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Abstract: A piecewise-deterministic Markov process is a stochastic pro-
cess whose behavior is governed by an ordinary differential equation punc-
tuated by random jumps occurring at random times. We focus on the
nonparametric estimation problem of the jump rate for such a stochastic
model observed within a long time interval under an ergodicity condition.
We introduce an uncountable class (indexed by the deterministic flow) of
recursive kernel estimates of the jump rate and we establish their strong
pointwise consistency as well as their asymptotic normality. We propose to
choose among this class the estimator with the minimal variance, which is
unfortunately unknown and thus remains to be estimated. We also discuss
the choice of the bandwidth parameters by cross-validation methods.
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1. Introduction

Piecewise-deterministic Markov processes (PDMP’s in abbreviated form) have
been introduced in the literature by Davis in [17] as a general class of continuous-
time non-diffusion stochastic models, suitable for modeling deterministic phe-
nomena in which the randomness appears as point events. The motion of a
PDMP may be defined from three local characteristics: the flow Φ(x, t), the
jump rate λ(x) and the transition measure Q(x, dy). Starting from some initial
value X0, the process evolves in a deterministic way following Φ(X0, t) until
the first jump time T1 which occurs either when the flow reaches the bound-
ary of the state space or before, in a Poisson-like fashion with non homoge-
nous rate λ(Φ(X0, t)). In both cases, the post-jump location of the process at
time T1 is governed by the transition distribution Q(Φ(X0, T1), dy) and the
motion restarts from this new point as before. This family of stochastic mod-
els is well-adapted for tackling various problems arising for example in biology
[9, 16, 30, 31, 32, 33, 34], in neuroscience [22] or in reliability [7, 14, 13, 18].
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Indeed, most of applications involving both deterministic motion and punctual
random events may be modeled by a PDMP. Typical examples are growth-
fragmentation models composed of deterministic growths followed by random
losses. For example [33], the size of a cell grows exponentially in time, next the
cell divides into two offsprings whose size is about half size of the parent cell,
and so on.

Proposing efficient statistical methods for this class of stochastic models is
therefore of a great interest. Nevertheless, the very particular framework involv-
ing both deterministic motion and punctual random jumps imposes to consider
specific methods. For instance, the authors of [5] have shown that the well-
known multiplicative intensity model developed by Aalen [1] for estimating the
jump rate function does not directly apply to PDMP’s. Alternative approaches
should be thus proposed. In the present paper, we focus on the recursive non-
parametric estimation of the jump rate of a PDMP from the observation of only
one trajectory within a long time interval. More precisely, the purpose of this
work is to show how one may obtain by kernel methods a class of consistent
estimators for the jump rate, and how one may choose among this class in an
optimal way. To the best of our knowledge, the nonparametric estimation of the
jump rate in a general framework has never been investigated.

As PDMP’s may model a large variety of problems, some methods have been
developed by many authors for their statistical inference. As presented before,
the randomness of a PDMP is governed by two characteristics: the transition
kernel Q(x, dy) and the jump rate λ(x). As a consequence, two main questions
arise in the estimation problem for such a process, namely the statistical infer-
ence for both these features. On the one hand, a few papers investigate some
nonparametric methods for estimating the transition function of a PDMP either
for a specific model [13] or in a more general setting for a d-dimensional process
[3]. On the other hand the estimation of the jump rate λ(x) or of the associated
density function has been more extensively studied by several authors. Without
attempting to give an exhaustive survey of the literature on this topic, one may
refer the reader to [5, 19, 20, 25, 28] and the references therein. In the book
[25], the author studies likelihood processes for observation of PDMP’s which
could lead to inference methods in a parametric or semi-parametric setting. The
papers [19, 20] deal with the nonparametric estimation for some PDMP’s used
in the modeling of a size-structured population observed along a lineage tree.
In both these articles, the authors rely on the specific form of the features of
the process of interest in order to derive the asymptotic behavior of their esti-
mation procedure. These techniques have been generalized in [28] to introduce
a nonparametric method for estimating the jump rate in a specific class of one-
dimensional PDMP’s with monotonic motion and deterministic breaks, that is
to say when the transition measure Q(x, dy) is a Dirac mass at some location
depending on x. The procedures developed in these papers [19, 20, 28] are ob-
viously of a great interest but strongly use the particular framework involved
in the investigated models and are thus not well adapted in a more general
setting. In [5], the authors show that the famous multiplicative intensity model
only applies for estimating the jump rate of a modified version of the underly-
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ing PDMP. This leads to a statistical method for approximating the conditional
density associated with the jump rate for a process defined on a bounded metric
state space.

A main difficulty throughout the present paper and the articles [3, 5] is related
to the presence of deterministic jumps when the path reaches the boundary of
the state space. This feature is often used for modeling a deterministic switch-
ing when the quantitative variable rises over a certain threshold [2, 24]. In a
statistical point of view, the interarrival times are therefore right-censored by a
deterministic clock depending on the state space, which leads to some technical
difficulties. We would like to emphasize that the techniques developed in the
references [19, 20, 25, 28] do not take into account the likely presence of forced
jumps in the dynamic.

One may also find in the literature a few papers [6, 8, 10, 11] which focus
on the estimation of various functionals for this family of stochastic models.
More precisely, the authors of [10, 11] provide numerical methods for the ex-
pectations and for the exit times of PDMP’s. In addition, the article [8] deals
with a PDMP introduced for modeling the temporal evolution of exposure to
a food contaminant and consider a simulation-based statistical inference proce-
dure for estimating some functionals such as first passage times. Plug-in methods
have been studied in [6] for a non-ergodic growth-fragmentation model which
is absorbed under a certain threshold. In many aspects our approach and these
papers are different and complementary. Indeed they are devoted to the estima-
tion of some functionals of PDMP’s while we focus on the direct estimation of
the primitive data of such a process.

In this article, we introduce a three-dimensional kernel estimator computed
from the observation of the embedded Markov chain of a PDMP composed of
the post-jump locations Zn and the travel times Sn+1 along the path Φ(Zn, t).
We establish its pointwise consistency as well as its asymptotic normality in
Theorem 3.3. The estimate that we consider is recursive: it may be computed
in real-time from sequential data, which may be relevant in many applications.
We deduce from this result two first corollaries about the nonparametric esti-
mation of the conditional density f(x, t) of the interarrival time Sn+1 at time t
conditionally on the event {Zn = x} (see Corollary 3.8) and its survival func-
tion G(x, t) = P(Sn+1 > t |Zn = x) (see Corollary 3.9). We also investigate
in Corollary 3.10 the asymptotic behavior of an estimator for the composed
function λ ◦ Φ(x, t) obtained as the ratio f(x, t)/G(x, t). We derive in (18) an
uncountable class (indexed by the states ξ hitted by the reverse flow Φ(x,−t)
for some time t) of consistent estimates of the jump rate λ(x). In other words,
for each ξ = Φ(x,−t), we get a good estimate of λ(x). We show how one may
choose among this class of estimators by minimizing their asymptotic variance.
We state in (19) that this procedure is equivalent to maximize the criterion
ν∞(ξ)G(ξ, τx(ξ)) along the curve Φ(x,−t), i.e., ξ = Φ(x,−τx(ξ)), where ν∞(ξ)
denotes the invariant measure of the post-jump locations Zn and τx(ξ) is the
only deterministic time to reach x following Φ(ξ, t). The choice of this crite-
rion is far to be obvious without precisely computing the limit variance in the
central limit theorem presented in Corollary 3.10. Indeed, a naive criterion to



Estimation of the jump rate for PDMP’s 3651

maximize is the invariant distribution ν∞(ξ) along Φ(x,−t): the larger ν∞(ξ)
is, the larger the number of data around ξ is and the higher the quality of the
estimation should be. Nonetheless, this simple criterion does not take into ac-
count that the estimate also depends on the time of interest τx(ξ) (see Remark
3.11). This question is also investigated from a numerical point of view in Sub-
section 4.2 where we show on synthetic data that the choice of the criterion
ν∞(ξ)G(ξ, τx(ξ)) is better than the naive one ν∞(ξ). The bandwidths in kernel
methods are free parameters that exhibit a strong influence on the quality of
the estimation. We discuss the choice of the bandwidth parameters by a classic
procedure that consists in minimizing the Integrated Square Error, computed
here along the reverse flow Φ(x,−t): we introduce a cross-validation procedure
in this Markov setting and we prove its convergence in Propositions 3.14 and
3.15. Finally, we would like to highlight that the regularity conditions that we
impose are non restrictive. In particular, neither the deterministic exit time from
the state space is assumed to be a bounded function, nor the transition kernel is
supposed to be lower-bounded, as is the case in [5] (see eq. (2) and Assumptions
2.4). In addition, the forms of the transition measure and of the deterministic
flow are not specified.

The sequel of the paper is organized as follows. We begin in Section 2 with
the precise formulation of our framework (see Subsection 2.1) and the main
assumptions that we need in this article (see Subsection 2.2). Section 3 is de-
voted to the presentation of the statistical procedure and the related results of
convergence. More precisely, a three-dimensional kernel estimator for the inter-
jumping times is introduced and investigated in Subsection 3.1. We derive a
class of estimators of the jump rate and propose how to choose among it in
Subsection 3.2. The crucial choice of the bandwidth parameters is studied in
Subsection 3.3. Finally, a self-contained presentation of the whole estimation
procedure is provided in Subsection 4.1, then illustrated in the sequel of Section
4 on three different application scenarios, with various sample sizes and state
space dimensions, involving both simulated and real datasets. More precisely,
we focus on the TCP window size process used for modeling data transmission
over the Internet in Subsection 4.2. Estimation of bacterial motility is tackled
in Subsection 4.3, while acceleration of fatigue crack propagation is considered
in Subsection 4.4. Concluding remarks are presented in Section 5. The proofs
and the technicalities are postponed in Appendix A, B and C at the end of the
paper.

2. Problem formulation

This section is devoted to the definition of the PDMP’s and to the presentation
of the main assumptions that we impose in the paper.

List of notations: In this paper B(Rd) denotes the Borel algebra of Rd en-
dowed with the Euclidean norm |·|. In addition, the Lebesgue measure on B(Rd)
is denoted by λd(dx), with the particular notation in the one-dimensional case
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Fig 1. Schematic path of a PDMP. This paper is devoted to the nonparametric estimation of
the state-dependent rate λ, that governs the spontaneous generation of jumps, from a long-
time trajectory.

λ1(dx) = dx. The ball of Rd with radius r and center x is denoted by Bd(x, r).
The closure of a set E is denoted by E while ∂E stands for its boundary.

2.1. Definition and notation

The motion of a PDMP may be described as the solution of an ordinary differ-
ential equation Φ punctuated at random times by random jumps governed by
a transition kernel Q (see Figure 1). The random jumps occur either when the
deterministic motion hits the boundary of its state space, or before, with non
homogeneous rate λ taken along the curve defined by the differential equation
Φ.

More precisely, a PDMP (Xt)t≥0 on (Rd,B(Rd)) is defined from its three
local characteristics (λ,Q,Φ):

• Φ : Rd × R → Rd is the deterministic flow. It satisfies the semigroup
property,

∀x ∈ Rd, ∀ t, s ∈ R, Φ(x, t+ s) = Φ(Φ(x, t), s).

• λ : Rd → R+ is the jump rate.
• Q : (Rd,B(Rd)) → [0, 1] is the transition kernel.

We define the deterministic exit times of E for the flow and for the reverse flow
as, for any x ∈ E,

t+(x) = inf {t > 0 : Φ(x, t) ∈ ∂E} ,
t−(x) = inf {t > 0 : Φ(x,−t) ∈ ∂E} . (1)

In all the sequel, we consider a PDMP (Xt)t≥0 evolving on an open subset E
of Rd. In this context, we impose as usual [17, (24.8) Standard conditions] that,

∀x ∈ E, ∃ ε > 0,

∫ ε

0

λ(Φ(x, t)) dt < +∞,

and
∀x ∈ E, Q(x,E \ {x}) = 1. (2)
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In addition, we restrict ourselves to the case where the transition kernel Q
admits a density with respect to the Lebesgue measure,

∀x ∈ Rd, ∀A ∈ B(Rd), Q(x,A) =

∫
A

Q(x, y)λd(dy). (3)

This assumption is natural when one considers multivariate real-valued PDMP’s,
and is satisfied in various problems arising in biology [9], population dynamics
[6] or in insurance [17, (21.11) An insurance model].

Starting from any initial condition X0 = x, the motion of (Xt)t≥0 may be
described as follows. The distribution of the first jump time T1 is given by,

∀ t ≥ 0, P(T1 > t |X0 = x) =

{
exp

(
−
∫ t

0
λ(Φ(x, s)) ds

)
if t < t+(x),

0 else.
(4)

In other words, the process jumps either when the flow hits the boundary of the
state space at time t+(x) or in a Poisson-like fashion with rate λ◦Φ before. Next
the post-jump location Z1 at time T1 is defined through the transition kernel
Q: for any test function ϕ, we have

E
[
ϕ(Z1)

∣∣ T1, X0 = x
]
=

∫
ϕ(u)Q(Φ(x, T1), du).

The path between 0 and the first jump time T1 is given by,

∀ 0 ≤ t ≤ T1, Xt =

{
Φ(x, t) if t < T1,
Z1 else.

Now starting from the post-jump location XT1 , one chooses the next inter-
jumping time S2 = T2−T1 and the future post-jump location Z2 in a similar way
as before, and so on. One obtains a strong Markov process with (Tn)n≥0 as the
sequence of the jump times (where T0 = 0 by convention). The inter-jumping
times are defined by S0 = 0 and, for any integer n ≥ 1, Sn = Tn−Tn−1. Finally
(Zn)n≥0 denotes the stochastic sequence of the post-jump locations of (Xt)t≥0,
with for any n, Zn = XTn .

All the randomness of the PDMP (Xt)t≥0 is contained in the stochastic se-
quence (Zn, Sn+1)n≥0 which is a Markov chain. In addition, the post-jump lo-
cations (Zn)n≥0 also form a discrete-time Markov process on the state space E
because of the condition (2). In this paper, νn denotes the distribution of the
nth post-jump location Zn for any integer n ≥ 0, while P denotes its Markov
kernel,

∀x ∈ E, ∀A ∈ B(Rd), P(x,A) = P(Zn+1 ∈ A |Zn = x)

=

∫
R+

S(x, dt)Q(Φ(x, t), A), (5)

where S stands for the conditional distribution of Sn+1 given Zn for any integer
n, obtained for any x ∈ E and t ≥ 0 from
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S(x, (t,+∞)) = P(Sn+1 > t | Zn = x)

=

{
exp

(
−
∫ t

0
λ(Φ(x, s))ds

)
if t < t+(x),

0 else,
(6)

in light of (4). We would like to highlight that the conditional distribution S(x, ·)
is absolutely continuous with respect to the unidimensional Lebesgue measure
on (0, t+(x)) with sometimes a singular component at t+(x),

∀A ∈ B(R+), S(x,A) =
∫
A∩(0,t+(x))

f(x, t) dt + S(x,A ∩ {t+(x)}), (7)

where the conditional density f may be obtained by deriving (6),

∀x ∈ E, ∀ 0 < t < t+(x), f(x, t) = λ(Φ(x, t)) exp

(
−
∫ t

0

λ(Φ(x, s))ds

)
. (8)

In all the sequel G stands for the conditional survival function associated with
f , that is,

∀x ∈ E, ∀ 0 < t < t+(x), G(x, t) = S(x, (t,+∞)), (9)

where S is defined in (6). As highlighted before, the process (Zn, Sn+1)n≥0 forms
a Markov chain on the set F defined by

F =
⋃
x∈E

{x} × [0, t+(x)]. (10)

R denotes the transition kernel of this process given, for any (x, t) ∈ F and
A×B ∈ B(Rd × R+), by

R((x, t), A×B) = P(Zn+1 ∈ A, Sn+2 ∈ B |Zn = x, Sn+1 = t)

=

∫
A

Q(Φ(x, t), dξ)S(ξ, B), (11)

and, for any n, μn denotes the distribution of the couple (Zn, Sn+1).

2.2. Assumptions

The main assumption that we impose in the present paper is a condition of
ergodicity on the Markov chain (Zn)n≥0. This property is often a keystone in
statistical inference for Markov processes and may be directly imposed [3, 5] or
established [28] from the primitive features of the data.

Assumption 2.1. There exists a distribution ν∞ on E such that, for any initial
distribution ν0 = δ{x}, x ∈ E,

lim
n→+∞

‖νn − ν∞‖TV = 0,

where ‖ · ‖TV stands for the total variation norm.
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This assumption may be checked directly on the Markov kernel P of (Zn)n≥0

from the existence of a Foster-Lyapunov’s function or Doeblin’s condition for in-
stance [29, Theorem 16.0.2]. In the following remark we establish a first property
of the sequence (νn)n≥0 and of its limit ν∞.

Remark 2.2. Since the transition kernel Q is assumed to be absolutely contin-
uous with respect to the Lebesgue measure (3), the kernel P given by (5) of the
post-jump locations (Zn)n≥0 also admits a density. As a consequence, for any
integer n, the distribution νn of Zn and thus the invariant measure ν∞ intro-
duced in Assumption 2.1 admit a density on the state space E. For the sake of
clarity, we write ν∞(dx) = ν∞(x)λd(dx) with a slight abuse of notation.

We add some regularity conditions on the main features of the process to
show the convergence of the estimates in Theorem 3.3.

Assumptions 2.3.

• The sup-norms ‖Q‖∞ and ‖f‖∞ are finite. These conditions are used in
the proof of Theorem 3.3 to find an upper bound of the non diagonal terms
of some square variation process of interest.

• The functions Q and f are Lipschitz, i.e., for any x, y ∈ E and 0 < s <
t < t+(x) ∧ t+(y),

|f(x, t)− f(y, s)| ≤ [f ]Lip(|t− s|+ |y − x|),

and for any x ∈ E and y, z ∈ E,

|Q(x, y)−Q(x, z)| ≤ [Q]Lip|y − z|.

These conditions are used in the proof of Theorem 3.3 to control the diag-
onal terms of the same variation process and to study the convergence of
some remainder terms.

• The survival function G is Lipschitz,

∀x, y ∈ E, ∀ 0 < t < t+(x) ∧ t+(y), |G(x, t)−G(y, t)| ≤ [G]Lip|x− y|.

This condition is used in the proof of Theorem 3.3 to investigate the con-
vergence of the remainder terms.

• The deterministic exit time t+ is continuous. This condition is used to
find some admissible initial bandwidths v0 and w0.

Finally, we consider an additional condition on both the transition kernels
P and Q and the flow Φ in order to ensure the Lipschitz mixing property of
the Markov chain (Zn)n≥0. This will be sufficient to establish the almost sure
convergence to 0 of the remainder term with the adequate rate in the proof of
Theorem 3.3.

Assumptions 2.4. The transition kernel P of the Markov chain (Zn)n≥0 sat-
isfies, for some a1 ≥ 1 and a2 < 1,

∀ (x, y) ∈ E2,

∫
Rd×Rd

|u− v|a1P(x, du)P(y, dv) ≤ a2|x− y|a1 .
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In addition, the composed function Q(Φ(·, ·), ·) belongs to the regularity class
Li(r1, r2) defined by

|Q(Φ(x1, t1), y1)−Q(Φ(x2, t2), y2)|
= O (|(x1, t1, y1)− (x2, t2, y2)|r2(|(x1, t1, y1)|r1 + |(x2, t2, y2)|r1 + 1)) ,

for some positive numbers r1 and r2 satisfying 2(r1 + r2) ≤ a1.

3. Estimation procedure

3.1. Inference for the inter-jumping times

For any integer n, we introduce the σ(Z0, S1, . . . , Zn−1, Sn)-measurable func-

tions ν̂n∞ defined on E, and F̂n and Ĝn defined on the interior F̊ (let us recall
that the set F is given in (10)), by,

∀ (x, t) ∈ F̊ , F̂n(x, t) =
1

n

n−1∑
i=0

1

vdi wi
Kd

(
Zi − x

vi

)
K1

(
Si+1 − t

wi

)
,

∀ (x, t) ∈ F̊ , Ĝn(x, t) =
1

n

n−1∑
i=0

1

vdi
Kd

(
Zi − x

vi

)
I{Si+1>t}, (12)

∀x ∈ E, ν̂n∞(x) =
1

n

n−1∑
i=0

1

vdi
Kd

(
Zi − x

vi

)
, (13)

where Kp denotes a kernel function on Rp, p ∈ {1, d}, and the bandwidths are
defined for any integer k by vk = v0(k + 1)−α and wk = w0(k + 1)−β for some
α, β > 0 and initial positive values v0 and w0.

It should be already noted that these quantities are of a great interest in the
statistical study of the inter-jumping times of the PDMP (Xt)t≥0. Indeed, we
will see that:

• The ratio F̂n(x,t)
ν̂n
∞(x) estimates the conditional density f(x, t) defined in (8).

• The ratio Ĝn(x,t)
ν̂n
∞(x) estimates the conditional survival functionG(x, t) defined

in (9).

• The ratio F̂n(x,t)

Ĝn(x,t)
estimates the composed function λ(Φ(x, t)).

In addition, as the name suggests, we will state that ν̂n∞(x) is a good estimate
of the density ν∞(x) of the unique invariant distribution of the post-jump loca-
tions, which is relevant in the estimation problem for PDMP’s but has already
been investigated in [3, Proposition A.11].

In all the sequel, we impose a few assumptions on both the kernel functions
K1 and Kd.

Assumptions 3.1. For any p ∈ {1, d}, the kernel function Kp is assumed to
be a nonnegative smooth function satisfying the following conditions:
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• The sup-norm ‖Kp‖∞ is finite.
•
∫
Rp Kpdλp = 1.

• suppKp ⊂ Bp(0p, δ). Together with well-chosen initial bandwidths, this
condition avoids to compute the kernel estimator from data located at the
boundary of the state space F (see also Remark 3.4).

• Only for p = d. The function Kd is Lipschitz,

∀x, y ∈ Rd, |Kd(x)−Kd(y)| ≤ [K]Lip|x− y|.

This condition is used to show eq. (58) in the proof of Proposition 3.14.

Remark 3.2. In particular, Assumptions 3.1 ensure that, for any p ∈ {1, d},
τ2p =

∫
Rp K

2
pdλp is finite. This is used to find an upper bound of the non diagonal

terms of the variation process in the proof of Theorem 3.3. In addition, the
integral

∫
Rp |u|Kp(u)dλp(u) is also finite, which is needed to establish the almost

sure convergence of the remainder terms in the proof of the same result.

In the sequel the admissible set for the bandwidth parameters α and β is
given by

A =
{
(α, β) ∈ R2 : α > 0, β > 0, αd+ β < 1, αd+ β + 2min(α, β) > 1

}
.

In this part, our main result is obtained from the use of vector martingales and
is stated in the following theorem.

Theorem 3.3. For any couple (x, t) ∈ F̊ such that ν∞(x)f(x, t) > 0, for any
(α, β) ∈ A and (v0, w0) such that

t+ w0δ < inf
ξ∈Bd(x,v0δ)

t+(ξ), (14)

where δ appears in the third item of Assumptions 3.1, we have the almost sure
convergence, ⎡⎣ F̂n(x, t)

Ĝn(x, t)
ν̂n∞(x)

⎤⎦ a.s−→

⎡⎣ ν∞(x)f(x, t)
ν∞(x)G(x, t)

ν∞(x)

⎤⎦
and the asymptotic normality,

n
1−αd−β

2

⎛⎝⎡⎣ F̂n(x, t)

Ĝn(x, t)
ν̂n∞(x)

⎤⎦−

⎡⎣ ν∞(x)f(x, t)
ν∞(x)G(x, t)

ν∞(x)

⎤⎦⎞⎠ d−→ N (03,Σ(x, t, α, β)),

where the variance-covariance matrix Σ(x, t, α, β) is degenerate with only one
positive term at position (1, 1). Σ(x, t, α, β) is defined in (53).

Proof. The proof is stated in Appendix B.

Remark 3.4. The existence of a couple (v0, w0) satisfying (14) is obvious when-
ever the exit time t+ is continuous (see Assumptions 2.3). This condition en-

sures that all the inter-jumping times used in the calculus of F̂n and Ĝn are not
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obtained from forced jumps when the process reaches the boundary of the state
space. In the case where t+(x) = ∞, it is obvious that no interarrival times are
right-censored. The consistency and the asymptotic normality are therefore still
accurate without any condition on (v0, w0).

Remark 3.5. In Theorem 3.3, the choice (14) of the initial bandwidths v0 and
w0 is locally dependent on the point of interest. This may appear restrictive but
may be avoided by considering the elements of

C =
{
C × [0, T ] : C is a compact subset of E and T < inf

x∈C
t+(x)

}
. (15)

Indeed, for any C × [0, T ] ∈ C, there always exists a couple (v0, w0) such that

T + w0δ < inf
x∈C

inf
ξ∈Bd(x,v0δ)

t+(ξ).

Thus, (v0, w0) satisfies (14) for any point (x, t) ∈ C × [0, T ].

Remark 3.6. The variance-covariance matrix appearing in the asymptotic nor-
mality presented in Theorem 3.3 is degenerate with only the component (1, 1)

positive. It means that the rate of the estimators ν̂n∞ and Ĝn is faster than the

one of F̂n. This is straightforward because F̂n is obtained by smoothing the
empirical distribution of the data both in the spatial and temporal directions
contrary to ν̂n∞ and Ĝn. The proof of the previous result may be adapted to
show the two-dimensional central limit theorem, with α such that αd < 1 and
α(d+ 2) > 1:

n
1−αd

2

([
Ĝn(x, t)
ν̂n∞(x)

]
−
[

ν∞(x)G(x, t)
ν∞(x)

])
d−→ N (02,Σ

′(x, t, α)),

where Σ′(x, t, α) is a diagonal 2 × 2-matrix. The keystone to state this conver-
gence is the behavior given in (51) of the hook of a vector martingale.

If we assume the geometric ergodicity of the Markov chain (Zn)n≥0, one may

also obtain the rate of convergence of the variances of the estimates F̂n, Ĝn and
ν̂n∞ uniformly on any compact subset of F̊ such that the parameters v0 and w0

may be uniformly chosen (see Remark 3.5).

Proposition 3.7. Let us assume that there exists b > 1 such that ‖νn −
ν∞‖TV = O(b−n). The geometric ergodicity is in particular ensured by Doe-
blin’s condition (see [29, Theorem 16.0.2]). Then, for any set C× [0, T ] ∈ C and
for any couple (α, β) such that 2(αd+ β) < 1, we have

sup
(x,t)∈C

Var(F̂n(x, t)) = O(n2(αd+β)−1),

sup
(x,t)∈C

(
Var(Ĝn(x, t)) + Var(ν̂n∞(x))

)
= O(n2αd−1).

Let us recall that C has been defined in (15). The rate of convergence for F̂n is
faster than the one given in Theorem 3.3 whenever 3(αd+ β) < 1.
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Proof. The proof is similar to the demonstrations of Proposition B.5 and Corol-
lary B.6 of [3] and relies on the control of the covariance process of functionals
of a geometrically ergodic Markov chain (see [29, Theorem 16.1.5]).

We present in the sequel some corollaries of Theorem 3.3 that are of inter-
est in the estimation problem for the inter-jumping times. First, we define the
estimator f̂n(x, t) of f(x, t) by,

∀ (x, t) ∈ F̊ , f̂n(x, t) =
F̂n(x, t)

ν̂n∞(x)
,

with the usual convention 0/0 = 0. We have the following result of convergence.

Corollary 3.8. For any couple (x, t) ∈ F̊ such that ν∞(x)f(x, t) > 0, for any
(α, β) ∈ A and (v0, w0) satisfying (14), we have

f̂n(x, t)
a.s.−→ f(x, t)

and

n
1−αd−β

2

(
f̂n(x, t)− f(x, t)

)
d−→ N

(
0,

τ21 τ2d f(x, t)

(1 + αd+ β)ν∞(x)

)
.

Proof. This result is a direct application of Theorem 3.3 and Slutsky’s lemma.

Another feature of interest for the inter-jumping times is the survival function
G. One may estimate this quantity by,

∀ (x, t) ∈ F̊ , Ĝn(x, t) =
Ĝn(x, t)

ν̂n∞(x)
,

with the convention 0/0 = 0. Some properties of convergence are stated in the
following corollary.

Corollary 3.9. For any couple (x, t) ∈ F̊ such that ν∞(x)f(x, t) > 0, for any
α such that αd < 1 and α(d+ 2) > 1, and any v0, we have

Ĝn(x, t)
a.s.−→ G(x, t)

and

n
1−αd

2

(
Ĝn(x, t)−G(x, t)

)
d−→ N

(
0,

τ2d G(x, t)

(1 + αd)ν∞(x)

)
.

Proof. The almost sure convergence is a direct application of Theorem 3.3. The
central limit theorem is a consequence of the asymptotic normality established
in Remark 3.6 and Slutsky’s lemma.
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3.2. Optimal estimation of the jump rate

We propose to estimate the composed function λ◦Φ by the ratio λ̂ ◦ Φ
n
defined

by,

∀ (x, t) ∈ F̊ , λ̂ ◦ Φ
n
(x, t) =

F̂n(x, t)

Ĝn(x, t)
, (16)

again with the convention 0/0 = 0. Pointwise convergence and asymptotic nor-
mality are again a consequence of Theorem 3.3.

Corollary 3.10. For any couple (x, t) ∈ F̊ such that ν∞(x)f(x, t) > 0, for any
(α, β) ∈ A and (v0, w0) satisfying (14), we have

λ̂ ◦ Φ
n
(x, t)

a.s.−→ λ ◦ Φ(x, t),

and

n
1−αd−β

2

(
λ̂ ◦ Φ

n
(x, t)− λ ◦ Φ(x, t)

)
d−→ N

(
0,

τ21 τ2d λ ◦ Φ(x, t)
(1 + αd+ β)ν∞(x)G(x, t)

)
.

Proof. This result is a direct application of Theorem 3.3 and Slutsky’s lemma
together with (6), (8) and (9).

In all the sequel, we focus on the estimation of the rate λ (and not on the

composed function λ◦Φ) from the estimate λ̂ ◦ Φ
n
defined in (16). In particular,

for some fixed value x ∈ E, we introduce a class of estimators λ̂n
ξ (x) of λ(x)

indexed by the elements ξ of the curve Cx described by the reverse flow Φ(x,−t),
t ≥ 0, and we propose to choose an estimate from this class in an optimal way.
Before proceeding further we define the notation Cx as

Cx = {Φ(x,−t) : 0 ≤ t < t−(x)}.

By definition (1) of t−(x) we have Cx ⊂ E. In addition, for any ξ ∈ Cx, we define
τx(ξ) as the unique time satisfying

Φ(ξ, τx(ξ)) = x, ξ ∈ Cx.

Thus we have the following trivial result,

∀ ξ ∈ Cx, λ ◦ Φ(ξ, τx(ξ)) = λ(x). (17)

As a consequence, we propose to define a class of estimators of λ(x) by

Λn(x) =
{
λ̂n
ξ (x) = λ̂ ◦ Φ

n
(ξ, τx(ξ)) : ξ ∈ Cx

}
, (18)

where λ̂ ◦ Φ
n
estimates λ ◦Φ (see Corollary 3.10) and has already been defined

in (16). By virtue of Corollary 3.10 and only using (17), one has, as n goes to
infinity, for any ξ ∈ Cx,

λ̂n
ξ (x)

a.s.−→ λ(x) and n
1−αd−β

2

(
λ̂n
ξ (x)− λ(x)

)
d−→ N

(
0, σ2

ξ,α,β(x)
)
,
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where the asymptotic variance is given by

σ2
ξ,α,β(x) =

τ21 τ2d λ(x)

(1 + αd+ β)κx(ξ)
, with κx(ξ) = ν∞(ξ)G(ξ, τx(ξ)). (19)

In this paper, we choose to approximate λ(x) by the element λ̂n
ξ (x) ∈ Λn(x)

minimizing the asymptotic variance σ2
ξ,α,β(x). In other words, our optimal esti-

mator of the jump rate λ(x) is obtained as

λ̂n
∗ (x) = λ̂n

ξ∗(x), where ξ∗ = argmax
ξ∈Cx

κx(ξ).

Remark 3.11. A good criterion should be to maximize the invariant measure
ν∞(ξ), ξ ∈ Cx. Indeed, if ν∞(ξ) is large, a large frequency of post-jump lo-
cations around ξ may be available in the dataset. Nevertheless, roughly speak-
ing, the quantities of interest f(ξ, τx(ξ)) and G(ξ, τx(ξ)) are well estimated if
a large number of post-jump locations are around ξ together with inter-jumping
times around τx(ξ). This naive criterion may be corrected by including the qual-
ity of the estimation at time τx(ξ), that is to say, by maximizing the product
ν∞(ξ)G(ξ, τx(ξ)). We also refer the reader to the simulation study presented in
Section 4 and more precisely to Figure 8.

The criterion κx(ξ), ξ ∈ Cx, is generally uncomputable from the known fea-
tures of the PDMP and thus remains to be estimated. In light of Theorem
3.3 and by definition (19) of κx(ξ), we naturally propose to approximate this
quantity by,

∀ ξ ∈ Cx, κ̂n
x(ξ) = Ĝn(ξ, τx(ξ)). (20)

As a consequence, we propose to estimate the jump rate λ(x) by its statis-
tical approximation in Λn(x) maximizing the estimated criterion κ̂x(ξ). More
precisely, ̂̂

λ
n

∗ (x) = λ̂n
ξ̂n∗
(x), where ξ̂n∗ = argmax

ξ∈Cx

κ̂n
x(ξ). (21)

The high oscillations or alternatively the high smoothness of a kernel estimator
with a ill-chosen bandwidth suggest that the choice of the parameter α appearing
in κ̂n

x (see eq. (12) and (20)) is crucial at this maximization step.

3.3. How to choose bandwidth parameters α and β?

This part is devoted to the choice of the bandwidth parameters α and β. The
criteria that we introduce in this part to choose these features are defined as
line integrals along the curve Cx. As a consequence, we need to ensure that this
kind of quantity is well defined in our setting.

Assumption 3.12. For any starting condition ξ ∈ E, the reverse flow t �→
Φ(ξ,−t) defines a change of variable, that is to say, is a diffeomorphic mapping.
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It is common in the literature to minimize the Integrated Square Error (ISE)
to choose the optimal bandwidths of a kernel estimator, in particular from de-
pendent data: one may refer the reader to [23, 26, 27]. Another classical solution
is to investigate the behavior of the Mean Integrated Square Error (MISE). In
the framework of Gaussian dependent data, the authors of [15] have shown that
the optimal bandwidths obtained by minimizing the ISE and the MISE are very
close if the dependence is of short range, that is to say, if the covariance function
is integrable (see [15, Theorem 2.2]). It should be noted that a geometric ergodic
Markov chain satisfies this kind of condition (see [29, Theorem 16.1.5]).

Let us recall that α appears at first in the computation of the estimated
criterion κ̂n

x which we need to maximize along the curve Cx. Indeed κ̂n
x is com-

puted (20) from the estimate Ĝn which implicitly depends on α. We propose to
choose the bandwidth parameter α by minimizing the ISE associated with κ̂x

and defined by

ISEn
κ(α) =

∫
Cx

(κ̂n
x(ξ)− κx(ξ))

2
dξ

=

∫
Cx

κx(ξ)
2dξ + εnκ(α), (22)

where the function εnκ is given by

εnκ(α) =

∫
Cx

Ĝn(ξ, τx(ξ))
2dξ − 2

∫
Cx

Ĝn(ξ, τx(ξ))κx(ξ)dξ. (23)

One may remark that here the ISE is unusually computed along a curve of
interest. In (22) the dependency on α only holds through the function εnκ. As a
consequence the optimal parameter α minimizing this stochastic function (23)
also minimizes the ISE.

The function εnκ is generally not computable since the unknown quantity
κx appears in its definition. As a consequence, we propose to estimate εnκ by
cross-validation which is a popular technique for selecting the bandwidth that
minimizes the ISE. The authors would like to highlight that cross-validation
involves here two main difficulties. First the estimators are computed from de-
pendent data which are not identically distributed. In addition, there is almost
surely no data on the set of integration Cx whenever the dimension d is larger
than 2. That is why we propose a specific procedure adapted to this framework.

Before defining our cross-validation estimate of εnκ, we need to introduce the
quantities Tx,ρ and θx. First Hx denotes the hyperplane orthogonal to Cx at x,
that is,

Hx =
{
y ∈ Rd : y − x ⊥ ∇tΦ(x, 0)

}
.

In addition, for any ρ > 0, we introduce the notation Dx,ρ for

Dx,ρ = Bd(x, ρ) ∩Hx.

Furthermore Tx,ρ denotes the tube around Cx with radius ρ,

Tx,ρ =
⋃

y∈Dx,ρ

Cy. (24)
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Finally, for any ξ ∈ Tx,ρ, θx(ξ) denotes the unique time such that Φ(ξ, θx(ξ)) ∈
Dx,ρ. In particular,

∀ ξ ∈ Cx, θx(ξ) = τx(ξ). (25)

It should be noted that, for ρ small enough, Tx,ρ ⊂ E.
We focus now on a cross-validation method for estimating the quantity εnκ.

The estimate ε̂n,ñ,ρ
κ of εn

κ is defined from the observation of the embedded

Markov chain (Z̃k, S̃k+1)k≥0 of another PDMP (X̃t)t≥0 (independent on the
first one (Xt)t≥0 and distributed according to the same parameters), by

ε̂n,ñ,ρ
κ (α) =

∫
Cx

κ̂n
x(ξ)

2dξ

−
2Γ

(
d−1
2 + 1

)
ñ π

d−1
2 ρd−1

ñ−1∑
k=0

Ĝn
(
Z̃k, θx(Z̃k)

)
ITx,ρ(Z̃k)I(θx(Z̃k),+∞)(S̃k+1), (26)

where Γ denotes as usually the Euler function. Some regularity conditions are
necessary to investigate the asymptotic behavior of the cross-validation estimate
ε̂n,ñ,ρ
κ in Proposition 3.14.

Assumptions 3.13.

• The sup-norm ‖ν∞‖∞ is finite and ν∞ is Lipschitz,

∀x, y ∈ E, |ν∞(x)− ν∞(y)| ≤ [ν∞]Lip|x− y|.

• The deterministic exit time for the reverse flow t− is Lipschitz,

∀x, y ∈ E, |t−(x)− t−(y)| ≤ [t−]Lip|x− y|.

• The flow Φ is Lipschitz,

∀x, y ∈ E, ∀ t ∈ R, |Φ(x, t)− Φ(y, t)| ≤ [Φ]Lip|x− y|.

• The sup-norm ‖∇tΦ‖∞ is finite and ∇tΦ is Lipschitz,

∀x, y ∈ E, ∀ t ∈ R, |∇tΦ(x, t)−∇tΦ(y, t)| ≤ [∇tΦ]Lip|x− y|.

Proposition 3.14. Conditionally to σ(Z0, S1, . . . , Zn−1, Sn), we have

lim
ñ→∞
ρ→0

ε̂n,ñ,ρ
κ (α) = εnκ(α) a.s.

Proof. The proof is stated in Appendix C.

By virtue of Proposition 3.14, one may obtain an estimate of the optimal
bandwidth parameter α arising in κ̂n

x by minimizing the quantity ε̂n,ñ,ρ
κ for

some small enough ρ and large enough ñ. In addition, by (16), (18) and (20), the

quantity κ̂n
x also appears in the calculus of the estimator λ̂n

ξ (x). In particular,
the same choice of α may be done for computing the denominator κ̂n

x(ξ) of
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λ̂n
ξ (x). As a consequence it remains to choose in an optimal way the bandwidth

parameters α and β arising in the formula (16) of the numerator F̂n(ξ, τx(ξ))

of λ̂n
ξ (x) (18).

In a similar way as before, we propose to choose α and β by minimizing the
ISE associated with F̂n(·, τx(·)) and computed along the curve Cx,

ISEn
F (α, β) =

∫
Cx

(
F̂n(ξ, τx(ξ))−F(ξ, τx(ξ))

)2

dξ

=

∫
Cx

F(ξ, τx(ξ))
2dξ + εnF (α, β), (27)

where F̂n implicitly depends on α and β, F(ξ, τx(ξ)) stands for ν∞(ξ)f(ξ, τx(ξ))
and εnF is given by

εnF (α, β) =

∫
Cx

F̂n(ξ, τx(ξ))
2dξ − 2

∫
Cx

F̂n(ξ, τx(ξ))F(ξ, τx(ξ))dξ.

As in the previous part we propose to estimate εnF by cross-validation from the

observation of the embedded chain (Z̃k, S̃k+1)k≥0 of another PDMP (X̃t)t≥0.

We define our estimate ε̂n,ñ,ρ1,ρ2

F of εnF by

ε̂n,ñ,ρ1,ρ2

F (α, β) =

∫
Cx

F̂n(ξ, τx(ξ))
2dξ −

2Γ
(
d−1
2 + 1

)
ñ ρ2 π

d−1
2 ρd−1

1

ñ−1∑
k=0

[
F̂n

(
Z̃kθx(Z̃k)

)
× ITx,ρ1

(Z̃k)�(θx(Z̃k)− ρ2
2 θx(Z̃k)+

ρ2
2 )

(S̃k+1)

]
. (28)

The convergence of ε̂n,ñ,ρ,δ
F is investigated in Proposition 3.15.

Proposition 3.15. Conditionally to σ(Z0, S1, . . . , Zn−1, Sn), we have

lim
ñ→∞
ρ1,2→0

ε̂n,ñ,ρ1,ρ2

F (α, β) = εnF (α, β) a.s.

Proof. The proof is similar to the demonstration of Proposition 3.14 stated in
Appendix C.

4. Numerical experiments

In this section, we provide a self-contained presentation of the estimation proce-
dure, as well as three application scenarios on both simulated and real datasets.

4.1. Estimation algorithm

The sequel is devoted to the self-contained presentation of the estimation pro-
cedure provided in this paper. Precisely, we are interested in the estimation of
λ(x) for some x ∈ E ⊂ Rd.
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4.1.1. Preliminary computations

These preliminary computations only require to manipulate the flow Φ and the
state space E.

• Compute the curve Cx = {Φ(x,−t) : t ≥ 0} ∩ E.
• Choose ρ > 0 and compute

Dx,ρ = Bd(x, ρ) ∩ {y ∈ Rd : y − x ⊥ ∇tΦ(x, 0)},
Tx,ρ =

⋃
y∈Dx,ρ

Cy.

• For any ξ ∈ Tx,ρ compute θx(ξ) as the unique solution of

Φ(ξ, θx(ξ)) ∈ Dx,ρ.

The mapping τx is only defined on Cx ⊂ Tx,ρ by τx(ξ) = θx(ξ).

4.1.2. Preliminary estimates

These preliminary computations require to choose kernel functions K1 and Kd

on R and Rd, as well as two positive values v0 and w0.

• For any couple (α, β), compute

F̂n
α,β(ξ, t) =

1

nvd0w0

n−1∑
i=0

(i+ 1)αd+βKd

(
Zi − ξ

vi

)
K1

(
Si+1 − t

wi

)
.

• Compute

Ĝn
α(ξ, t) =

1

nvd0

n−1∑
i=0

(i+ 1)αdKd

(
Zi − ξ

vi

)
I{Si+1>t}.

4.1.3. Choice of bandwidth parameters by cross-validation

From the observation of two independent embedded chains (Zi, Si+1)0≤i≤n−1

and (Z̃i, S̃i+1)0≤i≤ñ−1, with ñ � n, one determines the optimal bandwidth
parameters appearing in the preceding estimates. In practice, from only one
trajectory of the underlying PDMP, one may divide the data into two categories:
the largest one is used for the estimation, while the cross-validation step relies
on the other one.

• Compute

αG = argmax
α>0

[∫
Cx

Ĝn
α(ξ, τx(ξ))

2dξ

−
2Γ

(
d−1
2 + 1

)
ñπ

d−1
2 ρd−1

ñ−1∑
k=0

Ĝn
α

(
Z̃k, θx(Z̃k)

)
ITx,ρ(Z̃k) I(θx(Z̃k),+∞)(S̃k+1)

]
.
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• Choose ρ2 > 0 and compute

(αF , βF ) = argmax
α,β>0

[∫
Cx

F̂n
α,β(ξ, τx(ξ))

2dξ −
2Γ

(
d−1
2 + 1

)
ñ ρ2 π

d−1
2 ρd−1

×
ñ−1∑
k=0

F̂n
α,β

(
Z̃k, θx(Z̃k)

)
ITx,ρ(Z̃k)I(θx(Z̃k)− ρ2

2 ,θx(Z̃k)+
ρ2
2 )

(S̃k+1)

]
.

4.1.4. Estimation of λ(x)

Finally, we compute the best estimate of λ(x) from all the preceding computa-
tions.

• Compute
ξ̂n∗ = argmax

ξ∈Cx

Ĝn
αG (ξ, τx(ξ)).

• From (αF , βF ), αG and ξ̂n∗ , compute

̂̂
λ
n

∗ (x) =
F̂n

αF ,βF

(
ξ̂n∗ , τx(ξ̂

n
∗ )
)

Ĝn
αG

(
ξ̂n∗ , τx(ξ̂

n
∗ )
) .

Remark 4.1. The time complexity of this algorithm depends on several param-
eters, namely the number n of observed jumps, the number ñ of observed data for
the cross-validation steps, and also the numbers Nξ, Nα and Nβ for discretizing
the state spaces of ξ, α and β at each maximization procedure. It is easy to
see that the cross-validation step is the most complex but remains polynomial,
precisely in O(nNαNβ(Nξ + ñ)).

4.2. TCP-like process

The application on which we focus in this part is a variant of the famous TCP
window size process appearing in the modeling of the Transmission Control
Protocol used for data transmission over the Internet and presented in [12]. This
protocol has been designed to adapt to the traffic conditions of the network: for
a connection, the maximum number of packets that can be sent is given by a
random variable called the congestion window size. At each time step, if all the
packets are successfully transmitted, then one tries to transmit one more packet
until a congestion appears.

The model presented in this part is two dimensional. For the sake of clarity, we
will use the following notation: for any x ∈ R2, x1 and x2 denote the components
of x. We consider a PDMP (Xt)t≥0 evolving on the state space E = (0, 1)2. The
deterministic part of the model is defined from the flow Φ given by,

∀x ∈ R2, ∀ t ∈ R, Φ(x, t) = (x1 + t, x2).
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Fig 2. Two representations of the same simulated path of the TCP-like model of interest until
the 10th jump. A vector field graph is given on the left, while we observe the trajectory of the
first component versus time on the right.

The jump rate λ is defined by,

∀x ∈ R2, λ(x) = x1 + x2.

The transition kernel Q is defined by,

∀x ∈ E, ∀A ∈ B(E), Q(x,A) ∝
∫
A

u(1− u)2/x1−1 v(1− v) du dv.

Starting from (x1, x2), the process evolves in the unit square, always to the
right, until a jump appears either when the motion hits the boundary {(ξ1, ξ2) :
ξ1 = 1} or with the non homogeneous rate x1 + x2 + t before, that is according
to a Weibull distribution. The two components of the post-jump location are
independent and both governed by a Beta-distribution, in such a way that the
process tends with a high probability to jump to the left of the location just
before the jump. One obtains a TCP-like process (see Figure 2) for which the
second dimension models the quality of the network (upper the second compo-
nent is, higher the probability of a congestion is).

The asymptotic behavior of the process may be represented by the invariant
distribution ν∞ of the post-jump locations. Since this quantity is unknown, we
propose to show in Figure 3 its estimate ν̂n∞ defined by (13) and computed from
n = 20 000 observed jumps.

We present here all the procedure for estimating the jump rate λ at the
location x = (0.75, 0.5) for which the quality of the network is average. In this
context, the class of estimators of λ(x) is indexed by the elements ξ ∈ Cx =
(0, 0.75]×{0.5}. It should be noted that the invariant distribution at x is quite
low (see Figure 3). Nevertheless our method is expected to work pretty well
even in this unfavorable framework.

In this simulation study, we assume that we observe the embedded Markov
chain (Zn, Sn+1)n≥0 until the 10 000th jump. The cross-validation procedure is
computed from an additional chain, independent on the first one, and observed
until the 1 000th jump. When boxplots are presented, they have been computed
over 100 replicates.
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Fig 3. Estimation of the invariant distribution of the post-jump locations computed from the
20 000 first jumps of the TCP-like model.

Fig 4. The choice of the bandwidth parameter α appearing in the criterion κ̂n
x is obtained

by minimizing the cross-validation estimate ε̂n,ñ,ρ
κ (α) of the related ISE. The parameter ρ

seems to have only a small influence over the minimization: the estimated error is computed
from ρ = 0.005, ρ = 0.01 and ρ = 0.02 from left to right.

We begin with the choice of the bandwidth parameter α appearing in κ̂n
x(ξ) =

Ĝn(ξ, τx(ξ)). The cross-validation procedure relies on the minimization of the
estimate ε̂n,ñ,ρ

κ (α) which depends on the positive parameter ρ. We present in
Figure 4 this quantity as a function of α and from different values of ρ. Fortu-
nately, this new parameter seems to have little influence over the behavior of
the estimation of the ISE along Cx.

Now, from this α (denoted in the sequel αG), we maximize the estimated
criterion κ̂n

x(ξ) along the curve Cx (see Figure 5): we obtain the optimal point

ξ̂n∗ at which we will compute our estimator of λ(x). The crucial role of α at this
maximization step is illustrated in Figure 6.

We continue with the choice of the couple (α, β) implicitly appearing in the es-

timator F̂n(ξ, τx(ξ)). The optimal parameters (denoted in the sequel (αF , βF ))

are obtained by minimizing the estimate ε̂n,ñ,ρ1,ρ2

F (α, β) of the related ISE (see
Figure 7).

We compute the estimators λ̂n
ξ (x) for different values of ξ ∈ Cx and with the

optimal bandwidths αG and (αF , βF ). The related boxplots are presented in
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Fig 5. The optimal index ξ̂n∗ is calculated by maximizing the criterion κ̂n
x(ξ), ξ ∈ Cx, computed

with the optimal parameter α. On the left side of the figure, we compare the estimate κ̂n
x(ξ)

(full line) with ν̂n∞(ξ)G(ξ, τx(ξ)) (dashed line) both computed from α = 0.1, which confirms
that the estimation performs pretty well. This quantity seems to admit one and only one
absolute maximum.

Fig 6. The parameter α plays a crucial role in the estimation of κ̂n
x . We compare here the

curves computed from α = 0.1 and already presented in Figure 5 (full and dashed lines) with
the too oscillating estimate obtained from α = 0.4 (dotted line).

Fig 7. The optimal bandwidth parameters α and β implicitly appearing in F̂n(ξ, τx(ξ)), ξ ∈
Cx, are obtained by minimizing the cross-validation estimate ε̂n,ñ,ρ1,ρ2

F (α, β), computed from
ρ1 = ρ2 = 0.1 here, of the related ISE. The parameter β seems to have only little influence
over the estimation error in comparison to α.

Figure 8. The procedure makes us able to choose the best index ξ̂n∗ which most
of the time corresponds with the estimate with least bias and variance. This
proves the strong interest of the estimation algorithm developed in this paper.
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Fig 8. The estimator λ̂n
ξ (x) is computed from different values of the index ξ ∈ Cx, and from

the optimal bandwidth parameters αG and (αF , βF ). Over the 100 replicates, the optimal

points ξ̂n∗ are most of the time located at 0.55 and more than 90 times between 0.5 and 0.6
(enhanced by gray colors), which seems to correspond with the estimators with least bias and
variance. In particular, we obtain a better result than by maximizing the estimated invariant
measure ν̂n∞ (index around 0.35), see Remark 3.11.

4.3. Bacterial motility

We present here a model of bacterial motility. Most motile bacteria move by the
use of a flagellum or several flagella. The bacteria moves in the direction of the
flagellum. A flagellum behaves like a rotary motor. Periodically, the flagellum
changes its direction and results in reorientation of the bacteria. This allows
bacteria to change direction. Bacteria can sense nutrients and move towards
them. Additionally, they can move in response to temperature, light, etc. If the
bacteria is in a favorable environment, the frequency of changes in direction is
low. This intelligent behavior is allowed by the fact that the jump rate of the
direction depends on the environment. For example, [30, 31, 34] propose models
for the trajectory of the bacteria E. Coli. In particular, the author of [30] uses
PDMP’s to describe the movement of bacteria under the influence of an external
attractive chemical signal.

We present here a variant of the model presented in [30]. The path of the
bacteria is described by a PDMP (Xt)t≥0 evolving in the three-dimensional
space state E = D × [0, 2π) with D the unit disk of R2. For the sake of clarity,
we will use the following notation: for any x ∈ R3, x1, x2 and x3 denote the
components of x. In our case, (x1, x2) is the position of the bacteria in the unit
disk, and x3 is the direction of its flagellum.

The bacteria moves in the direction of its flagellum. In other words, the flow
is given by,

∀x ∈ R3, ∀ t ∈ R, Φ(x, t) = (x1 + t cosx3, x2 + t sinx3, x3).

The bacteria changes its direction according to a jump rate function λ(x) =
λ(x1, x2) which depends on the environment only through the position (x1, x2)
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Fig 9. Simulated trajectory of the bacteria in the unit disk until the 100th jump.

and not on the current angle. The jump rate describes the interaction between
the bacteria and its environment.

When the bacteria changes its direction, the new direction is chosen prefer-
entially in the direction of a more favorable environment. The transition kernel
Q(x, ·) models this change of direction. In our case, we suppose the bacteria has
no information a priori on the quality of the environment around itself. Thus,
Q can be defined by,

∀x ∈ E, ∀A ∈ B([0, 2π[), Q(x, (x1, x2)×A) =
1

2π

∫
A

du.

Starting from the position (x1, x2) in D, the bacteria evolves in the direction
x3 ∈ [0, 2π), until a jump appears either when the bacteria hits the boundary
∂D of its environment or with the rate λ (Φ(x, t)) = λ(x1+ t cosx3, x2+ t sinx3)
before. The post-jump direction is next randomly chosen in [0, 2π), and the
bacteria continues its path in this new direction, and so on. A possible path of
this model is presented in Figure 9.

In this simulation study, the jump rate is taken constant equal to λ = 1. In
other words, there is no interaction between the bacteria and its environment.
Of course, this assumption is not taken into account in the estimation. Our goal
is to estimate the jump rate λ in different points of E in order to check if it
depends on the position. Actually, this provides an estimate of the influence of
a likely external attractive signal on the bacteria.

The estimation algorithm presented in this paper yields an estimate of the
jump rate at the three-dimensional state (x1, x2, θ). Nevertheless, one should
take into account that the jump rate do not depend on the angle θ. We explain
here the procedure to reduce the dimension and estimate the jump rate at the
location (x1, x2) ∈ D.

• Let θ ∈ [0, 2π) be a fixed angle. Estimate the best index ξ̂n∗ (θ) and the

jump rate λ̂n
ξ̂n∗ (θ)

(xθ) at the location xθ = (x1, x2, θ).

• For any θ, λ̂n
ξ̂n∗ (θ)

(xθ) estimates λ(x1, x2). We reproduce the preceding step

for any θ ∈ [0, 2π). We obtain both a connected trajectory around (x1, x2)

Cx1,x2 =
{
ξ̂n∗ (θ) : θ ∈ [0, 2π)

}
, (29)
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Fig 10. For each of the 9 target points (x1, x2), the boxplot of the optimal estimators

λ̂n
ξ̂n∗ (θ)

(xθ) for θ taken in a uniform discretized grid of [0, 2π] with step π/8 is presented.

The black thick lines in the boxplots correspond to the aggregated estimate λ̂(x1, x2) defined
in (30), while the dashed line represents the true jump rate.

and a class of optimal estimators

Lx1,x2 =
{
λ̂n
ξ̂n∗ (θ)

(xθ) : θ ∈ [0, 2π)
}
=
{
λ̂n
ξ : ξ ∈ Cx1,x2

}
indexed by elements of Cx1,x2 .

• As the jump rate does not depend on the direction θ, we aggregate the
estimators in Lx1,x2 to obtain the following jump rate estimate

λ̂(x1, x2) =
1

2π

∫ 2π

0

λ̂n
ξ̂n∗ (θ)

(xθ) dθ. (30)

We investigate the estimation of the jump rate at the following 9 target points,

(x1, x2) ∈ {(0, 0), (−0.5, 0), (−0.5, 0.5), (−0.5,−0.5), (0, 0.5),

(0,−0.5), (0.5, 0), (0.5, 0.5), (0.5,−0.5)},

from a trajectory of n = 100 000 changes of direction. In the sequel, the ag-
gregated estimator (30) is approximated from a discretization of the interval
[0, 2π) with step π/8. For each of the 9 target points, we present in Figure 10

the boxplot of the estimates λ̂n
ξ̂n∗ (θ)

(xθ) for θ in the discretization grid.

As shown in Figure 11, the trajectories Cx1,x2 defined in (29) are very similar
and close to the boundary ∂D. We explain this fact as follows. For each target
state x = (x1, x2, θ), the optimal point ξ̂n∗ (θ) maximizes κ̂n

x(ξ) = Ĝn(ξ, τx(ξ))
along

Cx = {(x1 − t cos θ, x2 − t sin θ, θ) : t ≥ 0} ∩D,

where τx(ξ) satisfies x1 − τx(ξ) cos θ = ξ1 and x2 − τx(ξ) sin θ = ξ2. Recall

that Ĝn(ξ, τx(ξ)) is an estimator of κx(ξ) = ν∞(ξ)G(ξ, τx(ξ)). On the first
hand, G(ξ, t) = exp(−t) for t small enough, then the only point that maximizes
G(ξ, τx(ξ)) is ξ = x itself. On the other hand, there is an important number of
data that are very close to the boundary ∂D (due to the fact that the bacteria

jumps when it hits the boundary ∂D). Then the maximization of Ĝn(ξ, τx(ξ))
is a compromise between ξ = x and ξ near the boundary.
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Fig 11. For each of the 9 target points, the curve Cx1,x2 as well as the estimate λ̂(x1, x2)
have been computed from n = 100 000 observed data and are provided (left). The boxplot of
these 9 estimates is also given (right) and presents no bias and a small dispersion.

Finally, the estimates λ̂(x1, x2) at the 9 target points are close together, and
close to the true value λ = 1 with a small variance, which is a good indicator of
a constant jump rate (see Figure 11).

Now, we investigate the effect of the size n of the dataset on the quality of the
estimation. We compare results of simulations from n = 100 000, n = 50 000 and
n = 20 000 observed data. When n = 20 000, the trajectories Cx1,x2 are not all
the time close to the boundary. It is due to the fact that, in this case, some areas
of the state space are not well-covered by the observed post-jump locations.
Then, if the target point is x = (x1, x2, θ), the optimal point ξ̂n∗ (θ) ∈ Cx is
obtained at the location x itself (see Figure 12). In addition, the estimated
curves Cx1,x2 obtained from n = 50 000 data are very close to the ones computed
from n = 100 000 observed jumps.

Of course, the larger the number of data n is, the better the estimations (see
Figures 13 and 14). In particular, it is difficult to conclude that the jump rate
is constant from only n = 20 000 observed jumps because the variance of the
estimates is too large. Nevertheless, a dataset of size 50 000 may be sufficient to
conclude that the jump rate does not depend on the location.

4.4. Fatigue crack propagation

Fatigue crack propagation is a stochastic phenomenon due to the inherent un-
certainties originating from material properties and cyclic mechanical loads. As
a consequence, stochastic processes offer an appropriate framework for model-
ing crack propagation. Fatigue life may be divided into crack initiation and two
crack growth periods, namely the linear or stable regime described by Paris’
equation

da

dN
= C (ΔK(a))

m
,

and the acceleration or unstable regime modeled by Forman’s equation

da

dN
=

C (ΔK(a))
m

(1−R)Kc −ΔK(a)
,
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Fig 12. For each of the 9 target points, the curve Cx1,x2 as well as the estimate λ̂(x1, x2)
have been computed from n = 20 000 (top) and n = 50 000 (bottom) observed data and are
provided (left). The boxplots of these 9 estimates are also given in both cases (right).

Fig 13. For each of the 9 target point (x1, x2) indexed from 1 to 9, estimated jump rates

λ̂(x1, x2) computed from different datasets.

Fig 14. Boxplots of the 9 estimated jump rates λ̂(x1, x2) computed from datasets of different
sizes.

where a is the crack length, N is the time measured in number of loading cycles,
R is the stress ratio, Kc represents the maximal value of the stress intensify
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Fig 15. Virkler’s dataset contains 68 independent crack growth histories starting from a0 =
9mm.

factor required to induce failure and ΔK(a) is the range of the stress intensity
factor given by

ΔK(a) = Δσ cos
(πa
ω

)−1/2 √
πa,

where ω is the size of the test specimen and Δσ is the stress range. In addition,m
and C are two unknown material parameters. In this context, regime-switching
models have been proposed to analyze fatigue crack growth data [7, 14]. The
authors of [7] propose to estimate the transition time between Paris’ and For-
man’s regimes assuming that the crack propagation follows the trajectory of
some piecewise-deterministic Markov process. The estimation procedure is per-
formed on Virkler’s dataset [35] in which 62 identical centre-cracked aluminium
alloy specimens (ω = 152mm) were tested under constant amplitude loading
Δσ = 48.28MPa at a stress ratio R = 0.2. The number of loading cycles for
the crack tip to advance a predetermined increment Δa was recorded from an
initial crack length of a0 = 9mm to a final length of 49.8 mm. 68 crack growth
histories were obtained from these tests (see Figure 15).

In this paper, we assume that the crack growth propagation follows Paris’
equation with random parameters m and C before switching to Forman’s equa-
tion with another set of parameters m and C distributed according to some
transition measure. The transition occurs at a random time T1 given by its
survival function

P(T1 > t | a0 = 9mm, m, C) = exp

(
−
∫ t

0

λ
(
ΦP

m,C(a0, s)
)
ds

)
,

where ΦP
m,C is the deterministic flow of Paris’ equation with parameters m and

C. In the sequel, ΦP
m,C will be computed from the Runge-Kutta method be-

cause there is no explicit solution to this differential equation. We propose to
estimate the jump rate of this stochastic model from real crack growth data.
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Fig 16. Material parameters m and log(C) are strongly linked by a linear relationship used
to reduce the dimension of the underlying model: log(C) = −9.25− 5.89×m+ ε.

It should be noted that the jump times are not directly observed in Virkler’s
dataset but have been estimated in [7]. The jump rate is of significant impor-
tance in understanding the transition between the stable and unstable regimes of
crack propagation, and has never been estimated in the framework of PDMP’s.
We emphasize that Virkler’s dataset is composed of 68 independent experi-
ments and thus does not directly follow the theoretical framework developed in
this manuscript. Nevertheless, our estimation procedure is expected to perform
pretty well in this more favorable context (independent curves instead of only
one Markov path).

Material parameters m and C are unobserved but have also been estimated
from Virkler’s experiments in [7]. It is well-known in the literature that there
is a strong linear relationship between these features. This characteristic has
again been highlighted in [7] and is shown in Figure 16. In order to reduce
the dimension and thus simplify the model, we propose to parametrize Paris’
equation with only one parameter, say m, while log(C) is obtained from this
linear relationship.

We focus on the estimation of λ(a) for some crack length a. For each parame-
ter m of Paris’ equation there exists a unique deterministic time τm(a) such that
Paris’ flow reaches a at time τm(a) starting from a0 = 9mm. Criterion κa(m)
and its maximum have been estimated for different values of a (see Figure 17).
In particular, one may observe that the larger the target length a is, the larger
the optimal parameter m.

For each crack length a, we estimate the jump rate λ(a) from the parameter
m maximizing the estimated criterion κa(m). We obtain the estimated function
displayed in Figure 18. This curve is increasing as expected and describes the
transition rate from the stable region of propagation towards the acceleration
regime that leads to fracture. This makes us able to detect conditions of crack
growth instability and could be used to predict the critical length in fatigue
crack propagation with a given level of confidence.
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Fig 17. Estimation of the criterion κa(m) for different values of the target length a: a =
25mm (top, left), a = 35mm (top, right) and a = 45mm (bottom, left). The relationship
between the optimal parameter m maximizing κa(m) and the target crack length a is also
presented (bottom, right).

Fig 18. Estimation of the jump rate λ(a) for different crack lengths a between 25mm and
45mm in the stochastic model of fatigue crack propagation from Virkler’s dataset.

5. Concluding remarks

Inference for piecewise-deterministic Markov processes requires specific statisti-
cal methodologies. In this paper, we have developed a new procedure to estimate
the jump rate λ of such a process from a long trajectory. We have stated the
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strong consistency as well as the asymptotic normality of the involved estima-
tors (see Corollaries 3.8, 3.9 and 3.10). Our method provides an uncountable
class of estimates of the jump rate in which we choose the one with the minimal
asymptotic variance. Optimal selection of bandwidth parameters has also been
investigated. Numerical experiments show the good behavior of our estimators
on large sample size. The main limitation of our procedure is the number of data
required to get an accurate estimate of the quantity of interest. In addition, the
procedure is quite complex to estimate the jump rate only at a given point of
the state space (the complexity is given in Remark 4.1). Furthermore, all the
computational steps depend on the point of interest and should be repeated
for estimating the jump rate at another point. Nevertheless, we would like to
highlight that the methodology is very flexible and may be easily adapted to
estimate the jump rate from independent trajectories as it has been done in
Subsection 4.4.

Appendix A: Ergodicity and invariant measures

In this section we present some preliminary and technical results about the
invariant distributions of the underlying Markov chains. We begin with some
properties of the Markov chain (Zn)n≥0 of the post-jump locations of the PDMP
of interest. In particular, under Assumption 2.1, one may state the following
result.

Proposition A.1. We have the following statements:

• (Zn)n≥0 is ν∞-irreducible, positive Harris-recurrent and aperiodic.
• ν∞ is the unique invariant distribution of (Zn)n≥0.

Proof. The proof is similar to the demonstration of Proposition 4.2 of [4].

These properties make us able to apply the law of large numbers to the
Markov chain (Zn)n≥0 (see [29, Theorem 17.1.7]). Now we propose to focus on
the sequence (Zn, Sn+1)n≥0 which also forms a Markov process whose transition
kernel is given by R in (11). Let us recall that μn denotes the distribution on
the state space F defined by (10) of the couple (Zn, Sn+1), n ≥ 0. We define
the measure μ∞ by,

∀A ∈ B(Rd), ∀ t ≥ 0, μ∞(A× (t,+∞)) =

∫
A

ν∞(dx)S(x, (t,+∞)), (31)

where the conditional distribution S is given by (6). In particular, μ∞ is the
unique invariant distribution of (Zn, Sn+1)n≥0.

Proposition A.2. We have the following statements:

• For any initial distribution μ0 = δ{x,t}, (x, t) ∈ F , we have

lim
n→∞

‖μn − μ∞‖TV = 0.
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• (Zn, Sn+1)n≥0 is μ∞-irreducible, positive Harris-recurrent and aperiodic.
• μ∞ is the unique invariant distribution of (Zn, Sn+1)n≥0.

Proof. The proof is similar to the demonstrations of Lemma 4.4 and Proposition
4.5 of [4].

We are able again to apply the law of large numbers to the Markov chain
(Zn, Sn+1)n≥0 by virtue of this result. It should be noted that the measures μn,
n ≥ 0, and μ∞ do not share with νn, n ≥ 0, and ν∞ the property of absolute
continuity with respect to the Lebesgue measure presented in Remark 2.2.

Remark A.3. For any n, μn and thus the limit μ∞ admit a density only on
the interior F̊ of the state space F because of the expression (7) of S and thanks
to Remark 2.2.

Finally, we would like to highlight that the link between the measures ν∞
and μ∞ may be expressed in another way than (31). Indeed, for any x ∈ E, we
have ∫

F

Q(Φ(y, s), x)μ∞(dy × ds) = ν∞(x), (32)

by the expression (5) of the transition kernel P of (Zn)n≥0 and because ν∞P =
ν∞ by virtue of Proposition A.1. The formula (32) of ν∞ will be useful in our
investigations.

Appendix B: Proof of Theorem 3.3

In all this section we use the notation Fn for the σ-algebra

σ(Z0, S1, . . . , Zn, Sn+1),

for any n ≥ 0. In addition, the classical symbols ∼, o and O must be understood
to hold here in the almost sure sense.

B.1. Sketch of the proof

The proof of Theorem 3.3 relies on the following decomposition. For any integer
n ≥ 1, we have⎡⎣ F̂n(x, t)

Ĝn(x, t)
ν̂n∞(x)

⎤⎦ −

⎡⎣ ν∞(x)f(x, t)
ν∞(x)G(x, t)

ν∞(x)

⎤⎦ =
Mn−1

n
+Rn, (33)

where the sequence (Mn)n≥0 is a (Fn)n≥0-vector martingale defined by (37)
and studied in Appendix B.3, and Rn is a remainder term defined by (34) and
studied in Appendix B.2.

In Appendix B.2, we establish that the remainder term almost surely goes to 0
when n tends to infinity. This is a first step to show the almost sure convergence
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presented in Theorem 3.3. In addition we investigate the rate of convergence
of the remainder term in Appendix B.2 under an additional Lipschitz mixing
condition stated in Assumption 2.4. This is enough to prove the asymptotic
normality given in Theorem 3.3.

The rest of the proof deals with the study of the martingale term. We prove in
Appendix B.3 that the process (Mn)n≥0 is a vector martingale. We investigate
its asymptotic behavior by studying its square variation process (〈M〉n)n≥0 in
Appendix B.3. Thanks to these results we state the law of large numbers and
the central limit theorem for (Mn)n≥0 in Appendix B.3.

Finally the almost sure convergence presented in Theorem 3.3 is a direct
application of (33) and (35) together with (52), while the asymptotic normality
is obtained from (33), (36) and (55).

B.2. Remainder term

This part of the paper is devoted to the asymptotic study of the remainder term
sequence (Rn)n≥1 appearing in (33).

B.2.1 Definition of the remainder term

For any n, one may write Rn =
[
R

(k)
n

]
1≤k≤3

, where each of the components is

defined by

R(1)
n =

4∑
j=0

R(1,j)
n , R(2)

n =

3∑
j=0

R(2,j)
n and R(3)

n =

2∑
j=0

R(3,j)
n . (34)

The five terms that define R
(1)
n are given by

R(1,0)
n =

1

nvd0w0
Kd

(
Z0 − x

v0

)
K1

(
S1 − t

w0

)
,

R(1,1)
n =

1

n

n−1∑
j=1

∫
Rd×R

f(x+ uvj , t+ vwj)Kd(u)K1(v)
[
Q (Φ (Zj−1, Sj) , x+ uvj)

− Q (Φ (Zj−1, Sj) , x)
]
du dv,

R(1,2)
n =

1

n

n−1∑
j=1

Q (Φ (Zj−1, Sj) , x)

∫
Rd×R

[f(x+ uvj , t+ vwj)− f(x, t+ vwj)]

Kd(u)K1(v) du dv,

R(1,3)
n =

1

n

n−1∑
j=1

Q (Φ (Zj−1, Sj) , x)

∫
Rd×R

[f(x, t+vwj)−f(x, t)]Kd(u)K1(v)du dv,

R(1,4)
n =

⎡⎣ 1

n

n−1∑
j=1

Q (Φ (Zj−1, Sj) , x)− ν∞(x)

⎤⎦ f(x, t).
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The four terms that define R
(2)
n are given by

R(2,0)
n =

1

n

1

vd0
Kd

(
Z0 − x

v0

)
I{S1>t},

R(2,1)
n =

1

n

n−1∑
j=1

∫
Rd

[Q (Φ (Zj−1, Sj) , x+ uvj)−Q (Φ (Zj−1, Sj) , x)]

G(x+ uvj , t)Kd(u) du,

R(2,2)
n =

1

n

n−1∑
j=1

Q (Φ (Zj−1, Sj) , x)

∫
Rd

[G(x+ uvj , t)−G(x, t)]Kd(u) du,

R(2,3)
n =

⎡⎣ 1

n

n−1∑
j=1

Q (Φ (Zj−1, Sj) , x)− ν∞(x)

⎤⎦G(x, t).

Finally, the three terms that define R
(3)
n are given by

R(3,0)
n =

1

n

1

vd0
Kd

(
Z0 − x

v0

)
,

R(3,1)
n =

1

n

n−1∑
j=1

∫
Rd

[Q (Φ (Zj−1, Sj) , x+ uvj)−Q (Φ (Zj−1, Sj) , x)]Kd(u) du,

R(3,2)
n =

1

n

n−1∑
j=1

Q (Φ (Zj−1, Sj) , x)− ν∞(x).

B.2.2 Almost sure convergence

We only investigate the first component (R
(1)
n )n≥1 since the other terms may be

treated with similar arguments. First, it is obvious that the sequence (R
(1,0)
n )n≥1

almost surely tends to 0. In addition, the term (R
(1,4)
n )n≥1 converges to 0 by

virtue of the ergodic theorem applied to the Markov chain (Zn, Sn+1)n≥0 (thanks
to Proposition A.2) together with (32). Because both the functions Q and f are
Lipschitz and bounded (see Assumptions 2.3), we have

∣∣∣R(1,1)
n

∣∣∣ ≤ [Q]Lip‖f‖∞
n

n−1∑
j=1

vj

∫
Rd

|u|Kd(u)du,

∣∣∣R(1,2)
n

∣∣∣ ≤ ‖Q‖∞[f ]Lip

n

n−1∑
j=1

vj

∫
Rd

|u|Kd(u)du,

∣∣∣R(1,3)
n

∣∣∣ ≤ ‖Q‖∞[f ]Lip

n

n−1∑
j=1

wj

∫
R

|v|K1(v)dv,
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which are some Cesàro means because both the sequences (vn)n≥0 and (wn)n≥0

tend to 0. Thus,

Rn
a.s.−→ 03. (35)

B.2.3 Rate of convergence

Under the first item of Assumptions 2.4, the Markov chain (Zn)n≥0 and thus
the two-dimensional process (Zn, Sn+1)n≥0 satisfy the contraction assumption
given in Theorem 6.3.17 of [21]. By applying this theorem to the function ϕ =
Q(Φ(·, ·), ·) ∈ Li(r1, r2) (see second item of Assumptions 2.4), we obtain that,
for any γ ∈ (0, 1) and x ∈ E,

n− 1+γ
2

n−1∑
j=1

[Q (Φ (Zj−1, Sj) , x)− ν∞(x)]
a.s−→ 0,

because 2(r1 + r2) ≤ a1. Therefore, we have for any couple (k, j) in the set
{(1, 4), (2, 3), (3, 2)},

n
1−αd−β

2 R(k,j)
n

a.s.−→ 0.

The same result is obvious for the other couples (k, j) with the condition αd+
β + 2min(α, β) > 1. Finally we obtain, when n goes to infinity,

n
1−αd−β

2 Rn
a.s.−→ 03. (36)

B.3. Martingale term

B.3.1 (Mn)n≥0 is a vector martingale

Let (Mn)n≥0 be the three-dimensional process defined for any n by Mn =[
M

(k)
n

]
1≤k≤3

, where each component is defined as

M (k)
n =

n∑
j=1

A
(k)
j −B

(k)
j , k ∈ {1, 2, 3}, (37)

and the terms A
(k)
j and B

(k)
j are given by

A
(1)
j =

1

vdj
Kd

(
Zj − x

vj

)
1

wj
K1

(
Sj+1 − t

wj

)
,

B
(1)
j =

∫
Rd×R

Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)Kd(u)K1(v)λd(du) dv,

A
(2)
j =

1

vdj
Kd

(
Zj − x

vj

)
I{Sj+1>t},
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B
(2)
j =

∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)G(x+ uvj , t)Kd(u)λd(du),

A
(3)
j =

1

vdj
Kd

(
Zj − x

vj

)
,

B
(3)
j =

∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)Kd(u)λd(du).

We claim that the process (Mn)n≥0 is a (Fn)n≥0-martingale. The keystone is
to show that, for any n and k, we have

E

[
A(k)

n

∣∣∣ Fn−1

]
= B

(k)
n−1.

The proof presents no particular difficulty except for the first component k = 1
for which we provide some details. Let us recall that R denotes the transition
kernel of the Markov chain (Zn, Sn+1)n≥0 (see Subsection 2.1). We have

E

[
A(1)

n

∣∣∣ Fn−1

]
=

1

vdnwn

∫
Rd×R+

[
Kd

(
ξ − x

vn

)
K1

(
s− t

wn

)
(38)

×R ((Zn−1, Sn), dξ × ds)
]

=
1

vdnwn

∫
Rd×R+

[
Kd

(
ξ − x

vn

)
K1

(
s− t

wn

)
×Q (Φ(Zn−1, Sn), dξ)S(ξ, ds)

]
, (39)

with (11). Let us recall that the bandwidth sequence (vn)n≥0 is decreasing.
Together with the third item of Assumptions 3.1, we obtain

suppKd

(
· − x

vn

)
⊂ suppKd

(
· − x

v0

)
⊂ Bd(x, v0δ).

With similar arguments, we obtain

suppK1

(
· − t

wn

)
⊂suppK1

(
· − t

w0

)
⊂B1(t, w0δ) ⊂

(
−∞, inf

ξ∈Bd(x,v0δ)
t+(ξ)

)
,

(40)
with the condition (14) on the couple (v0, w0). By (39), (40) together with the
expression (7) of S we obtain

E

[
A(1)

n

∣∣∣ Fn−1

]
=

1

vdnwn

∫
Rd×R+

Kd

(
ξ − x

vn

)
K1

(
s− t

wn

)
Q (Φ(Zn−1, Sn), dξ) f(ξ, s) ds.

One may conclude by a change of variable and (3).
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B.3.2 Predictable square variation process

The asymptotic behavior of the martingale (Mn)n≥0 may be investigated by
studying its predictable square variation process that we denote as usual
(〈M〉n)n≥0. At any time n, 〈M〉n is the 3× 3 symmetric matrix defined by

〈M〉n =

n∑
k=1

[
E

[
M

(i)
k M

(j)
k

∣∣∣Fk−1

]
−M

(i)
k−1M

(j)
k−1

]
1≤i,j≤3

.

Now, we calculate each coefficient of this matrix by beginning with the diagonal

terms and the first of these 〈M〉(1,1)n . One has

〈M〉(1,1)n = nT (1)
n − T (2)

n ,

where the terms T
(1)
n and T

(2)
n are defined by

T (1)
n =

1

n

n∑
j=1

1

vdjwj

∫
Rd×R

[
Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)

×K2
d(u)K

2
1(v)

]
du dv,

T (2)
n =

n∑
j=1

(∫
Rd×R

[
Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)

×Kd(u)K1(v)
]
du dv

)2

.

Since the functions Q and f are bounded (see Assumptions 2.3), we easily obtain
that

T (2)
n = O(n). (41)

Let us introduce the additional notation,

T̃ (1)
n =

1

n

n∑
j=1

∫
Rd×R

[
Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)

×K2
d(u)K

2
1(v)

]
du dv,

Ť (1)
n =

1

n

n∑
j=1

Q(Φ(Zj−1, Sj), x)f(x, t)

∫
Rd×R

K2
d(u)K

2
1(v)du dv

=
τ2d τ21
n

n∑
j=1

Q(Φ(Zj−1, Sj), x)f(x, t),

by Remark 3.2 on the kernel functions K1 and Kd. Since both Q and f are Lip-
schitz and bounded (see Assumptions 2.3), together with suppKp ⊂ Bp(0p, δ)
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(see Assumptions 3.1), the stochastic sequences (T̃
(1)
n )n≥0 and (Ť

(1)
n )n≥0 have

the same limit thanks to∣∣∣T̃ (1)
n − Ť (1)

n

∣∣∣ ≤ (‖Q‖∞[f ]Lip + [Q]Lip‖f‖∞) δτ2d τ
2
1

n

n∑
j=1

(vj + wj), (42)

which is a Cesàro mean. In addition, by the almost sure ergodic theorem (see
Proposition A.2) together with (32), we obtain

Ť (1)
n

a.s.−→ τ2d τ
2
1 ν∞(x)f(x, t). (43)

By (42) and (43) and by virtue of Lemma 7.1.5 of [21], we obtain

T
(1)
n

nαd+β

a.s.−→ τ2d τ
2
1 ν∞(x)f(x, t)

1 + αd+ β
.

Together with (41), as n goes to infinity,

〈M〉(1,1)n

n1+αd+β

a.s.−→ τ2d τ
2
1 ν∞(x)f(x, t)

1 + αd+ β
= �1. (44)

The second diagonal term of the predictable variation process may be studied
in a similar way as before. We obtain

〈M〉(2,2)n =

n∑
j=1

[
1

vdj

∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)G(x+ uvj , t)K
2
d(u)du

−
(∫

Rd

Q(Φ(Zj−1, Sj), x+ uvj)G(x+ uvj , t)Kd(u)du

)2
]
,

and, as n goes to infinity,

〈M〉(2,2)n

n1+αd

a.s.−→ τ2dν∞(x)G(x, t)

1 + αd
= �2. (45)

The third and last diagonal term may also be investigated in the same way. We
have

〈M〉(3,3)n =

n∑
j=1

[
1

vdj

∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)K
2
d(u)du

−
(∫

Rd

Q(Φ(Zj−1, Sj), x+ uvj)Kd(u)du

)2
]
,

and, when n goes to infinity,

〈M〉(3,3)n

n1+αd

a.s.−→ τ2dν∞(x)

1 + αd
= �3. (46)
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Now we focus on the non diagonal terms. For any integer n, we have

〈M〉(1,2)n =

n∑
j=1

[∫
Rd×R

[
Q(Φ(Zj−1, Sj), x+ uvj)

2f(x+ uvj , t+ vwj)

×G(x+ uvj , t)K
2
d(u)K1(v)

]
du dv

−
(∫

Rd×R

[
Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)

×Kd(u)K1(v)
]
du dv

)

×
(∫

Rd

Q(Φ(Zj−1, Sj), x+ uvj)G(x+ uvj , t)Kd(u)du

)]
(47)

and

〈M〉(1,3)n =

n∑
j=1

[∫
Rd×R

Q(Φ(Zj−1, Sj), x+ uvj)
2f(x+ uvj , t+ vwj)

× K2
d(u)K1(v)du dv

−
(∫

Rd×R

Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)

× Kd(u)K1(v)du dv

)

×
(∫

Rd

Q(Φ(Zj−1, Sj), x+ uvj)Kd(u)du

)]
, (48)

〈M〉(2,3)n =

n∑
j=1

[∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)
2G(x+ uvj , t)K

2
d(u)du

−
(∫

Rd

Q(Φ(Zj−1, Sj), x+ uvj)G(x+ uvj , t)Kd(u)du

)
×
(∫

Rd

Q(Φ(Zj−1, Sj), x+ uvj)Kd(u)du

)]
. (49)

From (47), (48) and (49), and because Q and f are bounded (see Assumptions
2.3) together with the fact that the integral

∫
K2

pdλp is finite (see Remark 3.2),
we easily obtain that, for any i �= j,

〈M〉(i,j)n = O(n). (50)

As a conclusion, by (44), (45), (46) and (50), one may sum up the asymptotic
behavior of the predictable variation process (〈M〉n)n≥0 by the following for-
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mula,

〈M〉n
n1+αd

∼

⎡⎣ nβ�1 0 0
0 �2 0
0 0 �3

⎤⎦ . (51)

It should be noted that the coefficients �i, 1 ≤ i ≤ 3, are positive because we
assume that ν∞(x) > 0 and f(x, t) > 0 in the statement of Theorem 3.3.

B.3.3 Limit theorems for the vector martingale

Law of large numbers. We propose to apply the law of large numbers for
vector martingales (see [21, Theorem 4.3.15]) to the process of interest (Mn)n≥0.
In the sequel, for any n, Tn denotes the trace of the matrix 〈M〉n, while En
stands for its minimum eigenvalue. First, in light of (51), the trace (Tn)n≥0

almost surely tends to infinity. Thus we are able to apply the third item of
Theorem 4.3.15 of [21] with any function a(t) = t1+η, η > 0, and we obtain,∥∥∥〈M〉−1/2

n Mn

∥∥∥2 = o

(
log(Tn)1+η

En

)
.

By (51) again, we have, when n goes to infinity,

Tn = O
(
n1+αd+β

)
and En ∼ min(�2,�3)n

1+αd.

As a consequence, using that n1+αd+β = o(n2) whenever αd + β < 1 together
with (51), we have the law of large numbers, as n tends to infinity,

‖Mn‖
n

a.s.−→ 0. (52)

Central limit theorem. We now investigate the asymptotic normality of
the vector martingale (Mn)n≥0. We apply Corollary 2.1.10 of [21] with the
sequence (an)n≥0 defined by an = n1+αd+β . The first assumption of this result
is obviously satisfied: the sequence (a−1

n 〈M〉n)n≥0 almost surely converges to
some positive semi-definite matrix. Indeed, by (51),

n−1−αd−β〈M〉n a.s.−→

⎡⎢⎣ τ2
dτ

2
1 ν∞(x)f(x,t)
1+αd+β 0 0

0 0 0
0 0 0

⎤⎥⎦ = Σ(x, t, α, β), (53)

where Σ(x, t, α, β) is a degenerate variance-covariance matrix. As a consequence,
we only have to check Lindeberg’s condition in order to establish the central limit
theorem for (Mn)n≥0. In other words, we have to prove that, for any ε > 0,

1

n1+αd+β

n∑
j=1

E

[
|Mj −Mj−1|2 I{

|Mj−Mj−1|≥εn
1+αd+β

2

}
∣∣∣∣∣Fj−1

]
P−→ 0. (54)
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For any 1 ≤ j ≤ n and 1 ≤ k ≤ 3, we study the three components M
(k)
j −M

(k)
j−1.

We have

M
(1)
j −M

(1)
j−1 =

(j + 1)αd+β

vd0w0
Kd

(
Zj − x

vj

)
K1

(
Sj+1 − t

wj

)
−
∫
Rd×R

[
Q(Φ(Zj−1, Sj), x+ uvj)f(x+ uvj , t+ vwj)

×Kd(u)K1(v)
]
λd(du) dv

and

M
(2)
j −M

(2)
j−1 =

(j + 1)αd

vd0
Kd

(
Zj − x

vj

)
I{Sj+1>t}

−
∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)G(x+ uvj , t)Kd(u)λd(du),

M
(3)
j −M

(3)
j−1 =

(j + 1)αd

vd0
Kd

(
Zj − x

vj

)
−
∫
Rd

Q(Φ(Zj−1, Sj), x+ uvj)Kd(u)λd(du).

Thus, we obtain

|M (1)
j −M

(1)
j−1| ≤

(n+ 1)αd+β

vd0w0
‖Kd‖∞‖K1‖∞ + ‖Q‖∞‖f‖∞,

|M (2)
j −M

(2)
j−1| ≤

(n+ 1)αd

vd0
‖Kd‖∞ + ‖Q‖∞,

|M (3)
j −M

(3)
j−1| ≤

(n+ 1)αd

vd0
‖Kd‖∞ + ‖Q‖∞.

Together with the condition αd + β < 1, |Mj − Mj−1| = o
(
n

1+αd+β
2

)
. As

a consequence, there exists an integer Nε such that for any n ≥ Nε, the event{
|Mj −Mj−1| ≥ εn

1+αd+β
2

}
is almost surely empty. This shows Lindeberg’s con-

dition (54). Finally, by (53) and (54), we obtain, as n tends to infinity,

n− 1+αd+β
2 Mn

d−→ N (03,Σ(x, t, α, β)) . (55)

Appendix C: Proof of Proposition 3.14

By virtue of the ergodic theorem (see Proposition A.2) applied to the Markov

chain (Z̃n, S̃n+1)n≥0, we have, as ñ tends to infinity,

ε̂n,ñ,ρ
κ (α)

a.s.−→
∫
Cx

κ̂n
x(ξ)

2dξ
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−
2Γ

(
d−1
2 + 1

)
π

d−1
2 ρd−1

∫
Tx,ρ×R+

Ĝn(ξ, θx(ξ)) I(θx(ξ),+∞)(t)μ∞(dξ × dt),

conditionally to σ(Z0, S1, . . . , Zn−1, Sn). Together with the definition of μ∞
(31), the expression (9) of S(x, ·) and Remark 2.2, we obtain

ε̂n,ñ,ρ
κ (α)

a.s.−→
∫
Cx

κ̂n
x(ξ)

2dξ

−
2Γ

(
d−1
2 + 1

)
π

d−1
2 ρd−1

∫
Tx,ρ

Ĝn(ξ, θx(ξ))G(ξ, θx(ξ))ν∞(ξ)λd(dξ), (56)

conditionally to σ(Z0, S1, . . . , Zn−1, Sn). By definition (24) of Tx,ρ we have∫
Tx,ρ

Ĝn(ξ, θx(ξ))G(ξ, θx(ξ))ν∞(ξ)λd(dξ)

=

∫
Dx,ρ

(∫
Cy

Ĝn(ξ, θy(ξ))G(ξ, θy(ξ))ν∞(ξ)dξ

)
λd−1(dy). (57)

In addition, one has∫
Cy

Ĝn(ξ, θy(ξ))G(ξ, θy(ξ))ν∞(ξ)dξ

=

∫ t−(y)

0

Ĝn(Φ(y,−t), t)G(Φ(y,−t), t)ν∞(Φ(y,−t)) |∇tΦ(y,−t)| dt.

As a consequence, under Assumptions 3.13, a conscientious calculus together
with eq. (25) shows that∣∣∣∣∣

∫
Cy

Ĝn(ξ, θy(ξ))G(ξ, θy(ξ))ν∞(ξ)dξ−
∫
Cx

Ĝn(ξ, τx(ξ))G(ξ, τx(ξ))ν∞(ξ)dξ

∣∣∣∣∣
=O(|x− y|). (58)

We obtain the expected result from (56), (57) and (58) and by remarking that
the normalizing constant is λd−1(Dx,ρ).

Remark C.1. In order to prove (58), one may split the integral of interest
into two terms: an integral between 0 and t−(x) ∧ t−(y) and a remainder term
integrated between t−(x) ∧ t−(y) and t−(x) ∨ t−(y). The first one is clearly
upper bounded by the integral of a Lipschitz function between 0 and t−(x) +
|x− y|[t−]Lip, thus bounded by an integral between 0 and t−(x) + ρ[t−]Lip. The

second integral is obviously bounded by ‖Ĝn‖∞‖ν∞‖∞‖∇tΦ‖∞[t−]Lip|x− y|.
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