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1. Introduction

In the recent years the number of bootstrap applications for periodic processes
has constantly grown. An important class of periodic processes are periodically
correlated (PC) processes, which were introduced by Gladyshev (1961). They
are widely used for modeling in many different settings such as climatology,
hydrology, mechanics, vibroacoustics and economics. Many motivating examples
can be found in Gardner et al. (2006); Hurd and Miamee (2007); Antoni (2009)
and Napolitano (2012).

Time series Xt is called PC with period d if it has periodic mean and auto-
covariance functions, i.e.

E (Xt+d) =E (Xt) and B(t, τ) = Cov (Xt, Xt+τ ) = Cov (Xt+d, Xt+τ+d) (1)

for each t, τ ∈ Z. The period d is taken as the smallest positive integer such
that (1) holds.
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There are two block bootstrap methods that can be applied for PC processes.
These are the Moving Block Bootstrap (MBB) and the Generalized Seasonal
Block Bootstrap (GSBB). The first method was introduced independently by
Künsch (1989) and Liu and Singh (1992). It is very general and it does not
preserve the periodic structure contained in the data. As a result the number of
possible applications of this technique for PC time series is limited. On the other
hand, the GSBB of Dudek et al. (2014a) was designed for periodic processes. It
keeps the periodicity but to apply it one needs to know the period length. The
GSBB is the generalization of two block bootstrap methods: the Seasonal Block
Bootstrap (SBB) (Politis (2001)) and the Periodic Block Bootstrap (Chan et al.
(2004)).

The first and the second order characteristics of PC time series that are often
considered can be split into two groups depending on the domain in which the
analysis is performed. In the time domain one can be interested, for example,
in the overall mean and the seasonal means. In the frequency domain these
are Fourier coefficients of the mean and the autocovariance functions. For all
mentioned characteristics consistency of the MBB and the GSBB has been al-
ready shown (see Synowiecki (2007), Dudek et al. (2014a), Dudek et al. (2014b),
Dudek (2015)).

PC processes can be applied when the period length is constant. In this paper
we focus on a different case, i.e. when the period length is changing over time.
A very important example illustrating this phenomena is a chirp signal. It is a
signal in which frequency increases or decreases over time. It can be described
by the following equation

χ(u) = S(u) exp(iφ(u)),

where S(u) is a positive, low-pass, smooth amplitude function whose evolution is
slow when compared to the oscillations of the phase φ(u). Chirps are commonly
met in nature. For example in audio signals (animal communication, echoloca-
tion), radar and sonar systems, astrophysics (gravitational waves radiated by
coalescing binaries), mechanics and vibrations (e.g. car engines), medicine (EEG
data – epileptic seizure) and seismography. For more details and examples we
refer the reader to Flandrin (2001) and the references therein.

In this paper we consider a case, when period length is growing in time. This
corresponds to the so-called down-chirp signal. An example of such signal is
presented in Figure 1. To model such phenomena periodic random arrays can
be used. Bootstrap for triangular arrays with the period growing in time was first
considered by Leśkow and Synowiecki (2010) and later by Dudek et al. (2014a).
In both papers only the problem of the estimation of the overall mean was
discussed. Leśkow and Synowiecki showed the consistency of the Periodic Block
Bootstrap and Dudek et al. of the Generalized Seasonal Block Bootstrap. In
this paper we would like to extend the area of possible applications of bootstrap
methods for the periodic random arrays to the Fourier coefficients of the mean
and autocovariance functions.

The paper is organized as follows. Section 2 contains the formulation of the
problem. In Section 3 the algorithms of the circular version of the GSBB and the
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Fig 1. Example of down-chirp signal.

MBB are recalled. The bootstrap consistency results for the coefficients of the
mean and the autocovariance functions for triangular arrays with growing period
are presented in Section 4. In Section 5 the bootstrap-t confidence intervals are
constructed and a simulated data example is presented. Finally, in Section 6 we
discuss possible future extensions of our work. All proofs can be found in the
Appendix.

2. Problem formulation

Let {Xn,t : t = 1, . . . ,mn} be an array of real valued random variables. We
assume that it is row-wise periodically correlated (PC), i.e. in each row the
mean function μn(t) = E (Xn,t) and the autocovariance function Bn(t, τ) =
Cov (Xn,t, Xn,t+τ ) are periodic in variable t with period dn.

Below we present the Fourier decomposition of the mean and the autocovari-
ance functions in the n-th row of the triangular array. We have

μn(t) =
∑

γn∈Γn

bn(γn) exp(iγnt),

Bn(t, τ) =
∑

λn∈Λn,τ

an(λn, τ) exp(iλnt),

where the sets

Γn = {γn : bn(γn) �= 0}, Λn,τ = {λn : an(λn, τ) �= 0}

are finite and Γn,Λn,τ ⊆ {2kπ/dn, k = 0, . . . , dn − 1}.
Moreover, the coefficients bn(γn) and an(λn, τ) can be calculated using the

following formulas

bn(γn) =
1

dn

dn∑
t=1

μn(t) exp(−iγnt), an(λn, τ) =
1

dn

dn∑
t=1

Bn(t, τ) exp(−iλnt).
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and their estimators are of the form

b̂n(γn) =
1

mn

mn∑
t=1

Xn,t exp(−iγnt), (2)

ân(λn, τ) =
1

mn

mn−max{τ,0}∑
t=1−min{τ,0}

(Xn,t+τ − μ̂n(t+ τ)) (Xn,t − μ̂n(t)) exp(−iλnt), (3)

where μ̂n(t) =
∑

γn∈Γn
b̂n(γn) exp(iγnt).

In the following we use the simplified version of (3). Without loss of generality
we can assume that E(Xn,t) ≡ 0 and taking τ ≥ 0 we get

ân(λn, τ) =
1

mn

mn−τ∑
t=1

Xn,tXn,t+τ exp(−iλnt). (4)

Detailed information concerning the coefficients of the mean and autocovariance
functions and their estimators can be found in the papers of Hurd (1989), (1991)
and Hurd and Leśkow (1992a), (1992b).

3. Bootstrap algorithms

In this paper we apply two block bootstrap methods. However, these will not
be the MBB and the GSBB in their standard form, but their circular versions.
In this approach the data are treated as wrapped on the circle. This allows us
to reduce the edge effects caused by the fact that in the MBB and the GSBB
pseudo-samples the observations from the beginning and the end of the original
sample appear less often than the other observations.

To simplify notation in this section we assume that Yt is a PC process with
the known period d. Let (Y1, . . . , Yn) be the observed sample. Moreover, let the
sample length n be an integer multiple of the period length d (n = wd,w ∈ N ).

As first we present the circular version of the GSBB (cGSBB).

cGSBB algorithm

1. Choose a (positive) integer block size b(< n). Then, sample size n can be
split into l blocks of the length b and a shorter block of the length r i.e.,
n = lb+ r, l ∈ N and r ∈ {0, . . . , b− 1}.

2. For t = 1, b+ 1, 2b+ 1, . . . , lb+ 1, let

(Y ∗
t , Y

∗
t+1, . . . , Y

∗
t+b−1) = (Ykt , Ykt+1, . . . , Ykt+b−1)

where kt is iid from a discrete uniform distribution

P (kt = t+ vd) =
1

w
for v = 0, 1, . . . , w − 1.

Since we consider the circular version of GSBB, when t+ vd > n we take
the shifted observations t+ vd− n.
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3. Join the l blocks (Ykt , Ykt+1, . . . , Ykt+b−1) and take the first n observations
(Y ∗

1 , . . . , Y
∗
n ) to obtain a bootstrap sample of the same length as original

one.

The second bootstrap method that we consider is the Circular Block Boot-
strap of Politis and Romano (1992), which is a circular version of the Moving
Block Bootstrap. Comparing with the cGSBB the only difference is in the sec-
ond step of the algorithm. We do not keep the periodic structure of the data,
so we do not need to restrict the set of blocks which are selected.

CBB algorithm

1. Choose a (positive) integer block size b(< n). Then, sample size n can
be split into l blocks of length b and a shorter block of length r i.e.,
n = lb+ r, l ∈ N and r ∈ {0, . . . , b− 1}.

2. For t = 1, b+ 1, 2b+ 1, . . . , lb+ 1, let

(Y ∗
t , Y

∗
t+1, . . . , Y

∗
t+b−1) = (Ykt , Ykt+1, . . . , Ykt+b−1)

where kt is iid from a discrete uniform distribution

P (kt = j) =
1

n
for j = 0, 1, . . . , n− 1.

If j > n we take j − n instead.
3. Join the l blocks (Ykt , Ykt+1, . . . , Ykt+b−1) and take the first n observations

(Y ∗
1 , . . . , Y

∗
n ) to obtain a bootstrap sample of the same length as original

one.

4. Main results

In the first part of this section we use the cGSBB method to construct consistent
estimators of the coefficients of the autocovariance function defined by formula
(4). Then, the corresponding result for the coefficients of the mean function is
presented. The second part is dedicated to the CBB method.

Let mn = lnbn + rn, where rn ∈ {0, . . . , bn − 1} i.e., the observations in the
n-th row of the considered triangular array {Xn,t : t = 1, . . . ,mn} can be split
into ln blocks of the length bn and some remaining part of length rn. For the sake
of simplicity we use notation r, l, b instead of rn, ln, bn, whenever it is possible.
Moreover, without loss of generality we assume that mn = wndn, wn ∈ N , i.e.
each row of the considered array contains wn periods.

To obtain our results additionally we need to assume the following conditions:

A1 let {Xn,t : t = 1, . . . ,mn} be a WP(4) row-wise periodically correlated
array of real valued random variables with period dn; WP(4) denotes
the weakly periodic process of order 4. This means that E|Xn,t|4 < ∞
and for any t, τ1, τ2, τ3 ∈ Z

E(Xn,tXn,t+τ1Xn,t+τ2Xn,t+τ3)
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= E(Xn,t+dnXn,t+τ1+dnXn,t+τ2+dnXn,t+τ3+dn);

A2 mn = wndn, dn → ∞ and wn → ∞ as n → ∞;
A3 let {αn(k), k = 1, 2, . . . } be α-mixing coefficients of the nth row of the

array {Xn,t}, i.e.

αn(k) = sup
t

sup
A∈Fn(1,t)

B∈Fn(t+k,mn)

|P (A ∩B)− P (A)P (B)| ,

where Fn(t1, t2) is a σ-field generated by observations {Xn,t1 , Xn,t1+1,
. . . , Xn,t2};

A4(q) there exists δ > 0 such that

sup
n,t

E |Xn,t|q(4+δ)
< ∞ and sup

n

mn∑
k=1

kαδ/(4+δ)
n (k) = K < ∞;

A5
sup
n,k

{
k1+ζα1/2

n (k)
}
< ∞ for some ζ > 0.

Condition A2 denotes that the period length dn and the number of observed
periods wn are growing to infinity together with the sample size. Constant q in
A4 will take value 1 or 2 depending on the considered case. α-mixing assumption
A4 and A5 are technical and also appear in Synowiecki (2007). These kind of
conditions are also considered for usual PC time series (see e.g. Synowiecki
(2007), Dudek et al. (2014a)). For more details on mixing we refer the reader
to Doukhan (1994).

As first we define three different bootstrap versions of ân (λn, τ).

â∗n(λn, τ) =
1

mn

mn−τ∑
t=1

X∗
n,tX

∗
n,t+τ exp(−iλnt), (5)

a∗n(λn, τ) =
1

mn

mn−τ∑
t=1

X∗
n,tX

∗
n,t+τ exp(−iλnt

∗), (6)

ã∗n (λ, τ) =
1

mn

l−1∑
k=0

b−τ−1∑
j=0

X∗
n,1+kb+jX

∗
n,1+kb+j+τ exp(−iλn(1 + kb+ j)∗) (7)

+
1

mn

max{0,r−τ−1}∑
j=0

X∗
n,1+kb+jX

∗
n,1+kb+j+τ exp(−iλn(1 + kb+ j)∗),

where X∗
n,t for t = 1, . . . ,mn is the cGSBB version of the n-th row of Xn,t. Note

that in the formulas (6) and (7) the symbol ’*’ is present additionally in the
argument of the exponential function. In this case the time argument no longer
varies from 1 to mn − τ , but corresponds to the time indices of observations
chosen in the block selection process. To be more precise let us assume that the
chosen block (X∗

n,t, . . . , X
∗
n,t+b−1) is of the form (Xn,kt , . . . , Xn,kt+b−1). Then
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the values (t∗, . . . , (t+b−1)∗) correspond to selected time indices, i.e. (t∗, . . . , (t+
b− 1)∗) = (kt, . . . , kt + b− 1).

Estimator (5) is the most natural. It is constructed by replacing in formula (4)
the original sample by its bootstrap counterpart. As we show later this estimator
is consistent, because the GSBB preserves the periodic structure in the bootstrap
sample. This form of estimator was also applied in Dudek et al. (2014b) for the
autocovariance function of PC time series. The second estimator uses ideas
presented in Dudek (2015). In this paper results from Dudek et al. (2014b) are
extended to the wider class of processes called almost periodically correlated.
Since in this case the period usually does not exist, the GSBB cannot be used
and hence Dudek considered the CBB. One may notice that (5) and (6) are equal
for λn ∈ Λn,τ . Finally estimator (7) was obtained by removing some summands
from (6). To be more precise (7) has been got from (6) after substraction of those
summands for which X∗

n,t and X∗
n,t+τ belong to two different blocks selected

in the second step of the cGSBB algorithm. Let B∗
1+kb for k = 0, . . . , l − 1

be the block of length b of the form (X∗
n,1+kb, . . . , X

∗
n,(k+1)b). The last block of

length r is denoted by B∗
1+lb = (X∗

n,lb+1, . . . , X
∗
n,mn

). Since (X∗
n,1, . . . , X

∗
n,mn

) =
(B∗

1 , . . . , B
∗
1+lb), we rewrite formula (6) using the new notation.

a∗n(λn, τ) =
1

mn

∑
t �∈C∗

b,τ

X∗
n,tX

∗
n,t+τ exp(−iλnt

∗)

+
1

mn

∑
t∈C∗

b,τ

X∗
n,tX

∗
n,t+τ exp(−iλnt

∗)

= ã∗n (λ, τ) +
1

mn

∑
t∈C∗

b,τ

X∗
n,tX

∗
n,t+τ exp(−iλnt

∗) exp(−iλnt
∗),

where the set C∗
b,τ contains those time indices for which X∗

n,t and X∗
n,t+τ belong

to different blocks

C∗
b,τ =

{
t : X∗

n,t ∈ B∗
1+kb, X

∗
n,t+τ ∈ B∗

1+(k+1)b,

k = 0, . . . , l − 1 and 1 ≤ t, t+ τ ≤ mn} .

Estimator (7) is the most convenient for practical applications among the pro-
posed formulas. As we discuss in Section 5 construction of the bootstrap con-
fidence intervals for an(λn, τ) is computationally very expensive. In our study
we will generate 500 000 bootstrap samples. Estimator (7) allows us to reduce
this cost substantially. To obtain (5) and (6) one needs to calculate the esti-
mator value according to the appropriate formula for each generated bootstrap
sample. Formula (7) allows for a different approach. Note that each summand
in (7) is based on a different block B∗

1+kb, k = 0, . . . , l. Thus, instead of using
cGSBB to get (X∗

n,1, . . . , X
∗
n,mn

) and then calculating ã∗n (λ, τ), one can create
new random variables

Y b
j =

j+b−τ−1∑
t=j

Xn,tXn,t+τ exp(−iλnt) and Y r
j =

j+r−τ−1∑
t=j

Xn,tXn,t+τ exp(−iλnt)
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for j = 1, . . . ,mn. Y
b
j and Y r

j represent these parts of estimator ân(λn, τ) that
are based on blocks starting with observationXn,i of length b and r, respectively.
As in the cGSBB algorithm we treat data as wrapped on the circle, which means
that if any time index t is bigger than mn we take t−mn instead. Now ã∗n (λ, τ)
can be rewritten as follows

ã∗n (λ, τ) =
1

mn

⎛⎝ l−1∑
j=0

Y b
k1+jb

+ Y r
k1+lb

⎞⎠ ,

where k1+kb, k = 0, . . . , l are iid random variables form step 2 of the cGSBB
algorithm (see Section 3). Thus, when we calculate values of Y b

j and Y r
j , we

can very easy obtain many values of ã∗n (λ, τ). It is enough to generate the
appropriate number of strings k1+kb, k = 0, . . . , l and sum the corresponding
Y b
k1+kb

and Y r
k1+lb

values, which is computationally very cheap.

Below we present the cGSBB consistency result. For the sake of simplicity
we formulate theorem using notation a∗n (λn, τ), which represents any of the
estimators (5)–(7). That means that a∗n (λn, τ) can be replaced by any of the
estimators (5)–(7).

Theorem 4.1. Let {Xn,t : t = 1, . . . ,mn} be a triangular array such that
E(Xn,t) ≡ 0. Assume that conditions A1–A3, A4(2), A5 hold.

If bn → ∞ as n → ∞ such that bn = o(mn), then the cGSBB is consistent
i.e.

sup
x∈R

∣∣∣∣P (√
mn

σR
n

(ân (λn, τ)−an (λn, τ)) ≤ x

)
−

−P ∗
(√

mn

σ∗R
n

(a∗n (λn, τ)− E∗ (a∗n (λn, τ))) ≤ x

)∣∣∣∣ p−→ 0, (8)

sup
x∈R

∣∣∣∣P (√
mn

σI
n

(�ân (λn, τ)−�an (λn, τ)) ≤ x

)
−

−P ∗
(√

mn

σ∗I
n

(�a∗n (λn, τ)− E∗ (�a∗n (λn, τ))) ≤ x

)∣∣∣∣ p−→ 0, (9)

where

σ2R
n =

1

dn

dn∑
t=1

∞∑
s=−∞

BX̃
n (t, s) cos(λnt) cos(λn(t+ s)), (10)

σ2I
n =

1

dn

dn∑
t=1

∞∑
s=−∞

BX̃
n (t, s) sin(λnt) sin(λn(t+ s)), (11)

and σ2R
n , σ2I

n are assumed to be positive. Moreover, X̃n,t = Xn,tXn,t+τ (t =

1, . . . ,mn − τ) and BX̃
n (t, τ) is the autocovariance function in the n-th row.

Additionally, σ∗R
n , σ∗I

n are the bootstrap counterparts of σR
n , σ

I
n.
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The analogous result can be also formulated in terms of the coefficients of
the mean function. In this case we consider two bootstrap estimators of (2):

b̂∗n(γn) =
1

mn

mn∑
t=1

X∗
n,t exp(−iγnt), (12)

b
∗
n(γn) =

1

mn

mn∑
t=1

X∗
n,t exp(−iγnt

∗). (13)

One may note that the estimator of (2) corresponding to (7) is exactly equal
to (13). Moreover, if mn = lnbn the estimator (13) obtained using the CBB

method is unbiased, i.e. E∗(b
∗
n(γn)) = b̂n(γn). If additionally mn = wndn, its

cGSBB version is also unbiased. One should be aware that this property does
not hold for any of the bootstrap estimators (5)–(7). Using the CBB or the
cGSBB ensures that each observation appears in the same number of blocks,
but this fact allows us to provide unbiased estimator only when τ = 0. In this
case estimator (6) is unbiased under the same conditions as just discussed for
estimator (13). If τ > 0, then the bias is caused by the fact that joining selected
blocks to create a bootstrap pseudo-sample we introduce a dependence structure
that was not present in the original sample. To calculate X∗

t X
∗
t+τ for X∗

t and
X∗

t+τ belonging to two consecutive bootstrap blocks, we often use observations
that were not τ time units apart in the original data. This effect cannot be
removed by using circular versions of block bootstrap methods.

In the theorem below we present bootstrap consistency for the coefficients of
the mean function. For simplicity we use notation b∗n (γn) to avoid the formula-
tion of the result for (12) and (13) separately.

Theorem 4.2. Let {Xn,t : t = 1, . . . ,mn} be a row-wise periodically correlated
array of real valued random variables with period dn. Assume that conditions
A2, A3, A4(1), A5 hold.

If bn → ∞ as n → ∞ such that bn = o(mn), then the cGSBB is consistent
i.e.

sup
x∈R

∣∣∣∣P (√
mn

σR
n

(
b̂n (γn)−bn (γn)

)
≤ x

)
−

−P ∗
(√

mn

σ∗R
n

(b∗n (γn)− E∗ (b∗n (γn))) ≤ x

)∣∣∣∣ p−→ 0, (14)

sup
x∈R

∣∣∣∣P (√
mn

σI
n

(
�b̂n (γn)−�bn (γn)

)
≤ x

)
−

−P ∗
(√

mn

σ∗I
n

(�b∗n (γn)− E∗ (�b∗n (γn))) ≤ x

)∣∣∣∣ p−→ 0, (15)

where

σ2R
n =

1

dn

dn∑
t=1

∞∑
s=−∞

BX
n (t, s) cos(λnt) cos(λn(t+ s)), (16)
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σ2I
n =

1

dn

dn∑
t=1

∞∑
s=−∞

BX
n (t, s) sin(λnt) sin(λn(t+ s)), (17)

and σ2R
n , σ2I

n are assumed to be positive. Moreover, BX
n (t, τ) is the autocovari-

ance function in n-th row of the array Xn,t. Moreover, σ∗R
n , σ∗I

n are the bootstrap
counterparts of σR

n , σ
I
n.

The advantage of the GSBB method is that it preserves the periodic structure
contained in the data. However, to use it we need to know the period length. In
some applications (for more details we refer the reader to Napolitano (2012))
period length is not obvious. So far no research was done to prove consistency of
the GSBB in such a case. Moreover, a study of the impact of the period length
estimation error on the results should be performed. The alternative approach
in such a situation is to apply the block bootstrap method that does not require
knowledge of the period length such as the CBB. Please note that since the
bootstrap sample obtained with the CBB is usually not periodic in moments,
the estimator (5) in the general case is not consistent.

Theorem 4.3. If in Theorems 4.1 and 4.2, instead of the cGSBB, the CBB is
used and estimator (6) or (7) is considered, the assertions continue to hold.

Remark. In this paper we consider the circular versions of the block bootstrap
methods. The main reason for that is to reduce the edge effects. In the cGSBB
and the CBB each observation is present in the same number of blocks. When
the GSBB or the MBB is used, the observations from the beginning and the end
of the sample appear in less blocks than the others. That can cause an additional
bias. However, if in the theorems presented in this section the cGSBB and the
CBB are replaced by the GSBB and the MBB respectively, all assertions will
hold. The changes in proofs will be minor and hence we do not present technical
details.

5. Confidence intervals

In this section we construct the bootstrap equal-tailed confidence intervals for
the real and the imaginary parts of an (λn, τ) using the bootstrap-t method
(see Efron and Tibshirani (1993)). So far in all applications for PC processes
the percentile bootstrap confidence intervals were constructed (see e.g Dudek
et al. (2014a), Dudek (2015), Dudek et al. (2014b), Dehay and Dudek (2015)),
because the bootstrap was applied to avoid variance estimation. In our simu-
lation we substitute the variance estimator by its bootstrap counterpart (see
chapter 6 in Efron and Tibshirani (1993)). Moreover, to calculate bootstrap
quantiles we need to compute a bootstrap estimate of standard error for each
bootstrap sample. Thus, we have two nested levels of bootstrap sampling (see
p. 162 in Efron and Tibshirani (1993)). To be more precise for a given row of
our triangular array {Xn,t : t = 1, . . . ,mn} and chosen set of frequencies λn

and shift τ we generate B = 1000 bootstrap samples. Then, for each sample we
get â∗,in (λn, τ) and �â∗,in (λn, τ), i = 1, . . . , B. To obtain the bootstrap esti-
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mate of the standard error for each of the 1000 bootstrap samples, we generate
B1 = 500 bootstrap samples. For each new bootstrap sample we calculate again
the bootstrap estimates â∗,i,jn (λn, τ) and �â∗,i,jn (λn, τ), where i = 1, . . . , B
and j = 1, . . . , B1. Finally,

σ̂∗R,i
n =

⎛⎝ B1∑
j=1

(
â∗,i,jn (λn, τ)−â∗,i,·n (λn, τ)

)2
/ (B1 − 1)

⎞⎠1/2

, (18)

σ̂∗I,i
n =

⎛⎝ B1∑
j=1

(
�â∗,i,jn (λn, τ)−�â∗,i,·n (λn, τ)

)2
/ (B1 − 1)

⎞⎠1/2

, (19)

where i = 1, . . . , B, â∗,i,·n (λn, τ) = 1/B1

∑B1

j=1 â∗,i,jn (λn, τ) and

�â∗,i,·n (λn, τ) = 1/B1

∑B1

j=1 �â∗,i,jn (λn, τ). The quantiles are obtained using stu-
dentized statistics of the form

T ∗R(i)=
â∗in (λn, τ)−â∗i,·n (λn, τ)

σ̂∗R,i
n

and T ∗I(i)=
�â∗in (λn, τ)−�â∗i,·n (λn, τ)

σ̂∗I,i
n

,

where i = 1, . . . , B.
Finally, for each point (λn, τ) the confidence intervals for an(λn, τ) are of

the form (
ân (λn, τ)− t∗R0.975σ̂

∗R
n , ân (λn, τ)− t∗R0.025σ̂

∗R
n

)
,

where t∗R0.025, t
∗R
0.975 are the 2.5% and 97.5% quantiles, respectively. Moreover,

σ̂∗R
n =

(
B∑
i=1

(
â∗,in (λn, τ)−â∗,·n (λn, τ)

)2
/ (B − 1)

)1/2

, (20)

where â∗,·n (λn, τ) = 1/B
∑B

i=1 â∗,in (λn, τ).
The confidence interval for and �an(λn, τ) is constructed correspondingly.
Below we provide an application of our results to the Doppler effect. The

Doppler effect is a change in the frequency of the signal caused by contrac-
tions/dilations of time. It appears when the source (called the transmitter)
emitting signal and observer (called the receiver) exhibit relative motion. It can
be heard e.g. when a vehicle sounding a siren is approaching a person.

In our study we consider continuous time process of the form

χ(u) = S(u) cos
(
2π

(
f0 +

γ

2
u
)
u
)
= S(u) cos

(
2πf0u+ πγu2

)
,

where u ∈ R and γ is chirp rate, i.e. the instantaneous rate of change of the
frequency of a waveform.

The chirp χ(u) describes the received signal in the case of the transmit-
ted signal S(u) cos (2πf0u) and the relative motion between transmitter and
receiver, with constant relative radial acceleration. A radial acceleration ex-
ists when an object moves on a curve. For more details we refer the reader
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to Napolitano (2012) Secs. 2.2.6.1 and 7.8.1.1. If S(u) is wide-sense station-
ary, then S(u) cos (2πf0u) is cyclostationary and χ(u) is generalized almost-
cyclostationary (GACS). In the engineering language χ(u) is said to have a
time-varying carrier frequency f0 +

γ
2u.

Let us consider the uniform sampling of χ(u) with sampling period Ts =
1/fs and let us assume that it is sampled in several time intervals labeled by
n = 1, . . . , N. In a generic time interval (un,0, un,0 + gnTs) the time-varying
carrier frequency of the chirp modulated process χ(u) ranges from f0 +

γ
2u0,n

to f0 +
γ
2 (u0,n + gnTs). Under the assumption that

|γ|
2
gnTs � f0 +

|γ|
2
un,0 (21)

the carrier frequency can be considered constant and equal to f0 +
γ
2un,0 in the

whole interval. In such a case χ(u) for u ∈ (un,0, un,0 + gnTs) can be modeled
as cyclostationary with period

Tn,0 =
1

2
(
f0 +

γ
2un,0

) .
If Tn,0/Ts = qn is rational and qn = cn/dn with cn and dn relatively prime then
the discrete-time sampled signal

Xn,t = χ(u)|u=tTs for u ∈ (un,0, un,0 + gnTs)

is cyclostationary with period dn (see Izzo and Napolitano (1996) and (1997)).
If Tn,0 and Ts are incommensurate, then Xn,t is almost cyclostationary with
cycle frequencies kTs/Tn,0 modulo 1, where k is an integer number.

In addition, it should be noticed that in order to satisfy (21), the sample
size of the block gn cannot be too large. Consequently, gn cannot be increased
without a bound. Therefore, a limit exists to the best accuracy that can be
achieved with the proposed technique in the considered example.

For our study the following values of parameters were set: f0 = −0.00005,
γ = 0.2

√
19. Moreover, S(t) is a MA(2) process of the form

S(t) = 12 + 0.2εt−1 + 0.3εt−2 + εt,

where εt are iid random variables from the standard normal distribution.
We took values of χ(u) for u = 995.8, 996.8, . . . , 1048.8 and hence mn = 54.

In this time interval period length dn = 3. Moreover, the shift parameter τ = 0
and frequencies λn ∈ {0, 0.01, . . . , 3.14}. To construct bootstrap-t pointwise
confidence intervals for an (λn, 0) and �an (λn, 0) we used the cGSBB and the
CBB methods. Four block lengths b were considered {3, 6, 9, 18}. Finally, since
for each frequency we generate 0.5 mln samples, we use only estimator (7).

Let us recall that the set of true frequencies Λn,0 ⊆ {2kπ/3, k = 0, 1, 2} =
{0, 2/3π, 4/3π}. For the sake of clarity in the figures we present results in Hz,
i.e. for λn/(2π). Then, the just mentioned set is of the form {0, 1/3, 2/3} =
{0, 0.(3), 0.(6)}. Note that none of the considered frequencies is exactly equal
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Table 1

For each value of block length b the detected frequencies (Hz) using 95% bootstrap-t
equal-tailed pointwise confidence intervals for �an (λn, 0) (column 2 and 4) and �an (λn, 0)

(column 3 and 5) are presented. Columns 2–3 contain results for cGSBB, columns 4–5
results for CBB.

cGSBB CBB
0.00 0.01 0.00 0.01
0.34 0.33 0.32 0.33

b = 3 0.66 0.67 0.34 0.34
0.66 0.66
0.68 0.67

0.00 0.01 0.00 0.01
0.34 0.33 0.32 0.33

b = 6 0.66 0.67 0.34 0.67
0.50
0.66
0.68

0.00 0.01 0.00 0.01
0.34 0.33 0.32 0.33

b = 9 0.66 0.67 0.34 0.67
0.66
0.68

0.00 0.01 0.00 0.01
0.34 0.33 0.34 0.33

b = 18 0.66 0.67 0.39 0.67
0.61
0.66

to 0.(3) or 0.(6). Thus, we expect to detect frequencies that are close to these
values.

For all considered block lengths b results are very similar and hence we restrict
the presentation only to b = 3 (see Figure 2). Moreover, Table 1 contains the
detected frequencies, i.e. those for which appropriate confidence intervals do not
contain 0. One may notice that for the cGSBB we detect the same frequencies
independently of the value of b. What is the most important is that these are
exactly frequencies that are closest to the true ones. The situation is similar for
the CBB used for �an (λn, 0). Even if the number of detected frequencies is not
constant (for b = 3 we have 5 frequencies and for b ∈ {6, 9, 18} 3 frequencies),
pointed frequencies are again the closest to the true ones. Additionally, for
b ∈ {6, 9, 18} these are exactly the same frequencies as were detected using
cGSBB. The situation is slightly different in the case of an (λn, 0). We have
5 significant frequencies for b ∈ {3, 9, 18} and 6 for b = 6. We always detect
0Hz, 0.34Hz and 0.66Hz. These are frequencies that were also detected using
cGSBB for an (λn, 0). But among other frequencies we have definitely false
detections: λn = 0.5Hz (for b = 6), λn = 0.39Hz and λn = 0.61Hz (for
b = 18). It seems that the CBB is more sensitive to the block length choice.
However, one should remember that the CBB does not require knowledge of the
period length. In the case when dn needs to be estimated, the estimation error
can affect the performance of the GSBB significantly. Since the CBB does not
use dn, it can be the best choice in many practical applications.
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Fig 2. Estimators (red) of �an (λn, 0) (left column) and �an (λn, 0) (right column) together
with bootstrap-t pointwise equal-tailed confidence intervals (black). First and second row re-
sults are for cGSBB and CBB, respectively. Nominal coverage probability is 95%, block length
b = 3. On the x-axis frequencies λn/(2π).

6. Conclusions and open questions

In this paper we consider time series with growing period. Under some moments
and mixing assumptions we provide consistency results for two block bootstrap
approaches, namely the Circular Block Bootstrap and the circular version of
the Generalized Seasonal Block Bootstrap. The usual MBB and GSBB can also
be applied for our problem. The consistent bootstrap-t equal-tailed confidence
intervals for the coefficient of the mean and the autocovariance function are con-
structed. However, the considered model is very important and can be applied
in many different fields e.g. for chirp signals, there is a further need to continue
research in this topic. In Section 5 we considered the simple chirp signal with
stationary component. However, in some applications this part of the signal is
assumed to be heavy-tailed (see Sahmoudi et al. (2004)). Recently appeared
some results for heavy tailed PC processes (Gajecka-Mirek (2014), Drake et al.
(2015), Gajecka-Mirek (2015)) and hence our future research will be dedicated
to the extension of our results to these kind of models.

Appendix

Proof of Theorem 4.1

Without loss of generality we assume that mn is an integer multiple of the block
length bn (mn = lnbn). To simplify notation we denote bn = b.
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To show asymptotic normality of the considered estimator we use Lemma 4
from Leśkow and Synowiecki (2010). We show details of the proof only for the
real part of the estimator ân (λn, τ). The reasoning for the imaginary part is
the same. Denote by {Wn,t : t = 1, . . . ,mn − τ} the array with elements are
of the form Wn,t = Xn,tXn,t+τ cos (λnt). Since Xn,t is row-wise PC and Xt is

WP(4) we have that the array X̃n,t = Xn,tXn,t+τ is row-wise PC with period
dn. Moreover, cos (λnt) is a periodic function with period dn. Thus, the array
Wn,t is also row-wise PC with period dn. Moreover, we show that∣∣∣∣∣Var

(
1√
mn

mn−τ∑
t=1

Xn,tXn,t+τ cos (λnt)

)
− σ2R

n

∣∣∣∣∣ −→ 0. (22)

Note that

Var

(
1√
mn

mn−τ∑
t=1

Xn,tXn,t+τ cos (λnt)

)
=

=
1

mn

mn−τ∑
t=1

mn−τ∑
s=1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns) .

Let mn − τ = pdn + r, where p ∈ N and r ∈ {0, . . . , dn − 1}. The right-hand
side of the last equality we can rewrite as

1

mn

pdn∑
t=1

pdn∑
s=1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

+
1

mn

pdn+r∑
t=pdn+1

pdn+r∑
s=1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

+
1

mn

pdn+r∑
t=1

pdn+r∑
s=pdn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns) . (23)

The array X̃n,t is row-wise α-mixing with αX̃
n (k) = αn(k − τ) for k > τ and

αX̃
n (k) = αn(0) otherwise. As first we show that the third summand is O(1/mn).

For the second summand the reasoning is the same so this case will be omitted.
Note that

1

mn

pdn+r∑
t=1

pdn+r∑
s=pdn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

=
1

mn

pdn+1−τ∑
t=1

pdn+r∑
s=pdn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

+
1

mn

pdn+r∑
t=pdn+2−τ

pdn+r∑
s=pdn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)
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=
1

mn

pdn+1−τ∑
t=1

pdn+r∑
s=pdn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns) +O

(
1

mn

)

=
1

mn

pdn+r∑
s=pdn+1

s−1∑
s1=s−pdn−1+τ

Cov
(
X̃n,s−s1 , X̃n,s

)
cos (λnt) cos (λns)

+O

(
1

mn

)
.

Using Lemma A.0.1. form Politis et al. (1999) we get∣∣∣Cov (X̃n,s−s1 , X̃n,s

)∣∣∣ ≤ 8 sup
s

(
E (Xn,s)

4+2δ
)1/(2+δ)

αn (s1 − τ)
δ/(2+δ)

(24)

and ∣∣∣∣∣∣ 1

mn

pdn+r∑
s=pdn+1

s−1∑
s1=s−pdn−1+τ

Cov
(
X̃n,s−s1 , X̃n,s

)
cos (λnt) cos (λns)

∣∣∣∣∣∣
≤ Cr

mn

∞∑
s1=τ

αn (s1 − τ)
δ/(2+δ)

= O

(
1

mn

)
,

where C is a positive constant independent of n.
Moreover the first summand in (23) can be written as

1

mn

pdn∑
t=1

pdn∑
s=1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

=
1

mn

dn∑
t=1

pdn∑
s=−(p−1)dn+1

(
p−

∣∣∣∣⌊ s

dn

⌋∣∣∣∣)Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

=
p

mn

dn∑
t=1

pdn∑
s=−(p−1)dn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)

− 1

mn

dn∑
t=1

pdn∑
s=−(p−1)dn+1

∣∣∣∣⌊ s

dn

⌋∣∣∣∣Cov (X̃n,t, X̃n,s

)
cos (λnt) cos (λns) .

The absolute value of the last term on the right-hand side can be bounded from
above by

1

dn

dn∑
t=1

1

mn

mn∑
s=−mn

∣∣∣sCov (X̃n,t, X̃n,s

)∣∣∣
=

1

dn

dn∑
t=1

1

mn

mn−t∑
s1=−mn−t

∣∣∣(s1 + t)Cov
(
X̃n,t, X̃n,s1+t

)∣∣∣
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=
1

dn

dn∑
t=1

1

mn

t−τ∑
s1=−mn−t

∣∣∣(s1 + t)Cov
(
X̃n,t, X̃n,s1+t

)∣∣∣
+

1

dn

dn∑
t=1

1

mn

t+τ∑
s1=t−τ+1

∣∣∣(s1 + t)Cov
(
X̃n,t, X̃n,s1+t

)∣∣∣
+

1

dn

dn∑
t=1

1

mn

mn−t∑
s1=t+τ+1

∣∣∣(s1 + t)Cov
(
X̃n,t, X̃n,s1+t

)∣∣∣ .
The summands of the right-hand side we denote by I, II and III, respectively.

Using (24) and assumption (ii) we have that

III ≤ 1

dn

dn∑
t=1

1

mn

mn−t∑
s1=t+τ+1

2s1

∣∣∣Cov (X̃n,t, X̃n,s1+t

)∣∣∣
≤ C1

1

dn

dn∑
t=1

1

mn

mn−t∑
s1=t+τ+1

s1αn (s1 − τ)
δ/(2+δ)

≤ C1
1

dn

dn∑
t=1

1

mn

∞∑
s1=1

s1αn (s1)
δ/(2+δ)

= O

(
1

mn

)
,

where C1 is a positive constant independent of n. Analogously one can show
that I = O(1/mn). Additionally, using assumption (ii) we get that

II ≤ C2
1

dn

dn∑
t=1

1

mn

t+τ∑
s1=t−τ+1

|s1 + t| ≤ C2
1

dn

dn∑
t=1

1

mn

t+τ∑
s1=t−τ+1

(2t+ τ)

≤ C2
1

dn

dn∑
t=1

1

mn

t+τ∑
s1=t−τ+1

(2dn + τ)

= C2
1

mn
(2dn + τ) (2τ − 1) = O

(
1

wn

)
,

where C2 is a positive constant independent of n.
To get (22) we need to show∣∣∣∣∣∣ p

mn

dn∑
t=1

pdn∑
s=−(p−1)dn+1

Cov
(
X̃n,t, X̃n,s

)
cos (λnt) cos (λns)− σ2R

n

∣∣∣∣∣∣ −→ 0.

Since |p/mn − 1/dn| → 0 as n → ∞, the expression on the left-hand side can
be rewritten equivalently as∣∣∣∣∣∣ 1dn

dn∑
t=1

⎛⎝ pdn−t∑
s1=−(p−1)dn+1−t

Cov
(
X̃n,t, X̃n,s1+t

)
cos (λn(s1 + t))
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−
∞∑

s=−∞
Cov

(
X̃n,t, X̃n,t+s

)
cos(λn (t+ s))

)
cos (λnt)

∣∣∣∣∣
≤

∣∣∣∣∣∣ 1dn
dn∑
t=1

−(p−1)dn−t∑
s=−∞

Cov
(
X̃n,t, X̃n,t+s

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1dn
dn∑
t=1

∞∑
s=pdn−t+1

Cov
(
X̃n,t, X̃n,t+s

)∣∣∣∣∣∣ .
Using (24) the right-hand side of the above inequality can be bounded by

1

dn

dn∑
t=1

−(p−1)dn−t∑
s=−∞

αn (s− τ)
δ/(2+δ)

+
1

dn

dn∑
t=1

∞∑
s=pdn−t+1

αn (s− τ)
δ/(2+δ)

.

Form the assumption (ii) and Toeplitz Lemma the last expression tends to 0
as n → ∞ and simultaneously we get (22). As a result the Wn,t/σ

R
n fulfills the

assumptions of Lemma 4 from Leśkow and Synowiecki (2010) and

1√
mnσR

n

mn−τ∑
t=1

Wn,t
d−→ N (0, 1) .

To prove the bootstrap consistency we use techniques developed in Dudek
(2015) and Dudek et al. (2014b). We start with the estimator a∗n (λn, τ) and
ã∗n (λn, τ). We show only (8) because proof of (9) is analogous.

The real part of ã∗n(λn, τ) can be rewritten as following

ã∗n (λn, τ) =
1

n

l−1∑
k=0

Z̃∗
1+bk,b,

where

Z̃∗
t,b=X∗

n,tX
∗
n,t+τ cos(λnt

∗) +. . .+X∗
n,t+b−τ−1X

∗
n,t+b−1 cos(λn(t+ b− τ − 1)∗).

Thus, ã∗n (λn, τ) is obtained from a∗n (λn, τ) after substraction of those sum-
mands for which X∗

n,t and X∗
n,t+τ belong to two different blocks. Moreover,

ã∗n (λn, τ) and a∗n (λn, τ) are asymptotically equivalent i.e.
√
mn | (a∗n (λn, τ))− (ã∗n (λn, τ))− E∗ ( (a∗n (λn, τ)))

−E∗ ( (ã∗n (λn, τ)))|
p∗

−→ 0.

The proof follows the same steps as the one presented in Dudek et al. (2014b),
so we omit technical details.

In the sequel, when it is not confusing, to simplify notation we omit sometimes
subscript n. Now it is enough to show (8) for ã∗n (λn, τ). Similarly to Dudek
(2015) and Dudek et al. (2014b) we define

Zt,b = Z̃t,b − EZ̃t,b,
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where

Z̃t,b = Xn,tXn,t+τ cos(λt) + · · ·+Xn,t+b−τ−1Xn,t+b−1 cos(λ(t+ b− τ − 1)).

The bootstrap version of Zt,b is of the form

Z∗
t,b = Z̃∗

t,b − E∗Z̃∗
t,b.

For t = 1, b + 1, . . . , (l − 1)b + 1 the random variables Z∗
t,b are conditionally

independent (given the sample (X1, . . . , Xn) with common distribution

P ∗ (Z∗
t,b = Zt+kd,b

)
=

1

wn
for k = 0, . . . , wn − 1.

By Corollary 2.4.8 from Araujo and Giné (1980) to get condition (8) we need
to show that for any ν > 0

ln−1∑
k=0

P ∗
(

1√
mn

∣∣Z∗
1+kb,b

∣∣ > ν

)
p−→ 0, (25)

ln−1∑
k=0

E∗
(

1√
mn

Z∗
1+kb,b1|Z∗

1+kb,b|>√
mnν

)
p−→ 0, (26)∣∣∣∣∣

ln−1∑
k=0

Var∗
(

1√
mn

Z∗
1+kb,b1|Z∗

1+kb,b|≤√
mnν

)
− σ2R

n

∣∣∣∣∣ p−→ 0. (27)

The proof of (25)–(27) is similar to the one presented in Dudek et al. (2014b).

Note that E
∣∣∣1/√bZ1+kb+sd,b

∣∣∣4 is bounded (see Kim (1994) and Lemma A.5.

from Synowiecki (2007)). Following the reasoning of Dudek et al. (2014a) we get
that the absolute expected value of (25) and (26) can be bounded from above
by

ln−1∑
k=0

1

wn

wn−1∑
s=0

E
∣∣∣1/√bZ1+kb+sdn,b

∣∣∣3
l
3/2
n ν3

= O

(
1√
ln

)
and

ln−1∑
k=0

1

wn

wn−1∑
t=0

1√
ln

√√√√
E

∣∣∣∣ 1√
b
Z1+kb+tdn,b

∣∣∣∣2 E
∣∣∣ 1√

b
Z1+kb+tdn,b

∣∣∣4
l2nν

4
= O

(
1√
ln

)
,

respectively.
The condition (27) can be expressed as follows

ln−1∑
k=0

Var∗
(

1√
mn

Z∗
1+kb,b1|Z∗

1+kb,b|≤√
mnν

)
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=

ln−1∑
k=0

1

wn

wn−1∑
t=0

1

n
Z2
1+kb+tdn,b1|Z1+kb+tdn,b|≤

√
mnν

−
ln−1∑
k=0

(
1

wn

wn−1∑
t=0

1√
mn

Z1+kb+tdn,b1|Z1+kb+tdn,b|≤
√
mnν

)2

.

The terms on the right-hand side we denote by IV and V , respectively. Following
the reasoning of Dudek et al. (2014a) and Leśkow and Synowiecki (2010) we get
that |I − σ2R

n | tends to 0 in probability as n → ∞. The key step is to show that

Rn =

∣∣∣∣∣
ln−1∑
k=0

1

wn

wn−1∑
t=0

1

ln
Var

(
1√
b
Z1+kb+td,b

)

−Var

(
ln−1∑
s=0

1√
ln

1√
b
Z1+sb,b

)∣∣∣∣∣ −→ 0.

Note that

Var

(
ln−1∑
k=0

1√
b
Z1+kb,b

)
=

ln−1∑
k1=0

ln−1∑
k2=0

Cov

(
1√
b
Z1+k1b,b,

1√
b
Z1+k2b,b

)

=

ln−1∑
k=0

Var

(
1√
b
Z1+kb,b

)
+

ln−1∑
k1=0

∑
k2 �=k1

Cov

(
1√
b
Z1+k1b,b,

1√
b
Z1+k2b,b

)
.

Additionally, since {Wn,t} is row-wise periodically correlated we get

ln−1∑
k=0

1

wn

wn−1∑
t=0

1

ln
Var

(
1√
b
Z1+kb+td,b

)
=

ln−1∑
k=0

1

ln
Var

(
1√
b
Z1+kb,b

)
.

Thus, by Lemma A.0.1 of Politis et al. (1999) we have

Rn ≤ 1

ln

ln−1∑
k1=0

∑
k2 �=k1

∣∣∣∣Cov( 1√
b
Z1+k1b,b,

1√
b
Z1+k2b,b

)∣∣∣∣
≤ 1

ln

ln−1∑
k1=0

∑
k2 �=k1

(
sup
k

E

∣∣∣∣ 1√
b
Z1+kb,b

∣∣∣∣4
)1/2

α
1/2
Y (|k2 − k1| b− b+ 1)

≤ C3

ln−1∑
τ=1

α1/2
n ((τ − 1) b+ 1) ,

where C3 is some positive constant independent of n.
Under assumption (iii) the sum on the right-hand side can be bounded from

above by

C4

ln−1∑
τ=1

1

((τ − 1) b+ 1)
1+ζ

≤ C4 + C4

ln−1∑
τ=2

1

(τ − 1)
1+ζ

b1+ζ
= O

(
1

b1+ζ

)
,

where C4 is some positive constant independent of n.
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Note that V is tending to 0 in probability. The condition (ii) for α-mixing
function is corresponding to one used by Dudek et al. (2014a). But since the
period length dn → ∞ for some ξ > 1/2 we have

1

ln

ln−1∑
k=0

E

(
1

wn

wn−1∑
t=0

1√
b
Z1+kb+tdn,b

)2

≤ C

wn

wn−1∑
k=1

1

kξdξn
+O

(
1

wn

)
= o

(
1

dξn

)
+O

(
1

wn

)
,

which is the main difference compared to the arguments provided by Dudek et
al. (2014a). This ends proof of theorem for a∗n(λn, τ) and ã∗n(λn, τ). Finally,
to get corresponding result for â∗n(λn, τ) it is enough to follow the same rea-
soning as presented above with essential modifications of notation and using the
fact that rows of the triangular array are WP (4). �

Proof of Theorem 4.2

Since the proof is the simplified version the reasoning presented in the proof of
Theorem 4.1, it is omitted. �

Proof of Theorem 4.3

The proof follows exactly the same steps as the proof of Theorem 4.1 and hence
it is omitted. The main difference is the number of blocks that can be selected
while the bootstrap sample is constructed. For the cGSBB this number is equal
to wn, while for the CBB it is equal to the length of the sample mn. �
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