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Abstract: In this paper we study posterior asymptotics for conditional
density estimation in the supremum L1 norm. Compared to the expected
L1 norm, the supremum L1 norm allows accurate prediction at any desig-
nated conditional density. We model the conditional density as a regression
tree by defining a data dependent sequence of increasingly finer partitions
of the predictor space and by specifying the conditional density to be the
same across all predictor values in a partition set. Each conditional density
is modeled independently so that the prior specifies a type of dependence
between conditional densities which disappears after a certain number of
observations have been observed. The rate at which the number of parti-
tion sets increases with the sample size determines when the dependence
between pairs of conditional densities is set to zero and, ultimately, drives
posterior convergence at the true data distribution.
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1. Introduction

For (Y,X) two random variables with continuous distribution on the prod-
uct space R × X, we consider nonparametric Bayesian estimation of the con-
ditional density f(y|x) based on an iid sample from (Y,X). Let Π define a
prior distribution on the space F of conditional densities and (Y,X)1:n =
(Y1, X1), . . . , (Yn, Xn) denote the sample from the joint density f0(y|x)q(x),
where q(x) is the marginal density of the covariate X. From an asymptotic
point of view, it is desirable to validate posterior estimation by establishing
that the posterior distribution accumulates in suitably defined neighborhoods
of f0(y|x) as n → ∞, that is Π

(
f ∈ F : d(f, f0) > εn|(Y,X)1:n

)
→ 0, where

d( · , · ) is a loss function on F and εn is the posterior converge rate. The choice
of the loss function is an important issue, the literature on Bayesian asymptotics
being mainly restricted to the expected L1 norm,

d(f1, f2) =

∫
X

‖f1(·|x)− f2(·|x)‖1 q(x)dx,

where ‖f1(·|x) − f2(·|x)‖1 =
∫
R
|f1(y|x) − f2(y|x)|dy is the L1 norm on the

response space R. The convenience of working with the expected L1 norm is that
general convergence theorems for density estimation can be easily adapted. Its
use, although in many ways natural, may not always be appropriate. Posterior
concentration relative to such loss justifies confidence that, for a new random
sample of individuals with covariates distributed according to q(x), the responses
will be reasonably well-predicted by conditional density function samples from
the posterior, but it would not justify similar confidence at a fixed chosen, rather
than sampled, x∗. For this, posterior concentration in the supremum L1 norm
would be required, namely under the loss

‖f1 − f2‖1,∞ := sup
x∈X

‖f1(·|x)− f2(·|x)‖1.

This would then justify the use of the posterior predictive conditional density,

fn(y|x∗) :=
∫
F f(y|x∗)Π(df |(Y,X)1:n)

to make inference on f0(y|x∗). Note that the supremum L1 norm induces a
stronger metric compared to the expected L1 norm, so derivation of posterior
convergence rates is expected to be harder: ultimately, one needs to model an
entire density f(y|x) accurately at y, and for all x.

Popular Bayesian models for conditional density estimation typically specify
a dependence structure between f(·|x) and f(·|x′) which is convenient for small
to moderate sample sizes since it allows borrowing of information. However,
from an asymptotic point of view, an over-strong dependence structure might
not be desirable. To discuss this point, if the posterior eventually puts all the
mass on f0 then clearly the correlation between f(·|x) and f(·|x′) is zero. Hence,
there is a decay to 0 of the dependence as the sample size increases. But this
decay needs to be carefully managed, as we shall see with the model we study.
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Our solution is to allow the dependence between f(·|x) and f(·|x′) to exist up
to a finite sample size, depending on |x − x′|, and then fall to become 0, once
there is enough data locally to evaluate each f(·|x) accurately. To this purpose,
we consider the model

f(y|x) =
Nn∑
j=1

fj(y)1Cnj (x), fj ind∼ Π̃, j = 1, . . . , Nn (1.1)

where 1A( · ) is the indicator function on the set A, the sets Cnj , j = 1, . . . , Nn,
form a sample size dependent partition of the covariate space X and each fj(y)
is a density function on R, modeled independently with a nonparametric prior
Π̃. We will occasionally refer to the prior distribution of fj as Π̃j , where it

is implicitly assumed that Π̃j , j = 1, . . . , Nn, are identical copies of the same

nonparametric prior Π̃. Our preferred choice for Π̃ is a Dirichlet process location
mixture of normal densities, see Section 2.2, although other choices can be made.
Note that, since the conditional density is set to be the same across all x ∈ Cnj ,
fj(y) also corresponds to the marginal density of Y when X is restricted to lie
in Cnj . As we are going to let Nn depend on n, the prior (1.1) is sample size
dependent, and will be denoted by Πn. Specifically, we take X to be a bounded
set and let Nn increase to ∞ as n → ∞ and Cnj , j = 1, . . . , Nn, to form a finer
and finer partition of X such that

|Cnj | = N−1
n , (1.2)

where |A| is the Lebesgue measure of A. For example, when X = [0, 1], we
define Cnj = [(j − 1)/Nn, j/Nn] and in fact in this paper we will focus on this
case. So the key is that while x and x′ are both in Cnj they share a common
f(·|x) = f(·|x′). However, after some sample size n which determines Nn the
two densities separate and become independent. Consequently, the borrowing
of strength is a 0 − 1 phenomenon, rather than a gradual decay. Model (1.1)
bears similarity to the Bayesian regression tree model proposed by Chipman
et al. (1998), which is based on a constructive procedure that randomly divides
the predictor space sequentially and then generates the conditional distribution
from base models within the blocks. See Ma (2012) for a recent nonparametric
extension. In our case the partitioning is non random and depends on the data
only through the sample size n.

Given the model (1.1)–(1.2), the goal is to find the rate at which Nn should
grow in terms of n so that the posterior accumulates in sup-L1 neighborhoods
of f0(y|x), according to:

Πn

{
f : ‖f − f0‖1,∞ > εn|(Y,X)1:n

}
→ 0. (1.3)

We will assume throughout that the marginal density q(x) of the covariate X is
bounded away from zero so that there are approximately n/Nn observations to
estimate the conditional density f0(y|x) for x in each block Cnj . If Nn grows too
fast then there are not sufficient observations per bin to estimate the density at
x accurately; whereas if Nn grows too slowly there are too many observations
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from densities with x′ which are too far from x, again making the density at
x inaccurate. It is expected that Nn is determined by the prior Π̃ and the
regularity of the true conditional density f0. More precisely, our results hold
under two main conditions. First, Π̃ needs to satisfy a summability condition
of prior probabilities over a suitably defined partition of the space of marginal
densities of Y . This requires the existence of a high mass - low entropy sieve
on the support of Π̃. Second, f0 has to satisfy a type of Lipschitz continuity
measured by the Kullback-Leibler divergence of f0(y|x) and f0(y|x′) for x and
x′ close. We then show that posterior convergence (1.3) holds for Nnε

2
n → ∞,

nε4n → ∞ and Nnε̃
2
n/Nn

= o(ε2n), where ε̃m, m → ∞, is an upper bound to the

prior rates attained by Π̃ at the marginal density of Y when X is restricted to lie
in Cnj . Hence the prior rates ε̃m ultimately determines the posterior convergence
rate εn. In Section 2.3 we obtain a best rate of n−1/6 and acknowledge that this
is a first step in the direction of finding optimal sup-L1 rates for large classes
of density. This may be sub-optimal and may arise as an artefact of the model
which does not entertain smoothness in a reasonable way. However, the zero-one
dependence seems to us important to be able to make mathematical progress
and a more smooth form of dependence appears overly complicated to work
with.

We end this introduction with a review of asymptotic results for Bayesian
nonparametric inference on conditional distributions. In nonparametric normal
regression, i.e. when Y = g(X) + ε with ε ∼ N(0, σ2), the aim is typically to
estimate the regression function g(x) with respect to the Lp norm on the space
of functions X → R. In the case of fixed design and known error variance, which
corresponds to the celebrated Gaussian white noise model, the sup-L1 norm
‖ · ‖1,∞ is equivalent to the supremum norm ‖g‖∞ = supx |g(x)| in the space
of regression functions and optimal posterior convergence rates are derived in
Yoo and Ghosal (2016) and in Ginè and Nickl (2011) by using conjugate Gaus-
sian priors and in Castillo (2014) and in Hoffman et al. (2015) for nonconjugate
priors. In the last three papers, the prior on g is defined via independent prod-
uct priors on the coordinates of g onto a wavelet orthogonal basis. Such use of
independent priors on the coefficients of a multirelsolution analysis is, to some
extent, similar to modeling the conditional densities independently on each sets
Cnj as in (1.1). In particular, the technique set forth in Castillo (2014) consists
of replacing the commonly used testing approach by tools from semiparametric
Benstein-von Mises results and it has been successful to obtain rates in the sup-
L1 norm in density estimation on a compact domain by using log-density priors
and random dyadic histograms. In the case of random design and unknown er-
ror variance, Shively et al. (2009) obtain posterior consistency with respect to
neighborhoods of the type {‖g− g0‖∞ ≤ ε, |σ/σ0 − 1| ≤ ε} under a monotonic-
ity constraint on g(·). Consistency under the expected L1 norm is considered in
nonparametric binary regression by Ghosal and Roy (2006) and in multinomial
logistic regression by De Blasi et al. (2010). More generally, Bayesian nonpara-
metric models for conditional density estimation follow two main approaches:
(i) define priors for the joint density and then use the the induced conditional
density for inference; (ii) construct conditional densities without specifying the
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marginal distribution of the predictors. Posterior asymptotics is studied by Tok-
dar et al. (2010) under the first approach and by Pati et al. (2013); Norets and
Pati (2014); Shen and Ghosal (2016) under the second approach. In all the
aforementioned papers, convergence is defined with respect to the expected L1

norm. Tang and Ghosal (2007) study posterior consistency for estimation of
the transition density in a nonlinear autoregressive model with respect to both
expected and sup-L1 norm, however for the latter some restrictive assumptions
on the true transition density are imposed. Finally, Xiang and Walker (2013)
consider the sup-L1 norm in conditional density estimation with fixed designs
of predictors. Compared to the latter paper, the challenge in our study is taking
the argument from a finite setting to an uncountable setting.

The rest of the paper is organized as follows. Section 2 presents the main re-
sult and sufficient conditions to effect it, see Theorem 2.1. These are illustrated
in the case of the prior Π̃ on marginal densities being a Dirichlet process location
mixture of normal densities. The existence of a high mass - low entropy sieve
on the support of Π̃ is established in Proposition 2.1. The proof of Theorem 2.1
is reported in Section 3, where we deal, as is the norm, with the numerator and
denominator of the posterior separately, see Proposition 3.1. Section 4 presents
an illustration of the type of f0 which meets the aforementioned condition of
Lipschitz continuity in the Kullback-Leibler divergence and also discusses the
role of the condition of q(x) bounded away from zero and an alternative deriva-
tion of sup-L1 rates from expected L1 rates. Some proofs and a technical lemma
are deferred to the Appendix.

Notation and conventions The following notation will be used through-
out the article. For X a random variable with distribution P , the expecta-
tion of the random variable g(X) is denoted by Pg and its sample average
by Png = n−1

∑n
i=1 g(Xi), according to the conventions used in empirical

process theory. This applies to probability measures P defined on R, X or
R×X. The frequentist (true) distribution of the data (Y,X) is denoted P0, i.e.
P0(dy, dx) = f0(y|x)q(x)dy dx, with E0 denoting expectation with respect to P0.
The dependence ofNn and Cnj on n is silent and is dropped in the notation, and,
unless explicitly stated, the predictor space is X = [0, 1]. The space of conditional
densities f(y|x) is denoted F = {f : X×R → R+ :

∫
R
f(y|x)dy = 1 ∀x}, while

the space of densities on R is denoted F̃ = {f : R → R+ :
∫
R
f(y)dy = 1}. For

f, g ∈ F̃ , the Hellinger distance between f and g is denoted H(f, g) = [
∫
(
√
f −√

g)2]1/2. All integrals are to be intended with respect to a common dominating
measure, e.g. the Lebesgue measure. For real valued sequences an, bn, an � bn
means there exists a positive constant C such that an ≤ Cbn for all n sufficiently
large; and an 
 bn means 0 < lim infn→∞(an/bn) < lim supn→∞(an/bn) < ∞.
For any β > 0, τ0 ≥ 0 and a nonnegative function L on R, define the locally
β-Hölder class with envelope L, denoted Cβ,L,τ0(R), to be the set of all function
on R with derivatives f (j) of all orders up to r = �β, and for every k ≤ r
satisfying

|f (k)(x)− f (k)(y)| ≤ L(x)eτ0(x−y)2 |x− y|β−r,
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for all x, y ∈ R, cf definition in Shen et al. (2013). For f ∈ F̃ , define the K-L
neighborhood of f as

B(ε, f) =
{
g ∈ F̃ :

∫
f log(f/g) ≤ ε2,

∫
f [log(f/g)]2 ≤ ε2

}
.

2. Main result

2.1. Posterior convergence theorem

Let Aεn ⊂ F be the complement of an εn-ball around f0(y|x) with respect
to the supremum L1 norm as in (1.3), where εn is a positive sequence such
that εn → 0 and nε2n → ∞. We are interested in the sequence of posterior
distributions Πn(Aεn |(Y,X)1:n) going to zero in probability with respect to the
true data distribution P0. We make the following assumptions on P0. First we
assume that the marginal density q(x) is bounded away from 0,

inf
x∈[0,1]

q(x) > 0 (2.1)

This implies that, under (1.2), as N increases, the expected number of Xi in Cj

is nQ(Cj) 
 n/N for each j, where Q is the distribution associated to q(x). See
the discussion in Section 4 about relaxing condition (2.1). Second, we assume
that the conditional density f0(y|x) is regular in that it satisfies the following
form of Lipschitz continuity in terms of Kullback-Leibler type divergences: for
L > 0, and γ > 0,

∫
R

f0(y|x)
(
log

f0(y|x)
f0(y|x′)

)r

dy ≤ L|x− x′|2, r = 1, 2 (2.2)

for all x, x′ with |x− x′| < γ. See Section 4 for a discussion.
As for the prior Πn, recall that it defines a distribution on F induced by the

product of N independent priors Π̃j on F̃ for each marginal density fj , cfr (1.1).
Each fj is estimating the marginal density of Y when X is restricted to lie in
Cj ,

f0,j(y) = Q(Cj)
−1

∫
Cj

f0(y|x)q(x)dx,

on the basis of approximatelym = n/N observations (Yi, Xi) such that Xi ∈ Cj ,
cfr. (1.2) and (2.1). Note that, although not explicit in the notation, f0,j(y)
depends on n through Cj via (1.2). We make use of a sieve, that is we postulate

the existence of a sequence of sub models, say {F̃m, m ≥ 1}, such that F̃m ↑ F̃ .
Moreover, for ε̄m a positive sequence such that ε̄m → 0 and mε̄2m → ∞, and
(Ãmi)i≥1 Hellinger balls of radius ε̄m with F̃m ⊆

⋃
i Ãmi, we assume that the

prior Π̃ satisfies

Π̃(F̃c
m) � exp{−(C + 4)mε̄2m}, (2.3)∑
i≥1

Π̃(Ãmi)
1/2 exp{−cmε̄2m} → 0, (2.4)
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for some c, C > 0. A key difference with similar sufficient conditions for posterior
convergence in density estimation, such as equations (8) and (9) in Shen et al.
(2013), or equations (37) and (39) in Kruijer et al. (2010), is that the same
sequence ε̄m is used in (2.3) and (2.4). Finally, we rely on the prior rates of Π̃
at f0,j . We denote by P0,j the probability distribution associated with f0,j(y).
For j = 1, . . . , N , let B(ε, f0,j) define a KL-neighborhood of f0,j ,

B(ε, f0,j) =
{
f : P0,j log(f0,j/f) ≤ ε2, P0,j [log(f0,j/f)]

2 ≤ ε2
}
,

and assume that for m → ∞ and a sequence ε̃m → 0 such that mε̃2m → 0,

Π̃(B(ε̃m, f0,j)) ≥ e−C′mε̃2m for j = 1, . . . , N (2.5)

for some constant C ′ > 0. We are now ready to state the general convergence
result which expresses the posterior convergence rate εn in terms of N and the
prior rates ε̃m and ε̄m.

Theorem 2.1. Let the assumptions above prevail. Also, assume that N and εn
satisfy

Nε2n → ∞, nε4n → ∞, (2.6)

and that (2.3), (2.4) and (2.5) hold for m = n/N and

ε̄n/N = εn/2, Nε̃2n/N = o(ε2n). (2.7)

Then Πn(Aεn |(Y,X)1:n) → 0 in P0-probability.

Note that the first condition in (2.6) imposes a restriction on how slow N
can grow in n, while the second condition in (2.7) typically induces a restriction
on how fast N can grow. See the illustration in Section 2.3.

2.2. Prior specification

In this section we show which combinations of N and εn yields posterior conver-
gence when the prior Π̃ in (1.1) is set to be a Dirichlet process location mixture
of normal densities. Specifically, a density from Π̃ is given by

fF,σ(y) =
∫
R
φσ(y − μ)dF (μ), F ∼ DP(αF ∗), σ ∼ G, (2.8)

where φσ(x) is the normal density with mean zero and variance σ2, α is a
positive constant, F ∗ is a probability distribution on R and G is a probability
distribution on R+. Asymptotic properties of model (2.8) in density estimation
have been extensively studied in Ghosal and van der Vaart (2001, 2007); Lijoi
et al. (2005); Walker et al. (2007); Shen et al. (2013). The following result on
prior rates is adapted from Theorem 4 of Shen et al. (2013). Let f ∈ F̃ satisfy

(a1) f ∈ Cβ,L,τ0(R);
(a2)

∫
(|f (k)(y)|/f(y))(2β+ε)/kf(y)dy < ∞, k ≤ �β, and∫
(L(y)/f(y))(2β+ε)/βf(y)dy < ∞ for some ε > 0;
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(a3) f has exponentially decreasing tails.

As for the prior (2.8), let

(b1) F ∗ admits a positive density function on R with sub-Gaussian tails;
(b2) under G, σ−2 has a gamma distribution.

Then, for some C > 0 and all sufficiently large m,

Π̃
(
B(ε̃m, f)

)
≥ e−Cmε̃2m , ε̃m = m−β/(2+2β)(logm)t, (2.9)

for some positive constant t depending on the tails of f and on β. Note that
m−β/(2+2β) is slower than the minimax rate for β-Hölder densities, due to the use
of the gamma prior on σ−2 instead of on σ−1. In fact, the latter has too heavy tail
behavior for Proposition 2.1 below to hold. When f itself is of mixture form, i.e.
f(y) =

∫
φσ0(y− μ)dF0(μ) for some σ0 and F0 with sub-Gaussian tails, Ghosal

and van der Vaart (2001) have proven that (2.9) holds for ε̃m = m−1/2 logm.
Finally, we state the following result which relies on entropy calculations in

Shen et al. (2013) and on techniques in Walker et al. (2007). See the Appendix
for a proof.

Proposition 2.1. Under (b1)-(b2), there exists a family of subsets {F̃m, m ≥
1}, F̃m ↑ F̃ , and Hellinger balls (Ãmi)i≥1 of radius ε̄m with F̃m ⊆

⋃
i Ãmi, such

that (2.3) and (2.4) hold with

ε̄m = m−γ(logm)t

for any γ ∈ (0, 1/2) and t > 0.

2.3. Convergence rates

Assume that, for each j (and n), f0,j satisfies (a1)-(a2)-(a3) so that (2.5) holds
for ε̃m = m−β/(2+2β)(logm)t. Now let εn = n−η(logn)r and N = nα with η, r, α
positive constants to be determined later. The first condition in (2.6),Nε2n → ∞,
is implied by α−2η > 0 while the second condition in (2.6), nε4n → ∞, is satisfied
by 1− 4η ≥ 0, hence, putting them together we have

0 < 2η ≤ min{α, 1/2}. (2.10)

The first condition in (2.7) is satisfied under (2.10) because of Proposition 2.1 as
we can find t > 0 and γ ∈ (0, 1/2) for ε̄n/N = εn/2 to hold. Finally, the second
condition in (2.7), Nε̃2n/N = o(ε2n), holds for r > t and

0 < 2η ≤ 2β

2 + 2β
(1− α)− α. (2.11)

Note that we need the right hand side to be positive, hence α < β/(1+2β) < 1/2.
Putting inequalities (2.10) and (2.11) together we have r > t and

0 < 2η ≤ min

{
α,

1

2
,

2β

2 + 2β
(1− α)− α

}
.
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The solution to this problem which maximizes the value of η is given by η = α
2 ,

α = β
2+3β , so that the posterior convergence rate is bounded by

εn 
 (log n)rn−β/2(2+3β).

Note that the posterior rate is not adaptive in that the number of partition sets
N = nβ/(2+3β) depends on β. In Norets and Pati (2014) and Shen and Ghosal
(2016), convergence rates under the expected L1 norm have been derived under
the assumption of β-Hölder smoothness of the conditional density f(y|x) both in
y and x. The rate is n−β/(2β+d+1) for d the dimension of the covariate, clearly
faster than the one obtained above. In a classical setting, Efromovich (2007)
found the minimax rate to be n−β/(2β+2) for d = 1 and under the L2 norm on
the product space R× [0, 1]. To the best of our knowledge, the minimax rate of
convergence for conditional densities with respect to the sup-L1 loss is not yet
known for any suitable large class, and certainly not for the class of conditional
densities considered here, but it may be reasonable to expect that it should
be the same up to a log factor. So, while our rate appears “slow”, it is to be
remembered that this is with respect to the supremum L1 norm and hence a
benchmark has been set.

3. Proofs

In this section we proceed to the proof of Theorem 2.1. Write

Πn(Aεn |(Y,X)1:n) = D−1
n

∫
Aεn

Rn(f)dΠn(f),

where Rn(f) =
∏n

i=1 f(Yi|Xi)/f0(Yi|Xi) and Dn =
∫
F Rn(f)Π(df). As is cus-

tomary in Bayesian asymptotics, we deal with the numerator and denominator
separately. Let F̃m be as in (2.3) and (2.4) such that F̃m ↑ F̃ as m → ∞. They
induce a sequence of increasing subsets of the space of conditional densities F
given by

Fn =
{
f ∈ F : f(y|x) =

∑N
j=1 fj(y)1Cj (x), fj ∈ F̃n/N , j = 1, . . . , N

}
. (3.1)

It is sufficient to show that the posterior accumulates in Ac
εn ∩Fn provided the

prior probability Π̃(F̃c
n/N ) decreases sufficiently fast to 0 as n → ∞. Reason-

ing as in Walker (2004); Walker et al. (2007), let (Ail) be a two-dimensional
array of subsets of Fn such that Aεn ∩ Fn =

⋃
jl Ajl, and denote L2

njl =∫
Ajl

Rn(f)Πn(df).

Proposition 3.1. Let N → ∞ as n → ∞ such that N logN = o(nε2n) and
assume that, for some constants c, C > 0,

Π̃j(F̃c
n/N ) ≤ exp{−c(C + 4)nε2n/N}, (3.2)

P0

(∑
j,l Lnjl < exp{−c(C + 2)nε2n/N}

)
→ 1, (3.3)
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P0

(
Dn ≥ exp{−c(C + 2)nε2n/N}

)
→ 1. (3.4)

Then Πn(Aεn |(Y,X)1:n) → 0 in P0-probability.

Proof. Without loss of generality, we set c = 1. Reasoning as in the proof of
Theorem 2.1 in Ghosal et al. (2000), by Fubini’s theorem and the fact that
P0(f/f0) ≤ 1,

E0

( ∫
Fc

n
Rn(f)dΠn(f)

)
≤ Πn(Fc

n).

Next

Πn(Fc
n) = 1−Πn(Fn) = 1−

∏N
j=1 Π̃j(F̃n/N ) = 1−

(
1− Π̃(F̃c

n/N )
)N

≤ 1−
(
1− exp{−(C + 4)nε2n/N}

)N ≤ N exp{−(C + 4)nε2n/N}.

Let An be the event that Dn ≥ exp{−(C + 2)nε2n/N}. By (3.4), P0(An) → 1,
then

E0[Πn(Fc
n|(Y,X)1:n)] ≤ E0[Πn(Fc

n|(Y,X)1:n)1An ] + P0(A
c
n)

≤ N exp{−(C + 4)nε2n/N} exp{(C + 2)nε2n/N}+ o(1)

= exp{−2nε2n/N + logN}+ o(1) → 0

for n sufficiently large since, by assumption, logN = o(nε2n/N) and nε2n/N → ∞
as n → ∞. Therefore it is sufficient to prove that E0[Πn(Aεn ∩Fn|(Y,X)1:n)] →
0. Now let Bn be the event that

∑
j,l Lnjl < exp{−(C + 2)nε2n/N}. By using

the inequality

Πn(Aεn ∩ Fn|(Y,X)1:n) ≤ D−1/2
n

∑
j,l Lnjl,

and P0(Bn) → 1, cfr (3.3), it follows that

E0[Πn(Aεn ∩ Fn|(Y,X)1:n)]

≤ E0[Πn(Aεn ∩ Fn|(Y,X)1:n)1An∩Bn ] + P0(A
c
n ∪Bc

n)

≤ E0[D
−1/2
n

∑
j,l Lnjl1An∩Bn ] + o(1)

≤ exp{−(C + 2)nε2n/N} exp{(C + 2)nε2n/(2N)}+ o(1)

= exp{−(C + 2)nε2n/(2N)}+ o(1) → 0.

The proof is then complete.

In order to prove Theorem 2.1, we proceed to the verification of the conditions
of Proposition 3.1 under the hypothesis made. We start with (3.2) and (3.3).
Recalling that the Hellinger and the L1 distances induce equivalent topologies in
F̃ , without loss of generality, we replace the L1 norm in (1.3) with the Hellinger
distance and define

Aεn =

{
f ∈ F : sup

x∈X

H(f0(·|x), f(·|x)) > εn

}
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with εn → 0 such that nε2n → ∞. According to (3.1), under model (1.1) we have

that Aεn ∩ Fn =
⋃N

j=1 Aj where Aj = {f(y|x) =
∑N

j=1 fj(y)1Cj (x) : fj ∈ Ãj}
and

Ãj =

{
f ∈ F̃n/N : sup

x∈Cj

H(f0(·|x), f) > εn

}
.

For each j = 1, . . . , N , we can further cover Ãj into Hellinger balls of radius

εn/2 and centered on fjl ∈ Ãj ,

Ãjl =

{
f ∈ Ãj : H(f, fjl) < εn/2

}
,

so Aj ⊂
⋃

l≥1 Ajl where Ajl = {f(y|x) =
∑N

j=1 fj(y)1Cj (x) : fj ∈ Ãjl}. Now
consider L2

njl =
∫
Ajl

Rn(f)Πn(df), from which we have

E0

(
Lnjl|(Y,X)1:n−1, Xn

)
≤ Ln−1jl

{
1− inf

fj∈Ãjl

1

2
H2

(
f0(·|Xn), fj

)
1Cj (Xn)

}
.

A lower bound for infx∈Cj H
2(f0(·|x), fj) is readily derived by using assumption

(2.2). By (1.2) and H2(f, g) ≤
∫
f log(f/g),

sup
x,x′∈Cj

H(f0(·|x), f0(·|x′)) ≤
√
L/N, ∀j (3.5)

for n (and N) large enough. Now define x′ ∈ Cj as the x value which maximizes
H(f0(·|x), fjl(·)), i.e.

x′ = arg max
x∈Cj

H(f0(·|x), fjl(·)).

Such a maximum exists since x �→ f(·|x) is Hellinger continuous by (2.2), and Cj

can be taken as a closed interval in [0, 1]. Since fjl ∈ Ãj , H(f0(·|x′), fjl(·)) > εn
and so for x ∈ Cj and fj ∈ Ãjl, we have

H(f0(·|x), fj(·)) ≥ H(f0(·|x′), fj(·))−H(f0(·|x), f0(·|x′))

≥ H(f0(·|x′), fjl(·))−H(fj(·), fjl(·))−
√
L/N

≥ εn − εn/2−
√
L/N = εn/2−

√
L/N

using a further application of the triangle inequality. Thus, conditioning on the
sample size nj =

∑n
i=1 1Cj (Xi),

E0(Lnjl|nj) ≤
(
[1− 1

2 (εn/2−
√
L/N)2

)nj

Πn(Ajl)
1/2.

Since X1, . . . , Xn is an i.i.d. sample from q(x), nj ∼ binom(n,Q(Cj)). It is easy
to check, by using the formula of the probability generating function of the
binomial distribution, that

E0

{(
1− 1

2 (εn/2 +
√
L/N)2

)nj
}
=

{
1− 1

2 (εn/2−
√
L/N)2Q(Cj)

}n

≤ exp
{
− 1

2 (εn/2−
√
L/N)2nQ(Cj)

}
,
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where the last inequality holds since log(1− x) < −x. Hence

E0(Lnjl) ≤ exp
{
− 1

2 (εn/2−
√
L/N)2nQ(Cj)

}
Πn(Ajl)

1/2.

The first condition in (2.6) implies that for n (and N) sufficiently large, εn/2−√
L/N > εn/4. Also, under (1.2) and (2.1),

Q(Cj) ≥ q/N, q := inf
x∈[0,1]

q(x)

so that
E0(Lnjl) ≤ exp{−(ε2n/32)qn/N}Πn(Ajl)

1/2.

It follows that, for any d > 0,

P0

( N∑
j=1

∑
l≥1

Lnjl > e−d qn
N

)
≤ exp

{
− (ε2n/32− d)

qn

N

} N∑
j=1

∑
l≥1

Πn(Ajl)
1/2.

Consider now that the Ãjl can be the same sets for each j so to form a covering

{Ãl}l≥1 of F̃n/N in terms of Hellinger balls of radius εn/2. Hence Πn(Ajl) =

Π̃(Ãl). We then have

P0

( N∑
j=1

∑
l≥1

Lnjl > e−d qn
N

)
≤ N exp

{
− (ε2n/32−d)

qn

N

}∑
l≥1

Π̃(Ãl)
1/2. (3.6)

Hence, taking d = ε2n/64 in (3.6),

P0

( N∑
j=1

∑
l≥1

Lnjl > exp

{
− ε2n

64

qn

N

})
≤ N exp

{
− ε2n

64

qn

N

}∑
l≥1

Π̃(Ãl)
1/2.

Set c = q/(64(C+2)) in (3.3) for C to be determined later. Form = n/N and the
first condition in (2.7), (2.3) implies that Π̃(F̃c

n/N ) � exp{−(C ′ + 4)nε2n/(4N)}
for any C ′, so that C ′ can be chosen to have (3.2) satisfied for c and C above.

Also,
∑

l≥1 Π̃(Ãl)
1/2) = o(e(q/64)nε

2
n/N ) by the (2.4), and N logN = o(nε2n) by

condition (2.6) as long as N2 = o(n), cfr Section 2.3. Hence (3.3) holds.
We now aim at establishing that (3.4) of Proposition 3.1 holds for the same C

and c found before. To begin with, recall the definition of f0,j(y) as the marginal
density of Y when X is restricted to lie in Cj , and let P0,j be the probability
distribution associated to f0,j(y). Recall also that nj =

∑n
i=1 1Cj (Xi) and, using

the notation Ij = {i : Xi ∈ Cj}, we have nj = #(Ij), so we write

Rn(f) = exp

{
−

N∑
j=1

∑
i∈Ij

log
f0(Yi|Xi)

f(Yi|Xi)

}

= exp

{
−

N∑
j=1

∑
i∈Ij

log
f0(Yi|Xi)

f0,j(Yi)
−

N∑
j=1

∑
i∈Ij

log
f0,j(Yi)

fj(Yi)

}
.
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Hence Dn, the denominator of Πn(Aεn |(Y,X)1:n), is given by

Dn = exp

{
−

N∑
j=1

∑
i∈Ij

log
f0(Yi|Xi)

f0,j(Yi)

} N∏
j=1

∫
F̃

∏
i∈Ij

f(Yi)

f0,j(Yi)
Π̃j(df), (3.7)

where we have made use of the independence among the N priors Π̃j . We need
to deal with the two parts of (3.7) separately. As for the term inside the curvy
brackets, a key ingredient is the control on the Kullback-Leibler divergence
between neighboring conditional densities in (2.2), see Lemma A.1 in the Ap-
pendix for an intermediate result. Lemma A.1 allows to establish the rate at
which n−1

∑N
j=1

∑
i∈Ij

log f0(yi|xi)/f0,j(yi) goes to zero, as stated in the fol-
lowing proposition.

Proposition 3.2. Under (2.2), for dn and N such that nd2n → ∞ and dnN →
∞,

P0

{ N∑
j=1

∑
i∈Ij

log
f0(Yi|Xi)

f0,j(Yi)
<

dnn

N

}
→ 1. (3.8)

See the Appendix for a proof. We now deal with the second term in (3.7).
Note that {Yi : i ∈ Ij} can be considered as i.i.d. replicates from f0,j , the
marginal density of Y when X is restricted to Cj . We next rely on prior rate

ε̃m of Π̃(df) at f0,j in (2.5).

Proposition 3.3. Under (2.5), as n → ∞ and δ > 0,

P0

{ N∏
j=1

∫
F̃

∏
i∈Ij

f(Yi)

f0,j(Yi)
Π̃j(df) ≥ exp

(
− (C ′ + 1 + δ)nε̃2n/N

)}
→ 1. (3.9)

See the Appendix for a proof. Putting Propositions 3.2 and 3.3 together we
obtain that

P0

{
Dn ≥ exp

(
− dnn/N − (C ′ + 1 + δ)nε̃2n/N

)}
→ 1

for any δ > 0, dn and N such that dnN → ∞ and nd2n → ∞. Hence, for (3.4)
to be satisfied with C = C ′ and c−1 = 64(C + 2), we need

Nε̃2n/N ≤ ε2n/64(C + 2)

for sufficiently large N upon setting dn = (1 − δ)ε2n/64(C + 2). This is implied
by (2.7). Also the hypothesis of Proposition 3.2 are satisfied for this choice of
dn because of the two conditions in (2.6). The proof is then complete.

4. Discussion

4.1. Control on the Kulback-Leibler divergence between neighboring
conditional densities

Here we provide two examples assuming forms for f0(y|x) that satisfy (2.2).
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Example 1. Assume that the true conditional density corresponds to a normal
regression model,

Y = g(X) + ε, ε ∼ N(0, σ2),

with known variance, say σ = 1. Then f0(y|x) = φ(y − g0(x)). Assume that g0
is (locally) Lipschitz, |g0(x)− g0(x

′)| ≤ l|x− x′| for some l > 0. Since

∫
φ(y − μ1) log

φ(y − μ1)

φ(y − μ2)
dy =

(μ1 − μ2)
2

2
,

and

∫
φ(y − μ1)

(
log

φ(y − μ1)

φ(y − μ2)

)2

dy =
(μ1 − μ2)

4

4
+ (μ1 − μ2)

2,

the Lipschitz condition on g0(x) implies

∫
f0(y|x) log

f0(y|x)
f0(y|x′)

dy ≤ l2

2
|x− x′|2

and ∫
f0(y|x)

(
log

f0(y|x)
f0(y|x′)

)2

dy <
l4

4
|x− x′|4 + l2|x− x′|2,

so that Assumption (2.2) is satisfied for L = l4/4 + l2 and |x− x′| < 1.

Example 2. Here we consider the true conditional density as a mixture of
normal densities with predictor-dependent weights given by

f0(y|x) =
∑M

k=1
wk(x)φσ(y − μk)

where M can be infinity and
∑M

j=1 wj(x) = 1 for any x. Then the marginal
density of Y when X is restricted to lie in Cj is

f0,j(y) =
∑M

k=1
wjk φσ(y − μk), wjk =

1

Q(Cj)

∫
Cj

wk(x) q(x)dx,

so that the nearly parametric prior rate ε̃m = m−1/2 logm is achieved by the
prior (2.8) of Section 2.2.

Our aim is to confirm Assumption (2.2), or to find conditions under which it
holds. Thus we require

T =

∫ (
f0(y|x)− f0(y|x′)

)2
f0(y|x′)

dy ≤ L|x− x′|2

for |x−x′| small for some universal constant L. In fact, T is an upper bound for
the left hand side of (2.2) for both r = 1 and r = 2 (use simple algebra together
with log z ≤ z − 1 and 4(log z)2 ≤ (1/z − z)2). Now

f0(y|x′)− f0(y|x) =
M∑
k=1

wk(x
′)φσ(y − μk) {1− wk(x)/wk(x

′)}
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and so if, for some c > 0,

sup
k

|1− wk(x
′)/wk(x)| ≤ c|x− x′| (4.1)

then
(
f0(y|x) − f0(y|x′)

)2
< c2 |x − x′|2 f0(y|x′)2 and so T < L |x − x′|2 for

L = c2. If M is finite, then a weaker condition is sufficient. In fact, if, for some
c > 0, ∑M

k=1
wk(x) {1− wk(x

′)/wk(x)}2 < c |x− x′|2 (4.2)

then, by using Cauchy-Schwartz inequality,

T < c |x− x′|2
∫ ∑M

k=1 wk(x
′) [φσ(y − μk)]

2∑M
k=1 wk(x′)φσ(y − μk)

dy < cM |x− x′|2

and so T < C |x− x′|2 for C = cM .
In summary, if M = ∞ we require (4.1); whereas if M < ∞ then we need

(4.2). Let us investigate the former as it is more stringent. A general form for
normalized weights is given by

wk(x) = Λ(x)−1wk Hk(x)

where
∑

k≥1
wk = 1, Hk(x) = exp{−φ|x− zk|} and Λ(x) =

∑
k≥1

wk Hk(x)

for some sequence (zk)k≥1 ∈ (0, 1) and some φ > 0. Then it is straightforward
to show that, for all k, x and x′, with |x− x′| ≤ 1/N ,

e−3φ|x−x′| ≤ wk(x
′)/wk(x) ≤ e3φ|x−x′|

and hence for some constant c > 0, supk |1 − wk(x
′)/wk(x)| < c |x − x′| as

required.

4.2. Covariate distribution

Here we discuss the assumption (2.1) of q(x) bounded away from 0. Allowing the
density to tend to 0, for example at the boundary of [0, 1] would be an interesting
extension. It is not difficult to check that the same posterior convergence rate
in the sup-L1 norm of Theorem 2.1 will hold true by redefining supx∈[0,1] to
supx∈D, where D = {x : q(x) > q} for some arbitrarily small q > 0. However
this would require some previous knowledge of the covariate distribution. In
practice, one option is to set the partition sets Cj in a data driven way such
that nj =

∑n
i=1 1Cj (Xi) 
 n/N as n → ∞, e.g. by using an empirical estimate

Qn of the covariate distribution. This would work fine with the proof of (3.2)
and (3.3) in Section 3 but in the use of assumption (2.2) to establish the bound
in (3.5). To illustrate the point, if q(x) ∼ xτ as x → 0 for τ > 0 and Cj is set
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such that Qn(Cj) = 1/N , then it is not difficult to show that |C1| 
 1/N1/(1+τ)

as n → ∞, in contrast with (1.2), so that the upper bound in (3.5) would be
1/N1/(1+τ) instead of 1/

√
N . A close inspection of the arguments used in the

proof of Theorem 2.1 reveals that the first condition in (2.6) should be replaced

by Nε
2∧(1+τ)
n , which, in turn, would yield a worse convergence rate εn when

τ > 1, cfr. calculations in Section 2.3. This question is of interest and left for
future work.

4.3. Alternative derivation of posterior convergence rates

An associate editor, whom we thank for the suggestion, has asked whether an
alternative strategy would work for deriving posterior rates in the sup-L1 norm
from rates in the integrated L1 norm. The idea is to use the representation of the
conditional density f(y|x) as a function of x in the Haar basis of L2[0, 1]. To set
the notation, define φ(x) = 1(0,1)(x), ψ(x) := ψ0,0(x) = 1(0,1/2)(x)−1(1/2,1)(x),

φ
,k(x) = 2
/2φ(2
x − k) and ψ
,k(x) = 2
/2ψ(2
x − k) for any integer � and
0 ≤ k < 2
. Consider the regular dyadic partition of [0, 1] given by intervals
Cnk = (k2−Ln , (k + 1)2−Ln) so that Nn = 2Ln . For g ∈ L2[0, 1], let Kj(g) be
the orthogonal projection of g onto the subspace generated by the linear span
of {φj,k, 0 ≤ k < 2j}. By construction, the conditional density f(y|x) in (1.1)
coincides with KLn(f(y|·)) so that, for any y,

f(y|x)− f0(y|x) =
2Ln−1∑
k=0

〈f(y|·)− f0(y|·), φLn,k〉φLn,k(x)

−
∑

≥Ln

2�−1∑
k=0

〈f0(y|·), ψ
,k〉ψ
,k(x)

where 〈·, ·〉 is the inner product in L2[0, 1]. By the localization property of the
Haar basis, ‖

∑
k φ
,k‖∞ = ‖

∑
k ψ
,k‖∞ = 2
/2, and by standard arguments one

obtains the bound

‖f(y|·)− f0(y|·)‖∞ ≤ 2Ln/2‖f(y|·)− f0(y|·)‖2 +Rn(y),

where Rn(y) =
∑


≥Ln
2
/2 maxk |〈f0(y|·), ψ
,k〉| is related to the approximation

property of projection kernel estimate KLn(f0(y|·)). Consider now the sup-L1

norm. Exchange the sup with the integral sign to get

‖f(·|x)− f0(·|x)‖1,∞ ≤
∫
R

‖f(y|·)− f0(y|·)‖∞dy

by an application of Minkowski inequality for integrals. Then, the bound above
yields

‖f(·|x)− f0(·|x)‖1,∞ ≤ 2Ln/2

∫
R

‖f(y|·)− f0(y|·)‖2dy +
∫
R

Rn(y)dy.
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In the case that the conditional densities are uniformly bounded in x, one can
rely on an inequality between L2 and L1 norms to get, for a positive constant c,

‖f(·|x)− f0(·|x)‖1,∞ ≤ c2Ln/2

∫
R

‖f(y|·)− f0(y|·)‖1dy +
∫
R

Rn(y)dy

= c2Ln/2

∫ 1

0

‖f(·|x)− f0(·|x)‖1dx+

∫
R

Rn(y)dy

that is the sup-L1 norm is bounded by 2Ln/2 times the integrated L1 norm plus
an approximation term that depends on f0. If f0(y|x) is Hölder smooth of level
β in x, then

sup
,k 2

(1/2+β∧1)|〈f0(y|·), ψ
,k〉| < ∞,

so that Rn(y) � 2−(β∧1)Ln . If one further assumes that the bound above depends
on y, say R(y), and that

∫
R
R(y)dy < ∞, then a posterior convergence rate εn

in the integrated L1 norm would imply a posterior convergence rate 2Ln/2εn ∨
2−(β∧1)Ln in the sup-L1 norm. Note that the poor approximation properties of
the Haar basis for very smooth functions pose a limit to the rate that can be
achieved. Still, it is of interest to investigate whether such a rate could improve
upon the rate obtained in Section 2.3 for some regularities. This will be studied
elsewhere.

Appendix

Proof of Proposition 2.1. Define the entropy of G ⊂ F̃ with respect to the metric
d to be logN(ε,G, d) where N(ε,G, d) is the minimum integer N for which there

exists f1, . . . , fN ∈ F̃ such that G ⊂
⋃N

j=1{f : d(f, fj) < ε}. By hypothesis,

the prior measure F ∗ satisfies F ∗[−a, a]c � e−baτ

for some b > 0, τ > 2 and
|a| sufficiently large. Let G be the distribution of the square root of an inverse
gamma random variable with shape parameter c3 and rate parameter c1. Define

Fa,σ,σ̄ = {fF,σ : F [−a, a] = 1, σ ≤ σ ≤ σ̄},
Fa,η,σ,σ̄ = {fF,σ : F [−a, a] ≥ 1− η, σ ≤ σ ≤ σ̄}.

Combining Lemma A.3 in Ghosal and van der Vaart (2001) and Lemma 3 in
Ghosal and van der Vaart (2007),

logN(η,Fa,η/3,σ,σ̄, ‖ · ‖1) ≤ logN(η,Fa,σ,σ̄, ‖ · ‖1)

� log

(
σ̄

ησ

)
+

(
a

σ
∨ 1

)(
log

1

η

)[
log

(
a

ησ
+ 1

)
+ log

1

η

]
.

For each n, let σn = (nε2n)
−1/2, and an = σ−1

n (logn)−3. Define

Bn,0 = {fF,σ : F [−an, an] ≥ 1− ε2n/3, σn ≤ σ ≤ σn(1 + ε2n)
n},

Bn,j = {fF,σ : F [−(j + 1)an, (j + 1)an] ≥ 1− ε2n/3,
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F [−jan, jan] < 1− ε2n/3, σn ≤ σ ≤ σn(1 + ε2n)
n}, j ≥ 1

F̃n = {fF,σ : σn ≤ σ ≤ σn(1 + ε2n)
n}.

It is clear that F̃n ↑ F̃ as n → ∞ and F̃n =
⋃

j≥0 Bn,j . By standard calculations,

Π(F̃c
n) = G(σ < σn) +G(σ > σn(1 + ε2n)

n)

� e−c1σ
−2
n /2 + σ−2c3

n (1 + ε2n)
−2c3n,

= exp{− c1
2 nε

2
n}+ (nε2n)

c3 exp{−2c3n log(1 + ε2n)}
≤ exp{− c1

2 nε
2
n}+ (nε2n)

c3 exp{−c3nε
2
n}

� exp{−(C + 4)nε2n}

for some C > 0 by choosing c1 and c3 sufficiently large. Next, define

Bn,0,k = {fF,σ F [−an, an] ≥ 1− ε2n/3, σn(1 + ε2n)
k−1 ≤ σ ≤ σn(1 + ε2n)

k}

so that Bn,0 =
⋃n

k=1 Bn,0,k. Finally, let Kn,εn :=
∑

i≥1 Π(Ani)
1/2 for (An,i)i≥1

the Hellinger balls of radius εn that covers F̃n. Following Walker et al. (2007),

Kn,εn ≤
n∑

k=1

N(εn,Bn,0,k, H)Π(Bn,0,k)
1
2 +

∑
j≥1

N(εn,Bn,j , H)Π(Bn,j)
1
2 . (A.3)

The goal is to show that the two sums in the right hand sides do not grow to
∞ faster than ecnε

2
n for any c > 0. As for the second sum in (A.3), because of

the inequality H(f, g)2 ≤ ‖f − g‖1, N(εn,B, H) ≤ N(ε2n,B, ‖ · ‖1), so that, for
j ≥ 1, Bn,j ⊂ F(j+1)an,ε2n/3,σn,σn(1+ε2n)

n and the entropy calculations above yield

logN(εn,Bn,j , H) � log
3(1 + ε2n)

n

ε2n

+

(
(j + 1)an

σn
∨ 1

)(
log

3

ε2n

)(
log

(
3(j + 1)an

ε2nσn
+ 1

)
+ log

3

ε2n

)

� log
(1 + ε2n)

n

ε2n
+

(j + 1)an
σn

(
log

(j + 1)an
ε2nσn

)2

.

An upper bound on the prior probability Π(Bn,j), j ≥ 1, is given by

Π
(
F ([−jan, jan]

c) > ε2n/3
)
≤ 3

ε2n
E
(
F ([−jan, jan]

c)
)

=
3

ε2n
F ∗([−jan, jan]

c) � 3

ε2n
e−b(jan)

τ

where we used Markov inequality and the assumption on the tail of F ∗. Hence,
for some large constant C ′ > 0,

∑
j≥1

N(εn,Bn,j , H)Π(Bn,j)
1/2
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≤
∑
j≥1

exp

{
C ′

[
log

(1 + ε2n)
n

ε2n
+

(j + 1)an
σn

(
log

(j + 1)an
ε2nσn

)2]

+
1

2
log

1

ε2n
− 1

2
b(jan)

τ

}

≤ eC
′nε2n

ε2C
′+1

n

∑
j≥1

exp

{
C ′ (j + 1)an

σn

(
log

(j + 1)an
ε2nσn

)2

− 1

2
b(jan)

τ

}

Recalling the definition of σn and an, we have

∑
j≥1

N(εn,Bn,j , H)Π(Bn,j)
1/2

≤ eC
′nε2n

ε2C
′+1

n

∑
j≥1

exp

{
C ′(j + 1)σ−2

n (log n)−3

(
log

(j + 1)σ−2
n (log n)−3

ε2n

)2

− 1

2
b(jan)

τ

}

=
eC

′nε2n

ε2C
′+1

n

∑
j≥1

exp

{
C ′(j + 1)a2n(logn)

3

{
log(j + 1) + log[n(logn)−3]

}2

− 1

2
b(jan)

τ

}

≤ eC
′nε2n

ε2C
′+1

n

∑
j≥1

exp

{
2C ′(j + 1)a2n(log n)

3

[
log2(j + 1) + (logn)2

]
− 1

2
b(jan)

τ

}

where we used (a+ b)2 ≤ 2(a2 + b2),

≤ eC
′nε2n

ε2C
′+1

n

∑
j≥1

exp

{
2C ′

[
(j + 1) log2(j + 1)a2n(log n)

3 + (j + 1)a2n(logn)
5

− b

4C ′ (jan)
τ

]}
.

Since τ > 2, aτn grows faster than nε2n and a2n(logn)
5, so that the first summands

vanish to 0. We consider next the sum for j ≥ J and some J sufficiently large.

eC
′nε2n

ε2C
′+1

n

∑
j≥J

exp

{
2C ′

[
(j + 1) log2(j + 1)a2n(logn)

3 + (j + 1)a2n(logn)
5

− b

4C ′ (jan)
τ

]}

≤ eC
′nε2n

ε2C
′+1

n

∑
j≥J

exp

{
2C ′

[
(1 + δ)(j + 1) log2(j + 1)a2n(logn)

5 − b

4C ′ (jan)
τ

]}
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where we set δ = 1/ log2(J + 1),

≤ eC
′nε2n

ε2C
′+1

n

∑
j≥J

exp

{
2C ′

[
(1 + δ)(j + 1) log2(j + 1)− b

4C ′ j
τ

]
aτn

}
.

Now choose J large enough such that (1 + δ)(j + 1) log2(j + 1) − (b/4C ′)jτ ≤
−(j − 1)2 for j ≥ J . So we get the upper bound

eC
′nε2n

ε2C
′+1

n

∑
j≥J

exp

{
− 2C ′(j − 1)2aτn

}
≤ eC

′nε2n

ε2C
′+1

n

∑
j≥1

e−2C′jaτ
n =

eC
′nε2n

ε2C
′+1

n

e−2C′aτ
n

1− e−2C′aτ
n

which vanishes to 0 as n → ∞.
As for the first sum in (A.3), since Bn,0,k ⊂ Fan,ε2n/3,σn(1+ε2n)

k−1,σn(1+ε2n)
k ,

logN(εn,Bn,0,k, H)

� log
1 + ε2n
ε2n

+

(
an

σn(1 + ε2n)
k−1

∨1
)
log

3

ε2n

(
log

(
3an

ε2nσn(1 + ε2n)
k−1

+1

)
+ log

3

ε2n

)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

an
σn(1 + ε2n)

k−1

(
log

an
ε2nσn(1 + ε2n)

k−1

)2

, σn(1 + ε2n)
k−1 < an,

(
log

1

ε2n

)2

, σn(1 + ε2n)
k−1 > an

An upper bound on the prior probability on the Bn,0,k is found by direct calcu-
lation:

Π(Bn,0,k) ≤ G(σn(1 + ε2n)
k−1 ≤ σ ≤ σn(1 + ε2n)

k)

= G(σ−1
n (1 + ε2n)

−2k ≤ σ−2 ≤ σ−2
n (1 + ε2n)

−2(k−1))

=

∫ σ−1
n (1+ε2n)

−2(k−1)

σ−2
n (1+ε2n)

−2k

yc3−1e−c1ydy

� σ−2(c3−1)
n (1 + ε2n)

−2(c3−1)k exp{−c1σ
−2
n (1 + ε2n)

−2k}

see proof of Theorem 2 in Kruijer et al. (2010). Hence

n∑
k=1

N(εn,Bn,0,k, H)Π(Bn,0,k)
1/2 =

∑
σn(1+ε2n)

k−1≤an

N(εn,Bn,0,k, H)Π(Bn,0,k)
1/2

+
∑

σn(1+ε2n)
k−1>an

N(εn,Bn,0,k, H)Π(Bn,0,k)
1/2 = In,1 + In,2.

As for In,2, for any c,

In,2 ≤ nN(εn,Bn,0,k, H) � exp

{
C ′

(
log

1

ε2n

)2

+ logn

}
= o(e−cnε2n).
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We prove next that also In,1e
−cnε2n → 0 for any c small. The sum extends over

k ≥ 1 such that (1 + ε2n)
k−1 ≤ σ−2

n (log n)−3, that is

k − 1 ≤ log(nε2n(logn)
−3)

log(1 + ε2n)
; k ≤ c′ε−2

n logn

for some constant c′ > 0. N(εn,Bn,0,k, H)Π(Bn,0,k)
1/2 is bounded by

exp

{
C ′ an

σn(1 + ε2n)
k−1

(
log

an
ε2nσn(1 + ε2n)

k−1

)2}

× σ−(c3−1)
n (1 + ε2n)

−(c3−1)k exp{− c1
2 σ

−2
n (1 + ε2n)

−2k}

by writing sn,k = σn(1 + ε2n)
k−1,

= exp

{
C ′ an

sn,k

(
log

an
ε2nsn,k

)2}
s
−(c3−1)
n,k (1 + ε2n)

−(c3−1) exp{− c1
2 s

−2
n,k(1 + ε2n)

−2}

since 1 ≤ (1 + ε2n) ≤ 2,

≤ exp

{
C ′ an

sn,k

(
log

an
ε2nsn,k

)2

− c1
4
s−2
n,k − (c3 − 1) log sn,k

}

since σn ≤ sn,k ≤ an, for some c′ > 0,

≤ exp

{
C ′ an

sn,k

(
log

an
ε2nsn,k

)2

− c1
4
s−2
n,k + c′ logn

}

since an/(ε
2
nsn,k) ≤ an/(ε

2
nσn) = σ−2

n (logn)−3,

≤ exp

{
C ′ an log

2 n

sn,k
− c1

4
s−2
n,k + c′ log n

}

=exp

{
C ′σ

−2
n (logn)−1

(1 + ε2n)
k−1

− c1
4

σ−2
n

(1 + ε2n)
2(k−1)

+ c′ logn

}

=exp

{
C ′nε

2
n(logn)

−1

(1 + ε2n)
k−1

− c1
4

nε2n
(1 + ε2n)

2(k−1)
+ c′ logn

}

=exp

{
nε2n

(1 + ε2n)
k−1

(
C ′(logn)−1 − c1

4

1

(1 + ε2n)
k−1

)
+ c′ logn

}
.

The last display is bounded by a multiple of exp{C ′ nε2n(log n)
−1 + c′ log n},

hence the sum of N(εn,Bn,0,k, H)Π(Bn,0,k)
1/2 over k = 1, . . . , ε−2

n logn is
bounded by a multiple of exp{C ′nε2n(logn)

−1 + c′′ logn} which increases at
a slower rate than exp{cnε2n} for any c. The proof is complete.
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Proof of Proposition 3.2. Write In,j = n−1
j

∑
i∈Ij

log[f0(yi|xi)/f0,j(yi)] with In,j

define to be 0 if nj = 0. The goal is to show that P0(
∑N

j=1 njIn,j ≥ dn n/N) → 0
as n → ∞. To this aim, consider that

P0

( N∑
j=1

njIn,j ≥ dn
n

N

)
=

∑
n1:N

P0

( N∑
j=1

njIn,j ≥ dn
n

N

∣∣∣n1:N

)
P0(n1:N ) (A.4)

where we used n1:N as short hand notation for n1, . . . , nN . We focus next on
the conditional probability in the right hand side of (A.4), aiming at finding an
upper bound that goes to zero as n → ∞ uniformly in n1:N .

Note that each In,j can be written as the sample mean of nj realizations
log[f0(yi|xi)/f0,j(yi)] for i ∈ Ij = {i : xi ∈ Cj} with respect to the sample
distribution P0. We have

E0

(
In,j |n1:N

)
= E0

(
log

f0(Y |X)

f0,j(Y )

∣∣∣∣X ∈ Cj

)

=
1

Q(Cj)

∫
Cj

∫
R

log
f0(y|x)
f0,j(y)

f0(y|x)dy q(x)dx

≤ sup
x∈Cj

∫
R

f0(y|x) log
f0(y|x)
f0,j(y)

dy � N−2

where the last inequality follows from an application of Lemma A.1. Also,

Var
(
In,j |n1:N

)
=

1

nj
Var

(
log

f0(Y |X)

f0,j(Y )

∣∣∣∣X ∈ Cj

)

≤ 1

nj
E0

{(
log

f0(Y |X)

f0,j(Y )

)2 ∣∣∣∣X ∈ Cj

}

=
1

nj

1

Q(Cj)

∫
Cj

∫
R

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy q(x)dx

≤ 1

nj
sup
x∈Cj

∫
R

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy � 1

njN2
,

using again Lemma A.1. Given the independence of In,j across j conditional on
n1:N , we also have

E0

(∑N

j=1
njIn,j |n1:N

)
� n/N2, Var

(∑N

j=1
njIn,j |n1:N

)
� n/N2.

Now write the conditional probability in (A.4) as

P0

( N∑
j=1

njIn,j−E0

[ N∑
j=1

njIn,j |n1:N

]
≥ dn n/N−E0

[ N∑
j=1

njIn,j |n1:N

]
|n1:N

)

which is upper bounded by

P0

( N∑
j=1

njIn,j − E0

[ N∑
j=1

njIn,j |n1:N

]
≥ dn n/(2N) |n1:N

)
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for sufficiently large n, since N−2 � dn/(2N), as implied by the hypothesis
dnN → ∞. Now use Chebishev inequality to get

P0

( N∑
j=1

njIn,j ≥ dn n/N |n1:N

)
≤ n/N2

n2d2n/(4N
2)

=
1

4nd2n

which goes to zero by the hypothesis nd2n → ∞. The proof is then complete.

Proof of Proposition 3.3. The proof is an adaptation of Lemma 8.1 in Ghosal
et al. (2000) and of the proof of Theorem 2.1 therein. It goes along by first
showing that, for any ε and for Π̃1, . . . , Π̃N independent probability measures
concentrated on the sets B(ε, f0,1), . . . , B(ε, f0,N ), it is that for every δ > 0,

P0

{ N∏
j=1

∫ ∏
i∈Ij

f(Yi)

f0,j(Yi)
Π̃j(df) ≤ exp(−(1 + δ)nε2)

}
≤ 1

δ2nε2
. (A.5)

Recall the notation for Pn,j g = 1
nj

∑
i∈Ij

g(Yi) and P0,j g =
∫
g(y)f0,j(y)dy, so

that P0[Pn,j g] = P0(P0[Pn,j g|nj ]) = P0,j g. By Jensen’s inequality applied to
the logarithm,

log

∫ ∏
i∈Ij

f(yi)

f0,j(yi)
Π̃j(df) ≥

∑
i∈Ij

∫
log

f(yi)

f0,j(yi)
Π̃j(df)

= njPn,j

∫
log

f

f0,j
Π̃j(df)

so the left hand side of (A.5) is

≤ P0

{ N∑
j=1

njPn,j

∫
log

f

f0,j
Π̃j(df) ≤ −(1 + δ)nε2

}

= P0

{ N∑
j=1

nj(Pn,j − P0,j)

∫
log

f

f0,j
Π̃j(df)

≤ −(1 + δ)nε2 −
N∑
j=1

njP0,j

∫
log

f

f0,j
Π̃j(df)

}

≤ P0

{ N∑
j=1

nj(Pn,j − P0,j)

∫
log

f

f0,j
Π̃j(df) ≤ −δnε2

}

where the last inequality follows by an application of Fubini’s theorem together
with the assumptions on Π̃j being supported on Bj,ε, i.e.

P0,j

∫
log(f/f0,j) Π̃j(df) ≥ −ε2.
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Now write

P0

{ N∑
j=1

nj(Pn,j − P0,j)

∫
log

f

f0,j
Π̃j(df) ≤ −δnε2

}

=
∑
n1:N

P0

{ N∑
j=1

nj(Pn,j − P0,j)

∫
log

f

f0,j
Π̃j(df) ≤ −δnε2 |n1:N

}
P0(n1:N )

and use Chebichev’s inequality to get the following upper bound for the left
hand side of (A.5)

1

δ2n2ε4

∑
n1:N

Var

( N∑
j=1

nj(Pn,j − P0,j)

∫
log

f

f0,j
Π̃j(df)

∣∣∣∣n1:N

)
P0(n1:N )

=
1

δ2n2ε4

∑
n1:N

[ N∑
j=1

Var

(
nj(Pn,j − P0,j)

∫
log

f

f0,j
Π̃j(df)

∣∣∣∣n1:N

)]
P0(n1:N )

≤ 1

δ2n2ε4

∑
n1:N

[ N∑
j=1

njP0,j

(∫
log

f0,j
f

Π̃j(df)

)2]
P0(n1:N )

≤ 1

δ2n2ε4

∑
n1:N

[ N∑
j=1

njP0,j

∫ (
log

f0,j
f

)2

Π̃j(df)

]
P0(n1:N )

where in the last inequality Jensen’s inequality has been used. By Fubini’s theo-
rem and the assumptions on Π̃j , P0,j

∫
[log(f0,j/f)]

2Π̃j(df) ≤ ε2, hence the last
display is

≤ 1

δ2n2ε4

∑
n1:N

N∑
j=1

njε
2P0(n1:N ) =

1

δ2n2ε4
nε2 =

1

δ2nε2

so that (A.5) is proved.
Next, for the constant C ′ in (2.5),

P0

{ N∏
j=1

∫ n∏
i=1

f(yi)

f0,j(yi)
1Cj (xi) Π̃j(df) ≥ exp

(
− (1 + δ + C ′)nε̃2n/N

)}

≥ P0

{ N∏
j=1

Π̃j(B(ε̃n/N , f0,j))

∫
B(ε̃n/N ,f0,j)

n∏
i=1

f(yi)

f0,j(yi)
1Cj (xi)

Π̃j(df)

Π̃j(B(ε̃n/N , f0,j))

≥ exp

(
− (1 + δ + C ′)nε̃2n/N

)}

≥ P0

{
e−C′nε̃2n/N

N∏
j=1

∫
B(ε̃n/N ,f0,j)

n∏
i=1

f(yi)

f0,j(yi)
1Cj (xi)

Π̃j(df)

Π̃j(B(ε̃n/N , f0,j))

≥ exp

(
− (1 + δ + C ′)nε̃2n/N

)}
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= P0

{ N∏
j=1

∫
B(ε̃n/N ,f0,j)

n∏
i=1

f(yi)

f0,j(yi)
1Cj (xi)

Π̃j(df)

Π̃j(B(ε̃n/N , f0,j))

≥ exp
(
− (1 + δ)nε̃2n/N

)}

where (2.5) has been used in the third inequality. The integral on the left hand
side is with respect to the prior Π̃j restricted on the set B(ε̃n/N , f0,j), so we
can use (A.5) for ε = ε̃n/N . The last probability is then lower bounded by
1− 1/(δ2nε̃2n/N ) ↑ 1. The proof is then complete.

Lemma A.1. Under (2.2), for all j and N sufficiently large,

sup
x∈Cj

∫
R

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)r

dy � N−2, r = 1, 2.

Proof. We start off dealing with r = 1 and fix an x ∈ Cj . By the convexity of
− log(·), Jensen’s inequality gives

log
f0(y|x)
f0,j(y)

≤ 1

Q(Cj)

∫
Cj

log
f0(y|x)
f0(y|x′)

q(x′)dx′ (A.6)

and hence

∫
R

f0(y|x) log
f0(y|x)
f0,j(y)

dy ≤
∫
R

f0(y|x)
1

Q(Cj)

∫
Cj

log
f0(y|x)
f0(y|x′)

q(x′)dx′ dy

=
1

Q(Cj)

∫
Cj

∫
R

f0(y|x) log
f0(y|x)
f0(y|x′)

dy q(x′)dx′

≤ sup
x′∈Cj

∫
R

f0(y|x) log
f0(y|x)
f0(y|x′)

dy,

where Fubini’s theorem has been used to derive the equality. The thesis follows
by (2.2) and (1.2).

Now we deal with the case r = 2. We can not use Jensen’s inequality since
[log(a/b)]2 is not convex in b. Hence, we need to split the integral into two parts.
As before, fix an x ∈ Cj , and write

∫
R

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy =

∫
A

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy

+

∫
B

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy

where

A =

{
y : f0(y|x)

f0,j(y)
> 1

}
and B =

{
y : f0(y|x)

f0,j(y)
≤ 1

}
.
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For y ∈ A, we can use (A.6) to get

0 <

(
log

f0(y|x)
f0,j(y)

)2

≤
(

1

Q(Cj)

∫
Cj

log
f0(y|x)
f0(y|x′)

q(x′)dx′
)2

.

A second application of Jensen’s inequality yields(
log

f0(y|x)
f0,j(y)

)2

≤ 1

Q(Cj)

∫
Cj

(
log

f0(y|x)
f0(y|x′)

)2

q(x′)dx′

so that ∫
A

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy

≤
∫
A

f0(y|x)
1

Q(Cj)

∫
Cj

(
log

f0(y|x)
f0(y|x′)

)2

q(x′)dx′ dy

=
1

Q(Cj)

∫
Cj

∫
A

f0(y|x)
(
log

f0(y|x)
f0(y|x′)

)2

dy q(x′)dx′

≤ sup
x′∈Cj

∫
A

f0(y|x)
(
log

f0(y|x)
f0(y|x′)

)2

dy

≤ sup
x′∈Cj

∫
R

f0(y|x)
(
log

f0(y|x)
f0(y|x′)

)2

dy.

For y ∈ B we can use the fact that | log x| ≤ 2|x1/2 − 1| for x ≥ 1 so that∫
B

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy ≤ 4

∫
B

f0(y|x)
(
1−

√
f0,j(y)/f0(y|x)

)2

dy

≤ 4H2(f0(·, x), f0,j)

≤ 4
1

Q(Cj)

∫
Cj

H2(f0(·, x), f0(·|x′))q(x′)dx′

≤ 4 sup
x′∈Cj

H2(f0(·, x), f0(·|x′))

≤ 4 sup
x′∈Cj

∫
R

f0(y|x) log
f0(y|x)
f0(y|x′)

dy,

where we have used H2(f, g) =
∫
f{1− (g/f)1/2}2 in the second inequality, the

convexity of the Hellinger distance together with Jensen’s inequality in the third
inequality, and H2(f, g) ≤

∫
f log(f/g) in the last inequality. We conclude that,

for any x ∈ Cj ,∫
R

f0(y|x)
(
log

f0(y|x)
f0,j(y)

)2

dy ≤ sup
x′∈Cj

∫
R

f0(y|x)
(
log

f0(y|x)
f0(y|x′)

)2

dy

+ 4 sup
x′∈Cj

∫
R

f0(y|x) log
f0(y|x)
f0(y|x′)

dy

The thesis follows again by (2.2) and (1.2).
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