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Abstract: We consider independent component analysis (ICA) using a
Bayesian approach. The latent sources are allowed to be block-wise inde-
pendent while the underlying block structure is unknown. We consider prior
distributions on the block structure, the mixing matrix and the marginal
density functions of latent sources using a Dirichlet mixture and random
series priors. We obtain a minimax-optimal posterior contraction rate of
the joint density of the latent sources. This finding reveals that Bayesian
ICA adaptively achieves the optimal rate of convergence according to the
unknown smoothness level of the true marginal density functions and the
unknown block structure. We evaluate the empirical performance of the
proposed method by simulation studies.
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1. Introduction

Independent component analysis (ICA) refers to the problem of recovering un-
known independent source signals given observations of their linear combina-
tions. More specifically, letting S = (S1, . . . , Sd)

T be the independent unknown
source signals and W be an unknown d × d matrix, ICA aims to estimate W
and the distribution of S given n independent and identically distributed (i.i.d.)
observations of X generated from the following model,

Xd×1 = Wd×dSd×1, or equivalently, Sd×1 = Ad×dXd×1, (1)

where A = W−1 is usually called the mixing matrix.
In recent years, ICA has been widely used in signal processing, machine

learning and brain imagining, among many other areas of application (Roberts
and Everson, 2001; Hyvärinen, Karhunen and Oja, 2001). There are two sets
of common approaches in solving ICA problems. The first set, which builds on
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parametric assumptions of the marginal densities of S, includes the maximum
likelihood approach (Bell and Sejnowski, 1995; Lee, Girolami and Sejnowski,
1999), minimizing mutual information (Cardoso, 1999) and more generally op-
timizing contrast functions such as Kullback–Leibler divergence, entropy and
non-Gaussian measures (Comon, 1994; Hyvärinen, 1999). However, as the dis-
tribution of S is usually unknown in practice, it may be more appealing to
consider an alternative class of methods by viewing ICA as a semiparametric
model without the requirement of any parametric assumptions on S. Popular
methods include the kernel method (Bach and Jordan, 2002), maximum likeli-
hood (Hastie and Tibshirani, 2003), B-spline approximation (Chen and Bickel,
2006) and log-concave ICA projection (Samworth and Yuan, 2012).

Bayesian ICA has gained popularity due to its flexibility in incorporating
prior information and its easy use in making inference (e.g., chapter 20 of
Hyvärinen, Karhunen and Oja, 2001). It has particular application in biomedi-
cal image processing when there is a need to impose mathematical constraints
on the mixing matrix. For example, in electroencephalography analysis, it may
be helpful to restrict all elements in the mixing matrix to be non-negative such
that the ongoing potential from the cortex will have the same sign after being
observed at the scalp (Roberts and Choudrey, 2003, 2005). Another example
is in biological neural network studies such as modeling the visual cortex. It is
commonly believed that only a small proportion of neural activity is actually
connected (Olshausen and Field, 1996; Bell and Sejnowski, 1997). In this situa-
tion, Bayesian ICA is particularly useful to impose the prior knowledge of spar-
sity on the mixing matrix in the modeling process (Hyvärinen and Karthikesh,
2000).

Recent progress has been made in the development of computation algo-
rithms for Bayesian ICA, such as variational Bayes, mean field approximation
and other methods (Winther and Petersen, 2007; Højen-Sørensen, Winther and
Hansen, 2002). However, there are considerable gaps in the theoretical proper-
ties of the proposed Bayesian methods and their connections to existing theory
in the frequentist literature. In this paper, we fill this gap by considering two
commonly used priors on marginal densities, namely a Dirichlet mixture and a
random series prior, and establishing their asymptotic properties. More specif-
ically, we show that the proposed estimation procedure will lead to a posterior
estimate of the joint density of S that converges to the frequentist truth at
the optimal minimax rate (up to logarithmic factors). The rate is equivalent
to the nonparametric rate of simultaneously estimating d one-dimensional den-
sity functions, and is determined by the worst smoothness level of the marginal
densities. Consequently, Bayesian ICA can be viewed as a sufficient dimension
reduction technique that avoids “the curse of dimensionality” in an asymptotic
sense. These results connect to the existing work in the frequentist literature,
e.g., Samarov and Tsybakov (2004); Chen and Bickel (2006); Samworth and
Yuan (2012). An additional advantage of the Bayesian method is that no tun-
ing process is required as the prior will automatically adapt to the unknown
smoothness levels. Of practical relevance, we also consider the block ICA, an
extension of the classical ICA, in which the latent sources are allowed to be
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block-wise independent while the block structure is unknown. This problem is
sometimes referred to as multi-dimensional ICA (Cardoso, 1998).

The rest of the paper is organized as follows. We propose a Bayesian approach
for block ICA and discuss the choices of the prior in Section 2. We present
the main results on posterior contraction rates in Section 3. In Section 4, we
discuss the posterior computation and give simulation examples to illustrate
the empirical performance of the proposed method. Proofs are given in the
Appendix.

2. Method

2.1. Statistical setting

We consider a Bayesian ICA model with an unknown block structure:

Sd×1 = Ad×dXd×1, (2)

where A is the mixing matrix, S are source signals and we observe n number
of i.i.d. copies of X. We assume that S is block-wise independent with respect
to a partition I = I1 ∪ · · · ∪ It of {1, . . . , d}, i.e., Si and Sj are independent if i
and j belong to different blocks in I. We denote the i-th row of A by AT

i ; then
the joint density function of S can be written as follows,

p(S) = | detA|
t∏

j=1

gj(A
T
i X, i ∈ Ij), (3)

where Ai is a d× |Ij | matrix if Ij contains multiple indexes (|Ij | > 1). Clearly,
when I = {1}∪{2}∪ · · ·∪{d}, the proposed model reduces to the classical ICA
where all components of S are mutually independent. Our goal is to propose
appropriate prior distributions on the partition I, the mixing matrix A and the
marginal distributions of S, denoted by g = (g1, . . . , gt).

2.2. Prior construction

We construct the prior in a hierarchical way, first on the block partition, then on
the mixing matrix and corresponding marginal density functions. The following
steps provide more details.

(A1) Prior on the block partition ΠP : The assignment of priors on the block
structure is equivalent to assigning prior distributions on each partition
of {1, . . . , d}. We use a uniform prior, i.e., for every possible partition I
of {1, . . . , d}, its prior probability ΠP (I) = B−1

d , where Bd is the Bell
number of d. Clearly, if it is known that there is no block structure, i.e.,
d1 = · · · = dd = 1, then this step is no longer needed.
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(A2) Prior on the mixing matrix ΠA: We consider i.i.d. continuous distribu-
tions Π1

A on each element aij of A satisfying

Π1
A(|aij | > M) ≤ c1 exp{−c′1M

τ1} for a sufficiently large M (4)

for some constants c1, c
′
1, τ1 > 0. This condition is easily satisfied for

distributions such as exponential, Gamma and Laplace. It is possible to
impose a sparsity structure (as discussed by (Hyvärinen and Karthikesh,
2000)) by considering Π1

A(aij) ∝ exp{−G(aij)}, where G is a positive,
convex function, sayG(x) = |x|. It can be easily verified that these sparse
priors satisfy the proposed conditions when G(x) is a polynomial of |x|.
In Roberts and Choudrey (2005), the authors proposed using a rectified
Gaussian distribution (Gaussian distribution restricted on [0,∞)) as the
prior for every element of A. Clearly, that prior also satisfies condition
(4).
It is well known that the solution to ICA is unique up to block-wise
permutation and scaling (Theis, 2005). Therefore, in practice, one may
also consider scaling restrictions on the mixing matrix, e.g., each row of
A belongs to Ω = {x = (x1, . . . , xd)

T : x ∈ R
d, x1 ≥ 0, ‖x‖2 = 1}. Then

we may consider i.i.d. priors Π2
A on A1, . . . ,Ad satisfying

Π2
A(‖Ai − x‖2 < ε) ≥ c′′1ε

τ2 (5)

for every x ∈ Ω, sufficiently small ε > 0 and some constants c′′1 >
0, τ2 ≥ 0. This can be done by first constructing prior distributions
on each element of A as in Π1

A, and then performing a transformation
(standardization, change sign) if needed.

Given the partition chosen as I = {I1, . . . , It} and the fixed mixing matrix, the
induced joint density function p(S) can be obtained as in (3). Our last step is
to build prior distributions on the marginal density functions g1, . . . , gt. Denote
the size of block i by di = |Ii|. We consider two sets of priors based on the
input X. If X is bounded, then we consider a random series prior based on the
tensor-product B-spline expansion. On the other hand, if X is unbounded, then
we consider a Dirichlet mixture prior with Gaussian kernels.

(A3.1) Random series prior ΠS
g : We consider the B-spline basis (tensor-product

if di ≥ 2) of order q with fixed, equally spaced knots; see de Boor
(2001) for an introduction. We assign independent priors on g1, . . . , gt;
in particular, we rewrite gi as

gi(s) = Ψ

⎛
⎝ Ji∑

j=1

θi,jBj(s)

⎞
⎠ /

∫
Ψ

⎛
⎝ Ji∑

j=1

θi,jBj(u)

⎞
⎠ du, i = 1, . . . , t, (6)

where Ψ ∈ C∞ is a prechosen, nonnegative and monotonic link function
(e.g., exponential) that ensures the validity of gi, and Bj(s) is the B-
spline (tensor-product of B-splines if di ≥ 2) basis function. The number
of basis terms Ji controls the accuracy and complexity of the model.
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For J1, . . . , Jt, we consider i.i.d priors ΠJ that satisfy

exp{−c2j(log j)
κ1} ≤ ΠJ(Ji = j) ≤ exp{−c′2j(log j)

κ2}, i = 1, . . . , t. (7)

for some fixed constants c2, c
′
2 > 0, 0 ≤ κ2 ≤ κ1 ≤ 1 and any posi-

tive integer j. This condition is satisfied for discrete distributions such
as Poisson and geometric distributions (Shen and Ghosal, 2015). For

tensor-product B-splines, i.e., di ≥ 2, we can take 	J1/di

i 
 as the number
of basis expansion terms for each direction.
Given fixed J1, . . . , Jt, we consider independent Ji-dimensional priors on
the corresponding coefficients θi = (θi,1, . . . , θi,Ji)

T satisfying

Πθ(‖θi − θ0‖2 ≤ ε) ≥ exp{−c3Ji log(1/ε)} (8)

Πθ(θi /∈ [−M,M ]Ji) ≤ Ji exp{−c′3M
κ3}, i = 1, . . . , t (9)

for any finite θ0, sufficiently small ε > 0, large M and some positive
constants c3, c

′
3, κ3. Examples include independent Gaussian, Laplace

priors on each element of θi and joint distributions such as the Dirichlet
distribution on θi.

(A3.2) Dirichlet mixture prior ΠK
g : For each i = 1, . . . , t, we write

gi(s) =

∫
z∈Rdi

φΣi(s− z)dFi(z), s ∈ R
di , (10)

where φΣ is a normal kernel function with mean 0 and covariance Σ.
When di = 1, Σi is just a scalar. We consider Dirichlet process priors

Fi
iid∼ Dαi

, where α1, . . . ,αt are mutually independent positive base
measures. Let ᾱi = αi/αi(R

di). We assume each αi satisfies condi-
tion (1) in Shen, Tokdar and Ghosal (2013), that is, 1− ᾱi([−x, x]d) �
exp(−xa1) for some a1 > 0 and any sufficiently large x. We assign inde-
pendent priors ΠΣ on Σi satisfying conditions (2)–(4) in Shen, Tokdar
and Ghosal (2013), i.e., for every i = 1, . . . , t,

ΠΣ{Σi : λd(Σ
−1
i ) ≥ x} � exp(xa2), ΠΣ{Σi : λ1(Σ

−1
i ) ≥ x−1]} � x−a3

for sufficiently large x, a1, a2 > 0, and

ΠΣ

{
Σi : sj < λj(Σ

−1
i ) < sj(1 + t), j = 1, . . . , di

}
� sa4

1 ta5 exp(−s
κ/2
d )

for any 0 < s1 ≤ · · · ≤ sdi and t ∈ (0, 1), κ > 0, where λ1(Σ) ≤ · · · ≤
λd(Σ) are eigenvalues of matrix Σ. The commonly used inverse Wishart
(Gamma if di = 1) distribution satisfies these conditions for κ = 2.

3. Main results

3.1. Identifiability and uniqueness

Identifiability, uniqueness and separability results play a central role in ICA
problems since they allow ICA algorithms to uniquely (up to the changes of scale



3252 W. Shen et al.

and permutation) identify the mixing matrix and to recover the source signals.
These results have been obtained by Comon (1994); Eriksson and Koivunen
(2004) for standard ICA, and then extended to block ICA by Theis (2004).
Here, we consider the model defined in (2), and say its solution is identifi-
able and unique if the following two conditions hold for any two pair of so-
lutions (A1,S1, I1) and (A2,S2, I2): (1) A1 (resp. A2) can be obtained by a
linear column transformation of A2 (resp. A1); and (2) the source signals S1

and S2 have the same distribution up to the changes of scale and permuta-
tions. If these conditions are satisfied for the two solutions (A1,S1, I1) and
(A2,S2, I2), we say they are equivalent, and define T as the transformation
such that T (A1,S1, I1) = (A2,S2, I2). Let p1 and p2 be the density functions
of the joint distribution produced by (A1,S1, I1), and (A2,S2, I2). Then p1 and
p2 are also equivalent under T . We write T (p1) = p2.

We assume the following conditions on the true data generating process.

(B1) True model: Suppose that there exists a partition I0 = {I01 , . . . , I0t0} of
the index set {1, . . . , d} and a non-singular mixing matrix A0 = (A10, . . . ,
Ad0)

T such that the true density function p0 can be written in a product
form:

p0(x1, . . . , xd) = | detA0|
t0∏
i=1

g0i (A
T
j0x, j ∈ I0i ), x = (x1, . . . , xd)

T ,

where g0i is a di-dimensional marginal density with di = |I0i |, i = 1, . . . , t0.
(B2) Source densities: For every i = 1, . . . , t0, assume that g0i is not a degener-

ating point mass and does not follow a normal distribution (joint normal
distribution if di > 1).

(B3) Mixing matrix: Let d∗ = maxt0i=1 di. We assume that every sub-matrix of
size d∗ × d∗ of A−1 is either invertible or zero.

Conditions (B1)–(B3) are essentially equivalent to those assumed in Theis (2004,
2005). Condition (B2) rules out a joint normal distribution, but still allows
for a marginal normal distribution for sources in a block of size greater than
one. Condition (B3) is often called d∗-admissible, and is trivially satisfied for
standard ICA when d = 1. The following lemma asserts that these conditions
are sufficient for obtaining identifiability and uniqueness of block ICA.

Lemma 1. Suppose that (B1)–(B3) hold for model (2), then its solution is
identifiable and unique.

The proof of Lemma 1 is essentially the same as that of Theorem 5.1 in
Theis (2004) except that the size of the blocks (di) can differ. The necessity of
(B1)–(B3) is not clear. If d∗ = 1, (B2) requires that every marginal density not
follow a normal distribution, which is stronger than the necessary condition of
allowing at most one Gaussian signal for the standard ICA model (Eriksson and
Koivunen, 2004).
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3.2. Posterior contraction rate for random series priors

We first consider random series priors in (A1), (A2) and (A3.1). The following
assumptions are needed.

(C1) We assume that g0i belongs to a Hölder class Cαi for some unknown
smoothness values αi ∈ (0, q], i = 1, . . . , t0 for some fixed constant q > 0.

(C2) We assume that the true joint density p0 is defined on [0, 1]d without loss
of generality, and is lower bounded by a constant mp > 0.

(C3) Denote the support of prior distribution ΠA by SA. We assume that the
true mixing matrix A0 belongs to a known compact set A0 ⊂ SA, such
that the density function of ΠA is lower bounded by a constant mA > 0
on A0.

Conditions (C1) and (C2) are commonly used in the literature; see de Jonge
and van Zanten (2012); Shen and Ghosal (2015) for example. Condition (C3) is
applicable for both unscaled and scaled priors of the mixing matrix as described
in (A2). If there is a scaling constraint, then an easy choice for ΠA is to first use
i.i.d. continuous distributions truncated between −M and M for each element
of A, whose density is bounded below by mA > 0 and M is a pre-chosen large
constant; then rescale each row of A to Ω = {x = (x1, . . . , xd)

T : x ∈ R
d, x1 ≥

0, ‖x‖2 = 1}. Doing so automatically satisfies (C3) with A0 = Ωd.
We define the Hellinger distance between two density functions f and g by

dH(f, g) =
{∫

(f1/2 − g1/2)2dμ
}1/2

with respect to the Lebesgue measure μ.
Let Πn be the posterior distribution of p given the observed data. The following
theorem obtains the posterior contraction rate for the use of random series
priors. The proof is given in the Appendix.

Theorem 1. (Random series prior) Suppose that conditions (B1)–(B3) and
(C1)–(C3) hold. If the prior is constructed as in (A1), (A2) and (A3.1), then
there exists a column transformation of the mixing matrix and a scaling transfor-
mation of the source signals, together denoted by T0, such that for any Mn → ∞,

lim
n→∞

Πn [{p : dH(T0(p0), p) ≤ Mnεn}] = 1 almost surely, (11)

where εn = maxt0i=1 n
−αi/(2αi+di)(logn)αi/(2αi+di)+(1−κ2)/2 is the contraction

rate.

Theorem 1 states that the posterior distribution of the joint density p con-
tracts around the true p0 within an equivalent class under permutation/scaling
transformation. For the classical ICA estimation with no block structure, the
contraction rate reduces to n−α∗/(2α∗+1) up to a logarithmic factor, in which
α∗ = min(α1, . . . , αd) is the worst smoothness level among all directions. Note
that this rate corresponds to the classical nonparametric estimation rate for one-
dimensional density functions without the logarithmic factor; and it is faster
than the usual rate of estimating a d-dimensional function n−α′/(2α′+d) with
α′ = d/(

∑
α−1
i ) as the harmonic mean of smoothness levels. The assumption

0 < α1, . . . , αt0 ≤ q is needed to ensure sufficient approximation ability of the
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B-spline functions being used in the prior (de Boor, 2001). In the prior con-
struction, we do not assume any prior knowledge about the true block structure
and the smoothness parameters. Hence the proposed Bayesian estimation pro-
cedure is rate-adaptive to the smoothness levels in (0, q]. Note that the rate also
depends on κ2, which reflects the tail decay rate in the prior distribution of Ji.
A Poisson prior satisfies κ2 = 1, hence will help improve the contraction rate.

It is possible to extend our result by considering anisotropic smoothness levels
within each block, i.e., condition (C1) can be replaced by

(C1’) Assume that g0i belongs to a tensor-Sobolev class with smoothness levels
αi = (αi1, . . . , αi,di)

T for some unknown smoothness values αi ∈ (0, q]∩N,
i = 1, . . . , t0 for some fixed constant q > 0.

Then the posterior contraction rate in Theorem 1 becomes

εn = max
i=1,...,t0

(n/ log n)−α∗
i /(2α

∗
i +di)(logn)(1−κ2)/2,

where α∗
i = di/(

∑di

j=1 α
−1
i,j ) is the harmonic mean of the elements inαi. This rate

can be viewed as the worst rate of estimating t0 independent anisotropic density
functions. If we ignore the block structure and assume that the mixing matrix is
known, then the rate agrees with those obtained in the literature for estimating a
multi-dimensional anisotropic density function (de Jonge and van Zanten, 2012;
Arbel, Gayraud and Rousseau, 2013; Belitser and Serra, 2014; Shen and Ghosal,
2015). Here, the smoothness levels have to be natural numbers to ensure good
approximation of the tensor-product B-splines; similar assumptions appeared in
Shen and Ghosal (2016).

3.3. Posterior contraction rate for Dirichlet mixture priors

Next, we consider the Dirichlet mixture priors as specified in (A1), (A2) and
(A3.2). The density functions are now defined on R

d. We need the following
assumptions.

(C4) We consider the joint density function defined on R
d, which has tails that

decay exponentially fast for some τ, c4, c
′
4 > 0:

p0(x) ≤ c4 exp(−c′4‖x‖τ2), for any x ∈ R
d that ‖x‖2 is sufficiently large.

(C5) Let α1, . . . , at0 be positive smoothness levels. For every i = 1, . . . , t0, and
every multi-index k(i) = (k1, . . . , kdi) with |k(i)| ≤ αi and |k(i)| = k1 +
· · ·+ kdi , assume that

∫
∂|k(i)|g0i (x1, . . . , xdi)

∂xki
1 · · · ∂xkdi

di

(g0i )
(2αi+ε)/|k(i)|−1 < ∞,

and∣∣∣∣∣
∂|k(i)|

∂xki
1 · · · ∂xkdi

di

g0i (x+ y)− ∂|k(i)|

∂xki
1 · · · ∂xkdi

di

g0i (x)

∣∣∣∣∣ ≤ exp(‖y‖22)‖y‖
αi−�αi�
2
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for any x,y ∈ R
di and some ε > 0, where 	α
 is defined as the largest

integer strictly smaller than α.

Condition (C4) requires the tail of p0 to decay exponentially fast. Condition
(C5) imposes smoothness on g1, . . . , gt0 . We then obtain the convergence result
for the Dirichlet mixture prior as follows.

Theorem 2. (Dirichlet mixture prior) Suppose that the true density function
p0 satisfies conditions (B1)–(B3), (C4)–(C5) and the prior is constructed as in
(A1), (A2) and (A3.2). Then there exists a column transformation of the mixing
matrix and a scaling transformation of the source signals, together denoted by
T0, such that for any Mn → ∞,

lim
n→∞

Πn [{p : dH(T0(p0), p) ≤ Mnεn}] = 1 almost surely, (12)

where εn = maxt0i=1 n
−αi/(2αi+d∗

i )(logn)γi is the contraction rate with γi >
d∗i (1 + τ−1 + α−1

i )/(2 + d∗i /αi) and d∗i = max(di, κ).

Here, the optimal rate is only obtained if κ ≤ mini di, in which case d∗i = di.
This puts some restrictions on the prior distribution of the covariance kernel
Σi. For example, if di = 1 for some i, then one may need to use the squared
inverse gamma (instead of inverse gamma) prior on gi to obtain the optimal
rate of posterior convergence. Similar arguments appeared in Theorem 1 of
Shen, Tokdar and Ghosal (2013).

Note that consistency of the joint distribution of the signals does not neces-
sarily imply consistency of the block structure or marginal densities. Our results
can be viewed as a “prediction consistency” consequence. Intuitively, one would
expect that the marginal density function estimates do not deviate from the
truth (up to the permutation of indexes). It will be interesting to establish
posterior consistency results of these quantities in future work, building on the
techniques developed by Juditsky, Lepski and Tsybakov (2009), for example.
In this paper, we only consider random series and Dirichlet mixture priors on
marginal density functions. We believe that optimal posterior contraction rates
can also be obtained by using other type of priors on the marginal densities, such
as a Gaussian process or Pitman-Yor process (Bhatacharya, Pati and Dunson,
2014; Scricciolo, 2014). In addition, it will be of interest to consider convergence
under the sup-norm using the results from Castillo (2014).

4. Simulation study

We give two simulation examples. In the first example, we consider a three-
dimensional source signal S = (S1, S2, S3)

T with a block structure I = {{1},
{2, 3}}, i.e., S1 is independent of (S2, S3). We generate S1 ∼ 2Beta(5, 2) − 1
on [−1, 1], and (S2, S3) from a mixture of two Gaussian distributions truncated
between −1 and 1,

1

2
N

((
1/2
0

)
,

(
1/9 0
0 1/9

))
+

1

2
N

((
0

−1/3

)
,

(
1/16 0
0 1/8

))
.
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We generate 300 samples of incoming signals S1, S2, S3 and choose the mixing
matrix as

A =

⎛
⎝ .36 −.8 −.48

.48 .6 −.64
.8 0 .6

⎞
⎠ . (13)

For posterior computation, we use the prior in (A1), (A2) and (A3.1). For
the prior (A1) on the block structure, we exclude the case when there is no
block structure, and consider four cases, I1 = {{1}, {2, 3}}, I2 = {{2}, {1, 3}},
I3 = {{3}, {1, 2}}, I4 = {{1}, {2}, {3}}, i.e., I4 means mutual independence
and I1, I2, I3 mean two independent densities of dimensions one and two. The
prior probability is then 1/4 for each partition. For (A2), we put a normal
prior on each element of A independently, and rescale each row of A to have
a norm of one. For (A3.1), we consider an identity link function, and use the
standardized B-spline basis. Then there is no need to include the integral as
long as the coefficient vector θi belongs to a Ji-dimensional simplex for each i
(Shen and Ghosal, 2015). In other words, if di = 1, then the corresponding

marginal density can be written as gi =
∑Ji

j=1 θjBj given
∑

θj = 1. If di = 2,

then gi(s1, s2) =
∑J

j=1

∑K
k=1 θjkBj(s1)Bk(s2) given

∑
θij = 1. We choose the

basis to be cubic spline and fix Ji = 10di for computational convenience. We
use Dir(1, . . . , 1) as the prior for θ.

The main challenge in posterior computation is to update the block structure
and the corresponding coefficients θ. To accommodate a varying-dimensional
parameter space, we use a reversible jump Markov chain Monte Carlo (MCMC)
approach (Green, 1995). In particular, if the block structure in the current
stage is Ii(i = 1, 2, 3), then we let I in the next stage be either the same
or I4 with equal transition probability, 1/2. If the current block structure is
I4, then I in the next step can be any value of Ii, i = 1, . . . , 4 with equal
probability. To illustrate how dimension matching works, we first consider an
example of moving from “lower-dimension” I4 to “higher-dimension” I3. The
coefficients under I4 are θ

(k)
1 , . . . , θ

(k)
J for k = 1, 2, 3, i.e., coefficients for each

marginal density. We keep the coefficients for the marginal density of S3 the same
and update the coefficients for the joint density of S1 and S2, denoted by θij
for i, j = 1, . . . , J . We generate i.i.d. random variables η11, η12, . . . , η(J−1),(J−1)

from the uniform distribution on [0, 1]. Then we define θij = ηijθ
(1)
i θ

(2)
j for every

i, j = 1, . . . , (J − 1), and solve the values of other θij with either i = J or j = J

such that
∑J

j=1 θij = θ
(1)
i and

∑J
i=1 θij = θ

(2)
j . On the other hand, to move from

“higher-dimension” I3 to “’lower-dimension” I4, we simply let the coefficients

for the marginal density of S1 and S2 be θ
(1)
i =

∑J
j=1 θij and θ

(2)
j =

∑J
i=1 θij .

We run the model for 25000 MCMC iterations and discard the first 5000.
The results are summarized in Figure 1. The first two subplots show that the
original signals (S2 on the x-axis and S3 on the y-axis) and the reconstructed
signals agree well. The third subplot gives the posterior selection frequency of
4 block structures with I1 being chosen over 67% of the time. The last subplot
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Fig 1. From left to right: true signals for S2 and S3, reconstructed signals for S2 and S3, pos-
terior frequency of block structure, and histogram/recovered marginal density (dashed)/true
marginal density (solid) for S1.

gives the posterior mean of the marginal density of S1 (dashed line) and the true
marginal density (solid line). We find that the reconstructed density fits the data
reasonably well. The estimated mixing matrix A∗ is fairly close to the true A.

A∗ =

⎛
⎝ .42 −.79 −.42

.43 .61 −.63

.83 −.10 .49

⎞
⎠ , A =

⎛
⎝ .36 −.8 −.48

.48 .6 −.64
.8 0 .6

⎞
⎠ .

We also run the model for a larger sample size n = 1000, and find similar pat-
terns in the results. The true block structure has been correctly chosen for over
69% of the time. When computing A∗, we have used the posterior mean for
each matrix element. As a result, each row does not have exactly unit length
as desired. One alternative is to consider using the Karcher mean instead of
arithmetic mean.

In the second example, we compare the performance of the proposed method
with two other popular ICA methods. The first is called FastICA, which is
based upon minimizing approximations to entropy (Hyvärinen, Karhunen and
Oja, 2001). The second is called ProDenICA, which uses semi-parametric den-
sity estimation with cubic splines (Hastie and Tibshirani, 2003). Both methods
are implemented in R package “ProDenICA”. We generate data from a three-
dimensional source signal with no block structure, i.e., the sources are mutually
independent. We use the same mixing matrix as (13). The marginal densities
are uniform(−1, 1), Beta(2, 5) rescaled to (−1, 1) and t(3) truncated between
−1 and 1. For each method, we compute the Amari metric, which takes values
in [0, 1] (Hyvärinen, Karhunen and Oja, 2001), between the estimated mixing
matrix and the truth A. For FastICA and ProDenICA, we assume the block
structure is known and solve the classical ICA problem. For our method, we
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Fig 2. Boxplot of the Amari distance between the mixing matrix and its estimate for FastICA,
ProDenICA, the proposed Bayes method with unknown/known block structure

consider both scenarios, unknown block structure (“Bayes 1”) and known block
structure(“Bayes 2”). Boxplots of the Amari metric based on 500 replications
are summarized in Figure 2. It can be seen that our method has a better per-
formance than FastICA, and performs nearly as well as ProDenICA if the block
structure is assumed known. By comparing Bayes 1 with Bayes 2, we find that
there is a significant improvement with the use of the true block structure, which
suggests the room for future work on improving the estimation accuracy of the
block structure.

5. Discussion

In this paper, we study the posterior contraction rate of the Bayesian ICA
with an unknown block structure. In practice, a common extension is to include
random noise in the output, i.e., X = WS +E, where random noise E can be
Gaussian or non-Gaussian (Eloyan and Ghosh, 2013). This problem is closely
connected to Bayesian density deconvolution. It will be of interest to extend our
method to accommodate random noise and obtain the posterior contraction rate
of the joint density using the recent results in Sarkar et al. (2014) and Donnet
et al. (2015).

In the posterior computation, we use reversible jump MCMC, which only
allows for splitting and merging when updating the block structure. This may
lead to a low acceptance probability when the number of source signals becomes
larger. It is of interest to explore more efficient computational algorithms in a
future work.

Appendix: Proofs

Proof of Theorem 1. Throughout the proof, we use Π as a generic notation for
the prior on p, and C for a universal positive constant, the value of which may
change depending on the context. For any a, b ∈ R, we say a � b if a ≤ Cb, and
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a � b if a ≥ Cb. In view of the definition of identifiability and uniqueness for
p, we drop the transformation T0 from the statement and directly work with p0
without loss of generality. The proof proceeds by verifying the set of conditions
given by Theorem 1 of Ghosal, Ghosh and van der Vaart (2000) and Theorem
2.1 of Ghosal and van der Vaart (2001) as listed below,

Π(Fc
n) � exp(−nε2n), (14)

logD(ε̄n,Fn, dH) � nε̄2n, (15)

Π(p : K(p0, p) ≤ ε2n, V (p0, p) ≤ ε2n) � exp(−nε2n), (16)

where Fn is called a sieve, which is a subset of the parameter space of p,
K(p0, p) =

∫
p0 log(p0/p) and V (p0, p) =

∫
p0 log

2(p0/p) are first- and second-
order Kullback-Leibler divergences, and εn, ε̄n > 0 are two sequences of numbers
going to 0. In particular, we let

εn = maxt0i=1(log n/n)
αi/(2αi+di), (17)

ε̄n = maxt0i=1n
−αi/(2αi+di)(logn)αi/(2αi+di)+(1−κ2)/2.

Note that κ2 ∈ [0, 1], hence ε̄n is the posterior contraction rate because ε̄n ≥ εn.
We define Fn by considering sieves on the block structure, mixing matrix and
marginal densities,

Fn = FI ×FA ×Fg|I,A, (18)

where FI is the collection of all possible partitions of {1, . . . , d}, and FA is
defined by

FA = {A = (aij)d×d : |aij | ≤ n1/τ1 , i, j = 1, . . . , d}.

Given any I and A, suppose that there are t blocks, with sizes d1, . . . , dt. We
can then form a sieve on the marginal densities g = (g1, . . . , gt) as

Fg|I,A = Fg1|I,A × · · · × Fgt|I,A,

Fgi|I,A =

⎧⎨
⎩gi(s) ∝ Ψ

⎛
⎝ Ji∑

j=1

θi,jBj(s)

⎞
⎠ : Ji ≤ J̄i, |θi,j | ≤ n1/κ3 for j = 1, . . . , Ji

⎫⎬
⎭ ,

J̄i = ndi/(2αi+di)(logn)2αi/(2αi+di)−κ2 .

To verify condition (14), note that

Π(Fc
n) ≤ ΠP (Fc

I) + ΠA(Fc
A) + ΠS

g (Fc
g|I,A),

where ΠP (Fc
I) = 0, ΠA(Fc

A) � exp(−Cn). For the third term, the following
holds for any partition I and mixing matrix A,

ΠS
g (Fc

gi|I,A) ≤ ΠJ(Ji > J̄i) + Πθ(θ /∈ [−n1/κ3 , n1/κ3 ]J̄i)

≤ exp(−c′2J̄i(logn)
κ2) + J̄i exp(−c′3n)

� exp(−Cndi/(2αi+di)(log n)2αi/(2αi+di)).
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Considering all possible indexes i, we obtain ΠS
g (Fc

g|I,A) � exp(−nε2n) for any

partition I and mixing matrix A. Hence (14) holds.

Next we check condition (15). Consider a partition I = {I1, . . . , It}, and its
corresponding g1, . . . , gt. Assume |I1| = 1 without loss of generality. For a mixing
matrix A = (A1, . . . ,Ad)

T and its ε-perturbation Aε = (A∗
1,A2, . . . ,Ad)

T ,
with the first row satisfying ‖A1 −A∗

1‖∞ < ε. Then it can be shown that

| detA− detAε| ≤ C ′ε, |g1(AT
1 X)− g1(A

∗T
1 X)| ≤ C ′ε

for some constant C ′ > 0 since g1 is Lipschitz continuous and X is bounded.
This calculation holds similarly for g2, . . . , gt. Now, given I and A as chosen
for marginal density functions, their entropy calculation can be obtained in the
same way as in Shen and Ghosal (2016), that is,

D(ε̄n,Fgi|I,A, dH) ≤ D(ε̄2n,Fgi|I,A, ‖ · ‖1) ≤ J̄i

(
3

ε̄2n

)J̄i

.

Since there are Bd (Bell number of d) possible partitions in I, and the entropy

associated with FA is bounded by a constant multiple of (1/ε̄2n)
d2

, we have

logD(ε̄n,Fn, dH) � logBd + d2 log(1/ε̄n) + max
i

{
J̄i log(1/ε̄n)

}
� nε̄2n. (19)

This shows that (15) holds.

In order to verify condition (16), we first need to find an approximation of
g0. Using some existing approximation result of the (tensor-product) B-spline,
e.g., Lemma 2.1 of de Jonge and van Zanten (2012), for every i = 1, . . . , t, there

exist sequences J∗
i = 	Cε

−di/αi
n 
, such that for every Ji ≥ J∗

i , there exists a

vector of coefficients with good approximation θ∗
i,Ji

=
(
θ∗i,1(Ji), . . . , θ

∗
i,Ji

(Ji)
)T

satisfying ‖Ψ−1g0i (s)−
∑Ji

j=1 θ
∗
i,j(Ji)Bj(s)‖∞ ≤ J

−αi/di

i ≤ εn. Because Ψ is Lip-

schitz continuous,
∥∥∥g0i (s)−Ψ

{∑Ji

j=1 θ
∗
i,j(Ji)Bj(s)

}∥∥∥
∞

≤ εn. Define g∗i (s; Ji) =

C−1
i Ψ

{∑Ji

j=1 θ
∗
i,j(Ji)Bj(s)

}
, where Ci is the normalizing constant that ensures

g∗i is a valid density function of s. Then |C−1
i − 1| ≤ εn, and ‖g∗i (s; Ji) −

g0i (s)‖∞ ≤ εn. Define g∗∗i (s; J ;θi) = C ′−1
i Ψ

{∑Ji

j=1 θ
∗∗
i,jBj(s)

}
with C ′

i being

the normalizing constant and θ∗∗
i = (θ∗∗i,1, . . . , θ

∗∗
i,Ji

)T being an arbitrary element
of the support of the prior. Let G be the collection of g = (g∗∗1 (s; J1;θ

∗∗
1 ), . . . ,

g∗∗t (s; Jt;θ
∗∗
t )) with Ji ∈ (J∗

i , C
∗J∗

i )∩N for some large constant C∗, i = 1, . . . , t,
and ‖θ∗∗

i − θ∗
i,Ji

‖2 ≤ J−1
i εn.

For the mixing matrix, we consider a neighborhood around A0 = (A10, . . . ,
Ad0)

T . In other words, define

A = {A = (A1, . . . ,Ad)
T : ‖Ai −Ai0‖2 ≤ CAεn, i = 1, . . . , d},

where CA is a small constant that satisfies

| detA0 − detA| ≤ εn, ‖Ai0 −Ai‖∞ ≤ εn,
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for every A ∈ A. Then under the true partition I0 = {I01 , . . . , I0t0}, for any
mixing matrix A ∈ A, and any marginal densities g = (g1, . . . , gt0) ∈ G, where
gi ∝ Ψ

{∑Ji

j=1 θi,jBj(s)
}

and θi,Ji = (θi,1, . . . , θi,Ji)
T , define

pg,A,θi,Ji
(x) = detA

t0∏
i=1

gi(A
T
j x, j ∈ I0j ; θi,Ji),

p∗g,A,θ∗
i,Ji

(x) = detA

t0∏
i=1

g∗i (A
T
j x, j ∈ I0j ; Ji, θ

∗
i,Ji

).

Then

‖p0(x)− pg,A(x)‖∞

≤
∥∥∥∥∥p0(x)− detA

t0∏
i=1

g0i (A
T
j x, j ∈ I0j )

∥∥∥∥∥
∞

+

∥∥∥∥∥detA
t0∏
i=1

g0i (A
T
j x, j ∈ I0j )− p∗g,A,θ∗

i,Ji

(x)

∥∥∥∥∥
∞

+
∥∥∥p∗g,A,θ∗

i,Ji

(x)− pg,A,θi,Ji
(x)

∥∥∥
∞

� εn, (20)

because p0 only differs with detA
∏t0

i=1 g
0
i (A

T
j x, j ∈ I0j ) in the mixing matrix,

detA
∏t0

i=1 g
0
i (A

T
j x, j ∈ I0j ) differs with p∗g,A,θ∗

i,Ji

(x) in the marginal density

functions g, p∗g,A,θ∗
i,Ji

(x) differs with pg,A,θi,Ji
(x) by the B-spline coefficients θ,

and all these approximation errors are bounded by εn given A ∈ A and g ∈ G.
Under condition (B3), given εn sufficiently small, pg,A(x) is also lower

bounded by a positive constant. This implies that p0/pg,A is always finite. Hence
dH(p0, pg,A) � εn and

K(p0, pg,A) � ε2n, V (p0, pg,A) � ε2n

due to Lemma 8 of Ghosal and van der Vaart (2007). Thus it is good enough to
obtain a lower bound for the prior probability of I0 ×A× G. We have

ΠP (I0) = B−1
d , Π2

A(A) � εdτ2n ,

ΠS
g (G)

�
t0∏
i=1

{
ΠJ (J

∗
i ≤ Ji ≤ C∗J∗

i )× min
Ji∈(J∗

i ,C
∗J∗

i )∩N

Πθ(‖θi,Ji − θ∗
i,Ji

‖2 ≤ J−1
i εn)

}

�
t0∏
i=1

exp(−CJ∗
i logn).

Therefore Π(p : K(p0, p) ≤ ε2n, V (p0, p) ≤ ε2n) ≥ ΠP (I0) × Π2
A(A) × ΠS

g (G) �
exp(−nε2n). This completes the proof.
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Proof of Theorem 2. The proof proceeds in the same way as Theorem 1. We
briefly describe the main differences here. First, in order to verify conditions
(14) and (15), we need an alternative definition of Fg. For each i = 1, . . . , t,let
ε̃n,i = n−αi/(2αi+d∗

i )(logn)γi0 with γi0 = d∗i (1+τ−1+α−1
i )/(2+d∗i /αi) and d∗i =

max(di, κ). Let εn,i = n−αi/(2αi+d∗
i )(logn)γi with γi > γi0. For Fg, we consider

the sieve as described in Proposition 2 of Shen, Tokdar and Ghosal (2013) for
each of g1, . . . , gt, denoted by Q1, . . . ,Qt, respectively. Then by Theorem 5 of
Shen, Tokdar and Ghosal (2013),

logD(ε̃n,i,Qi, dH) � nε2n,i, Πg(Qc
i ) � exp(−nε2n,i).

Combining these results for each i, we obtain (14) and (15).
Second, to verify condition (16), we consider the true partition and con-

struct the approximation of g01 , . . . , g
0
d0

as in Proposition 1 of Shen, Tokdar
and Ghosal (2013). For the mixing matrix, we consider a neighborhood around
A0 = (A10, . . . ,Ad0)

T . In other words, we define

A = {A = (A1, . . . ,Ad)
T : ‖Ai −Ai0‖2 ≤ CAεn, i = 1, . . . , d},

where Ω is defined in (A2.2). Given CA sufficiently small, we have

| detA0 − detA| ≤ εn, ‖Ai0 −Ai‖∞ ≤ εn

for every A ∈ A. This ensures that the approximation to p0 under the Hellinger
distance is still within a multiple of εn. By condition (B5), every element of
A0 belongs to A0, and so does every element of A for every A ∈ A. Hence
the prior probability of A is lower bounded by a constant multiple of εd

2

n =
exp(−d2 log(1/εn)), which will not affect the rate calculation in (16).
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