that Condition
C1 holds for the set of scores si.

Now, without loss of generality, let us assume that the set of the ancestors
of two predictors, say xi and xk, is a subset of the ancestor set of predictors xi

and xj . There exist two integers L1 and L2 with 1 ≤ L2 < L1 ≤ p− 1 such that

vi(l) = vj(l) = vk(l), l = 1, . . . , L2 − 1, vi(L2) = vj(L2) = vk(L2) = 1,

vi(l) = vj(l), l = L2 + 1, . . . , L1 − 1, vi(L1) = vj(L1) = 1,

and
the set {l|L2 < l ≤ L1 andvi(l) �= vk(l)} is not empty.

Since vi(l) = vj(l) for l = 1, . . . , L1, we have following inequality

min(
si
sj

,
sj
si
) ≥

∑L1

l=1 vi(l)τ
−l∑L1

l=1 vi(l)τ−l +
∑p−1

l=L1+1 τ
−l

>

∑L1

l=1 vi(l)τ
−l∑L1

l=1 vi(l)τ−l + 1
τ−1τ

−L1

.

Also, denote by L∗ = inf{L2 < l ≤ L1|vi(l) �= vk(l)}. The binary vectors
vi(l) = vk(l) for l = 1, . . . , L∗ − 1. We can show that, when τ ≥ 3, we have

min(
si
sk

,
sk
si

)

≤
∑L∗−1

l=1 vi(l)τ
−l +

∑p−1
l=L∗+1 τ

−l∑L∗−1
l=1 vi(l)τ−l + τ−L∗

≤
∑L1−1

l=1 vi(l)τ
−l +

∑p−1
l=L1+1 τ

−l∑L1−1
l=1 vi(l)τ−l + τ−L1

<

∑L1−1
l=1 vi(l)τ

−l + 1
τ−1τ

−L1∑L1−1
l=1 vi(l)τ−l + τ−L1

≤
∑L1

l=1 vi(l)τ
−l∑L1

l=1 vi(l)τ−l + 1
τ−1τ

−L1

.

Thus, we have

min(
si
sj

,
sj
si
) > min(

si
sk

,
sk
si

).

Condition 2 holds for the set of si when τ ≥ 3.
Finally, for any α > 0, the new score si is just a simple power transformation

of the aforementioned si. Because the power function is monotonic and the score
function is positive, Conditions C1 and C2 still hold for any new score si with
α > 0.

A.3. Proof of Theorem 2.3

Proof of Theorem 2.3. For a constant 0 < d < 1, we define a set E1
d = {β|‖β(1)−

β0
(1)‖∞ ≤ (1− d)β∗, β(2) = 0}, we first prove that there exist a β̂ ∈ E1

d that is a
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solution of

∇

⎧⎨
⎩‖y −

p∑
j=1

βjxj‖22 + λ1

p∑
j=1

|βj |+ δβ2
j

sj

⎫⎬
⎭ = 0.

The above equation can be expressed as the following equations:

− 2xT
j (y −Xβ̂) + λ1

zj
sj

+ 2λ1δ
β̂j

sj
= 0, (A.1)

for any j = 1, . . . , p. Here, zj = sgn(β̂j) if β̂j �= 0 and |zj | ≤ 1 if β̂j = 0. By
substituting y with Xβ0 + ε and limiting to j = 1, . . . , q, (A.1) becomes

− 2XT
(1)(X(1)(β

0
(1) − β̂(1)) + ε) + λ1S

−1
(1)sgn(β

0
(1)) + 2λ1δS

−1
(1) β̂(1) = 0. (A.2)

We can further rewrite equation (A.2) as

β0
(1) − β̂(1) = Σ̃−1

11

(
−
XT

(1)ε

n
+

λ1δ

n
S−1
(1)β

0
(1) +

λ1

2n
S−1
(1)sgn(β

0
(1))

)
, (A.3)

which is bounded by (1− d)β∗, if the following inequality holds

‖Σ̃−1
11 X

T
(1)ε/n‖∞ + ‖Σ̃−1

11

(
λ1δ

n
S−1
(1)β

0
(1) +

λ1

2n
S−1
(1)sgn(β

0
(1))

)
‖∞ ≤ (1− d)β∗.

(A.4)

Let Ui = eTi Σ̃
−1
11 X

T
(1)ε/n, where ei is the vector with 1 in the ith position

and zeroes elsewhere. Then Ui is a normal random covariate with mean 0 and
variance

Var(Ui) = σ2eTi Σ̃
−1
11 X

T
(1)X(1)Σ̃

−1
11 ei/n

2 ≤ σ2eTi Σ̃
−1
11 ei/n ≤ σ2

nCmin
.

By standard Gaussian maximum inequality, we have

E(‖Σ̃−1
11 X

T
(1)ε/n‖∞) ≤ 3

√
σ2 log(q)

nCmin
.

So by Chebyshev inequality and Condition (a), we have

P

(
‖Σ̃−1

11 X
T
(1)ε/n‖∞ + ‖Σ−1

11

(
λ1δ

n
S−1
(1)β

0
(1) +

λ1

2n
S−1
(1)sgn(β

0
(1))

)
‖∞ > (1− d)β∗

)

≤ 1

(1− d)β∗
E(‖Σ̃−1

11 X
T
(1)ε/n‖∞+‖Σ−1

11

(
λ1δ

n
S−1
(1)β

0
(1) +

λ1

2n
S−1
(1)sgn(β

0
(1))

)
‖∞)

≤ 1

(1− d)β∗

⎧⎨
⎩3

√
σ2 log(q)

nCmin
+ ‖Σ−1

11

(
λ1δ

n
S−1
(1)β

0
(1) +

λ1

2n
S−1
(1)sgn(β

0
(1))

)
‖∞

⎫⎬
⎭

→ 0.
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Thus, the inequality (A.4) holds in probability.
Now, consider j = q + 1, . . . , p. The equation (A.1) becomes

− 2S(2)X
T
(2)(y −X(1)β̂(1)) + λ1u = 0, (A.5)

where u = (uj)j=q+1,...,p with |uj | ≤ 1. We can also further rewrite equation
(A.5) as

‖2S(2)X
T
(2)X(1)(β

0
(1) − β̂(1)) + 2S(2)X

T
(2)ε‖∞ ≤ λ1. (A.6)

By plugging (A.3) into (A.6), we have

‖2S(2)X
T
(2)

(
I −

X(1)Σ̃
−1
11 X

T
(1)

n

)
ε+λ1S(2)Σ21Σ̃

−1
11 S

−1
(1)(sgn(β

0
(1))+2δβ0

(1))‖∞ ≤λ1.

(A.7)
We first prove sufficiency. By HEIC condition, the second term in the above
expression can be bounded by

‖λ1S(2)Σ21Σ̃
−1
11 S

−1
(1)(sgn(β

0
(1)) + 2δβ0

(1))‖∞ ≤ (1− η)λ1.

Thus, (A.5) is implied by

‖XT
(2)

(
I −

X(1)Σ̃
−1
11 X

T
(1)

n

)
ε‖∞/

√
n ≤ ηλ1

2
√
nmaxj=q+1,...,p sj

. (A.8)

By condition (b), the right hand side of (A.8) is O(
√
nβ∗). Following the classical

standard Gaussian tail bound and Bonferroni’s inequality, we have

P

(
‖XT

(2)

(
I −

X(1)Σ̃
−1
11 X

T
(1)

n

)
ε‖∞ > Cλ1

)

≤
∑

j=q+1,...,p

P

(∣∣∣XT
j

(
I −

X(1)Σ̃
−1
11 X

T
(1)

n

)
ε
∣∣∣ > Cλ1

)

≤ (p− q) exp{−C ′λ2
1/n} → 0.

Thus, inequality (A.8) holds in probability and, therefore, the β̂ ∈ E1
d is a

solution to (A.1) for any j. Finally, the objective function in (2.7) is globally

convex function in β, thus the estimator β̂ ∈ E1
d is actually the global minimizer

of (2.7).

Now we prove necessity by contradiction. If is easy to see that if β̂ is a sign
consistent solution, then (A.3) and (A.6) hold, which again leads to (A.7). If
(2.10) fails, then we assume, without loss of generality, that the first element of
λ1S(2)Σ21Σ̃

−1
11 S

−1
(1)(sgn(β

0
(1)) + 2δβ0

(1)) is no smaller than λ1. Since

XT
(2)

(
I −

X(1)Σ̃
−1
11 X

T
(1)

n

)
ε

σ



3802 W. Qiao et al.

has a Gaussian distribution centered at 0, there is non-vanishing probability
that the first element is positive. Therefore, inequality (A.6) does not hold with
positive probability. This contradicts with the sign consistency assumption.

This completes the proof.

A.4. Proof of Theorem 3.1

Proof of Theorem 3.1. By taking derivatives on (3.4) with respect to γk and γk′

respectively and setting them to 0, we have

0 = −2skx̃
T
k (y −

∑
r

γ̂rx̃r) + λ2‖θ̂k‖1 + λ1(1 + 2δγ̂k),

and

0 = −2sk′ x̃T
k′(y −

∑
r

γ̂rx̃r) + λ2‖θ̂k′‖1 + λ1(1 + 2δγ̂k′).

It follows that

|γ̂k − γ̂k′ | ≤ 1

λ1δ
‖y −

∑
r

γ̂rx̃r‖2 · ‖skx̃k − sk′ x̃k′‖2 +
λ2

2λ1δ

∣∣∣‖θ̂k‖1 − ‖θ̂k′‖1
∣∣∣.

(A.9)

Thus, the first inequality in Theorem 3.1 holds. The second inequality follows
from ‖θ̂k‖1 ≤ √

pk‖θ̂k‖2 =
√
pk. The third inequality follows from simple algebra

and the fact that ‖y‖2 = O(
√
n).

A.5. Proof of Theorem 3.2

Proof of Theorem 3.2. Taking derivatives on (3.5) with respect to βk and βk′

gives

−2skX
T
k (y −Xβ̂) + λ1

β̂k

‖β̂k‖2
+ 2λ1δβ̂k + λ2sgn(β̂k) = 0,

and

−2sk′XT
k′(y −Xβ̂) + λ1

β̂k′

‖β̂k′‖2
+ 2λ1δβ̂k′ + λ2sgn(β̂k′) = 0.

where sgn(β̂k) = (sgn(β̂k1), . . . , sgn(β̂kqk))
T . Here, (β̂k1, . . . , β̂kqk) is the esti-

mates of (βk1, . . . , βkqk), the qk nonzero elements of βk.

Consider the two sets of r equations corresponding the subvectors (assuming
r ≤ min{qk, qk′}). It follows from the above two equations that

‖( λ1

‖β(1)
k ‖2

+ 2λ1δ)β
(1)
k − (

λ1

‖β(1)
k′ ‖2

+ 2λ1δ)β
(1)
k′ ‖2 ≤ 2‖skX(1)

k − sk′X
(1)
k′ ‖F ‖y‖2.
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Define the mapping f(β) = ( λ1

‖β‖2
+2λ1δ)β for any vector β. We have ∂

∂β f(β) =

λ1
‖β‖2

2I−ββT

‖β‖3
2

+2λ1δI. We also note here that ‖β‖22I−ββT is nonnegative-definite.

Thus, the left hand side of the above displayed inequality is

‖f(β(1)
k )− f(β

(1)
k′ )‖2 = ‖∂f(β

∗)

∂β
(β

(1)
k − β

(1)
k′ )‖2 ≥ 2λ1δ‖β(1)

k − β
(1)
k′ ‖,

where in the equality above we used the mean value theorem and β∗ lies between

β
(1)
k and β

(1)
k′ . Therefore,

‖β(1)
k − β

(1)
k′ ‖2 ≤ ‖y‖2

λ1δ
‖siX(1)

k − sjX
(1)
k′ ‖F .

A.6. Proof of Theorem 3.3

Proof of Theorem 3.3. Similar to Lemma 2 of Obozinski et al (2011), we only

need to prove that there exists a triple (β̂, Ẑ, Ŵ ) with β̂ = (β̂T
1 , . . . , β̂

T
K)T ,

Ẑ = (ẐT
1 , . . . , Ẑ

T
K)T , Ŵ = (ŴT

1 , . . . , ŴT
K)T , that satisfies the conditions

0 = −2skx
T
kj(y −Xβ̂) + λ1Ẑkj + 2λ1δβ̂kj + λ2Ŵkj (A.10)

sgn(β̂A) = sgn(β0
A) (A.11)

β̂B = 0, (A.12)

where

Ẑk = β̂k/‖β̂k‖2 if ‖β̂k‖2 > 0 (A.13)

‖Ẑk‖ < 1 if ‖β̂k‖2 = 0 (A.14)

Ŵkj = sgn(β̂kj) if β̂kj �= 0 (A.15)

|Ŵkj | < 1 if β̂kj = 0. (A.16)

Next we construct the triple as follows. First, let β̂ be the minimizer of (3.5)
subject to the constraint βB = 0.

By the first order optimality condition for β̂A, we have for (k, j) ∈ A,

−2skx
T
kj(ε−XA(β̂A − β0

A)) + λ1Ẑkj + 2λ1δβ̂kj + λ2Ŵkj = 0,

where Ẑk and Ŵkj satisfy (A.13)-(A.16). and it follows that

2n(SAΣAA +
λ1δ

n
I)(β̂A − β0

A)

= 2SAX
T
Aε− λ1Z̃ − 2λ1δβ

0
A − λ2ŴA,

where Z̃ = (Z̃T
1 , . . . , Z̃

T
r )

T and Z̃k is the subvector of Ẑk associated with nonzero

β̂kj . Equivalently, we have

β̂A − β0
A = (SAΣAA +

λ1δ

n
I)−1 ·
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(
SAX

T
Aε

n
− λ1

2n
Z̃ − λ1δ

n
β0
A − λ2

2n
ŴA

)
. (A.17)

Thus we can get (A.11) if

‖(SAΣAA +
λ1δ

n
I)−1

(
SAX

T
Aε

n
− λ1

2n
Z̃ − λ1δ

n
β0
A − λ2

2n
sgn(β0

A)

)
‖∞ < β∗.

(A.18)
We have

‖(SAΣAA +
λ1δ

n
I)−1SAX

T
Aε

n
‖∞ = Op

⎛
⎝
√

σ2 log q

nCmin

⎞
⎠ = o(β∗),

and using that ‖Ẑk‖∞ ≤ 1, we have

‖(SAΣAA +
λ1δ

n
I)−1 λ1

2n
Z̃‖∞ ≤ ‖(SAΣAA +

λ1δ

n
I)−1 λ1

2n
‖∞ = o(β∗)

by assumption (a). Together with other expressions in assumption (a), (A.18)
is proved.

What is left is to show that Ẑk and Ŵkj can be constructed for (k, j) ∈ B1

and qk = 0, respectively, that satisfies (A.10).

When qk > 0, Ẑk is already defined above as Ẑk = β̂k/‖β̂k‖2 and thus Ẑkj = 0
for (k, j) ∈ B1. Thus to demonstrate (A.10) for (k, j) ∈ B1, we only need to
show that

λ2|Ŵkj | := |2skxT
kj(ε−X(β̂ − β0))| < λ2.

Plugging (A.17) into the above and denoting Σ = ΣAA + λ1δ
n S−1

A , we need to
show that ∣∣∣2skxT

kj(I −XAΣ
−1XT

A/n)ε

+2skx
T
kjXAΣ

−1S−1
A

(
λ1

2n
Z̃ +

λ1δ

n
β0
A +

λ2

2n
sgn(β0

A)

) ∣∣∣ < λ2. (A.19)

Similar to the proof of (A.8), we have

max
(k,j)∈B1

|xT
kj(I −XAΣ

−1XT
A/n)ε| = Op(

√
n log(p− q)) = o(λ2).

Furthermore,

max
(k,j)∈B1

|skxT
kjXAΣ

−1S−1
A

λ1

n
Z̃| ≤ λ1‖SB1ΣB1AΣ

−1S−1
A ‖∞ < η′λ2,

and

max
(k,j)∈B

∣∣∣∣skxT
kjXAΣ

−1S−1
A

(
2λ1δ

n
β0
A +

λ2

n
sgn(β0

A)

)∣∣∣∣ < (1− η)λ2.

Combining the above three displayed equations and assumption (b) shows (A.19).
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Finally, when qk = 0 (k > r), we need to show that

2XT
k (I −XAΣ

−1XT
A/n)ε+ 2XT

kXAΣ
−1S−1

A

(
λ1

2n
Z̃ +

λ1δ

n
β0
A +

λ2

2n
sgn(β0

A)

)
(A.20)

can be represented as λ1Ẑk + λ2Ŵk with ‖Ẑk‖ < 1 and ‖Ŵk‖∞ < 1. Same as
in the proof of (A.19), absolute values of the components of (A.20) are smaller
than λ2 and thus we can take Ẑk = 0 and define Ŵk appropriately.
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