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1. Introduction

With the development of technology and advance of complex data, functional
data analysis (FDA) has received much attention in recent years, where the
primary unit of observation is a curve or, in general, a function. For a gen-
eral view of FDA, we refer the reader to Ramsay and Silverman [39], Ferraty
and Vieu [11], Bosq [4], Horváth and Kokoszka [16], Hsing and Eubank [17].
Functional regression is a useful tool in FDA. Based on the type of variables,
regression in FDA can be classified into three broad groups: scalar-on-function
(scalar responses and functional predictors), function-on-scalar (functional re-
sponses and scalar predictors), and function-on-function (functional responses
and functional predictors). Many methods have been developed for scalar-on-
function and function-on-scalar regression models, including but not limited to
Ramsay and Dalzell [38], Cardot et al. [6], Brown et al. [5], Ratcliffe et al. [41],
Ramsay and Silverman [39], Reiss and Ogden [43], Marx and Eilers [28], James
[20], Müller and Stadtmüller [32], Goldsmith et al. [13] for linear or general-
ized linear scalar-on-function regression models, James and Silverman [21], Li
and Marx [24], Yao and Müller [53], McLean et al. [29] for non-linear scalar-on-
function regression models, and Hart and Wehrly [15], Faraway [10], Guo et al.
[14], Lin et al. [25], Morris and Carroll [31], Reiss et al. [42] on function-on-scalar
regression models.

In this paper, we consider the following function-on-function linear regression
model (in population level)

y(t) = μ(t) +

Q∑
q=1

∫
Sq

βq(t, sq)zq(sq)dsq + ε(t), t ∈ T , (1.1)
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where Sq and T are finite intervals. z1(s1), z2(s2), · · · , zQ(sQ) are Q predictive
curves, y(t) is the response curve, and β1(t, s1), β2(t, s2), · · · , βQ(t, sQ) are Q
nonrandom integral kernel functions. No restrictions are imposed on the covari-
ance function of the noise ε(t) and various within correlation structures in ε(t)
are allowed.

Some work has been done for the linear function-on-function regression model
with one predictor curve (in this case, we remove the subscript q). Ramsay and
Dalzell [38] first used piecewise Fourier bases for β(t, s), and Ramsay and Sil-
verman [39] discussed the method of double expansion of the coefficient surface
with basis function:

∑∞
k=1

∑∞
l=1 bklηk(s)θl(t), where {ηk(s) : k ≥ 1} are ba-

sis functions for s ∈ S, {θl(t) : l ≥ 1} are basis functions for t ∈ T , and
{bkl : k, l ≥ 1} are the coefficients. Various basis functions can be used in the
expansion such as the B-spline basis and the Fourier basis. Yao et al. [54] and
Wu and Müller [52] used the eigenfunctions of the covariance functions of x(s)
and y(t) for basis expansion. Ivanescu et al. [18] considered the model (1.1) with
Q > 1 by representing the function-on-function regression model as a penalized
additive model and then fitting the additive model. Scheipl et al. [46] extended
the method in Ivanescu et al. [18] and proposed additive regression models for
correlated functional responses, allowing functional random effects. Wang [51]
developed a linear mixed function-on-function regression model and estimated
parameters by maximizing the log likelihood via the ECME algorithm.

With its ability to extract local features of curves at different levels of resolu-
tion and the sparsity of the coefficient vector, wavelet transformation has been
used in functional regression models. Brown et al. [5], Malloy et al. [27], Zhao
et al. [55], Luo and Qi [26] considered the scalar-on-function models. They
conducted wavelet transformations on predictive curves and transformed the
scalar-on-function models into regression models with scalar responses and high
dimensional multivariate predictors. Brown et al. [5] and Malloy et al. [27] built
Bayesian models and regularized the regression coefficients by placing a spike-
and-slab prior, a mixture of a normal distribution and a point mass at zero,
on coefficients. Zhao et al. [55] applied the LASSO [49] to make feature selec-
tion and fit the high-dimensional regression model. Luo and Qi [26] proposed a
penalized generalized eigenvalue problem to fit the high-dimensional regression
model. Meyer et al. [30] considered function-on-function regression models with
multilevel functional data. They transformed both the predictive and response
curves to wavelet space and conducted variable selection in the Bayesian frame-
work by assuming a spike-and-slab prior on the regression coefficients and vague
proper priors on the variance components.

In this paper, we first apply the wavelet transformation to the functional
predictors and transform the original function-on-function model (1.1) to a
linear model with functional response and high dimensional multivariate pre-
dictor variable. With n observations, the transformed model has the form:
Y(t) = μ(t)1n + Xβ(t) + ε(t), where 1n is the n-dimensional vector with all
elements equal to one, X is an n×p matrix of wavelet coefficients of the original
predictive curves,Y(t) = (y1(t), · · · , yn(t))T is the vector of n observed response
functions and β(t) = (β1(t), · · · , βp(t))

T is the vector of p coefficient functions.
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For the transformed model, we propose a signal compression approach. Based on
the best finite dimensional approximation to the signal function Xβ(t), we es-
tablish an expansion of β(t) which has the form

∑∞
j=1 αjwj(t) and enjoys good

prediction properties, where αj is a p-dimensional vector and wj(t) is a func-

tion. For any k, the truncated expansion
∑k

j=1 αjwj(t) has nearly the smallest

prediction errors among all k-dimensional estimates of form
∑k

j=1 bjvj(t) for
arbitrary bj ∈ R

p and vj(t). To estimate this expansion, we propose a penalized
generalized eigenvalue problem to estimate αj , followed by a penalized least
squares problem to estimate wj(t). We provide the oracle inequalities for our
estimates. Simulation studies in various settings for both one and multiple pre-
diction curves demonstrated that our approach has good predictive performance
and is efficient in dimension reduction.

The rest of the paper is organized as follows. In Section 2, we discuss the
wavelet transformation of model (1.1). Then for the transformed model, we in-
troduce the signal compression approach in Section 3. The theoretical properties
will be provided in Section 4. Simulation studies in various settings and appli-
cation studies are provided in Sections 5 and 6, respectively. We summarize this
paper in Section 7 and provide proofs for two theorems in Appendix. All the
other proofs and additional simulations and figures are available in the authors’
webpage.

2. Wavelet transformation

For notational convenience, without loss of generality, we assume that T = [0, 1]
and Sq = [0, 1] for q = 1, . . . , Q, in the model (1.1). For the general theory
of wavelets and its application in statistics, we refer the reader to the books
Daubechies et al. [8] and Nason [33]. Let ψ(x) denote a wavelet function (also
called the mother wavelet) and φ(x) denote a scaling function (also called the
father wavelet). They are chosen to have compact supports (i.e. they are equal
to zero outside a bounded interval) (see Chapters 5 and 6 in Daubechies et al.
[8] and Sections 2.3 and 2.4 in Nason [33]). Let

φk(s) = φ(s− k), ψj,k(s) = 2j/2ψ(2js− k),

where j = 0, 1, 2, · · · and k = 0,±1,±2 · · · . The two indices j and k represent the
dilation and translation, respectively. Then all these functions form a complete
orthonormal basis of L2(R). A larger j indicates that the basis function ψj,k(s)
has a smaller support interval and a finer resolution. We expand the predictive
curves in the model (1.1) using this wavelet basis,

zq(s) =
∞∑

k=−∞
x̃q
kφk(s) +

∞∑
j=0

∞∑
k=−∞

xq
jkψjk(s),

where x̃q
k =

∫ 1

0
zq(s)φk(s)ds and xq

jk =
∫ 1

0
zq(s)ψjk(s)ds are the wavelet coeffi-

cients. With this wavelet expansion, we have
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0

βq(t, s)zq(s)ds =

∞∑
k=−∞

x̃q
kβ̃

q
k(t) +

∞∑
j=0

∞∑
k=−∞

xq
jkβ

q
jk(t),

where β̃q
k(t) =

∫ 1

0
βq(t, s)φk(s)ds and βq

jk(t) =
∫ 1

0
βq(t, s)ψjk(s)ds. Since βq(t, s)

is smooth, both β̃q
k(t) and βq

jk(t) are smooth functions. Because φ(s) has a

bounded support and β̃q
k(t) =

∫ 1

0
βq(t, s)φk(s)ds =

∫ 1

0
βq(t, s)φ(s − k)ds, when

the absolute value of k is large enough, we have φ(s − k) = 0 for all 0 ≤ s ≤ 1

and hence β̃q
k(t) = 0. Similarly, given j ≥ 0, βq

jk(t) is a nonzero function only for

a finite number of k’s. We define the sets K = {k : β̃q
k(t) is a nonzero function}

and Kj = {k : β̃q
jk(t) is a nonzero function} for each j ≥ 0. Moreover, in this

paper, we assume that βq
jk(t) = 0 for all j with 2j large enough for the following

two reasons. First, because

xq
jk =

∫ 1

0

zq(s)ψjk(s)ds = 2−j/2

∫ b

a

zq(2
−j(u+ k))ψ(u)du,

where the interval [a, b] is the support of ψ(s) (i.e. ψ(s) = 0 for all s �∈ [a, b]).
Then xq

jk only depends on the values of zq(s) on an interval shorter than

(b − a)/2j . In practice, the curves are all discretely observed. When 2j is suf-
ficiently large so that (b − a)/2j is less than the distance between the adja-
cent observation points, we cannot calculate xq

jk and obtain information about

xq
jkβ

q
jk(t). In this case, we can view the term xq

jkβ
q
jk(t) as random noise. Second,

since we have assumed that βq(t, s) is smooth, the wavelet coefficients have the
l1 sparsity property in that the sum of the absolute values of these coefficients
have a relatively small value. Moreover, βq

jk(t) decreases fast as j increases.

Thus,
∑∞

k=−∞ x̃q
kβ̃

q
k(t) +

∑M
j=0

∑∞
k=−∞ xq

jkβ
q
jk(t) will be a good approximation

to βq(t, s) when 2M is large. Based on these two reasons, we assume∫ 1

0

βq(t, s)zq(s)ds =
∑
k∈K

x̃q
kβ̃

q
k(t) +

M∑
j=0

∑
k∈Kj

xq
jkβ

q
jk(t). (2.1)

There are only finite nonzero terms in this expansion. To simplify notation,
in the following, we use a single index to replace the triple index (q, j, k) and

denote the expansion
∑

k∈K x̃q
kβ̃

q
k(t) +

∑M
j=0

∑
k∈Kj

xq
jkβ

q
jk(t) by

∑p
l=1 xlβl(t),

where p is the total number of nonzero terms in this expansion. Then the model
(1.1) is transformed to y(t) = μ(t) +

∑p
l=1 xlβl(t) + ε(t). Since p is typically

large, the transformed model is a linear model with functional response and
high-dimensional multivariate predictors.

Suppose that we have n independent observations {yi(t), ziq(s), 1 ≤ q ≤ Q},
1 ≤ i ≤ n, from the model (1.1). In this paper, we consider the case that for
each 1 ≤ q ≤ Q, the sample curves, ziq(s), 1 ≤ i ≤ n, are observed at a common
dense set of points in [0, 1]. The set of observation points can be different for
different q. The response curves yi(t), 1 ≤ i ≤ n, are also densely observed at a
common set in [0, 1]. If for any 1 ≤ q ≤ Q, the observation points for ziq(s) are
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equally spaced and the number of the observation points is Nq = 2Mq for some
positive integer Mq, then we apply the discrete wavelet transformation (DWT)
(Nason [33]) which converts the 2Mq -dimensional vector of discrete observations
of ziq(s) to a 2Mq -dimensional wavelet coefficient vector. In simulations and
applications of this paper, we use the package “wavethresh” (Nason [34]) of
the R software (R Core Team [37]) and choose the default Daubechies least-
asymmetric wavelet basis functions with filter number ten (Section 2.5.1 in
Nason [33]). If the observation points of ziq(s) are not equally spaced or the
number of the observation points Nq is not a power of 2, we first approximate
ziq(s) by a basis expansion using the method in Chapter 5 in Ramsay and
Silverman [39]. The details are provided in Section 6. Then we use the values of
the approximation function at 2Mq equally spaced points as new observations
and make the DWT transformation. To choose Mq, we note that if Mq is too
small, we may lose information in the original discrete observations of ziq(s); if
Mq is too large, extra noise will be introduced. To make a balance, we choose
Mq satisfying 2Mq−1 < Nq < 2Mq .

For the i-th observation, we concatenate the wavelet coefficient vectors for
ziq(s), 1 ≤ q ≤ Q, into a new vector xi = (xi1, xi2, · · · , xip)

T. Then we have
yi(t) = μ(t) +

∑p
l=1 xilβl(t) + εi(t), 1 ≤ i ≤ n. Let Y(t) = (y1(t), · · · , yn(t))T,

X = [x1, · · · ,xn]
T, β(t) = (β1(t), · · · , βp(t))

T and ε(t) = (ε1(t), · · · , εn(t))T.
Then we have

Y(t) = μ(t)1n +Xβ(t) + ε(t). (2.2)

In this paper, as in Bickel et al. [3], we will assume that X is a nonrandom
matrix and the columns of X have mean zero. Throughout this paper, we use
‖ · ‖L2 to denote the L2-norm in L2[0, 1], and ‖ · ‖1 and ‖ · ‖2 to denote the l1

and l2-norm for vectors, respectively.

3. Signal compression approach

3.1. Expansion based on signal compression

Prediction based on model (2.2) is closely related to finding an efficient ap-
proximation to the signal Xβ(t). Since Xβ(t) is an n-dimensional vector of
functions of t, we define an L2 norm for a vector of functions. Let d be any
integer and M(t) = (m1(t), · · · ,md(t))

T be a vector of functions. We define

‖M‖L2 =
√∑d

j=1

∫ 1

0
mj(t)2dt =

√∑d
j=1 ‖mj‖2L2.

We will find a sequence of functions, w1(t), w2(t), · · · , in L2[0, 1] and a se-

quence of n-dimensional vectors t1, t2, · · · , such that for any k ≥ 1,
∑k

j=1 tjwj(t)
is the best k-dimensional approximation to Xβ(t) in the sense that

‖Xβ −
k∑

j=1

tjwj‖2L2 = min
rj∈R

n,vj(t)∈L2[0,1],
1≤j≤k

‖Xβ −
k∑

j=1

rjvj‖2L2 , (3.1)
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where the minimum is taken over all possible functions {v1(t), · · · , vk(t)} in

L2[0, 1] and all possible n-dimensional vectors {r1, · · · , rk}. So
∑k

j=1 tjwj(t)
has the smallest approximation error among all k-dimensional approximations.
To find these two sequences, we consider the generalized singular value decom-
position (SVD) of Xβ(t),

Xβ(t) = σ1γ1u1(t) + σ2γ2u2(t) + · · ·+ σKγKuK(t), (3.2)

where σ1 ≥ σ2 ≥ · · · ≥ σK > 0 is the collection of all positive singular values
of Xβ(t) (K is infinity if all σk > 0), γk ∈ R

n and uk(t) ∈ L2[0, 1] are the
left-singular vector and the right-singular function corresponding to σk with
‖γk‖2 = 1 and ‖uk(t)‖L2 = 1, respectively. Then {γ1, · · · ,γK} are orthogonal

to each other, and so are {u1(t), · · · , uK(t)}. We have
∫ 1

0
Xβ(t)uk(t)dt = σkγk.

By the Eckart-Young Theorem,
∑k

j=1 σkγkuk(t) is the best k-dimensional ap-
proximation to Xβ(t). For any 1 ≤ k ≤ K, we define

wk(t) =
σk√
n
uk(t), αk =

n

σ2
k

∫ 1

0

β(t)wk(t)dt, (3.3)

where αk is a p-dimensional vector and the integral is coordinate-wise. Let

tk = Xαk =
n

σ2
k

X

∫ 1

0

β(t)wk(t)dt =

√
n

σk

∫ 1

0

Xβ(t)uk(t)dt =
√
nγk. (3.4)

Then by (3.3) and (3.4),
∑k

j=1 tjwj(t) =
∑k

j=1 Xαjwj(t) =
∑k

j=1 σjγjuj(t) is
the best k-dimensional approximation to Xβ(t) for any 1 ≤ k ≤ K. Let

βk(t) = α1w1(t) +α2w2(t) + · · ·+αkwk(t), 1 ≤ k ≤ K. (3.5)

Then β(t) = βK(t) =
∑K

k=1 αKwK(t) is an expansion of β(t) and βk(t), k < K,
is the truncated expansion. We will show in Theorem 4.1 that βk(t) has nearly
the smallest prediction error among all k-dimensional expansions.

As a dimension reduction tool, the principal component analysis (PCA) has
been conducted on the wavelet coefficients X in Johnstone and Lu [22], Røislien
and Winje [45], Meyer et al. [30]. This dimension reduction procedure only in-
volves the predictor variables and does not depend on the coefficient functions.
For our decomposition, by (3.3), wk(t) is proportional to the k-th right eigen-
function in the SVD of Xβ(t), hence it is also an eigenfunction of the sample
covariance function of Xβ(t). So the proposed decomposition can be viewed as
a PCA procedure of the signal function Xβ, which not only depends on X, but
also is adaptive to the coefficient functions. The wk(t)’s capture the major vari-
ations in the signal function. As we do not make restrictions on the covariance
function of ε(t), in general, {wk(t) : 1 ≤ k ≤ K} are not the eigenfunctions of
the covariance function of Y(t). To estimate the decomposition (3.5), below we
propose a penalized generalized eigenvalue problem to estimate αk, and then
estimate wk(t) by solving a penalized least squares problem.
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3.2. Estimation of αk

Define

Z =
1√
n
X, Ξ =

1

n

∫ 1

0

(Xβ(t))(Xβ(t))Tdt = Z

(∫ 1

0

β(t)β(t)Tdt

)
ZT, (3.6)

S =
1

n
XTX = ZTZ, B = ZTΞZ = S

(∫ 1

0

β(t)β(t)Tdt

)
S ,

where the integrals are coordinate-wise. Then S is the p× p sample covariance
matrix of X, and the p × p matrix B and n × n matrix Ξ are symmetric and
nonnegative definite. The following theorem provides a way to estimate αk.

Theorem 3.1. (a). We have K ≤ min{n, p}. For any 1 ≤ k ≤ K, αk defined
in (3.3) is the solution to the following generalized eigenvalue problem,

max
α∈Rp

αTBα, subject to αTSα = 1, αT
l Sα = 0, (3.7)

for all 1 ≤ l ≤ k − 1.
(b). Ξ has exactly K positive eigenvalues μ1(Ξ) ≥ μ2(Ξ) ≥ · · · ≥ μK(Ξ) > 0.

Moreover, the singular values in (3.2) satisfy σk =
√
nμk(Ξ), 1 ≤ k ≤ K,

and the maximum value of (3.7) is equal to αT
kBαk = μk(Ξ) = σ2

k/n.
(c). For any 1 ≤ k ≤ K, the approximation error of the best k dimensional

approximation to Xβ(t) is

1

n
‖Xβ −

k∑
i=1

σiγiui‖2L2 =
1

n

∥∥∥∥∥Xβ −X
k∑

i=1

αiwi

∥∥∥∥∥
2

L2

(3.8)

=
1

n
‖Xβ −Xβk‖2L2 =

1

n

K∑
i=k+1

σ2
i =

K∑
i=k+1

μi(Ξ).

By Theorem 3.1(b), μk(Ξ) = σ2
k/n can be viewed as a measure of the mag-

nitude of the signal in the k-th component of the SVD (3.2) of Xβ(t). Through
the SVD decomposition, the signal is compressed into the first few terms in the
decomposition as much as possible. So we call our method the wavelet based
signal compression approach (wSigComp). By (3.8), even if K is not small, as
long as μk(Ξ) decreases fast enough, Xβ(t) can be well approximated by the
first few components.

To estimate αk from samples, we define

B̂ =
1

n2
XT

{∫ 1

0

[Y(t)− ȳ(t)1n] [Y(t)− ȳ(t)1n]
T
dt

}
X (3.9)

as an estimate of B, where ȳ(t) is the sample mean of y1(t), · · · , yn(t). In high-

dimensional settings, the solution to (3.7) with B replaced by B̂ may not be a
consistent estimate of αk as both the sample size n and the dimension p of xi
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go to infinity. We recall that β(t) is the collection of all wavelet coefficients of
the smooth coefficient functions βq(t, sq), 1 ≤ q ≤ Q, in the original function-
on-function regression model (1.1). Therefore, β(t) has the sparsity property in
the l1 sense, which, together with (3.3), implies that αk is a sparse vector for
any 1 ≤ k ≤ K. So we propose a penalized generalized eigenvalue problem with
sparsity penalty to estimate αk. We propose to get the estimate α̂k of αk by
solving

max
α∈Rp

αTB̂α

αTSα+ τ‖α‖2λ
, subject to αTSα = 1, α̂T

l Sα = 0, (3.10)

for all 1 ≤ l ≤ k − 1, where ‖α‖2λ = (1− λ)‖α‖22 + λ‖α‖21, and both τ ≥ 0 and
0 ≤ λ < 1 are tuning parameters. In the penalty τ‖α‖2λ, the l2 term is used to
overcome the singularity problem of S and the l1 term encourages the sparsity
of α̂k. This penalty τ‖α‖2λ was introduced in Qi et al. [36] for sparse principal
component analysis and used in Qi et al. [35] for sparse regression and sparse
discriminant analysis.

Suppose that {yi(t), 1 ≤ i ≤ n} are observed at L common observation points
0 = t1 < t2 < · · · < tL = 1. For any continuous functions g(t), 0 ≤ t ≤ 1, we

approximate the integral by
∫ d

c
g(v)dv ≈

∑L
�=1 δ�g(t�), where {δ� : 1 ≤ � ≤

L} are weights. There are several choices for weights by different interpolation
formulas. For example, for equally spaced observation points, we can choose δ� =
1/L; for unequally spaced observation points, we can choose δ1 = (t2 − t1)/2,
δ� = (t(�+1) − t(�−1))/2 for 1 < � < L, δL = (tL − t(L−1))/2 based on the
trapezoidal formula. We use these approximations to calculate the integrals in
the expression (3.9) of B̂.

To solve the penalized optimization problem (3.10), we first note that due to
the scale-invariant property, (3.10) is equivalent to

max αTB̂α, subject to αTSα+ τ‖α‖2λ ≤ 1 and αTSα̂l = 0, (3.11)

for all 1 ≤ l ≤ k − 1. The solution to (3.11) differs from that of (3.10) only
by a scale factor. An algorithm to solve a more general optimization problem
than (3.11) has been proposed in Qi et al. [35]. We apply the algorithm to solve
(3.11) and then scale the solution to obtain the estimate α̂k.

3.3. Estimation of μ(t) and wk(t)

With the estimates α̂k, 1 ≤ k ≤ K, we next estimate μ(t) and wk(t), 1 ≤ k ≤
K. Let T = [t1, · · · , tK ] and W(t) = (w1(t), · · · , wK(t))T, where tk and wk

are the left-singular vector and right-singular function of the SVD of Xβ(t),

respectively, as seen from (3.2), (3.3) and (3.4). Since Xβ(t) =
∑K

k=1 tkwk(t) =
TW(t), the model (2.2) can be transformed to

Y(t) = μ(t)1n +

K∑
k=1

tkwk(t) + ε(t) = μ(t)1n +TW(t) + ε(t), (3.12)
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where t1, · · · , tK can be viewed as new predictors and w1(t), · · · , wK(t) are the
coefficient functions. The true value of tk is not observed but can be estimated
by t̂k = Xα̂k, 1 ≤ k ≤ K. We propose to estimate μ(t) and W(t) by regressing

Y(t) on T̂ = [̂t1, · · · , t̂K ]. It follows from the definition of wk(t) in (3.3) and the
smoothness of β(t) that {w1(t), · · · , wK(t)} are smooth functions. To take care
of this property, we use the penalized least squares method for the function-on-
scalar regression in Chapter 13 of Ramsay and Silverman [39]. Specifically, the

estimates μ̂(t) and Ŵ(t) = (ŵ1(t), · · · , ŵK(t))T are the solution to

min
ν(t),v1(t),
··· ,vK(t)

⎧⎨⎩ 1

n

∥∥∥∥∥Y − ν1n −
K∑

k=1

t̂kvk

∥∥∥∥∥
2

L2

+ η

(
‖ν′′‖2L2 +

K∑
k=1

‖v′′k‖2L2

)⎫⎬⎭ , (3.13)

where the first term is the mean squared residuals, the second term is the
smoothness penalty, and η is the smooth tuning parameter.

In a general function-on-scalar regression model, all the coefficient functions
are estimated simultaneously by solving (3.13), which leads to a heavy com-
putational load. In our situation, we can estimate μ(t) and w1(t), · · · , wK(t)
separately, which improves the computational efficiency. As t̂k = Xα̂k, due to
the constraints in (3.10), t̂Tk t̂j/n = α̂T

k Sα̂j = 1 if k = j and 0 if k �= j. So

t̂1, · · · , t̂K are orthogonal to each other and ‖t̂k‖22/n = 1. Moreover, since the
column means of X are zero, t̂k also has mean zero for any 1 ≤ k ≤ K. This
means that t̂1, · · · , t̂K are also orthogonal to 1n. Hence, the penalized least
squares problem (3.13) can be decomposed as K +1 sub-problems. Specifically,
μ̂(t) is the solution to

min
ν(t)

[
‖ν − ȳ‖2L2 + η‖ν′′‖2L2

]
, (3.14)

and for any 1 ≤ k ≤ K, ŵk(t) is the solution to

min
vk(t)

[
‖vk − ŵ0

k‖2L2 + η‖v′′k‖2L2

]
, (3.15)

where ŵ0
k(t) =

1
n t̂

T
kY(t). For any k, ŵk(t) only depends on t̂k = Xα̂k. Because

α̂k only depends on α̂1, · · · , α̂k−1 and does not depend on α̂k+1, α̂k+2, · · · ,
the estimates α̂k, ŵk(t) and β̂k(t) do not depend on the choice of the number
of components. This property helps to improve the computational efficiency in
practice.

To solve (3.14) and (3.15), we approximate the solutions by basis expansions.
Let Φ(t) = (Φ1(t), · · · ,ΦP (t))

T, where Φj , 1 ≤ j ≤ P , are P basis functions in
L2[0, 1]. Since we only observe Y(t) at t1, · · · , tL, we approximate (3.14) by the
following problem,

min
h∈Rp

[
L∑

�=1

{Φ(t�)
Th− ȳ(t�)]

2δ� + ηhT

(∫ d

c

Φ′′(t)Φ′′(t)dt

)
h

]
, (3.16)

where h is the expansion coefficient vector of μ(t). The solution of (3.16) is
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ĥ =

[
L∑

�=1

Φ(t�)Φ(t�)
Tδ� + η

∫ d

c

Φ′′(t)Φ′′(t)dt

]−1 [ L∑
�=1

Φ(t�)ȳ(t�)δ�

]
,

and the estimate μ̂(t) = Φ(t)Tĥ. We approximate (3.15) by

min
d∈Rp

[
L∑

�=1

[Φ(t�)
Td− ŵ0

� (t�)]
2δ� + ηdT

(∫ d

c

Φ′′(t)Φ′′(t)dt

)
d

]
, (3.17)

which has solution

d̂k =

[
L∑

�=1

Φ(t�)Φ(t�)
Tδ� + η

∫ d

c

Φ′′(t)Φ′′(t)dt

]−1 [ L∑
�=1

Φ(t�)ŵ
0
� (t�)δ�

]
.

Then the estimate ŵk(t) = Φ(t)Td̂k.

Finally, βk(t) is estimated as β̂k(t) = α̂1ŵ1(t) + α̂2ŵ2(t) + · · ·+ α̂kŵk(t) for

1 ≤ k ≤ K, and β(t) is estimated by β̂(t) = β̂K(t).

3.4. Choice of the number of components and tuning parameters

We first consider the choice of (τ, λ). Usually one jointly chooses two tuning
parameters in a two dimensional grid. But in our situations, the two tun-
ing parameters are not equally important. Theorem 4.2 in section 4 implies
that λ is not essential for the convergence rates in our theoretical results.
We can choose λ to be any number as long as it is bounded away from zero
and does not affect the convergence rates. On the other hand, in the penalty
τ‖α‖2λ = τ(1 − λ)‖α‖22 + τλ‖α‖21, the sparsity is mainly determined by the
l1-norm part τλ‖α‖21. Roughly speaking, the effect of (τ, λ) on the sparsity of
our estimates is mainly through their product τλ and thus a small τ with a
large λ has a similar effect as a large τ with a small λ. Hence, to improve the
computational efficiency, we do not consider all possible pairs of (τ, λ) in a two
dimensional grid. Instead, we select the parameters from a set of paired val-
ues where with the increase of τ , the value of λ also increases. Specifically,
in the following simulation studies and applications, we choose the paired-
value for (τ, λ) from 7 pairs, (0.01, 0.01), (0.05, 0.01), (0.05, 0.05), (0.1, 0.05),
(0.1, 0.1), (0.5, 0.1), (0.5, 0.2). The smoothness tuning parameter η is chosen
from {10−10, 10−8, 10−6, 10−4, 10−2, 1}.

For the i-th pair of (τ, λ), we first determine the maximum number of com-

ponents K̂i we need to calculate, 1 ≤ i ≤ 7. The optimal number of components
will be chosen between 1 and these maximum numbers. As mentioned after
Theorem 3.1, μk(Ξ) = αT

kBαk measures the signal magnitude of the k-th com-

ponent. As μ̂k(Ξ) = α̂T
k B̂α̂k is an estimate of μk(Ξ), we only compute the

first few components with large values of μ̂k(Ξ) and stop when the value be-
comes small enough. On the other hand, by Theorem 3.1 (a), the number of
components cannot exceed min(n, p). Based on these considerations, we define

K̂i = min{n, p, K̂(1)
i }, (3.18)
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where K̂
(1)
i = min

{
k > 1 :

μ̂k(Ξ)

μ̂1(Ξ) + · · ·+ μ̂k(Ξ)
≤ 0.02

}
.

So we stop solving the sequential problems (3.10) when the number of compo-
nents reaches any of the two numbers n, p, or when the ratio between μ̂k(Ξ) and
the cumulative sum μ̂1(Ξ) + · · · + μ̂k(Ξ) is less than 2%. Once we have deter-

mined the K̂i for all 1 ≤ i ≤ 7, we use the cross-validation method to determine
the tuning parameters and the optimal number of components simultaneously.
We summarize the details of the procedure in the following algorithm.

Algorithm 3.1. 1. For the i-th paired value of (τ, λ), 1 ≤ i ≤ 7, we use the

whole data set to determine K̂i by (3.18).
2. We use the five-fold cross-validation to determine the number of compo-

nents and the tuning parameters. Specifically, we split the whole data set
into five subsets and repeat the following procedure. For 1 ≤ l ≤ 5, we use
the l-th subset as the l-th validation set and all other observations as the
l-th training set. Then for the i-th pair of values for (τ, λ) and the l-th
training set,

(a) we estimate the first K̂i components, α̂
(li)
1 , . . . , α̂

(li)

K̂i
.

(b) For each 1 ≤ j ≤ 6, we use the j-th value for η and {α̂(li)
k , 1 ≤

k ≤ K̂i}, to obtain the estimates μ̂(lij)(t) and ŵ
(lij)
k (t), 1 ≤ k ≤

K̂i. Then for each 1 ≤ k ≤ K̂i, we define the estimate β̂
(lijk)

(t) =

α̂
(li)
1 ŵ

(lij)
1 (t) + · · ·+ α̂

(li)
k ŵ

(lij)
k (t) of β(t).

(c) We apply μ̂(lij)(t) and β̂
(lijk)

(t) to the l-th validation data set to

obtain the predicted curves {ŷ(lijk)m , 1 ≤ m ≤ nl} and calculate the

validation error e
(l)
ijk =

∑nl

m=1

∑L
�=1(ŷ

(lijk)
m (t�)−y

(l)
m (t�))

2δ�/nl, where

{y(l)m , 1 ≤ m ≤ nl} are the observed response curves and nl is the
number of observations in the l-th validation set.

(d) Finally, we calculate the average validation error, ēijk = (e
(1)
ijk+ · · ·+

e
(5)
ijk)/5, for the i-th pair of values for (τ, λ), the j-th value for η and
the first k components.

Let ēi0j0K0 = mini,j,k ēijk. Then the i0-th pair of values for (τ, λ) and the
j0-th value for η are chosen, and the optimal number of components is
K̂opt = K0.

4. Oracle inequalities in high-dimensional settings

Now we provide oracle inequalities for the estimates of αk, wk(t) and βk(t),
1 ≤ k ≤ K, in high-dimensional settings. These oracle inequalities hold for any
n, p and β(t) which satisfies the conditions in this section.

We introduce some notation. For any d×d symmetric and nonnegative definite
matrix M, where d is any positive integer, we define two norms, the operator
norm ‖M‖ = supv∈Rd,‖v‖2=1 ‖Mv‖2 = λmax(M) and the max norm ‖M‖∞ =
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max1≤k,l≤d |Mkl|, where Mkl is the (k, l)-th entry of M, and λmax(M) denotes
the largest eigenvalue of M. We adopt the notation in Bickel et al. [3]. For any
p-dimensional vector a = (a1, · · · , ap)T, let J(a) = {j ∈ {1, · · · , p} : aj �= 0}
denote the collection of indices of nonzero coordinates of a and M(a) = |J(a)|
denote the number of nonzero coordinates of a, where |J(a)| is the cardinality
of J(a). M(a) measures the sparsity of a. Similarly, we define J(β(t)) = {j ∈
{1, · · · , p} : βj(t) �= 0} and M(β(t)) = |J(β(t))|. Then it follows from the
definitions of αk in (3.3) and βk in (3.5) that for any 1 ≤ k ≤ K,

J(αk) ⊂ J(β(t)), M(αk) ≤ M(β(t)), M(βk(t)) ≤ M(β(t)). (4.1)

Before we provide the main results, we first show that βk(t) has nearly the
smallest prediction error among all k-dimensional estimates when n is large.
Let xnew be the vector of wavelet coefficients of a new observation of predictive
curves and has the covariance matrix Σ. The corresponding new response is
ynew(t) = μ(t) + (xnew)Tβ(t) + εnew(t), where εnew(t) is independent of xnew.

Theorem 4.1. Suppose that ‖S−Σ‖∞ ≤ C
√

ln p
n , where C is a constant which

does not depend on n and p. Let s = M(β(t)), then we have

E
[
‖μ(t) + (xnew)Tβk(t)− ynew(t)‖2L2

]
≤min

β̃k

E
[
‖μ(t) + (xnew)Tβ̃k(t)− ynew(t)‖2L2

]
+ 2s

√
ln p

n
C‖β(t)‖2L2 ,

where the minimum is taken over all possible β̃k of the forms
∑k

j=1 bjvj(t) with

arbitrary bj ∈ R
p and vj(t) ∈ L2[0, 1].

Since β(t) is the collection of the wavelet coefficient functions for βq(t, s),

1 ≤ q ≤ Q, ‖β(t)‖2L2 =
∑Q

q=1

∫ 1

0

∫ 1

0
βq(t, s)

2dtds. The term s
√

ln(p)/n is the
convergence rate of the LASSO and the Dantzig selector provided in Bickel and
Levina [2]. Since β(t) is sparse, s

√
ln (p)/n‖β(t)‖2L2 is small when n and p are

large. Thus, the prediction error of βk(t) is close to the smallest one among
all k-dimensional estimates. We assume that ‖S−Σ‖∞ ≤ C

√
ln (p)/n because

it has been shown (Equation (A14) in Bickel and Levina [2]) that
√

ln (p)/n
is the order of the max norm of the difference between the sample covariance
matrix and population covariance matrix of p-dimensional multivariate normal
distribution.

We state three regularity conditions for the main theorem. In the setting of
large p and small n, the identification problem exists for the model (2.2). That

is, there exists β̃(t) �= β(t) such that Xβ̃(t) = Xβ(t). Bickel et al. [3] imposed
the restricted eigenvalue assumptions on X. We will make the same assumption
below in Condition 1.

Condition 1. Let s = M(β(t)) and

κ = min
J0⊂{1,··· ,p},

|J0|≤s

min
0 �=δ∈Rp,∥∥∥δJc
0

∥∥∥
1
≤c‖δJ0‖1

‖Xδ‖2√
n‖δJ0‖2

,
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where c > 1 and κ > 0 are two constants, δJ0 and δJc
0
are the subvectors

of δ consisting of the coordinates of δ with indices belonging to J0 and Jc
0 ,

respectively.

Although this assumption does not lead to the identification of the model
among all possible coefficients, it makes the model identifiable among all sparse
coefficients. In fact, under this assumption, for any two sparse p-dimensional
vectors, α and α′ with sparsity M(α) ≤ s and M(α′) ≤ s, if Xα = Xα′,
then we have α = α′ (see the second remark after Theorem 7.3 in Bickel et al.
[3]). Therefore, the model (2.2) is identifiable among all vectors sparser than or

as sparse as β(t). That is, if Xβ̃(t) = Xβ(t) and M(β̃(t)) ≤ M(β(t)), then

β̃(t) = β(t). Because Xβ(t) = XβK(t) and M(βK(t)) ≤ M(β(t)) by (4.1), we
have β(t) = βK(t).

The next regularity condition is on the distribution of the random noise
function εi(t).

Condition 2. The noise functions εi(t), 1 ≤ i ≤ n, are Gaussian processes
taking values in L2[0, 1]. {ε1(t), · · · , εn(t)} have the same distribution and are
between-function independent.

Note that we do not make restrictions on the within-function covariance of
εi(t). We allow εi(t

′) and εi(t
′′) to be correlated for any 0 ≤ t′, t′′ ≤ 1. We define

the median Mε and variance σ2 for εi(t). Mε is defined to be the median of the
real-valued random variable ‖εi(t)‖L2 and the variance is defined as (Section
3.1 in Ledoux and Talagrand [23])

σ2 = sup
u(t)∈L2[0,1],‖u(t)‖L2=1

E

[{∫ 1

0

u(t)εi(t)dt

}2
]
. (4.2)

∫ 1

0
u(t)εi(t)dt is the length of the projection of εi(t) onto the direction of u(t) and

has a normal distribution. Therefore, (4.2) means that σ2 is the maximum of the
variances of the projections of εi(t) along all the possible directions in L2[0, 1].
In our theoretical development, we need to estimate the tail probabilities of the
norms of L2[0, 1]-valued Gaussian variables which can be controlled by Mε and
σ2 (Section 3.1 in Ledoux and Talagrand [23]).

Condition 3. All the diagonal elements of S = XTX/n are equal to 1. All the
positive eigenvalues, μ1(Ξ), · · · , μK(Ξ) of Ξ are different. Let

c2 = min

{
μ1(Ξ)− μ2(Ξ)

μ1(Ξ)
,

μ2(Ξ)− μ3(Ξ)

μ2(Ξ)
, · · · , μK−1(Ξ)− μK(Ξ)

μK−1(Ξ)

}
,

c3 = μ1(Ξ)/μK(Ξ).

Bickel et al. [3] assumed that the diagonal elements of S = XTX/n are equal
to 1 as they derived the oracle inequalities for the Lasso and the Dantzig selector.
This assumption can be satisfied by scaling X. The c2 measures how well the
eigenvalues of Ξ can be separated.
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We first provide upper bounds on the l1 norms (that is, the l1 sparsity) of
α̂k, 1 ≤ k ≤ K, and the oracle inequalities for them in the following theo-
rem. Although we use the same tuning parameters (τ, λ) in (3.10) for all com-
ponents for computational efficiency in practice, in our theoretical results, we
allow different tuning parameters for different components. We use (τ (k), λ(k))
to denote the tuning parameters for the k-th component, 1 ≤ k ≤ K. Let
γ̂k = Zα̂k = t̂k/

√
n, which are estimates of γk = Zαk = tk/

√
n for 1 ≤ k ≤ K.

Define � =
√

ln (p)/n and recall that s = M(β(t)).

Theorem 4.2. Assume that Conditions 1-3 hold. Suppose that

μ1(Ξ) ≥ �
2C2

0�
2s/κ2, where C0 = 2max{Mε/

√
ln 2, 2σ}, (4.3)

κ is the constant in Condition 1 and � is a constant. Let the tuning parameters
(τ (k), λ(k)), 1 ≤ k ≤ K, satisfy conditions

τ (k) =
A(k)C0�

‖α1‖1
√
μ1(Ξ)

, c−1 + δ0 < λ(k) ≤ 1, (4.4)

where A(k) and δ0 are positive constants such that c−1 + δ0 < 1, and c is the
constant in Condition 1.

(a). For the first component (k = 1), there exist constants AL
1 and �0 which

only depend on c, c2 and δ0, where c2 is the constant in Condition 3(a),

such that with probability at least 1 − 2eM
2
ε /2σ

2

p1−C2
0/4σ

2

, if A(1) ≥ AL
1

and � ≥ �0, we have

‖α̂1‖1 ≤
√
6c‖α1‖1 ≤

√
6cs/κ, (4.5)

‖α̂1 −α1‖1 ≤ 4(1 + c)(1 +
√
6c)c−1

2 A(1)C0κ
−2μ1(Ξ)−1/2�s,

1

n
‖X(α̂1 −α1)‖22 ≤ 16c−2

2 (1 +
√
6c)2(A(1)C0/κ)

2μ1(Ξ)−1�2s.

(b). For the higher order components (1 < k ≤ K), we further assume that

max
1≤k≤K

‖αk‖1 ≤ c4 min
1≤k≤K

‖αk‖1, (4.6)

κ−2μ1(Ξ)−1/2C0�s ≤ c5‖α1‖1,

where c4 and c5 are two constants. Then there exist constants �0, A
L
j <

AU
j , 1 ≤ j ≤ K, which only depend on δ0, c, c2 ∼ c5, such that with

probability at least 1 − 2eM
2
ε /2σ

2

p1−C2
0/4σ

2

, for any 1 ≤ k ≤ K, if AL
j ≤

A(j) ≤ AU
j , 1 ≤ j < k, A(k) ≥ AL

k and � ≥ �0, we have

‖α̂k‖1 ≤ Dk,1

√
s/κ, (4.7)

‖α̂k −αk‖1 ≤ Dk,4A
(k)C0κ

−2μ1(Ξ)−1/2�s,

1

n
‖X(α̂k −αk)‖22 ≤ Dk,2(A

(k)C0/κ)
2μ1(Ξ)−1�2s ,

where Dk,1, Dk,2 and Dk,4 are constants only depending on δ0, c, c2 ∼ c5.



3194 R. Luo et al.

Although we have two tuning parameters, τ (k) and λ(k), for each k, by The-
orem 4.2, λ(k) is not essential for the convergence rates. Actually, it can be any
number in a subinterval of (c−1, 1] and does not affect the convergence rates.

Next, based on Theorem 4.2, we provide the oracle inequalities for Ŵ(t),

β̂k(t), and Xβ̂k(t), 1 ≤ k ≤ K. Bickel et al. [3] provided the oracle inequality for
the coefficient vector under the l1-norm. We extend the l1 norm of a usual vector
to a vector of functions. For anyM(t) = (m1(t), · · · ,mp(t))

T, we define the L1,2-

norm: ‖M‖1,2 =
{∫ 1

0
(
∑p

i=1 |mi(t)|)2 dt
}1/2

. The L1,2-norm is stronger than the

L2-norm, that is, ‖M‖1,2 ≥ ‖M‖L2 . We will provide the oracle inequalities for

β̂k(t) and β̂(t) based on the L1,2-norm.

Theorem 4.3. Suppose that all the conditions in Theorem 4.2 hold and 0 ≤
η ≤ C0C

−1
β s−1, where Cβ = max1≤q≤Q

∫ 1

0

∫ 1

0

(
∂2βq(t,s)

∂t2

)2
dsdt and C0 is defined

in (4.3) in Theorem 4.2. Then with probability at least 1 − 2eM
2
ε /2σ

2

p1−C2
0/4σ

2

,
for any 1 ≤ K0 ≤ K, if AL

k ≤ A(k) ≤ AU
k , 1 ≤ k < K0, and A(K0) ≥ AL

K0
, we

have

‖ŵk(t)− wk(t)‖L2 ≤ Lk,1C0�
√
sκ−1, 1 ≤ k ≤ K0,

‖β̂K0
(t)− βK0

(t)‖1,2 ≤ LK0,3C0κ
−2�s,

‖Xβ̂K0
(t)−XβK0

(t)‖L2 ≤
√
nL4C0κ

−1�
√
s,

where Lk,1, Lk,3 and Lk,4 are constants only depending on A(j), 1 ≤ j ≤ k, c,
� and c2 ∼ c5. In particular, when K0 = K, we have

‖β̂(t)− β(t)‖1,2 ≤ LK,3C0κ
−2�s, ‖Xβ̂(t)−Xβ(t)‖L2 ≤

√
nLK,4C0κ

−1�
√
s.

Therefore, for any K0 ≤ K,
∑K0

k=1 Xα̂kŵk(t) is an estimate of the best K0

dimensional approximation to Xβ(t). The upper bounds of ‖β̂(t)−β(t)‖1,2 and

‖Xβ̂(t)−Xβ(t)‖L2 in Theorem 4.3 are the same as those for the Lasso and the
Dantzig selector [3] except the constants.

5. Simulation studies

We study the performance of our method for the case that there is only one
predictive curve in Section 5.1 and the case with multiple predictive curves in
Section 5.2. In all simulation studies, the predictive functions are defined in
0 ≤ s ≤ 2 with 128 equally spaced discrete observation points, and the response
functions are defined in 0 ≤ t ≤ 1 and there are 60 equally spaced observation
points.

5.1. Simulation 1: One predictive curve

In this section, we consider the model with one predictive curve and compare
our method (wSigComp) with the functional linear regression via the Principal
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Analysis by Conditional Estimation (PACE) algorithm (PACE-reg) by Yao et al.
[54], and the penalized function-on-function regression (pffr) by Ivanescu et al.
[18] and (pffr.pc) by Scheipl et al. [46]. Our method is implemented in R and use
40 cubic B-spline basis as the basis functions Φ(t) ((3.16) and (3.17) in section
3.3) for both μ(t) and ŵk(t). Both pffr and pffr.pc are implemented in the R
package “refund” (Crainiceanu et al. [7]). We use the default settings except
that we use 40 basis functions for both of them. The PACE-reg is downloaded
from http://www.stat.ucdavis.edu/PACE/. It is implemented in matlab (The
MathWorks [48]) and we use the default setting. We also consider the method
linmod for functional linear regression by Ramsay and Silverman [39], which is
implemented in the R package “fda” (J. O. Ramsay and Hooker [19]). We use
40 cubic B-spline basis for both s and t, and choose both smoothness param-
eters from {10−10, 10−8, 10−6, 10−4, 10−2, 1}. As numerical problems frequently
occurred due to the singularity of some matrices, we do not provide results from
linmod in this simulation, but will consider linmod in Section 6.1 for a real data
set.

We consider two settings similar to those in Ivanescu et al. [18]. In supple-
mentary materials on our webpage, we provide additional simulations for the
model with one predictive curve which is generated from Gaussian processes. In
Setting 1,

β(t, s) = cos(2πt) sin(πs), z(s) =

10∑
m=1

1

m2
{ς1,m sin(mπs) + ς2,m cos(mπs)} ,

for 0 ≤ s ≤ 2 and 0 ≤ t ≤ 1, where ςj,m, 1 ≤ j ≤ 2 and 1 ≤ m ≤ 10, are
independent standard normal random variables. In Setting 2,

β(t, s) =
√
ts/1.2, z(s) =

40∑
m=1

2
√
2

πm
�m sin(mπs),

for 0 ≤ s ≤ 2 and 0 ≤ t ≤ 1, where �m, 1 ≤ m ≤ 40, are independent
standard normal random variables. In both settings, the intercept function is
β0(t) = 2e−(t−1)2 , and the noise ε(t) is generated from the Gaussian process

with covariance function Σε(t, t
′) = σ2ρ{10|t−t′|}2

. We fix σ2 = 0.1 and choose
the within-function correlation ρ = 0 or 0.7. When ρ = 0, ε(t) is Gaussian white
noise. When ρ is bigger, the within-function correlation in ε(t) is stronger and
the sample noise curve is smoother. We consider all the 4 combinations of two
types of (z(s), β(t, s)) and two values of ρ. For each combination, we repeat
the following procedure 50 times. In each repeat, we generate 100 discretely
observed random samples {zi(sk), εi(t�)|1 ≤ i ≤ 100, 1 ≤ k ≤ 128, 1 ≤ � ≤ 60},
where {sk, 1 ≤ k ≤ 128} is the set of equally spaced observation points in [0, 2]
and {t�, 1 ≤ � ≤ 60} is the set of equally spaced observation points in [0, 1].
Then we calculate yi(t�) based on the model (1.1) and use {zi(sk), yi(t�)|1 ≤
i ≤ 100, 1 ≤ k ≤ 128, 1 ≤ � ≤ 60} as the training data. Similarly the test data
set {ztesti (sk), y

test
i (t�)|1 ≤ i ≤ 500, 1 ≤ k ≤ 128, 1 ≤ � ≤ 60} is generated with

size of 500. We use the training data to choose the tuning parameters and fit
the model for each method. Then the final model is applied to the test data to

http://www.stat.ucdavis.edu/PACE/
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calculate the predicted curves ŷpredicti (t), 1 ≤ i ≤ 500. We calculate the mean
squared prediction error for this repeat by

MSPE =
1

500

500∑
i=1

{
1

60

60∑
�=1

(
ŷpredicti (t�)− ytesti (t�)

)2}
. (5.1)

We report the averages and standard deviations of the MSPEs of 50 replicates
in Table 1. In general, the wSigComp method has the smallest prediction error.
A stronger within-function correlation in ε(t) tends to increase the prediction
error of all methods. The wSigComp chooses 2 components in all cases, and
the PACE-reg chooses about 7 components for z(s) and 1 component for y(t).
The pffr.pc chooses about 8 and 15 components on average for the two settings,
respectively. The averages and standard deviations of the running time for one
repeat over 50 replicates are also provided in Table 1, which shows that the
wSigComp method is very computational efficient.

Table 1

The averages (and standard deviations) of MSPEs and running time over 50 replicates for
the simulation 1 in Section 5.1

z(s), β(t, s) ρ wSigComp pffr.pc pffr PACE-reg

Prediction Error (MSPE)

Setting 1
0 0.101(0.001) 0.110(0.006) 0.107(0.001) 0.502(0.201)
0.7 0.106(0.003) 0.117(0.008) 0.124(0.005) 0.513(0.202)

Setting 2
0 0.104(0.001) 0.129(0.011) 0.103(0.001) 0.313(0.070)
0.7 0.111(0.005) 0.137(0.010) 0.121(0.006) 0.307(0.078)

Running time in seconds

Setting 1
0 3.9(0.5) 87.9(27.2) 6567.0(5136.9) 400.1(111.6)
0.7 4.1(0.4) 106.3(37.7) 6130.3(1390.0) 454.6(222.3)

Setting 2
0 3.7(0.3) 734.0(173.3) 3582.3(1446.9) 646.5(151.2)
0.7 4.0(0.4) 684.0(124.0) 3160.7(1722.8) 508.2(199.3)

5.2. Multiple predictive curves

We consider two sets of simulation studies with multiple predictive curves. In
both simulations, we generate the predictive curves from Gaussian processes and
study the effects of the correlation between multiple predictive curves and their
smoothness on the predictive performance. We consider three types of Gaussian
processes with different smoothness levels. Their covariance functions are given
by

Σ1(s, s
′) = e−{10|s−s′|}2

, Σ2(s, s
′) =

{
1 + 20|s− s′|+ 20

3
(s− s′)2

}
e−20|s−s′|,

Σ3(s, s
′) = e−{10|s−s′|}1.5

. (5.2)

The first one in (5.2) is the squared exponential covariance function and the cor-
responding Gaussian process has mean square derivatives of all orders (Chapter
4 in Rasmussen and Williams [40]). The second one belongs to the Matérn
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class and the corresponding Gaussian process has the second order mean square
derivative. The last one is the γ-exponential covariance function with γ = 1.5
and the Gaussian process is mean square continuous but not mean square dif-
ferentiable. We plot sample curves for each of the three Gaussian processes in
Figure 1.

Fig 1. Three sample curves from the Gaussian processes generated with the covariance
function Σ1, Σ2 and Σ3 in (5.2), respectively.

In both simulations, the predictive curves z1(s), · · · , zQ(s) are generated
from the Gaussian process with one of the covariance functions in (5.2). We
model the correlation between curves z1(s), · · · , zQ(s) in the following way. Let
S be the Q × Q matrix with the (i, j)-th entry equal to ρcurve if i �= j and 1
if i = j, where 0 ≤ ρcurve ≤ 1 controls the correlation between the predictive
curves. We decompose S = ΔΔT, where Δ is a Q × Q matrix. Given one of
the covariance functions in (5.2), we generate Q independent curves u1(s), · · · ,
uQ(s) from the corresponding Gaussian process. Let

(z1(s), z2(s), · · · , zQ(s)) = (u1(s), u2(s), · · · , uQ(s))Δ
T. (5.3)

Then each of z1(s), z2(s), · · · , zQ(s) is a Gaussian process with the same co-
variance function as ui(s) and given any 0 ≤ s ≤ 2, (z1(s), z2(s), · · · , zQ(s))
is a Q-dimensional normal random vector with covariance matrix S. Therefore,
when ρcurve = 0, z1(s), z2(s), · · · , zQ(s) are independent and when ρcurve is large,
strong correlations exist among z1(s), z2(s), · · · , zQ(s). In Figure 2, we plot one
sample from (z1(s), z2(s), · · · , zQ(s)) for ρcurve = 0 and 0.7, respectively, with
Q = 4 and the covariance function Σ1. When ρcurve = 0.7, strong positive cor-
relations exist among z1(s), z2(s), · · · , zQ(s) and the sample curves show similar
trends.

For the coefficient surface functions, in one case, we specify the explicit ex-
pression for βq(t, s), 1 ≤ q ≤ Q, with Q fixed. In another case, we evaluate our
methods for different number of predictive curves Q and various βq(t, s) with
different roughness levels.

5.2.1. Simulation 2:

In this simulation, we take Q = 4, β0(t) = 0 and
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Fig 2. One sample of (z1(s), z2(s), · · · , z4(s)) defined in (5.3) for ρcurve = 0 or 0.7, respec-
tively, with covariance function Σ1.

β1(t, s) = {10(t− 0.5)(1− s)}2 , β2(t, s) = 20e−{5(t−0.5)2+3(s−1)2},

β3(t, s) = 15e−{5(t−0.5)2+5(s−0.5)2} + 20e−{5(t−0.5)2+5(s−1.5)2},

β4(t, s) = 10 sinπt sin (3πs/2),

which are plotted in Figure 3. (z1(s), z2(s), · · · , z4(s)) is generated by (5.3) with
ρcurve = 0 and 0.7, respectively. The noise ε(t) is generated in the same way
as in Section 5.1. We consider two noise levels σ2 = 0.1, 0.25, and fix ρ = 0.
The averages and standard deviations of MSPEs of 50 repeats for our method
are listed in Table 2. The averages and standard deviations of the number of
components chosen by our method are given in Table 3.

Fig 3. The plots of β1(t, s), β2(t, s), β3(t, s) and β4(t, s) in Simulation 2.

Although there are four βq(t, s), our method chooses 3 components in most of
the repeats and chooses 2 components in the others. As an example, we choose
one repeat with ρcurve = 0.7, σ2 = 0.25 and zq(s) generated using Σ1 to plot
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Table 2

The averages and standard deviations (in parenthesis) of the MSPEs of 50 repeats for our
method in Simulation 2.

Covariance of xi(s)
σ2 = 0.1 σ2 = 0.25

ρcurve = 0 ρcurve = 0.7 ρcurve = 0 ρcurve = 0.7

Σ1 0.120(0.007) 0.129(0.013) 0.283(0.009) 0.290(0.020)
Σ2 0.121(0.006) 0.129(0.010) 0.277(0.006) 0.294(0.029)
Σ3 0.121(0.003) 0.137(0.025) 0.281(0.008) 0.292(0.020)

Table 3

The averages and standard deviations (in parenthesis) of the numbers of components of 50
repeats for our method in Simulation 2.

Covariance of zq(s)
σ2 = 0.1 σ2 = 0.25

ρcurve = 0 ρcurve = 0.7 ρcurve = 0 ρcurve = 0.7

Σ1 3(0) 2.98(0.14) 3(0) 2.96(0.20)
Σ2 3(0) 3(0) 3(0) 2.88(0.33)
Σ3 3(0) 2.90(0.30) 3(0) 2.96(0.20)

Fig 4. The estimates β̂q(t, s), 1 ≤ q ≤ 4, in one repeat for ρcurve = 0.7, σ2 = 0.25 and zq(s)
with covariance function Σ1 in Simulation 2.

the estimates β̂j(t, s), 1 ≤ j ≤ 4, in Figure 4, and ŵj(t), 1 ≤ j ≤ 3 in Figure 5,
where three components were chosen. The shape of ŵ1(t) implies that the most
important variation in the signal function is in the middle of the interval [0, 1].
ŵ2(t) reflects the variations of the contrast between the values of the signal
functions in the middle and those in the two ends. The third one only account
for very small proportion of the variations in the signal function.

5.2.2. Simulation 3:

In previous simulations, Q is fixed and the coefficient surfaces βq(t, s), 1 ≤
q ≤ Q, have explicit expressions. In this section, we will consider different
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Fig 5. The estimates ŵk(t), 1 ≤ k ≤ 3, in one repeat for ρcurve = 0.7, σ2 = 0.25 and zq(s)
with covariance function Σ1 in Simulation 2.

number of predictive curves Q and test our method for various βq(t, s) with
different roughness. We note that any coefficient surface function β(s, t) can
be expanded of form β(t, s) =

∑∞
i=1 ζi(t)ξi(s), where the terms in the expan-

sion can be finite or infinite. We will first randomly generate a finite number of
pairs {(ζi(t), ξi(s)), 1 ≤ i ≤ k} and obtain a coefficient surface which is equal to∑

ζi(t)ξi(s). In this way, we can obtain various coefficient functions and control
their roughness by controlling the roughness of {(ζi(t), ξi(s))}.

Specifically, let

βq(t, s) = {ζ1q(t)ξ1q(s) + ζ2q(t)ξ2q(s) + ζ3q(t)ξ3q(s)} /q2, 1 ≤ q ≤ Q, (5.4)

where ζjq(t) (1 ≤ j ≤ 3, 1 ≤ q ≤ Q) and ξjq(t) (1 ≤ j ≤ 3, 1 ≤ q ≤ Q) are
independently generated from the Gaussian process with the same covariance
function. We consider two covariance functions: Σ1 and Σ3 in (5.2). We plot ex-
amples of the coefficient surface functions generated in (5.4) usingΣ1 andΣ3, re-
spectively, in Figure 6. We considerQ = 1, 5, 10, and 30. (z1(s), z2(s), · · · , zQ(s))
is generated from (5.3) with ρcurve = 0 or 0.7. The noise ε(t) is generated in the
same way as in Simulation 1 and we fix σ2 = 0.1 and ρ = 0. We list the aver-
ages and standard deviations of MSPEs and the number of selected components
in Tables 4 and 5, respectively. The MSPE increases as Q increases because
the model becomes more complicated. In this simulation, strong correlation be-
tween multiple functional predictors helps the predictive accuracy, especially
for a large Q. Generally, the prediction errors for a noisier βq(t, s) are larger.
But when Q = 30, the difference in the prediction errors for the two types of
coefficient surface functions is not significant. We also observe that the number
of the selected components does not always increase as Q increases. Instead, the
average number reaches the maximum atQ = 5 orQ = 10 and then is almost un-
changed or slightly decreases with further increase of Q. A possible explanation
comes from the trade-off between bias and variance. Selecting more components
reduces bias but increases variance in prediction. Given the number Q of pre-
dictive curves, there is no great difference in the running time from different
settings. When ρcurve = 0, and zq(s) and βq(t, s) are both generated by Σ3, the
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Fig 6. Examples of β(t, s) generated in (5.4) using Σ1 and Σ3, respectively, in Simulation 3.

Table 4

The averages and standard deviations (in parenthesis) of the MSPEs of 50 repeats for our
method in Simulation 3.

βq(t, s)’s are generated by Σ1

zq(s) by ρcurve Q = 1 Q = 5 Q = 10 Q = 30

Σ1
0 0.103 ( 0.001 ) 0.137 ( 0.007 ) 0.167 ( 0.018 ) 0.239 ( 0.053 )
0.7 0.103 ( 0.001 ) 0.129 ( 0.008 ) 0.145 ( 0.009 ) 0.178 ( 0.023 )

Σ2
0 0.103 ( 0.001 ) 0.133 ( 0.006 ) 0.160 ( 0.015 ) 0.234 ( 0.041 )
0.7 0.104 ( 0.001 ) 0.126 ( 0.005 ) 0.144 ( 0.010 ) 0.178 ( 0.020 )

Σ3
0 0.104 ( 0.001 ) 0.137 ( 0.007 ) 0.165 ( 0.014 ) 0.244 ( 0.045 )
0.7 0.104 ( 0.001 ) 0.129 ( 0.005 ) 0.144 ( 0.009 ) 0.177 ( 0.023 )

βq(t, s)’s are generated by Σ3

zq(s) by ρcurve Q = 1 Q = 5 Q = 10 Q = 30

Σ1
0 0.109 ( 0.002 ) 0.143 ( 0.005 ) 0.171 ( 0.015 ) 0.231 ( 0.031 )
0.7 0.110 ( 0.002 ) 0.137 ( 0.006 ) 0.151 ( 0.009 ) 0.182 ( 0.020 )

Σ2
0 0.110 ( 0.002 ) 0.142 ( 0.007 ) 0.165 ( 0.015 ) 0.230 ( 0.037 )
0.7 0.111 ( 0.003 ) 0.136 ( 0.006 ) 0.151 ( 0.009 ) 0.178 ( 0.017 )

Σ3
0 0.110 ( 0.002 ) 0.144 ( 0.006 ) 0.169 ( 0.014 ) 0.227 ( 0.030 )
0.7 0.111 ( 0.002 ) 0.137 ( 0.005 ) 0.153 ( 0.010 ) 0.184 ( 0.020 )

averages and standard deviations (in parenthesis) of the running time (including
the cross-validation procedure) in seconds over 50 repeats for Q = 1, 5, 10, 30
are 121.294 (25.563), 235.129 (85.829), 297.371 (84.89) and 498.801 (113.91),
respectively.

6. Application to real datasets

6.1. Diffusion tensor imaging data

In the human brain, white matter tracts consist of axons that connect nerve cells
and transmit information via electrical nerve impulses. Axons are surrounded by
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Table 5

The averages and standard deviations (in parenthesis) of the number of components selected
by our method in 50 repeats in Simulation 3.

βq(t, s)’s are generated by Σ1

zq(s) by ρcurve Q = 1 Q = 5 Q = 10 Q = 30

Σ1
0 3 ( 0 ) 4.756 ( 0.799 ) 4.891 ( 0.654 ) 4.491 ( 0.848 )
0.7 3 ( 0 ) 4.757 ( 0.76 ) 4.689 ( 0.612 ) 4.649 ( 0.668 )

Σ2
0 3 ( 0 ) 4.889 ( 0.622 ) 4.793 ( 0.734 ) 4.722 ( 0.763 )
0.7 3 ( 0 ) 4.794 ( 0.729 ) 4.747 ( 0.614 ) 4.712 ( 0.536 )

Σ3
0 3 ( 0 ) 4.812 ( 0.693 ) 4.791 ( 0.721 ) 4.564 ( 0.958 )
0.7 3 ( 0 ) 4.767 ( 0.568 ) 4.674 ( 0.694 ) 4.865 ( 0.715 )

βq(t, s)’s are generated by Σ3

zq(s) by ρcurve Q = 1 Q = 5 Q = 10 Q = 30

Σ1
0 3 ( 0 ) 4.769 ( 0.731 ) 4.985 ( 0.668 ) 4.921 ( 0.867 )
0.7 3 ( 0 ) 4.725 ( 0.723 ) 4.661 ( 0.71 ) 4.745 ( 0.645 )

Σ2
0 3 ( 0 ) 4.8 ( 0.67 ) 4.83 ( 0.778 ) 4.627 ( 0.72 )
0.7 3 ( 0 ) 4.653 ( 0.561 ) 4.569 ( 0.64 ) 4.745 ( 0.688 )

Σ3
0 3 ( 0 ) 4.926 ( 0.723 ) 4.939 ( 0.747 ) 4.562 ( 0.796 )
0.7 3 ( 0 ) 4.824 ( 0.623 ) 4.604 ( 0.61 ) 4.771 ( 0.722 )

a white fatty insulation called myelin, which increases the speed of transmission
of nerve signals. Changes in water diffusion in the brain could potentially be as-
sociated with demyelination, a disease of the nervous system in which the myelin
sheath of neurons is damaged. Diffusion tensor imaging (DTI) tractography [44]
is a magnetic resonance imaging technique that studies white-matter tracts by
measuring the diffusivity of water in the brain: in white-matter tracts, water
diffuses anisotropically (perfectly organized and synchronized movement of all
water molecules in one direction) in the direction of the tract, while elsewhere
water diffuses isotropically (Brownian motion). One of the diffusion measures
is fractional anisotropy (FA) which takes values between zero and one. A value
of zero means that diffusion is isotropic. A value of one means that diffusion
occurs only along the direction of the white-matter tracts and is fully restricted
along all other directions. Tievsky et al. [50], Song et al. [47], Ivanescu et al. [18]
have used FA as a proxy variable for demyelination of the white matter tracts,
and assume larger FA values are closely associated with less demyelination and
fewer lesions.

We use the DTI data in the R package “refund”, which consists of FA tract
profiles for the corpus callosum (CCA) and the right corticospinal tract (RCTS)
for 142 individuals at one or multiple visits. The individuals are either multiple
sclerosis (MS) cases or controls (MS is a demyelinating autoimmune-mediated
disease). Each profile contains two curves: the FA values along the CCA tract
and the RCTS tract from one individual in a visit. We will call them CCA curve
and RCTS curve, respectively. Using a similar data set, Goldsmith et al. [12]
predicted multiple sclerosis cases and controls based on functional predictors,
and Ivanescu et al. [18] built function-on-function regression models to study the
spatial associations between functional predictors and responses. We consider
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Fig 7. Original and centered sample curves for RCTS (z(s)) and CCA (y(t)).

a function-on-function regression model with CCA curve as the response y(t)
and RCTS curve as the predictor z(s). After removing the first 12 observation
points with a large number of missing values for RCST and then removing 6
pairs of curves with missing values, we obtain 376 sample curves for each of the
two functional variables. There are 93 observation points for y(t) and 43 points
for z(s). For simplicity, we use the relative distances, the position along the
tract divided by the length of the tract, so that y(t) and z(s) are both defined
in [0, 1]. Figure 7 displays the original and centered sample curves for RCTS
and CCA.

To evaluate the predictive performance of our method, PACE-reg, linmod, pffr
and pffr.pc on this data set, we randomly choose 200 observations as the training
data and the remaining as the test data. We repeat the following procedure 50
times. In each repeat, for PACE-reg, linmod, pffr and pffr.pc, we use exactly
the same way as in the simulation study to choose tuning parameters and fit
the model using the training set and calculate the MSPE based on the test set.
For our method, since the number of observation points of the predictive curve
z(s) is not a power of two, we first make basis expansions for the sample curves
zi(s), 1 ≤ i ≤ n, using 40 cubic B-spline basis with equally spaced knots and
the smoothing method with a roughness penalty in Chapter 5 of Ramsay and
Silverman [39]. We choose the tuning parameter for this roughness penalty from
the set {10−10, 10−8, 10−6, 10−4, 10−2, 1} by minimizing the generalized cross-
validation statistic (GCV) which is calculated using the smooth.basis function
in the R package “fda” on the training data set. Then we use the selected tuning
parameter and the function smooth.basis to calculate the basis expansions for
all the sample curves zi(s), 1 ≤ i ≤ 376. By the rule introduced in Section 2, we
evaluate these basis expansions at 26 = 64 equally spaced points and perform the
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DWT to obtain 64-dimensional wavelet coefficient vectors xi, 1 ≤ i ≤ 376, as our
predictors, using the R package “wavethresh” and the default Daubechies least-
asymmetric wavelet basis functions with filter number ten. Finally we choose
the tuning parameters and fit the model in the same way as in the simulation
studies for our method. The averages and the standard deviations of MSPEs
over 50 repeats are: wSigComp: 0.00323 (0.00016); PACE-reg: 0.00329 (0.0002);
linmod: 0.00370 (0.0002); pffr: 0.00323 (0.0002); pffr.pc: 0.00329 (0.0002). The
averages and the standard deviations of the numbers of components chosen are:
wSigComp: 4.15 (1.35); PACE-reg: 15.6 (1.62) (the PC for RCTS) and 4 (0) (the
PC for CCA); pffr.pc: 15 (0). In summary, our method uses less components and
achieves competitive prediction accuracy compared to other methods.

The most frequently chosen tuning parameters in the 50 repeats of our
method are (τ, λ) = (0.01, 0.01), η = 10−6 and K = 5. We fit a model using
these tuning parameters and all the 376 observations in this data set to obtain
the estimates α̂k and ŵk(t), 1 ≤ k ≤ 5, where α̂k is a 64-dimensional vector. To

obtain the estimate β̂(t, s) of the coefficient surface β(t, s), we use inverse DWT

to transfer α̂k back to the function space and obtain a function ψ̂k(s) for any

1 ≤ k ≤ 5. Then we have β̂(t, s) = ψ̂1(s)ŵ1(t)+ · · ·+ ψ̂5(s)ŵ5(t). We plot ψ̂k(s),

ŵk(t), and β̂(t, s) in Figure 8. For 1 ≤ k ≤ 5, ŵk(t) is the estimate of wk(t), the
k-th eigenfunction of the covariance function of the signal function. These five
components account for about 83%, 7%, 3%, 2%, 2% of the variations in the
signal function, respectively. ŵ1(t) is positive throughout the tract, and has two
peaks at 0.17 and 0.91 (the relative distance along the CCA tract), implying
that large variations in the signal part of CCA curves exist around these two lo-
cations. For any zi(s), the predicted curve ypred,i(t) for zi(s) is equal to the mean
response curve plus a linear combination of the five functions ŵ1(t), · · · , ŵ5(t)

with the coefficient of ŵk(t) given by
∫ 1

0
[zi(s)−z̄(s)]ψ̂k(s)ds. Since the first com-

ponent is the most important and ψ̂1(s) has wider peaks around s = 0.4 and
s = 0.85 (Figure 8), the predicted CCA curve will have relatively large values
if the predictor RCTS curve zi(s) has relative large values around s = 0.4 and
s = 0.85. This relationship is illustrated in Figure 9, where we plot 30 centered
predictive RCTS curves with the corresponding centered predicted CCA curves.
We draw the predicted CCA curves above the mean CCA curve in blue and those
below the mean in red. One can see that the values of z(s) in 0.25 ≤ s ≤ 0.45
have great effects on the predicted CCA curves.

6.2. Daily air quality data

The Air Quality data, available in UCI Machine Learning Repository (Bache and
Lichman [1]), were recorded by an array of five metal oxide chemical sensors em-
bedded in an air quality chemical multisensor device located in a significantly
polluted area, at road level, within an Italian city. This dataset contains the
hourly averages of the concentration values of five different atmospheric pol-
lutants in each day. The five pollutants are Nitrogen dioxide (NO2), Carbon
monoxide (CO), Non-methane hydrocarbons (NMHC), total Nitrogen Oxides
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Fig 8. The estimates: ψ̂k(s), β̂(t, s) and ŵk(t), 1 ≤ k ≤ 5, for the DTI data set.

Fig 9. Relationship between centered predictive RCTS curves and centered response CCA
curves. The centered response CCA curves are shown in blue if they are above zero, and in
red if they are below zero.
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(NOx), and Benzene(C6H6). In addition, the temperature (in Celsius) and rel-
ative humidity (in Percentages) were also recorded hourly in each day. For the
details of the experiment, we refer the reader to De Vito et al. [9]. We view
the 24 hourly averaged concentration values of each pollutant in each day as a
discretely observed curve. Together with the temperature and relative humid-
ity, we have seven functional variables. With the removal of missing values, we
obtained 355 sample curves for each of the seven functional variables. We plot
all the sample curves in Figure 10. For convenience, we scale the 24 observation
time points to the interval [0, 1].

Fig 10. The 355 sample curves for each of the seven variables in the air quality data.

To study the relationship between the five pollutants, we investigate to what
extent we can predict the daily curve of one pollutant by the other pollutants
together with the temperature and relative humidity. We take the curve of NO2

as the response and the other six curves as predictors. Since the number of
observation points for all predictive curves is 24 which is not a power of two, we
make basis expansions for the sample curves in the same way as in the analysis
of the DTI data in Section 6.1. After obtaining the basis expansions, by the rule
in Section 2, we evaluate each basis expansion at 25 = 32 equally spaced points
and perform the DWT to obtain a 32-dimensional wavelet coefficient vector for
each predictor curve. Then we combine the six wavelet coefficient vectors for
the six predictor curves into a 192-dimensional vector as our predictors. We
randomly choose 200 observations as the training data, and take the other 155
observations as the test data. After obtaining the fitted model from the training
data, we apply it to the test data and get the MSPE. In addition, for each repeat,
we also calculate the average functional R2 which has been used in Meyer et al.
[30] and can be approximately calculated by
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R2
ave =

∫ 1

0

R2(t)dt ≈
24∑
k=1

{
1−

∑200
i=1(Ytrain,i(tk)− Ŷi(tk))

2∑200
i=1(Ytrain,i(tk)− Ȳtrain(tk))2

}/
24 ,

where Ytrain,i(t) is the i-th response curve in the training set, Ŷi(t) is the corre-
sponding predicted or fitted curve, Ȳtrain(t) is the mean response curve in the
training set and 0 = t1 < t2 < · · · < t24 = 1 are 24 equally spaced observation
time points. We repeat this procedure 50 times. The average of the MSPEs in
50 iterations is 0.0089, with standard deviation of 0.0008. The average of the
R2

ave in 50 iterations is 88.0%, with standard deviation of 0.7%. The wSigComp
selects 6 components in most repeats and select 5 or 7 components in other
repeats.

Finally, we fit the model using all the 355 observations to obtain the estimates
α̂kq and ŵk(t), where α̂kq is a 32-dimensional vector corresponding to the q-th
functional predictor and the k-th component, 1 ≤ k ≤ 6 and 1 ≤ q ≤ 6. We apply
the inverse DWT to α̂k and obtain ψ̂kj(s) and then β̂q(t, s) = ψ̂1q(s)ŵ1(t)+· · ·+
ψ̂6q(s)ŵ6(t). We plot ψ̂kq(s)’s and ŵk(t)’s in Figure 11. These six components
account for about 83%, 8.5%, 3%, 2%, 1.5%, 1% of the variations in the signal
function, respectively. The first component accounts for most of the variations
and is the most important. ŵ1(t) has a peak around 0.33 corresponding to eight
o’clock in the morning, which implies that the predicted daily pollution level
of NO2 has a large variation around eight o’clock in the morning. The R2

ave for
this fitted model is 94.7%.

7. Discussion

We consider the linear function-on-function regression models with multiple
predictive curves. We first apply the wavelet transformation to the predictive
curves and transform the original model to a linear model with functional re-
sponse and high dimensional multivariate predictors. Based on the best finite
dimensional approximation to the signal part in the response curve, we find an
expansion of the vector of coefficient functions, which enjoys a good predictive
property. For any k, the truncated expansion has nearly the smallest prediction
error among all k-dimensional estimates. To estimate this expansion, we pro-
pose a penalized generalized eigenvalue problem followed by a penalized least
squares problem. We provide the sparse oracle inequalities for our estimates in
the high-dimensional settings. The choices of tuning parameters and the num-
ber of components are discussed. Simulation studies and applications to two real
data sets demonstrate that our method has good predictive performance and is
efficient in dimension reduction.

Appendix A: R code and supplementary material

The R code for wSigComp is available on http://sites.gsu.edu/rluo/software/.
Supplementary material for additional proofs and simulations is available on
http://sites.gsu.edu/rluo/publications/.

http://sites.gsu.edu/rluo/software/
http://sites.gsu.edu/rluo/publications/
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Fig 11. The estimates ψ̂kq(s) and ŵk(t), 1 ≤ k ≤ 6 and 1 ≤ q ≤ 6, for the air quality data
set.

Appendix B: Proofs of theorems

Let ε(t) = (ε1(t), · · · , εn(t))T be the vector of the noise functions. Define

ε̄(t) =
1

n

n∑
i=1

εi(t), �(t) =
1√
n
[ε(t)− ε̄(t)1n] , (B.1)

where ε̄(t) is the mean noise function and �(t) is an n-dimensional vector of
functions.

B.1. Proof of Theorem 3.1

First, by the definition of Ξ in (3.6), its rank is less than the rank of Z which is
an n× p matrix. Therefore, we have K ≤ min{n, p}.

Since γk, 1 ≤ k ≤ K, are the left-singular vectors of Xβ(t), they are the

first K eigenvectors of the matrix
∫ 1

0
(Xβ(t))(Xβ(t))Tdt with corresponding
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eigenvalue σ2
k (the squared singular value). By (3.6),

∫ 1

0
(Xβ(t))(Xβ(t))Tdt =

nΞ. Therefore, γk, 1 ≤ k ≤ K, are the first K eigenvectors of Ξ and we
have σk =

√
nμk(Ξ). Similarly, the right-singular functions uk(t), 1 ≤ k ≤ K,

are the first K eigenfunctions of the covariance function (Xβ(t))T(Xβ(s)) =
β(t)TXTXβ(s) with eigenvalues σ2

k = nμk(Ξ).
We will prove part (a) by induction. When k = 1, we first show that the

maximum value of (3.7) is less than or equal to μ1(Ξ). Let α ∈ R
p be a vector

satisfying the constraint in (3.7) with k = 1, that is, αTSα = 1. Define v = Zα.
Then we have ‖v‖22 = αTZTZα = αTSα = 1. By the definition of B in (3.6),

αTBα = αTZTΞZα = vTΞv ≤ μ1(Ξ)‖v‖22 = μ1(Ξ).

Therefore, the maximum value of (3.7) is not greater than μ1(Ξ). On the other
hand, by (3.4),

Zα1 =
1√
n
Xα1 = γ1, (B.2)

which leads to

αT
1 Bα1 = αT

1 Z
TΞZα1 = γT

1 Ξγ1 = μ1(Ξ)γT
1 γ1 = μ1(Ξ).

Hence, when k = 1, α1 is the solution to (3.7) and the maximum value is
μ1(Ξ) = σ2

1/n.
Now we assume that for any 1 ≤ j < k, αj is the solution to (3.7) with

k = j and the maximum value is αT
j Bαj = μj(Ξ). Based on this induction

hypothesis, we will prove that αk is the solution to (3.7) and the maximum
value is αT

kBαk = μk(Ξ). For any α ∈ R
p satisfying the constraints in (3.7) ,

that is, αTSα = 1 and αT
l Sα = 0 for all 1 ≤ l ≤ k − 1, let v = Zα. Then we

have ‖v‖22 = αTZTZα = αTSα = 1 and αT
l Sα = αT

l Z
TZα = γT

l v = 0 for all
1 ≤ l ≤ k − 1. Therefore, v is orthogonal to the first k − 1 eigenvectors of Ξ,
and then we have

αTBα = αTZTΞZα = vTΞv ≤ μk(Ξ)‖v‖22 = μk(Ξ).

So the maximum value of (3.7) is not greater than μk(Ξ). On the other hand,

αT
kBαk = αT

kZ
TΞZαk = γT

kΞγk = μk(Ξ)γT
k γk = μk(Ξ).

Hence, αk is the solution to (3.7) and the maximum value is αT
kBαk = μk(Ξ).

By induction, Part (a) holds for any 1 ≤ k ≤ K.
For part (b), we just need to prove that Ξ has exactly K positive eigenvalues

μ1(Ξ) ≥ μ2(Ξ) ≥ · · · ≥ μK(Ξ) > 0. Let γK+1 be the (K + 1)-th eigenvector of
Ξ with the eigenvalue μK+1(Ξ). We will show that μK+1(Ξ) = 0. Since γK+1 is
orthogonal to the first K eigenvectors γ1, · · · , γK , by the SVD decomposition
(3.2) of Xβ(t), we have (Xβ(t))TγK+1 = 0. By the definition of Ξ in (3.6), we
have μK+1(Ξ) = γK+1ΞγK+1 = 0.



3210 R. Luo et al.

For part (c), due to the orthogonality of {γ1, · · · ,γK} and {u1(t), · · · , uK(t)},

‖Xβ(t)−
k∑

i=1

σkγkuk(t)‖2L2 = ‖
K∑

i=k+1

σkγkuk(t)‖2L2 =

K∑
i=k+1

σ2 = n

K∑
i=k+1

μi(Ξ).

The proof is completed.

B.2. Proof of Theorem 4.1

First, we have

min
β̃k

E
[
‖μ(t) + (xnew)Tβ̃k(t)− ynew(t)‖2L2

]
(B.3)

= min
bj∈R

p,vj(t)∈L2[0,1],
1≤j≤k

E

⎡⎣‖ k∑
j=1

(xnew)Tbjvj(t)− (xnew)Tβ(t)− εnew(t)‖2L2

⎤⎦
= min

bj∈R
p,vj(t)∈L2[0,1],
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tbjvj(t)‖2L2

⎤⎦+E[‖εnew(t)‖2L2 ],

and similarly,

E
[
‖μ(t) + (xnew)Tβk(t)− ynew(t)‖2L2

]
(B.4)

=E
[
‖(xnew)Tβ(t)− (xnew)Tβk(t)‖2L2

]
+ E[‖εnew(t)‖2L2 ].

Next, (xnew)Tβ(t) is a stochastic process in [0, 1] and its Karhunen-Loève
expansion is given by (xnew)Tβ(t) =

∑∞
k=1 Zkφk(t), where φk(t) is the k-th

eigenfunction of the covariance function of (xnew)Tβ(t) and

Zk =

∫ 1

0

(xnew)Tβ(t)φk(t)dt = (xnew)Tb0
k, b0

k =

∫ 1

0

β(t)φk(t)dt. (B.5)

It is well known that the truncated Karhunen-Loève expansion has the minimum
mean integrated squared error. That is, for any k ≥ 1, we have

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦
= min

Z̃j ,vj(t),
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

Z̃jvj(t)‖2L2

⎤⎦ ,

where the minimum is taken over all possible random variables Z̃j and all pos-
sible nonrandom function vj(t), 1 ≤ j ≤ k. Therefore, we have

min
bj∈R

p,vj(t)∈L2[0,1],
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tbjvj(t)‖2L2

⎤⎦
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≤E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦
= min

Z̃j ,vj(t),
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

Z̃jvj(t)‖2L2

⎤⎦
≤ min

bj∈R
p,vj(t)∈L2[0,1],
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tbjvj(t)‖2L2

⎤⎦ ,

which implies

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦
= min

bj∈R
p,vj(t)∈L2[0,1],
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tbjvj(t)‖2L2

⎤⎦ . (B.6)

On the other hand, by (B.5), we have M(β(t)) = M
(
β(t) −∑k

j=1(x
new)Tbjvj(t)

)
. Then we have∣∣∣∣∣∣E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦− 1

n
‖Xβ(t)−

k∑
j=1

b0
jφj(t)‖2L2

∣∣∣∣∣∣
(B.7)

=

∣∣∣∣∣∣
∫ 1

0

⎛⎝β(t)−
k∑

j=1

b0
jφj(t)

⎞⎠Σ

⎛⎝β(t)−
k∑

j=1

b0
jφj(t)

⎞⎠ dt

−
∫ 1

0

⎛⎝β(t)−
k∑

j=1

b0
jφj(t)

⎞⎠S

⎛⎝β(t)−
k∑

j=1

b0
jφj(t)

⎞⎠ dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0

⎛⎝β(t)−
k∑

j=1

b0
jφj(t)

⎞⎠ (S−Σ)

⎛⎝β(t)−
k∑

j=1

b0
jφj(t)

⎞⎠ dt

∣∣∣∣∣∣
≤‖S−Σ‖∞

∫ 1

0

‖β(t)−
k∑

j=1

b0
jφj(t)‖21dt

≤‖S−Σ‖∞M

⎛⎝β(t)−
k∑

j=1

(xnew)Tbjvj(t)

⎞⎠∫ 1

0

‖β(t)−
k∑

j=1

b0
jφj(t)‖22dt

=‖S−Σ‖∞M(β(t))‖β(t)−
k∑

j=1

b0
jφj(t)‖2L2



3212 R. Luo et al.

≤‖S−Σ‖∞M(β(t))‖β(t)‖2L2 ≤ C‖β(t)‖2L2M(β(t))

√
ln p

n

where the inequality in the third line from the last follows from the Cauchy-
Schwarz inequality and and the first inequality in the last line is because each
coordinate function of

∑k
j=1 b

0
jφj(t) is the projection of the corresponding co-

ordinate function of β(t) onto the space spanned by {φi, 1 ≤ i ≤ k}. Similarly,
we have∣∣∣∣E [

‖(xnew)Tβ(t)− (xnew)Tβk(t)‖2L2

]
− 1

n
‖Xβ(t)−Xβk(t)‖2L2

∣∣∣∣ (B.8)

≤C‖β(t)‖2L2M(β(t))

√
ln p

n
.

By (B.6), (B.7) and (B.8), we have

E
[
‖(xnew)Tβ(t)− (xnew)Tβk(t)‖2L2

]
≤ 1

n
‖Xβ(t)−Xβk(t)‖2L2 (B.9)

+

∣∣∣∣E [
‖(xnew)Tβ(t)− (xnew)Tβk(t)‖2L2

]
− 1

n
‖Xβ(t)−Xβk(t)‖2L2

∣∣∣∣
(B.10)

≤ 1

n
‖Xβ(t)−Xβk(t)‖2L2 + C‖β(t)‖2L2M(β(t))

√
ln p

n

≤ 1

n
‖Xβ(t)−

k∑
j=1

b0
jφj(t)‖2L2 + C‖β(t)‖2L2M(β(t))

√
ln p

n

≤

∣∣∣∣∣∣E
⎡⎣‖(xnew)Tβ(t)−

k∑
j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦− 1

n
‖Xβ(t)−

k∑
j=1

b0
jφj(t)‖2L2

∣∣∣∣∣∣
+ E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦+ C‖β(t)‖2L2M(β(t))

√
ln p

n

≤ E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tb0
jφj(t)‖2L2

⎤⎦+ 2C‖β(t)‖2L2M(β(t))

√
ln p

n

= min
bj∈R

p,vj(t)∈L2[0,1],
1≤j≤k

E

⎡⎣‖(xnew)Tβ(t)−
k∑

j=1

(xnew)Tbjvj(t)‖2L2

⎤⎦
+ 2C‖β(t)‖2L2M(β(t))

√
ln p

n
, (B.11)

where the third inequality follows from the facts that Xβk(t) is the best k-
dimensional approximation toXβ(t). (B.3), (B.4), and (B.11) give the theorem.
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