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Abstract: Motivated by spectral analysis of replicated brain signal time
series, we propose a functional mixed effects approach to model replicate-
specific spectral densities as random curves varying about a deterministic
population-mean spectrum. In contrast to existing work, we do not assume
the replicate-specific spectral curves to be independent, i.e. there may ex-
ist explicit correlation between different replicates in the population. By
projecting the replicate-specific curves onto an orthonormal wavelet basis,
estimation and prediction is carried out under an equivalent linear mixed
effects model in the wavelet coefficient domain. To cope with potentially
very localized features of the spectral curves, we develop estimators and
predictors based on a combination of generalized least squares estimation
and nonlinear wavelet thresholding, including asymptotic confidence sets
for the population-mean curve. We derive L2-risk bounds for the nonlinear
wavelet estimator of the population-mean curve–a result that reflects the
influence of correlation between different curves in the replicate population–
and consistency of the estimators of the inter- and intra-curve correlation
structure in an appropriate sparseness class of functions. To illustrate the
proposed functional mixed effects model and our estimation and prediction
procedures, we present several simulated time series data examples and we
analyze a motivating brain signal dataset recorded during an associative
learning experiment.

Keywords and phrases: Spectral analysis, replicated time series, func-
tional mixed effects model, wavelet thresholding, between-curve correlation,
nonparametric confidence sets.
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1. Introduction

Spectral analysis of replicated time series has recently gained growing interest,
in particular in the field of brain data analysis, where it is common to collect
time series data (such as EEG or local field potential data) from multiple sub-
jects, or over multiple trials in an experiment, and the inferential focus is not
on the mean responses of the time series but on the stochastic variation of the
time series about their means. Other applications can be found, for instance, in
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biomedical experiments, geophysical and financial data analysis, or speech mod-
eling. While there is an extensive literature on spectral analysis and inference
of individual time series, this is not necessarily the case for replicated time se-
ries, and existing approaches mostly work under simplifying assumptions such
as independent or at least uncorrelated time series replications, which if not
satisfied can lead to statistically inefficient estimators or even give misleading
inferences.

In this paper we address the specific problem of analyzing spectra of repli-
cated time series showing potentially very localized features, allowing for ex-
plicit correlation between the time series replicates. To illustrate, one can think
of subject-replicated time series data collected from multiple subjects in an
experiment with possible correlation between subjects due to unknown covari-
ates (age, gender, etc.), or data collected over multiple trials of an experiment,
where the spectral characteristics of the trial-replicated time series evolve over
the course of the experiment. A particular motivating example for the latter
is spectral analysis of brain data trial-replicated time series in the context of
learning experiments, such a dataset is analyzed in Section 7. As pointed out by
[24] and [7] there is a strong need to generalize existing approaches into this di-
rection, however only few modifications to the assumption of independent time
series replicates have been developed by now.

In the context of second-order spectral analysis for independent stationary
replicated time series, [6] introduced a log-linear mixed effects model, which
was later generalized by [14] and [16] by considering nonparametric estimation
of the fixed effects curve. Also in the case of independent replicated time se-
ries, [8] developed a tree-structed wavelet method for log-spectral estimation,
whereas [21] introduced a more general mixed-effects approach based on spline
smoothing of empirical log-spectra handling two-level nested designs with repli-
cated time series for a number of independent subjects, here different time se-
ries replicates within a subject are allowed to be correlated based on known
covariates. [34] considered a covariate-indexed functional fixed effects model for
time-varying spectra of independent replicated nonstationary time series, and
[23] applied the Bayesian wavelet-based mixed effects approach developed by
[25] to model time-varying spectra of replicated nonstationary time series, al-
lowing for potential correlation between the time series replicates induced by
the experimental design. More recently, in the context of learning experiments,
[7] model log-spectra of replicated nonstationary time series trials by includ-
ing a replicate-time effect that evolves over the course of the experiment. In a
general functional data analysis context, not aimed at spectral analysis of time
series in particular, nonparametric functional mixed effects models have been
considered among others by [13], and [33] using smoothing-spline approaches,
and in [3] using functional principal components. In order to avoid the modelling
of functional data by inherently smooth curves, wavelet-based approaches have
been considered by [25] and [26] using Bayesian wavelet shrinkage methods, by
[11] using nonlinear wavelet thresholding, and by [2] focusing on inference in
a wavelet-based functional mixed effects model (see [24] for a comprehensive
overview).
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In this work we introduce an additive two-layer functional mixed effects
model in the frequency domain for a collection {Xs(t)}s=1,...,S of S individual
time series, each with discrete observations over time. The time series repli-
cates are modeled to have random replicate-specific log-spectra, which consist
of a fixed effects curve on the first layer (population-average or -mean log-
spectrum), additional to replicate-specific random effects curves on the second
layer. We model explicit correlation between the random effects curves and
do this in an appropriate way to allow for its fully nonparametric estimation,
disposing of only a single realization for each of the S time series replicates.
As we observe only the noisy replicate-specific log-periodograms, we face a de-
noising problem of log-periodogram curves in the presence of potentially very
localized structure for the underlying log-spectra, this problem is addressed by
nonlinear wavelet thresholding. By projection onto an orthonormal wavelet ba-
sis, we obtain an equivalent finite-dimensional linear mixed effects model in
the coefficient domain. This allows us to apply traditional linear mixed model
estimation methods combined with nonlinear wavelet thresholding in a uni-
fied framework for both the fixed- and random effects empirical wavelet coef-
ficients. To achieve simultaneous estimation of the fixed effects curve and the
correlation structure between different random effects curves, we propose an
easy-to-implement iterative generalized least squares estimation algorithm. We
complete our methodology by proposing predictors of the individual replicate-
specific log-spectra, as well as asymptotic confidence regions for the population-
mean log-spectrum, which is interesting in its own as the literature on infer-
ence in the context of nonlinear wavelet thresholding estimators is relatively
sparse.

The structure of the paper is as follows. In Section 2 we introduce the model
set-up in both the frequency and wavelet coefficient domain with an appropriate
combined �0-sparseness constraint for the fixed- and random effects that allows
for general inhomogeneous functional behavior over frequency. Some conditions
on the variance-covariance structure of the random effects allow for its consistent
estimation. In Section 3 we present estimators for the different components in
the model, and we also propose predictors for the replicate-specific log-spectra.
Section 4 provides consistency results for the estimators of the fixed effects
curve and the variance-covariance-structure of the random effects curves, where
we consider asymptotics in both the time series length T and the replicate
sample size S. In particular, we derive bounds on the L2-risk of the nonlinear
wavelet estimator of the fixed effects curve in an appropriate �0-sparseness class,
a result that reflects the influence of correlation between different curves in the
replicate population. In Section 5 we derive asymptotic confidence regions for
the population-mean log-spectrum based on the nonlinear wavelet estimator.
Section 6 presents numerical results on the performance of the estimation and
inference procedures for simulated time series data, and in Section 7 we analyze
a motivating data example consisting of brain signal time series data recorded
over the course of an associative learning experiment. The technical proofs are
deferred to the Appendix section, which can be found in the supplementary
material.
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2. Methodology

2.1. Model setup

Let {Xs(t)}t>0 be a collection of mean-zero second-order stationary univariate
time series for replicates s = 1, . . . , S. We assume that the replicated time series
are weakly dependent, as detailed in Section 2.1.1 below, in order to ensure that
the power spectra are well-defined as the Fourier transform of the replicate-
specific autocovariance functions. If we observe a collection of discretely sampled
time series {Xs(t), t = 1, . . . 2T}, their raw bias-corrected log-periodograms at
frequencies ω� = �/(2T ) ∈ [0, 1) are computed as,

Y f
s (ω�) = log

1

2T

∣∣∣∣∣
2T∑
t=1

Xs(t) exp(−2πiω�t)

∣∣∣∣∣
2

+ γ (2.1)

where γ ≈ 0.577 is a bias-correction equal to the Euler-Mascheroni constant (see
[41]). For convenience, we consider the time series length to be dyadic 2T = 2J

in order to avoid additional complications in the subsequent wavelet estimation.
We also note that it suffices to consider the log-periodograms only over the range
of frequencies ω� ∈ [0, 1/2), i.e. indices � = 0, . . . , T − 1, since the log-spectra
are [0, 1]-periodic and symmetric in ω� = 1/2.

2.1.1. Frequency domain functional mixed model

We model the replicate-specific log-spectra as random curves varying about a
deterministic population-mean log-spectrum, which is common to all replicates,
see Figure 1 for a simulated example. Similar approaches are considered in [6],
[8], and [21] to model the (log-)spectra of stationary replicated time series. We
express the raw log-periodograms in terms of the following functional mixed
effects model in the frequency domain:

Y f
s (ω�) = Hf

s (ω�) + Ef
s (ω�), s = 1, . . . , S, � = 0, . . . , T − 1

= hf (ω�) + Uf
s (ω�) + Ef

s (ω�) (2.2)

where,

1. hf ∈ L2([0, 1/2]) is a population-mean log-spectrum (functional fixed ef-
fect). Hereafter, Lp(X) always denotes the Lp-space of measurable func-
tions on X with respect to the Lebesgue measure.

2. {Uf
s , s = 1, . . . , S} are mean-zero random processes (functional random

effects) with realizations in L2([0, 1/2]) for each replicate s. The distri-
butional assumptions and variance-covariance structure of the functional
random effects are detailed in Section 2.1.2 and Section 2.2 respectively.

3. Ef
s (ω�)

d→ log(χ2
2/2)+γ are asymptotically independent noise terms, with

E[Ef
s (ω�)] = oT (1) and Var(Ef

s (ω�)) = σ2
e + oT (1), where σ2

e := π2/6 as
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shown in [41]. Note that for ω0 = 0, Ef
s (ω0)

d→ log(χ2
1) + γ, but since

the influence of this term is negligible for T large enough, we consider
the error term Ef

s (ω0) to have the same asymptotic distribution as the
other error terms in our subsequent analysis (as in [27], [21], and [8]). The
errors Ef

s (ω�) are assumed to be independent between different replicates
and independent of the functional random effects Uf

s for all s, �.

Since our main interest lies in the analysis of the spectral characteristics of
the replicated time series, we have introduced a functional mixed model on the
level of the (log)-spectra in the frequency domain. It is nonetheless important
to examine the implications of this model in the time domain, as the frequency
domain model does not map to an additive functional mixed model for the
replicated time series in the time domain. Each stationary mean-zero time series
replicate {Xs(t)}t>0 has a Cramér representation of the form:

Xs(t) =

∫ 1

0

Af
s (ω) exp(2πiωt) dZs(ω)

where the replicate-specific transfer functions Af
s (ω) are [0, 1]-periodic random

Hermitian functions, i.e. Af
s (−ω) = Af∗

s (ω) (here ∗ denotes the complex con-
jugate). The random processes Zs(ω) are orthogonal increment processes that
are independent between replicates and independent of the random transfer
functions Af

s (ω), such that:

E [dZs(ω)dZ
∗
s (ν)] =

{
1 if ω = ν
0 if ω �= ν

This is related to the stochastic transfer function models in [21] and [20] for
replicated time series organized in multiple groups or units, whereas in our
case we dispose only of a single time series replicate per group. Conditional
on the functional random effects Uf

s (ω) = uf
s (ω) in the frequency domain, for

each s = 1, . . . , S, the time series replicate {Xs(t)}t>0 has a replicate-specific
spectrum:

|Af
s (ω)|2 = exp

(
Hf

s (ω)|uf
s (ω)

)
= exp

(
hf (ω)

)
exp
(
uf
s (ω)

)
(2.3)

where the realized replicate-specific spectra are non-negative by construction.
Furthermore, conditional on the random effects Uf

s (ω) in the frequency domain,
we assume that the time series replicates are weakly dependent in the sense
that

∑∞
h=−∞ |Cov(Xs(t), Xs(t + h)| < ∞ for all s = 1, . . . , S. This ensures

that the realized replicate-specific spectra above are well-defined as the Fourier
transforms of the realized replicate-specific autocovariance functions, and the
reverse for the inverse Fourier transform.

2.1.2. Wavelet domain linear mixed model

Since the realizations of the random replicate-specific log-spectra are periodic
functions in L2([0, 1]), we consider a periodized orthonormal wavelet basis of
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L2([0, 1]), denoted by B = {ψk}∞k=0, constructed from the translated and di-
lated versions of a sufficiently smooth father and mother wavelet function, com-
pactly supported on [0, 1]. Here, for ease of notation we compress the usual scale
and location indices (j,m) into a single scale-location index k, using classical
lexicographical ordering. Since the log-periodograms Y f

s are sampled over a dis-
crete grid of frequencies, instead of true wavelet coefficients (projections of the
replicate-specific log-spectra), we compute the empirical wavelet coefficients:

Ysk = 〈Y f
s , ψk〉T =

1

T

T∑
�=0

Y f
s (ω�) ψk(ω�) =

∫
Y f
s (ω) ψk(ω) dω + oT (1)

More specifically, projecting the discrete sampled frequency domain model in
eq. (2.2) onto the wavelet basis B via its discrete wavelet transform (we denote
the discrete wavelet transform-matrix by W B), we obtain a linear mixed model
in the wavelet coefficient domain given by,

Ysk = Hsk + εsk, s = 1, . . . , S, k = 1, . . . , T

= hk + Usk + εsk (2.4)

where,

1. h = (h1, . . . , hT )
′ = W Bh

f ∈ �2 with hf = (hf (ω0), . . . , h
f (ωT−1))

′ ∈
R

T . This is a deterministic sequence of fixed effect wavelet coefficients
shared by all replicates in the population.

2. U s· = (Us1, . . . , UsT )
′ = W BU

f
s with Uf

s = (Uf
s (ω0), . . . , U

f
s (ωT−1))

′

for s = 1, . . . , S. In particular, we assume that the sequences U ·k =
(U1k, . . . , USk)

′ are Gaussian random vectors for each k = 1, . . . , T . The as-
sumptions on the variance-covariance structure of the vectorsU ·1, . . . ,U ·T
are detailed below.

3. εs· = (εs1, . . . , εsT )
′ = W BE

f
s with Ef

s = (Ef
s (ω0), . . . , E

f
s (ωT−1))

′ for
s = 1, . . . , S. The random vectors εs· are sequences of asymptotically
independent wavelet noise coefficients with E[εsk] = oT (1) and Var(εsk) =
σ2
e/T + oT (T

−1). The noise coefficients are independent between different
replicates and independent of the random effects sequences for all s, k.

2.2. Covariance matrix assumptions

Let U = (U ·1, . . . ,U ·T ) be the S × T -dimensional random matrix of stacked
random effects sequences U s·. One of our main interests is in allowing for ex-
plicit correlation between the random effects sequences of different replicates,
therefore we will not assume the covariance matrix of vec(U) to be diagonal as
is the case in [6], [21], and [8]. However, some structure on the covariance ma-
trix Cov(vec(U)) is necessary, since consistent estimation in a totally unstruc-
tured matrix is impossible (using only ST observations). We consider struc-
tural assumptions on the variance-covariance matrix of vec(U) as proposed in
[25] and [26] in a general functional data analysis context. Since the frequency
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domain model and the wavelet coefficient domain model are equivalent rep-
resentations, the structural assumptions in the wavelet domain automatically
transfer to assumptions on the variance-covariance structure of the functional
random effects in the frequency domain. We assume that the covariance matrix
G := Cov(vec(U)) consists of the Kronecker product of a T ×T within-replicate
diagonal covariance matrix and an S × S between-replicate correlation matrix:

G =

⎛⎜⎜⎜⎝
σ2
u1 0 . . . 0
0 σ2

u2 . . . 0
...

...
. . . 0

0 0 0 σ2
uT

⎞⎟⎟⎟⎠⊗

⎛⎜⎜⎜⎝
1 ρ12 . . . ρ1S
ρ21 1 . . . ρ2S
...

...
. . .

...
ρS1 ρS2 . . . 1

⎞⎟⎟⎟⎠
:= GT ⊗GS

where GS is symmetric and positive-semidefinite. By considering a diagonal
within-replicate covariance matrix GT , the random effects coefficients are as-
sumed to be uncorrelated between scale-locations k = 1, . . . , T . Note that a
diagonal within-replicate covariance matrix GT in the wavelet domain does not
mean that the within-replicate covariance matrix in the frequency domain also
has to be diagonal. To illustrate, a single non-zero variance component σ2

u1 cor-
responding to the variance of the random scaling coefficient at scale-location
(0, 0) translates to a random shift in the mean of the replicate-specific log-
spectra in the frequency domain, thus resulting in highly correlated behavior
of the random log-spectra over frequency. Furthermore, the variance compo-
nents are heterogeneous across coefficients, therefore allowing for very general
spatially inhomogeneous behavior of the random log-spectra in the frequency
domain across replicates. The unstructured between-replicate correlation matrix
GS allows for correlation between the random effects coefficients of different
replicates at matching scale-locations k. We observe that the correlation ρss′

between two different replicates remains the same across all locations. This is
in order to keep the dimensions of the working covariance matrices small, but
also to allow for consistent estimation of ρss′ as the length of the time series
increases. Note that G is symmetric and positive-semidefinite, since it is the
Kronecker product of two symmetric positive-semidefinite matrices. Also, there
is no identification issue between the two matrices GT and GS , as GS is re-
stricted to have unit diagonal.

2.3. Functional space assumptions

In order to develop the necessary estimation theory, we impose some regular-
ity (smoothness) conditions on the realized replicate-specific sequences in the
wavelet coefficient domain, or equivalently, on the realized discretely sampled
log-spectra in the frequency domain. In particular, we assume that the fixed and
random effects sequences are asymptotically sparse elements of the �0-sequence
space with respect to the wavelet basis B, defined as:

�0,T (C) = {x ∈ R
T : ‖x‖0 = C}

such that ‖x‖0 = #{k : xk �= 0}.
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Assumption (A1). Let h ∈ �0,T (kh,T ), with set of indices of non-zero coeffi-
cients Kh,T . We assume that kh,T = |Kh,T | → ∞ as T → ∞, but kh,T = o(T ).
Let σ2

u = (σ2
u1, . . . , σ

2
uT )

′ ∈ �0,T (ku,T ) with set of indices of non-zero coef-
ficients Ku,T , such that supk σ

2
uk < ∞. We assume that Ku,T ⊆ Kh,T and

ku,T = |Ku,T | → ∞ as T → ∞, but ku,T = o(T ).

These regularity conditions assert that the fixed and realized random effects
sequences or curves increase in complexity with T (almost surely for the ran-
dom effects), but at a slower rate than T . Furthermore, we make the assumption
Ku,T ⊆ Kh,T , this is a convenient way to ensure that the population-mean log-
spectrum hf and the realized replicate-specific log-spectra hf

s |uf
s = hf + uf

s

share the same smoothness properties. This complexity constraint allows to dis-
entangle the different parts in the variance components coming from the random
effects and the noise terms, but is also important for the sake of interpretation
in a functional mixed effects model, as discussed in [13], [33], and [2].

Before presenting the estimation procedure, we recall some useful results on
nonlinear thresholding methods in a classical Gaussian sequence model under
�0-sparsity constraints. Consider the �0-Gaussian sequence model:

yi = θi + εnzi, i = 1, . . . , n (2.5)

with θ = (θ1, . . . , θn)
′ ∈ �0,n(kn) and z1, . . . , zn

iid∼ N(0, 1). Under the �0-sparsity
constraint kn → ∞ as n → ∞, but kn = o(n), the minimax �2-risk of estimation
for θ satisfies,

R(�0,n(kn), εn) := inf
θ̂

sup
θ∈�0,n(kn)

E‖θ̂ − θ‖2 ∼ 2ε2nkn log(n/kn)

where ‖ ·‖ denotes the Euclidian norm. It is well-known that hard (or soft) non-
linear thresholding of the coefficients asymptotically achieves the minimax risk.
In particular, the hard nonlinear thresholding estimator θ̂i = yi1{|yi| ≥ λn} for
i = 1, . . . , n, with λn = εn

√
2 log(n/kn) is an asymptotic minimax estimator,

see [19] for a detailed proof. We note that the nonlinear thresholding estima-

tors {θ̂i}i=1,...,n are nonadaptive in the sense that the threshold λn depends
on the (typically unknown) smoothness space parameter kn. [1] show that in
the context of �0-Gaussian sequence models, using False Discovery Rate (FDR)
nonlinear thresholding, it is possible to asymptotically achieve the minimax risk
without requiring knowledge of the smoothness space parameter kn. For details
on this FDR-based procedure, and the appropriate choice of its tuning param-
eter qn, we refer to [1].

3. Estimation procedure

3.1. Population-mean log-spectrum

We estimate the population-mean log-spectrum hf (ω�) at frequencies ω� ∈
[0, 1/2) by the projection estimator,
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ĥf (ω�) =

T∑
k=1

ĥk(Y ·k)ψk(ω�), � = 0, . . . , T − 1

the inverse discrete wavelet transform with respect to the basis B = {ψk}∞k=1

of the estimated fixed effects sequence of coefficients ĥ(Y ) := {ĥk(Y ·k)}Tk=1,

with Y ·k = (Y1k, . . . , YSk)
′. The sequence ĥ(Y ) is based on component-wise

thresholded generalized least squares estimators,

ĥk(Y ·k) = (w′
kY ·k)1{k ∈ K̂h(Y )}, k = 1, . . . , T

where,

1. wk = (w1k, . . . , wSk)
′ are generalized least squares weights depending on

the between-replicate correlation structure through,

wsk =

∑S
i=1 V

−1
k[i,s]∑S

i,j=1 V
−1
k[i,j]

Here, V k = σ2
ukGS +

σ2
e

T IS corresponds to the asymptotic covariance ma-
trix of Y ·k, where IS denotes the S × S-identity matrix.

2. K̂h(Y ) = {k : | 1S
∑S

s=1 Ysk| ≥ λh,T } is the estimated set of indices of

non-zero coefficients with threshold λh,T =
√
σ2
e/(ST )

√
2 log(T/kh,T ).

The motivation for this thresholded set comes from the observation that
the replicate-specific sequences –conditional on the random effects– are
independent between replicates and, individually for each replicate, follow
an �0,T (kh,T )-sequence model with the same set of non-zero coefficients
Kh,T for each replicate and noise variance approximately σ2

e/T . In the
unconditional case, the distributional behavior of the sequences at scale-
locations of zero coefficients (k /∈ Kh,T ) remains unchanged, allowing for
the same control on the number of false positives as in the conditional case.
Moreover, under some regularity conditions, the empirical wavelet noise
coefficients are asymptotically normal for increasing T , this asymptotically
justifies the threshold choice λh,T based on a Gaussian sequence model (see
Section 4.1).

3.2. Random effects covariance matrices

3.2.1. Estimation of the within-replicate covariance matrix

The within-replicate random effects covariance matrix GT is assumed to be
diagonal, with vector of variance components σ2

u = (σ2
u1, . . . , σ

2
uT )

′ ∈ �0,T (ku,T )
on the diagonal. This vector is estimated by the thresholded sample-variances,

σ̂2
uk(Y ·k) =

{
1

S

S∑
s=1

(
Ysk − ĥk(Y ·k)

)2
− σ2

e

T

}
+

1
{
k ∈ K̂u(Y )

}
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with estimated set of indices of non-zero variance components K̂u(Y ) = {k :
|Tk(Y ·k)| ≥ λu,T }. Here the statistics Tk(Y ·k) and the threshold λu,T are given
by,

Tk(Y ·k) = log

(
1

S

S∑
s=1

(
Ysk − ĥk(Y ·k)

)2)
− log

(
2σ2

e

ST

)
− ψ(0)

(
S

2

)
λu,T =

√
ψ(1)(S/2)

√
2 log(T ) (3.1)

where ψ(0)(·) and ψ(1)(·) denote the digamma and trigamma function respec-
tively. The motivation for this thresholded set, which has similar structure as
the thresholded set K̂h(Y ), comes from the observation that –for uncorrelated
replicates– the vector {Tk(Y ·k)}Tk=1 is variance stabilizing and behaves approxi-
mately as an �0,T (ku,T )-Gaussian sequence model with noise variance ψ(1)(S/2).
This justifies the threshold choice λu,T based on a Gaussian sequence model. For
a general between-replicate correlation matrix GS , it follows that the distribu-
tional behavior of the zero variance components with indices k /∈ Ku,T remains
the same, thus allowing for the same control on the number of false positives
as in the uncorrelated case. We note that the threshold λu,T is slightly more
conservative than the asymptotic minimax universal threshold as in Section 2.3.
The reason for this is that in the context of a Gaussian sequence model, un-
der the more conservative threshold, both the number of false positives and the
number of false negatives in the estimated set of indices of non-zero variance
components tend to zero almost surely (Corollary 4.3). Under the asymptotic
minimax threshold, this only holds true for the number of false negatives.

3.2.2. Estimation of the between-replicate correlation matrix

The between-replicate correlation matrix GS is estimated elementwise by con-
sidering the following sample-correlation based estimators,

ρ̂ij(Y ) =
1

k̂u

∑
k∈K̂u

(Yik − ĥk(Y ·k))(Yjk − ĥk(Y ·k))

σ̂2
uk(Y ·k) ∨ δ

, i, j = 1, . . . , S, i �= j

(3.2)
where δ > 0 is a small constant that ensures that the denominator is bounded
away from zero, and K̂u = K̂u(Y ) is the estimated set of indices of non-zero

variance components with cardinality k̂u = |K̂u(Y )|. The intuition behind this
estimator comes from the fact that Cov(Yik, Yjk) = σ2

ukρij for each k ∈ Ku,T ,
whereas Cov(Yik, Yjk) = 0 for each k /∈ Ku,T as σ2

uk = 0 by definition of Ku,T .

The estimated matrix ĜS(Y ) with off-diagonal elements ρ̂ij(Y ) is only an
approximate correlation matrix. It is symmetric and has unit diagonal, but is
not guaranteed to be positive-semidefinite in a finite sample situation. By [15],

we compute the correlation matrix G̃S(Y ) with minimum distance in Frobenius-

norm to the originally estimated matrix ĜS(Y ),

G̃S(Y ) = arg minX=XT {‖ĜS(Y )−X‖F : X is a correlation matrix}
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However, replacing the matrix ĜS(Y ) by the new matrix G̃S(Y ), the estimated
variance components σ̂2

uk(Y ·k) are no longer properly scaled. Instead, we con-

sider the rescaled estimators σ̃2
uk(Y ), such that ‖σ̂2

ukĜS‖F = ‖σ̃2
ukG̃S‖F , which

are easily obtained through,

σ̃2
uk(Y ) = σ̂2

uk(Y ·k)
‖ĜS(Y )‖F
‖G̃S(Y )‖F

Note that the rescaling does not affect the estimated zero variance components
corresponding to k /∈ K̂u(Y ), i.e. if σ̂2

uk(Y ·k) = 0, then also σ̃2
uk(Y ) = 0.

3.3. Iterative estimation scheme

In order to estimate the population-mean log-spectrum hf (ω�), we consider a
generalized least squares estimator with weights depending on the between-
replicate correlation structure. On the other hand, estimation of the random ef-
fects covariance and correlation matricesGT andGS depends on the population-
mean sequence h, since the sample-variances and sample-correlations need to be
centered about their respective means. This is typically the case in linear mixed
mdoel estimation where one allows for between-replicate correlation, and in this
context, one easy-to-implement approach is to consider an iterative-generalized
least squares scheme (see e.g. [17]). First, we compute the thresholded ordinary
least squares estimator of h by equally weighting each of the observations across
replicates. This does not require any information on the between-replicate cor-
relation structure. Next, we iterate between estimation of GT and GS given
the estimate of h, and estimation of h given estimates of GT and GS , and we
continue iterating until some convergence criterion is satisfied. We note that
under a similar random effects variance-covariance structure, considering only
the linear part of the estimators (without the thresholding), [18] show that an
iterative-generalized least squares scheme converges exponentially with proba-
bility tending to one as the number of replicates S increases.

3.4. Replicate-specific log-spectra

The replicate-specific log-spectra Hf
s (ω�) at frequencies ω� ∈ [0, 1/2) are pre-

dicted by the projection estimators,

Ĥf
s (ω�) =

T∑
k=1

Ĥsk(Y )ψk(ω�), s = 1, . . . , S, � = 0, . . . , T − 1

the inverse discrete wavelet transform with respect to the basis B of the predicted

replicate-specific sequence of coefficients Ĥs(Y ) := {Ĥsk(Y )}Tk=1. Prediction in
the wavelet coefficient domain reduces to prediction in a linear mixed model,
and we can find estimated predictors of the random effects sequences U ·k =
(U1k, . . . , USk)

′ through,

Ûk(Y ) = ĜkV̂
−1

k (Y ·k − ĥk1S)
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Here, Ĝk = σ̃2
ukG̃S and V̂ k = σ̃2

ukG̃S +
σ2
e

T IS are plug-in estimators, and 1S

denotes an S-dimensional vector of ones. Note that if Ĝk and V̂
−1

k are replaced

by the true matrices Gk and V −1
k , and ĥ is replaced by the best linear unbiased

estimator, then the Û ·k are the best linear unbiased predictors of the random
effects sequences U ·k in a linear mixed model, see [37]. In general, due to the

nonlinear thresholding of coefficients, ĥ ceases to be an unbiased estimator of h.
By combining the estimator for the fixed effects sequence h and the predictors for
the random effects sequences U ·k, the replicate-specific sequences of coefficients
Hs = {hk + Usk}Tk=1 are predicted through,

Ĥs(Y ) =
{
ĥk(Y ·k) + Ûsk(Y )

}T

k=1

4. Estimation theoretical results

4.1. Risk bounds for the population-mean log-spectrum

In this section we derive finite-sample upper bounds for the �2-risk of the esti-
mated fixed effects sequence of coefficients ĥ(Y ) = {ĥk(Y ·k}Tk=1 with respect to
h. By Parseval’s relation, for any given number of replicates, the �2-risk in the
wavelet coefficient domain is asymptotically equal to the L2-risk of the projected
estimators in the frequency domain. It then follows that the same expression de-
rived for the �2-risk in the wavelet coefficient domain also gives an upper bound
for the L2-risk of the estimated population-mean log-spectrum ĥf .

The derivation of the �2-risk bounds is based on the observation that, under
some regularity conditions, the non-Gaussian linear mixed model in the wavelet
coefficient domain (eq. (2.4)) is asymptotically equivalent to a Gaussian linear
mixed model (T → ∞) as the empirical wavelet noise coefficients are essentially
local averages of the log-periodogram ordinates, and the random effects wavelet
coefficients are assumed to be normally distributed. This allows us to calcu-
late the �2-risk of the sequence ĥ(Y ) first under an accompanying Gaussian
sequence model, and relate this to the �2-risk under the non-Gaussian sequence
model. The asymptotic equivalence between the two models is based on a uni-
form asymptotic normality result for the empirical wavelet noise coefficients.
[29] already establishes uniform asymptotic normality for the empirical wavelet
noise coefficients of periodogram ordinates for a general non-Gaussian process
X(t) in the context of a single long time series. Since the technical considerations
in [29] are not the main focus of this paper, here we derive uniform asymptotic
normality of the empirical wavelet noise coefficients of log-periodogram ordi-
nates only for a weakly dependent Gaussian process Xs(t) as in [4, Chapter 5]
with a given (log-)spectrum, i.e. conditional on the functional random effects
in the frequency domain. By the (conditional) Gaussianity assumption for the
time series replicates, we can derive cumulant bounds for the realized replicate-
specific log-periodogram ordinates in the frequency domain using results from
[38]. These cumulant bounds are used to derive uniform asymptotic normality of
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the empirical wavelet noise coefficients for an increasing number of coefficients,
along the same lines as [29] for a single time series replicate. Note that this
result is conditional on the functional random effects in the frequency domain,
however since the random effects wavelet coefficients in eq. (2.4) are assumed
to be normally distributed, unconditional uniform asymptotic normality of the
wavelet coefficients of the random replicate-specific log-periodograms follows as
well. We point out that asymptotic normality of empirical wavelet noise coeffi-
cients of the log-periodogram has already been suggested without proof by [9],
[27], and [8] under the approximate additive noise model with εk ∼ (0, π2/6). In
order for a certain summation effect to work, we make the additional assumption
that, for increasing T , the set of non-zero fixed effects coefficients is bounded
away from the finest wavelet scale, intuitively this means that the finest wavelet
scale contains virtually only noise and no signal as T increases. This is a typical
assumption in the wavelet literature, and in an ordinary signal plus noise model
this is commonly used for estimation of the noise variance through the empirical
coefficients located only at the finest wavelet scale (see [40]).

Assumption (A2). Define the set,

JT,α := {1} ∪ {k ≥ 2 | 2�log2(k−1)� ≤ CT 1−α} (4.1)

for some constant C > 0. We assume that there exist some T ∗ > 0 and 0 <
α∗ < 1, such that for T ≥ T ∗, Kh,T ⊆ JT,α∗ .

Assumption (A3). Conditional on Uf
s (ω) = uf

s (ω), {Xs(t)}t>0 is a Gaussian
process satisfying

∑∞
h=−∞ |h||Cov(Xs(t), Xs(t+ h)| < ∞ for each s = 1, . . . , S.

Theorem 4.1. Under assumptions (A1)-(A3), let α such that 0 < α ≤ α∗.
Consider the estimators,

ĥk(Y ·k) = (w′
kY ·k)1{|Ȳ k| ≥ λh,T , k ∈ JT,α}, k = 1, . . . , T

where Ȳ k = 1
S

∑S
s=1 Ysk and λh,T =

√
σ2
e/(ST )

√
2 log(T/kh,T ). For T suffi-

ciently large, the �2-risk of ĥ(Y ) satisfies,

sup
h∈�0,T (kh,T )

E‖ĥ(Y )− h‖2 � kh,T
ST

log

(
T

kh,T

)
+ ku,T

(
sup
k

w′
kV kwk − σ2

e

TS

)
(4.2)

where � denotes the inequality ≤ up to a multiplicative positive constant.

The first term on the right-hand side in eq. (4.2) is equivalent to the minimax
rate of estimation in an �0,T (kh,T )-Gaussian sequence model with noise variance
of order (ST )−1. The second term arises from introducing the random effects
and is an upper bound of the integrated error made in estimating h by taking
a weighted sample average over a finite number of replicates. We observe that
w′

kV kwk = Var(w′
kY ·k) for Y ·k ∼ (hk1S ,V k), and this term is minimized

by the generalized least squares weights wk as in Section 3.1. In the case of
sub-optimal ordinary least squares weights wk = ( 1

S , . . . ,
1
S )

′ the second term
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becomes:

ku,T

(
sup
k

w′
kV kwk − σ2

e

ST

)
= ku,T sup

k

σ2
uk1

′
SGS1S

S2

This implies that if
ku,T

S2 1′
SGS1S → 0 as S, T → ∞ the thresholded ordinary

least squares estimator remains a consistent estimator of h. For uncorrelated
replicates this term is for instance of the order ku,T /S. The expression 1′

SGS1S

is always nonnegative, and is decreasing as replicates become more negatively
correlated. This might seem surprising, but can be illustrated by the following
simple bi-replicate example: suppose one observes two random replicate-curves
that are highly negatively correlated, with high probability the true population
mean-curve lies in between the two replicate-curves and the error term due
the random effects should therefore be smaller than in the independent curve
situation; if the curves are perfectly negatively correlated, the true population
mean-curves lies exactly in between the two replicate-curves, and the error term
due to random effects should disappear completely.

4.2. Consistent estimation of random effects covariance matrices

In this section, we derive some asymptotic results for the estimators σ̂2
uk(Y ·k) of

the variance components in the within-replicate covariance matrix GT , and the
estimators ρ̂ij(Y ) of the correlation coefficients in the between-replicate corre-
lation matrix GS . The derived results crucially rely on the condition ‖GS‖F =
o(S), which controls the level of correlation between different replicates. Essen-
tially it requires that the effective number of uncorrelated replicates increases
with the total number of replicates S. To illustrate, for uncorrelated replicates
‖GS‖F /S = 1/

√
S, whereas for perfectly correlated replicates ‖GS‖F /S = 1.

In order to simplify the proofs, as in [21], [9], [27], and [8], we work under the
approximate model where the empirical wavelet noise coefficients are mean zero
with variance σ2

e/T , which is the asymptotic version of the model as T → ∞.
Note that we do not assume normality of the empirical wavelet noise coefficients,
nor independence between different scale-locations k within a single replicate.

Theorem 4.2. Suppose that εsk ∼ (0, σ2
e/T ) with E[ε4sk] = O(T−2) for each

s = 1, . . . , S and k = 1, . . . , T , and that there exist uniform consistent estimators
supk |ĥk−hk| = oS,Tp (1), with |ĥk−hk| = oS,Tp (T−1/2) for k /∈ Ku,T . If ‖GS‖F =
o(S), and C ≤ λu,T = o(log(T )) for some constant C > 0, then

P (K̂u(Y ) = Ku,T ) → 1, as S, T → ∞ (4.3)

sup
k

|σ̂2
uk(Y ·k)− σ2

uk|
P→ 0, as S, T → ∞ (4.4)

If 0 < δ ≤ infk∈Ku,T
σ2
uk for ρ̂ij(Y ) in eq. (3.2), then for each i, j with i �= j,

ρ̂ij(Y )
P→ ρij , as S, T → ∞
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The conditions E[ε4sk] = O(T−2) and |ĥk−hk| = oS,Tp (T−1/2) for k /∈ Ku,T are
needed in order to control the number of false positives in the set of estimated
non-zero variance components in eq. (4.3). Under assumptions (A1)-(A3), by
the cumulant bounds derived in the proof of Theorem 4.1 (see Appendix), it
follows that E[ε4sk] = O(T−2) for each s, k. Furthermore, if log(T )/S → 0 as

S, T → ∞, it can be verified that |ĥk − hk| = oS,Tp (T−1/2) for k /∈ Ku,T for

the nonlinear estimators ĥk(Y ·k) in Theorem 4.1 with ordinary least squares
weights wk = ( 1

S , . . . ,
1
S )

′.
The following corollary gives the theoretical justification for the form of the

statistics Tk(Y ·k) as given in eq. (3.1), which are based on the accompanying
Gaussian sequence model where the empirical wavelet noise coefficients are ex-
actly normally distributed. Under the Gaussian sequence model, it is possible
to adopt the threshold λu,T =

√
ψ(1)(S/2)

√
2 log(T − ku,T ), which converges

to zero if log(T )/S → 0 as S, T → ∞, while preserving the consistency result
that both the number of false positives and false negatives in the estimated set
of non-zero variance components is zero with probability tending to one.

Corollary 4.3. Suppose that εsk
iid∼ N(0, σ2

e/T ) for each s = 1, . . . , S and
k = 1, . . . , T , such that ξk ∼ N(hk1S ,V k), and consider the statistics Tk(ξk)

as in eq. (3.1) with ĥk(ξk) replaced by the true coefficients hk. For uncorre-
lated replicates (GS = IS), the vector {Tk(ξk)}Tk=1 converges to an �0,T (ku,T )-
Gaussian sequence model as S → ∞,⎧⎪⎪⎨⎪⎪⎩

1√
ψ(1)(S/2)

(
Tk(ξk)− log

(
σ2
ukT+σ2

e

σ2
e

))
d→ N(0, 1), if k ∈ Ku,T

1√
ψ(1)(S/2)

Tk(ξk)
d→ N(0, 1), if k /∈ Ku,T

(4.5)

For correlated replicates, with general correlation matrix GS, it remains true
that for S → ∞,

1√
ψ(1)(S/2)

Tk(ξk)
d→ N(0, 1), if k /∈ Ku,T

If ‖GS‖F = o(S) and
√

ψ(1)(S/2)
√
2 log(T − ku,T ) ≤ λu,T = o(log(T )), then

as in eq. (4.3)

P (K̂u(ξ) = Ku,T ) → 1 as S, T → ∞.

5. Confidence regions

In this section, we develop asymptotic confidence regions for the discretely sam-
pled population mean log-spectrum, where it is important to take into account
the possible correlation between different replicate-specific curves to avoid the
use of erroneous confidence sets. In the wavelet coefficient domain, the estimated
sequence of fixed effect coefficients is a nonlinear biased estimator of h, and for
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this reason it is generally difficult to derive asymptotic confidence bounds di-
rectly from the asymptotic distribution of ĥ(Y ), even under Gaussian model
assumptions. As proposed in [35] and [10] among others, instead we consider an

estimator of the squared norm ‖h− ĥ‖2 (conditional on ĥ), and we derive the
asymptotic distribution of this estimator instead of the asymptotic distribution
of the original estimator ĥ. Asymptotic �2-confidence regions for h can then be
constructed by restricting the norm of h with respect to the estimated sequence
ĥ. Moreover, by the norm equivalence between the functional (i.e. frequency)
domain and wavelet coefficient domain, we can easily transfer the confidence re-
gions for h in the wavelet domain to confidence regions for hf in the frequency
domain. For convenience, we work under the approximate model assumption
that the wavelet noise coefficients are exactly normally distributed, with mean
zero and variance σ2

e/T . The derived confidence regions are therefore approx-
imate in the sense that they are based on asymptotic distributional behavior
of the estimator of the pivot quantity (S → ∞), but also on the fact that the
empirical wavelet noise coefficients are only asymptotically normally distributed
(T → ∞) under appropriate model conditions as discussed in Section 4.1.

The method is based on the assumption that we can split the sample ξ =
(ξ1, . . . , ξT ) ∈ R

S×T , with ξk ∼ N(hk1S ,V k), into two sets of independent

observations ξ(1), ξ(2) ∈ R
S×T . Suppose that the covariance matrices V k are

known, one simple approach to split the sample into two independent samples
at the cost of making the variance twice as large is to consider,

ξ
(1)
k := ξk −Xk ξ

(2)
k := ξk +Xk for all k = 1, . . . , T

where the vectors Xk ∼ N(0,V k) are independent of ξk. We estimate the

sequence h using only the observations in ξ(1), and construct the confidence
regions from the additional independent set of observations ξ(2) conditional
on ĥ(ξ(1)). The nature of the estimator ĥ is irrelevant for the construction
of the confidence region, however, since the radius of the confidence region is
proportional to ‖h − ĥ‖, better estimators ĥ (in terms of �2-risk) will lead to
smaller confidence regions.

Suppose that we have split the sample into two independent parts ξ(1), ξ(2),

with ξ
(1)
k , ξ

(2)
k ∼ N(hk1S , 2V k) for k = 1, . . . , T and we have computed ĥ :=

ĥ(ξ(1)). The next step is to find an estimator of the pivot quantity ‖h−ĥ‖2, con-
ditional on ĥ, using only the set of observations ξ(2). We consider the unbiased
estimator,

R̂(ξ(2), ĥ) =

T∑
k=1

[
S∑

s=1

[
wsk(ξ

(2)
sk − ĥk)

2
]
− 2σ2

k,T

]
where wk = (w1k, . . . , wSk)

′ is a vector of (generalized least squares) weights

such that
∑

s wsk = 1. Straightforward calculus shows that, conditional on ĥ,

R̂(ξ(2), ĥ) is an unbiased estimator of ‖h− ĥ‖2 and,

τ2(h, ĥ) := Var
(
R̂(ξ(2), ĥ)

)
=

T∑
k=1

[
8‖diag(wk)V k‖2F + 8(hk − ĥk)

2w′
kV kwk

]
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where diag(wk) is a diagonal matrix with the vector wk on the diagonal.

Theorem 5.1. Suppose that ‖Γk‖1/‖Γk‖F → 0 as S → ∞, where Γk :=

V
1/2
k diag(wk)V

1/2
k with V

1/2
k a symmetric matrix square root of V k. For a

given confidence level 1− α, consider the confidence set,

Ĉα(ξ) =

{
h ∈ �2 : ‖h− ĥ‖ ≤

√
zατ(h, ĥ) + R̂(ξ(2), ĥ)

}
with standard normal quantile zα, ĥ = ĥ(ξ(1)) and ξ

(1)
k , ξ

(2)
k independent nor-

mally distributed ξ
(1)
k , ξ

(2)
k ∼ N(hk1S , 2V k) for all k = 1, . . . , T . Then,

lim inf
S→∞

inf
h∈�2

P (h ∈ Ĉα(ξ)) ≥ 1− α

The validity of the asymptotic confidence regions relies on the condition
‖Γk‖1/‖Γk‖F → 0, which requires the maximum absolute row sum (or column
sum by symmetry) of Γk to be dominated by its Frobenius-norm for increas-
ing S. This condition implies that the number of relevant principal components
of the matrix Γk is increasing, or in other words, the vector of eigenvalues of
Γk should not be dominated by one or a few large values as S increases. Al-
though in a somewhat different spirit than the condition ‖GS‖F = o(S), this
condition also implies that the effective number of independent replicates should
increase with the total number of replicates S. Note that considering a vector of
equal weights wk = ( 1

S , . . . ,
1
S )

′, this condition can be restated in terms of the
between-replicate correlation matrix as ‖GS‖1/‖GS‖F → 0 for S → ∞. This
ratio has an optimal rate 1/

√
S when GS is equal to the identity matrix, and it

can be verified that this condition implies ‖GS‖F = o(S), (the other direction
does not hold).

In Theorem 5.1 we have constructed asymptotic confidence regions only for
the sequence of fixed effect coefficients in the wavelet coefficient domain, however

by the �2-normalization of the wavelet basis we have that 1√
T
‖hf − ĥ

f‖ =

‖h − ĥ‖, thus we can consider the scaled confidence regions in the frequency
domain given by,

Ĉf
α(ξ) =

{
hf ∈ �2 : ‖hf − ĥ

f‖ ≤
√
T

√
zατ(h, ĥ) + R̂(ξ(2), ĥ)

}
and by Theorem 5.1, the asymptotic coverage probability also satisfies,

lim inf
S→∞

inf
hf∈�2

P (hf ∈ Ĉf
α(ξ)) ≥ 1− α

Remark Note that the confidence regions are constructed under the assump-
tion that the covariance matrices V k are known. In practice, these covariance
matrices are unknown, and we therefore replace them by plug-in estimators V̂ k.
The generalized least squares weights wk, which typically also depend on the co-
variance matrices V k, can be replaced for instance by the sub-optimal ordinary
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least squares weights wk = ( 1
S , . . . ,

1
S )

′. This does not change the asymptotic

normality result of the estimator R̂(ξ(2), ĥ) in the proof of Theorem 5.1, but it
comes at the cost of increasing its variance, thereby increasing the radius of the
confidence regions.

6. Simulated data examples

In this section, we assess the finite-sample performance of the developed esti-
mators by some simulated data examples. In Algorithm 1 below, we describe
a procedure to simulate replicated time series {Xs(t), s = 1, . . . , S} with ran-
dom log-spectra Hf

s by means of their discrete Cramér representations. In short,
given a wavelet basis B, population-mean transfer function af (with population-
mean log-spectrum hf (ω) = log(|af (ω)|2)), within-replicate covariance matrix
GT , and between-replicate correlation matrix GS , we generate replicate-specific
random transfer functions Af

s (ω) which are inserted into discrete Cramér rep-
resentations to generate the replicated time series.

Algorithm 1 (Generating replicated time series)

1: hf ← log(Mod(af )2)
2: h ← DWTB(h

f ), the discrete wavelet transform w.r.t. the basis B.
3: U ← 0S×T , an (S × T )-matrix of zeroes.
4: For k = 1, . . . , T ,
5: if σ2

uk > 0 then put U [,k] ∼ N(0, σ2
ukGS)

6: For s = 1, . . . , S,
7: Uf

s ← I-DWTB(U [s,]), the inverse discrete wavelet transform w.r.t. the basis
B.

8: Af
s ← af

√
exp(Uf

s )

9: Xs(t) ← 1√
2T

∑T
�=−(T−1) A

f
s (ω�) exp(i2πω�t)ξ

s
�

In Algorithm 1, ξs� denotes a complex-valued normal random variable with
independent real and imaginary parts, such that ξs� = ξs∗−�.

6.1. Population-mean log-spectrum

We consider data generated under a single population-mean log-spectrum hf

coming from an ARMA(2, 2) process with parameters φ = (−0.2,−0.9), θ =
(0, 1) and white noise variance σ2

w = 1. The log-spectrum of this ARMA(2, 2)
process is particularly difficult to estimate due to some sharp local features.
In the right image of Figure 1 (dashed line), the considered population-mean
log-spectrum hf = (hf (ω0), . . . , h

f (ωT−1))
′ is shown for ω� ∈ [0, 1/2) with

T = 1024. In fact, the displayed curve is a relatively sparse �0-approximation of
hf under a Daubechies extremal-phase wavelet basis B with N = 6 vanishing
moments, where we have thresholded all coefficients with |hk| < T−1. Here, we
have used the WaveThresh package in R, see [28, Chapter 2] for more details.
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Fig 1. Simulated replicated time series (left), and corresponding replicate-specific log-spectra,
with underlying population-mean log-spectrum (right).

6.2. Random effects covariance matrices

For the T × T -dimensional covariance matrix GT , we consider the diagonal
matrix diag(σ2

u) with set of indices of non-zero variance components given by,

Ku,T = {k ∈ Kh,T : �log2(k − 1)� < J}

which are simply all the indices contained in the wavelet scales {j : 0 ≤ j < J}
with the additional constraint that Ku,T ⊆ Kh,T . For the magnitudes of the
variance components, we consider σ2

uk decaying with a factor 2 per increasing
wavelet scale, i.e. for some constant C > 0, let σ2

u1 = C and define for k > 1,

σ2
uk =

(
C · 2−�log2(k−1)�−2

)
1 {k ∈ Ku,T }

Under this specific model, Figure 1 shows generated random log-spectra for three
replicates (two of which are highly correlated) and corresponding simulated
replicate-specific time series, using a Daubechies extremal-phase wavelet basis
with N = 6 vanishing moments and parameters C = 0.5, J = 4, which are also
the values used in the subsequent simulation studies.

For the between-replicate S × S-dimensional correlation matrix GS we con-
sider two different scenarios:

1. A symmetric block-diagonal matrix containing a single (S/2×S/2) dimen-
sional block of highly correlated replicates with ρij = 0.9 for 1 ≤ i, j ≤
S/2. The constructed correlation matrix satisfies ‖GS‖F = o(S) and is
positive-semidefinite.

2. A symmetric contour-matrix that consists of layers of block matrices with
decaying levels of correlation, see Figure 2. The layers are chosen such
that again ‖GS‖F = o(S) and GS is positive-semidefinite. The correlation
matrix GS , for S ≥ 16 dyadic, is constructed as follows. Divide an S ×S-
identity matrix into blocks Bij of size 8×8 with 1 ≤ i, j ≤ S/8. Fix j ≥ 2,

for i < j, set all elements of Bij equal to {1− j2

S }+, and do the same for
Bjj only for its off-diagonal elements. Similarly, fixing i ≥ 2, for j < i, set

all elements of Bij equal to {1− i2

S }+, and finally put B11 = B22.
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Fig 2. Contour correlation matrices GS for S = {32, 64, 128}.

6.3. Simulation study

We assess the performance of the proposed estimation procedure and compare
this to the performance of several related alternatives. First, we consider a naive
ordinary least squares approach (OLS), where we smooth the replicate-specific
log-periodograms using FDR thresholding with tuning parameter q = 0.001
and estimate hf by averaging the smoothed curves over replicates, thereby not
taking into account the between-replicate dependence structure. Second, we con-
sider the non-adaptive iterative-generalized least squares approach, where the
smoothness space parameter kh,T is assumed to be known and the set Kh,T is
estimated using the universal threshold λh,T as in Section 3.1. Third, we con-
sider an adaptive iterative-generalized least squares approach, in which kh,T
is not known. In order to estimate the set Kh,T we use FDR thresholding
with tuning parameters q = {0.1, 0.001}. Finally, in order to assess the in-
crease in estimation error due to the iteration scheme, we also compute oracle

estimators ĥ
f
and ĜS(ĥ), where we assume the true generalized least squares-

weights (depending on GS) to be known in estimating hf , so that no itera-
tion of the estimators is required. Note that in this final scenario we do not
assume knowledge of kh,T nor ku,T , and the set Kh,T is estimated as in the
third scenario with FDR tuning parameter q = 0.001. The performance of

the estimator ĥ
f

= (ĥf (ω0), . . . , ĥ
f (ωT−1))

′ is assessed through the squared
error averaged over Fourier frequencies. Similarly, the performance estimators
ĜT and ĜS is evaluated through the squared error averaged over matrix ele-
ments.

In Table 1 we show average squared errors with in parenthesis correspond-
ing standard errors (σ̂/

√
M) for M = 1000 replicated simulation experiments.

It should not come as a surprise that knowledge of the true generalized least
squares-weights significantly improves the estimation error. This is seen by com-
paring the estimation error for hf of the naive ordinary least squares approach,
which does not take into account the between-replicate correlation structure,
with that of the oracle estimator. The iterative-generalized least squares scheme
then inflates the estimation error for hf relative to the oracle estimator, but
still outperforms the ordinary least squares approach under all of the consid-
ered scenarios. Another important observation is that the performance of the
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Table 1

Average squared errors (and standard errors σ̂/M) of the estimates of hf (×10−1), GT

(×10−4), and GS (×10−1).

T = 512 T = 1024

S Approach ASE(ĥ
f
) ASE(ĜT ) ASE(ĜS) ASE(ĥ

f
) ASE(ĜT ) ASE(ĜS)

Block-diagonal correlation matrix GS (Case (a))

32 OLS 2.74 (0.05) - - 2.53 (0.05) - -
Non-adaptive 2.15 (0.04) 0.65 (0.02) 1.29 (0.01) 2.12 (0.04) 0.31 (0.01) 1.24 (0.01)
Adapt. (q = 0.1) 2.10 (0.04) 0.66 (0.02) 1.30 (0.01) 2.08 (0.04) 0.31 (0.01) 1.24 (0.01)
Adapt. (q = 0.001) 2.15 (0.05) 0.64 (0.02) 1.31 (0.01) 2.12 (0.04) 0.31 (0.01) 1.25 (0.01)
Oracle (q = 0.001) 1.18 (0.02) 0.42 (0.01) 0.78 (0.01) 1.05 (0.02) 0.20 (0.01) 0.69 (0.01)

64 OLS 2.61 (0.05) - - 2.42 (0.05) - -
Non-adaptive 1.70 (0.03) 0.52 (0.02) 1.38 (0.01) 1.76 (0.04) 0.27 (0.01) 1.36 (0.01)
Adapt. (q = 0.1) 1.69 (0.04) 0.52 (0.02) 1.39 (0.01) 1.73 (0.04) 0.28 (0.01) 1.35 (0.01)
Adapt. (q = 0.001) 1.75 (0.04) 0.51 (0.02) 1.41 (0.01) 1.74 (0.04) 0.27 (0.01) 1.36 (0.01)
Oracle (q = 0.001) 0.86 (0.01) 0.24 (0.01) 0.80 (0.01) 0.74 (0.01) 0.12 (0.005) 0.72 (0.01)

128 OLS 2.56 (0.05) - - 2.38 (0.05) - -
Non-adaptive 1.57 (0.03) 0.41 (0.01) 1.56 (0.01) 1.61 (0.03) 0.21 (0.01) 1.55 (0.01)
Adapt. (q = 0.1) 1.56 (0.03) 0.41 (0.01) 1.57 (0.01) 1.61 (0.04) 0.21 (0.01) 1.56 (0.01)
Adapt. (q = 0.001) 1.58 (0.03) 0.40 (0.01) 1.58 (0.01) 1.62 (0.04) 0.21 (0.01) 1.57 (0.01)
Oracle (q = 0.001) 0.69 (0.01) 0.23 (0.01) 0.96 (0.01) 0.58 (0.01) 0.09 (0.01) 0.90 (0.01)

Contour correlation matrix GS (Case (b))

32 OLS 7.21 (0.16) - - 7.24 (0.16) - -
Non-adaptive 6.64 (0.15) 1.95 (0.03) 4.34 (0.03) 6.45 (0.15) 1.04 (0.02) 4.01 (0.03)
Adapt. (q = 0.1) 6.60 (0.15) 1.93 (0.03) 4.35 (0.03) 6.41 (0.15) 1.04 (0.02) 4.03 (0.03)
Adapt. (q = 0.001) 6.56 (0.15) 1.92 (0.03) 4.31 (0.03) 6.35 (0.15) 1.03 (0.02) 4.05 (0.03)
Oracle (q = 0.001) 5.95 (0.13) 1.26 (0.03) 3.40 (0.02) 5.85 (0.13) 0.76 (0.02) 2.98 (0.01)

64 OLS 4.61 (0.10) - - 4.60 (0.10) - -
Non-adaptive 2.66 (0.06) 1.07 (0.06) 1.95 (0.02) 2.65 (0.06) 0.54 (0.02) 1.93 (0.02)
Adapt. (q = 0.1) 2.64 (0.06) 1.05 (0.05) 1.95 (0.02) 2.63 (0.06) 0.54 (0.02) 1.94 (0.02)
Adapt. (q = 0.001) 2.67 (0.06) 1.05 (0.05) 1.98 (0.02) 2.66 (0.06) 0.53 (0.02) 1.95 (0.02)
Oracle (q = 0.001) 1.48 (0.03) 0.53 (0.02) 0.99 (0.01) 1.35 (0.03) 0.24 (0.01) 0.85 (0.01)

128 OLS 2.70 (0.05) - - 2.64 (0.05) - -
Non-adaptive 1.72 (0.03) 0.84 (0.07) 1.34 (0.01) 1.65 (0.03) 0.37 (0.03) 1.30 (0.01)
Adapt. (q = 0.1) 1.71 (0.03) 0.84 (0.07) 1.35 (0.01) 1.64 (0.03) 0.37 (0.03) 1.30 (0.01)
Adapt. (q = 0.001) 1.72 (0.03) 0.85 (0.07) 1.36 (0.01) 1.67 (0.04) 0.36 (0.03) 1.31 (0.01)
Oracle (q = 0.001) 0.75 (0.01) 0.28 (0.01) 0.91 (0.01) 0.64 (0.01) 0.11 (0.005) 0.85 (0.01)

adaptive estimators –regardless of the choice of the FDR tuning parameter– is
similar to the performance of the nonadaptive estimators in essentially all of
the considered scenarios. The adaptive estimators slightly outperform the non-
adaptive estimators in some cases, which is most likely due to the fact that the
asymptotic minimax threshold λh,T is somewhat conservative in a finite-sample
situation.

In Figure 3 and 4, we give some visual representations of the estimates under
a block-diagonal between-replicate correlation structure (T = 512, S = 64). Fig-
ure 3 shows the estimated population-mean log-spectrum and between-replicate
correlation matrix for a single simulation experiment using the adaptive ap-
proach with FDR tuning parameter q = 0.001, and Figure 4 shows true and
predicted random effects curves for a single simulation experiment under the
same scenario.
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Fig 3. Estimates of hf (solid black line) and GS for a single simulation experiment, with

(ĥ
f
0.01, ĥ

f
0.99)-empirical pointwise quantiles for 1000 repititions of the experiment.

Fig 4. True random effects curves Uf
s (ω) (left) and predicted random effects curves Ûf

s (ω)
(right) for a single simulation experiment.

6.4. Confidence region coverage

We also assess the validity of the constructed confidence regions for hf by com-
puting their empirical coverage under some of the simulated models considered
before. Since we are interested in the (negative) impact on the empirical coverage

caused by replacing the true covariance matrices V k by estimates V̂ k we con-
sider two different scenarios. In the first scenario, we assume the true matrices
V k to be known, both in performing the sample splitting procedure and in con-
structing the confidence regions. In the second scenario, we consider the matrices
V k to be unknown, therefore replacing them by plug-in estimators V̂ k. For the
weight vectors wk, we consider ordinary least squares weights, equally weighting
each replicate. As a benchmark procedure, we also compute the empirical cover-
age of parametric bootstrap confidence regions for hf with B = 1000 bootstrap
samples as proposed in [21] and [7]. The bootstrap confidence regions are con-
structed using the true covariance matrices V k, and in this sense are oracle con-
fidence regions, that should be compared to the asymptotic confidence regions
under the first scenario. In Table 2, the empirical coverage for the different ap-
proaches is shown for M = 5000 replicated simulation experiments (M = 1000
for the bootstrap confidence regions), the simulation results are shown only
for the adaptive approach (i.e. kh,T unknown) using FDR tuning parameter
q = 0.001, the results for the other approaches considered in Table 1 are similar.
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Table 2

Empirical coverage (×102) of confidence regions for hf .

α = 0.05 α = 0.1

T = 512 T = 1024 T = 512 T = 1024

S = 64 S = 128 S = 64 S = 128 S = 64 S = 128 S = 64 S = 128

Block-diagonal correlation matrix GS (Case (a))

Asymptotic (Scen. 1) 95.1 93.5 95.6 93.7 88.7 86.0 88.5 87.2
Asymptotic (Scen. 2) 96.7 96.5 98.3 98.2 86.1 84.4 89.8 89.7
Bootstrap 99.1 99.8 96.7 97.5 98.2 99.2 92.7 95.1

Contour correlation matrix GS (Case (b))

Asymptotic (Scen. 1) 99.5 96.4 99.6 96.7 96.9 90.3 97.2 91.1
Asymptotic (Scen. 2) 97.2 97.2 98.4 98.5 86.4 85.6 90.5 90.1
Bootstrap 97.3 99.5 95.5 96.2 94.4 99.0 89.6 93.5

7. Analysis of brain signals: Replicated LFP time series

To conclude, we analyze brain signal data recorded during an associative learn-
ing experiment. The dataset consists of local field potential (LFP) time series
traces, measuring electrical activity in the brain over the course of the experi-
ment, see [12] and [7] for a more detailed description. During the experiment, a
male macaque learns the association between one set of objects (four pictures)
and another set of objects (doors located in four different quadrants of the visual
field) by means of trial-and-error. In each trial, the macaque was first presented
with a picture and then required to select one of the four doors. Each time the
macaque made the correct association it was given a reward in the form of a
small quantity of juice. Over the course of the associative learning experiment,
the electrical activity in the brain of the macaque was measured using local
field potentials. Local field potentials measure electrical activity in the brain
directly via chronically implanted probes, in contrast to other commonly-used
non-invasive recording techniques, such as electroencephalograms (EEGs) and
functional magnetic resonance imaging (fMRI). In this analysis, we consider
univariate local field potential time series data recorded in the nucleus accum-
bens (NAc) region, which is a region in the brain that has been demonstrated
to be highly implicated in cognitive processes involving memory and reward.
After preprocessing of the LFP time series data, there remains a total of 590
(univariate) time series traces of length 2048 sampled at 1000 Hz, thus roughly
corresponding to 2 seconds of data.

The goal of the analysis is to study trial-population spectral characteristics,
and in particular the evolving spectral properties of the time series over the
course of the experiment. In Figure 5, we show the recorded LFP time series for
three trials (start, middle, and end of the experiment) and their corresponding
raw log-periodograms, which show clear common frequency behavior across the
three different trials. The left image of Figure 7 shows initial smoothed log-
periodograms across all the trials in the experiment, using FDR thresholding
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Fig 5. LFP time series (left) and corresponding raw log-periodograms (right) for trials 1,
250, and 590.

with tuning parameter q = 0.001, without taking into account the between-
trial dependence structure. Note that instead of the individually smoothed log-
periodograms, we show blockwise-average log-periodograms over 10 adjacent
individual trials in order to improve visibility of the image.

In general, the log-periodograms in Figure 7 (left) display very common fre-
quency behavior across trials, however towards the end of the experiment the
overall power in the middle- and high-frequency range (ω > 0.1) seems to in-
crease (except for the frequency-band around ω ≈ 0.14), and we also note that
power in the very low-frequency range (ω close to zero) fades out after approxi-
mately half of the trials. Simply averaging the spectral estimates across all trials
will not take into account, nor give us any information, about the dependence
structure of the underlying brain dynamics over the course of the experiment.
Therefore, we need a model that allows for explicit correlation between trial-
replicates in the population.

In the data analysis we consider frequency content up to 256 Hz (ω = 0.25),
since higher frequency behavior is typically attributed to noise and not phys-
iological behavior in the brain, and we do not want the estimated between-
trial correlation matrix to be dominated by this very high-frequency content
(ω > 0.25). In the left image of Figure 6, we show the estimated population-
mean log-spectrum hf = (hf (ω0), . . . , h

f (ω511))
′, with in grey several regions of

interest for the neuroscientist: the α-band (8–16 Hz), the β-band (16–32 Hz), γ-
band (32–100 Hz). The black dotted lines correspond to the variability (square

root of the diagonal of the estimate of Gf
T = W ′

BGTW B) of the random effects
curves in the frequency domain. Note that there are two small dips at 60 Hz and
180 Hz, these are artifacts remaining after the application of two Butterworth
band-stop filters in order to filter out the power line frequency around 60 Hz (in
North America) and one of its harmonics at 180 Hz. The right image in Figure 6
shows the estimate of the between-trial correlation matrix GS for blocks of 10
adjacent individual trials. Note that the estimated correlation matrix clearly
demonstrates the correlation structure between the trials that we observed for
the initial smoothed log-periodograms in Figure 7 (left). Trials at the beginning
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Fig 6. Estimates of the population-mean log-spectrum hf (left) and between-trial correlation
matrix GS (right).

Fig 7. Individually smoothed log-periodograms (left) and predicted trial-specific log-spectra ĥ
f
s

(right).

of the experiment are highly correlated and trials at the end of the experiment
are highly correlated, and the correlation between trials decays as the lag be-
tween trials increases. This suggests that the trial-specific log-spectra evolve
over the course of the learning experiment, as already discussed in [7], and it
is important to take this behavior into account in the data analysis in order
to improve estimation of the population-mean curve and especially prediction
of the replicate-specific curves, but also to avoid misleading results in any sub-
sequent inference procedures. The right image of Figure 7 shows the predicted
trial-specific log-spectra (again for blocks of 10 adjacent trials). Comparing the
two images in Figure 7, we observe that the predicted trial-specific log-spectra
perform better in suppressing the overall noise than the individual smoothed
log-periodograms, since the functional mixed-effects model pools information
across different trials, on the other hand we are still able to capture most of the
relevant features present for the individual smoothed log-periodograms.

8. Conclusion

In the context of spectral analysis for replicated time series, where the focus
is on population spectral characteristics rather than the behavior of individ-
ual time series, we propose to model replicate-specific log-spectra as random
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curves based on a nonparametric functional mixed effects approach. We address
the specific problem of analyzing spectra that are characterized by localized
peaks or troughs by successfully using projection estimators, and in particular
nonlinear wavelet thresholding. Here we benefit both from a convenient linear
mixed effects structure in the wavelet coefficient domain, and the possibility
to constrain the complexity of this nonparametric estimation problem by nat-
ural �0-sparsity constraints. The paradigm of �0-driven sparsity leads to simple
constraints ensuring that the replicate-specific curves and the population-mean
curve share the same level of complexity (as in [13]), but also allows to come up
with practical near-optimal threshold choices for both fixed- and random effects
estimation. The good performance of this smoothing device is also confirmed by
our empirical results.

As an additional important ingredient, we introduce a generic correlation
model for the population of random effects curves, where both intra- and inter-
subject correlation are modeled in a convenient nonparametric way in the wavelet
coefficient domain. The importance of including correlated functions in the gen-
eral setting of functional response regression has already been underlined by
[24]. The author clearly expresses that the overwhelming majority of existing
work cannot model correlation between curves and is hence only suitable for
independently sampled functions. This is not realistic for many functional data
problems, and can lead to estimators that are statistically inefficient, or even
give misleading inferences. As an example of replicated time series data with ex-
plicit correlation between different replicates in the population, we analyze em-
pirical brain signal data over the course of an associative learning experiment.
There is a clear indication that the spectral behavior of trial-replicated time
series evolves over the course of the experiment, and we are able to reproduce
a meaningful correlation structure over time series replicates that demonstrates
this evolutionary behavior over the course of the learning experiment. We note
that our fully nonparametric approach, although developed in the framework of
spectral analysis for time series data, can equally well be applied in a general
functional data analysis context in the presence of correlated random curves,
where we benefit from the twofold adaptation properties of wavelets towards
sparse and localized structures.

To conclude, we discuss two important directions in which to generalize the
proposed model. First, replicated time series spectral analysis of brain data even-
tually calls for a multivariate treatment in order to reveal dependence structures
between different regions in the brain through cross-spectral analysis of differ-
ent components of the multivariate time series (e.g. multivariate EEG time
series data from different regions in the brain). Recent unpublished work by
[22] treats the problem of analyzing associations between power spectra of mul-
tivariate time series and cross-sectional outcomes by an approach based on a
tensor-product spline model, in frequency and outcome, of Cholesky components
of outcome-dependent power spectra. However, to the best of our knowledge,
no quantitative analysis that embeds replicate-specific spectral matrices into a
multivariate functional mixed effects model exists so far, not even for the case
of independent replicates. We are currently generalizing our functional mixed
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effects approach developed for replicated univariate time series to this more
challenging setting. Second, there is considerable evidence (see e.g. [31]) that
for long EEG recordings, the second-order stationary assumption for the time
series is too strong. It is preferable to weaken this assumption and to consider
for instance a variance-covariance structure that slowly changes over time. In
the context of an individual time series, time-varying spectral analysis is a chal-
lenging task since it can lead to estimators with extremely high variance (see e.g.
[30]). We expect that the methodology presented here will become very efficient
in this context, since it allows for pooling of information across the different
time series replicates.

Appendix: Proofs

9. Key components in the proof of Theorem 4.1

We outline the proof of Theorem 4.1 through several key lemmas. The first
lemma gives the uniform asymptotic normality result for empirical wavelet co-
efficients of the log-periodogram ordinates and relates the �2-risk of ĥλ(Y ) under
the sequence model in the wavelet coefficient domain in Section 2.1.2 to the �2-
risk of ĥλ(ξ) under an accompanying Gaussian sequence model. Here, λ ≥ 0 is
an arbitrary nonlinear threshold.

Lemma 9.1. Under assumptions (A1) and (A3), uniformly in k ∈ JT,α, for
arbitrary 0 < α < 1,

P ((Ysk − hk)/σk,T ≥ xs) = (1 + oT (1))(1− Φ(xs)) for all s = 1, . . . , S

with −∞ < xs ≤ ΔT ∼ T ν for some ν > 0, where σ2
k,T = σ2

uk + σ2
e/T .

Furthermore,∑
k∈JT,α

E[(ĥk,λ(Y ·k)− hk)
2] = (1 + oT (1))

∑
k∈JT,α

E[(ĥk,λ(ξk)− hk)
2]

+O(S−μT−μ+1)

for arbitrary 0 < μ < ∞, and with ξk ∼ N(hk1S ,V k) Gaussian random vectors.

This lemma implies that it suffices to derive an �2-risk upper bound of ĥ(Y )
under the accompanying Gaussian sequence model. In the lemma below, we
derive exact expressions of the mean-squared errors of ĥk(ξk) with respect to
hk under the Gaussian model, which is equivalent to exact normality of the
empirical wavelet noise coefficients.

Lemma 9.2. Suppose that ε1k, . . . , εSk
iid∼ N(0, σ2

e/T ) for each k = 1, . . . , T .

An exact expression of the mean squared error of ĥk,λ(ξk) with threshold λ ≥ 0
is given by,

E[(ĥk,λ(ξk)− hk)
2] =
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(
2w′

kV kwk − h2
k

)
+
(
h2
k −w′

kV kwk

)(
Φ

(√
S(λ− hk)

σ̃k,T

)

+Φ

(√
S(λ+ hk)

σ̃k,T

))
+

(w′
kV k1S)

2

Sσ̃2
k,T

(√
S(λ− hk)

σ̃k,T

)
φ

(√
S(λ− hk)

σ̃k,T

)

+
(w′

kV k1S)
2

Sσ̃2
k,T

(√
S(λ+ hk)

σ̃k,T

)
φ

(√
S(λ+ hk)

σ̃k,T

)

where σ̃2
k,T =

σ2
uk

S 1′
SGS1S + σ2

e/T , and φ(·) denotes the standard normal prob-
ability density function. Furthermore, for each k

E[(ĥk,λ(ξk)− hk)
2] ≤ w′

kV kwk + λ2

These upper bounds are sharp when either λ/σ̃k,T → ∞, in which case

E[(ĥk,λ(ξk)hk)
2] ↑ λ2, or when λ/σ̃k,T → 0, in which case E[(ĥk,λ(ξk)− hk)

2] ↑
w′

kV kwk.

The derivations follow from straightforward calculus and the proofs are there-
fore omitted. The expression for the mean squared error generalizes an expres-
sion for the mean squared error of a nonlinear hard threshold estimator in a
classical Gaussian sequence model found in [5]. Note that we find back the ex-
pression in [5] when S = 1 and σ̃2

k,T = 1. The main result in Theorem 4.1 on

the �2-risk of ĥ(Y ) now follows from combining Lemma 9.1, the upper bounds
in Lemma 9.2, and plugging in the threshold λh,T (see Section 10).

9.1. Proof of Lemma 9.1

Proof. Let us write Y ·k = hu
k + ε·k, where h

u
k = hk +U ·k, with hk = hk1S and

ε·k = (ε1k, . . . , εSk)
′ independent noise terms. Then, conditional on the random

effects coefficients, we will show that, uniformly in k ∈ JT,α with α > 0,

P
(√

T
σe

(Ysk − hu
sk) ≥ xs |Usk = usk

)
1− Φ(xs)

T→∞→ 1 for all s = 1, . . . , S

where −∞ < xs ≤ T ν for some ν > 0. In order to prove this asymptotic
normality result, we derive upper bounds on the n-th order cumulants (n ≥ 2)
of εsk = 〈Ef

s , ψk〉T , the empirical wavelet coefficients of the log-periodogram
error terms Ef

s with respect to the wavelet basis function ψk. Since Var(εsk) =
O(T−1), the n-th order cumulant of εsk (for all s, k) can be written in terms of
joint cumulants as,

cumn(εsk/
√
Var(εsk)) �

cum

(
1√
T

T∑
�1=1

Ef
s (ω�1)ψk(ω�1), . . . ,

1√
T

T∑
�n=1

Ef
s (ω�n)ψk(ω�n)

)
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= T−n/2
∑
�1

· · ·
∑
�n

ψk(ω�1) · · ·ψ(ω�n)cum(Ef
s (ω�1), . . . , E

f
s (ω�n))

= T−n/2
∑
�1

ψk(ω�1)
ncum(Ef

s (ω�1), . . . , E
f
s (ω�1))

+ T−n/2
n∑

j=1

∑
�1 
=�2

ψk(ω�1)
jψk(ω�2)

n−jcum(Ef
s (ω�1), . . . , E

f
s (ω�1),

Ef
s (ω�2), . . . , E

f
s (ω�2))

...

+ T−n/2
∑

�1 
=... 
=�n

ψk(ω�1) . . . ψk(ω�n)cum(Ef
s (ω�1), . . . , E

f
s (ω�n)) (9.1)

Under (A3), conditional on the random effects coefficients, for each s = 1, . . . , S,
Xs(t) is a stationary Gaussian process such that

∑∞
h=−∞ |h||Cov(Xs(t), Xs(t+

h))| < ∞. By Lemma 2 in [38] it then follows that, conditional on the random
effects coefficients, for each s = 1, . . . , S and n ≥ 2:

cum(Ef
s (ω1), . . . , E

f
s (ωn1), E

f
s (ωn1+1), . . . , E

f
s (ωn1+n2), . . . , E

f
s (ωn)) ={

O(T−m) if m ≥ 2
O(1) if m = 1

where, n1 + . . .+ nm = n, and

0 < ω1 = . . . ,= ωn1 < ωn1+1 = . . . = ωn1+n2 < ωn−nm+1 = . . . = ωn

Furthermore, since wavelet basis functions at wavelet scale j are of the order
2j/2, for all k ∈ JT,α, |ψk(ω�)| ≤ CT (1−α)/2 uniformly in ω� for some C > 0.
From eq. (9.1) we obtain,

cumn(εsk/
√
Var(εsk)) �

T−n/2+1Cn−2(T (1−α)/2)n−2

∫
ψk(ω)

2dω + T−n/2CnBn(T
(1−α)/2)n

≤ T−n/2+1Cn−2(T (1−α)/2)n−2 + T−n/2Cnn!(T (1−α)/2)n

� Cnn!(T−α/2)n−2 (9.2)

where by orthonomality of the wavelet basis functions
∫
ψk(ω)

2dω = 1, and
where Bn denotes the n-th Bell number satisfying Bn ≤ n! for all n ∈ N.

By the same arguments as in [29], due to the cumulant bounds in eq. (9.2)
and Lemma 1 in [36],

P

(
εsk − E[εsk]√

Var(εsk)
≥ xs

)
= (1 + oT (1))(1− Φ(xs)) for all s = 1, . . . , S (9.3)

for −∞ < xs ≤ ΔT ∼ Tα/6.
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Furthermore, under (A3), E[Ef
s (ω�)] = O(T−1) uniformly in ω� by [38], thus

for k ∈ JT,α,

E[εsk] =
1

T

T∑
�=1

E[Ef
s (ω�)]ψk(ω�) ≤ sup

�
|ψk(ω�)|O(T−1) = O(T−(1+α)/2) (9.4)

and since Var(εsk) = O(T−1), the standardized bias satisfies b := E[εsk]/√
Var(εsk) = O(T−α/2). Rewriting eq. (9.3) gives,

P
(√

T
σe

εsk ≥ xs

)
1− Φ(xs)

= (1 + oT (1))
1− Φ(xs + b))

1− Φ(xs)
(9.5)

Let w.l.o.g. b ≥ 0 and fix some c > 1, then for xs ≤ c∣∣∣∣1− Φ(xs + b)

1− Φ(xs)
− 1

∣∣∣∣ = |Φ(xs + b)− Φ(xs)|
1− Φ(xs)

→ 0 as T → ∞

On the other hand, for c < xs ≤ ΔT by a formula for Mill’s ratio (see [29]),∣∣∣∣1− Φ(xs + b)

1− Φ(xs)
− 1

∣∣∣∣ ≤ bφ(xs)

1− Φ(xs)
≤ bxs

1− 1/x2
s

→ 0 as T → ∞

Since Y k −hu
k = εk, we conclude from eq. (9.5) that conditional on the random

effects coefficients,

P
(√

T
σe

(Ysk − hu
sk) ≥ xs |Usk = usk

)
1− Φ(xs)

T→∞→ 1 for all s = 1, . . . , S

for −∞ < xs ≤ ΔT and uniformly in k ∈ JT,α. Moreover, for any given S,∏S
s=1 P

(√
T

σe
(Ysk − hu

sk) ≥ xs |Usk = usk

)
∏S

s=1(1− Φ(xs))

T→∞→ 1, for xs ≤ ΔT

and since conditional on the random effects coefficients the terms Ysk − hu
sk are

all independent across replicates, this is equivalent to:

P

(√
T

σe
IS · (Y ·k − hu

k) ≥ x |U ·k = u·k

)
= (1+oT (1))P (Zk ≥ x), for x ≤ ΔT

where x = (x1, . . . , xS)
′ ∈ R

S , ΔT ∼ (T ν , . . . , T ν)′ ∈ R
S with ν > 0, and

Zk ∈ R
S a vector of independent standard normal random variables. Let us

write Ỹ k = V
−1/2
k (Y ·k − hk), where V

−1/2
k is the square root matrix of V −1

k ,

(recall that V k = σ2
ukGS +

σ2
e

T IS). The random effects coefficients are assumed
to be jointly multivariate normal, therefore the unconditional version follows as
well,

P (Ỹ k ≥ x) = (1 + oT (1))P (Zk ≥ x), for x ≤ ΔT (9.6)
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In the following part, we relate the mean squared error of ĥk,λ(Y ·k) w.r.t. hk

to the mean squared error of ĥk,λ(ξk) w.r.t. hk, and show that they are asymp-
totically equivalent as T → ∞. We split up,

E[(ĥk,λ(Y ·k)− hk)
2] =

E

[
(ĥk,λ(Y ·k)− hk)

21{hk−V
1/2
k ΔT≤Y ·k≤hk+V

1/2
k ΔT }

]
+E

[
(ĥk,λ(Y ·k)− hk)

21{|Ỹ k|>ΔT }

]
:= R1 +R2 (9.7)

According to eq. (9.6) above, there exist C
(�)
T and C

(u)
T tending to 1 as T → ∞

(uniformly in k ∈ JT,α), such that

C
(�)
T P (Zk ≥ x) ≤ P (Ỹ k ≥ x) ≤ C

(u)
T P (Zk ≥ x) for x ≤ ΔT

which is equivalent to,

C
(�)
T P (ξk ≥ x) ≤ P (Y ·k ≥ x) ≤ C

(u)
T P (ξk ≥ x) for x ≤ hk + V

1/2
k ΔT

(9.8)

with ξk = hk + V
1/2
k Zk ∼ N(hk,V k).

In the argument below we use that for g : RS → R measurable, if a ∈ R
S is

such that P (g(X) ≥ g(a)) = 1, then

E[g(X)] =

∫
g(x) dP (X ≤ x) = g(a) +

∫ (∞,...,∞)

a

P (X ≥ x) dg(x) (9.9)

Let g(x) = (ĥk,λ(x)−hk)
21{x∈Bk}, where we recall that ĥk,λ(·) is the (determin-

istic) thresholding rule that defines our estimator, and let a = infx∈Bk
(ĥk,λ(x)−

hk)
2, with Bk = {x : hk − V

1/2
k ΔT ≤ x ≤ hk + V

1/2
k ΔT }. Note that a ex-

ists and is attained for x ∈ Bk, since Bk is closed and bounded and therefore
compact.

Using eq. (9.8) and eq. (9.9), we can upper bound R1 by,

R1 =

∫
g(x) dP (Y ·k ≤ x)

= g(a) +

∫ (∞,...,∞)

a

P (Y ·k ≥ x) d
[
(ĥk,λ(x)− hk)

21{x∈Bk}
]

≤ g(a) + C
(u)
T

∫ (∞,...,∞)

a

P (ξk ≥ x) d
[
(ĥk,λ(x)− hk)

21{x∈Bk}
]

≤ (C
(u)
T ∨ 1)

[
g(a) +

∫ (∞,...)

a

P (ξk ≥ x) d
[
(ĥk,λ(x)− hk)

21{x∈Bk}
]]

= (C
(u)
T ∨ 1)E

[
(ĥk,λ(ξk)− hk)

21{ξk∈Bk}

]
(9.10)
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Completely analogous, we can lower bound R1 by,

R1 ≥ (C
(�)
T ∧ 1)E

[
(ĥk,λ(ξk)− hk)

21{ξk∈Bk}

]
(9.11)

Combining eq. (9.10) and eq. (9.11), and using that C
(�)
T , C

(u)
T → 1 as T → ∞,

we conclude that

R1 = (1 + oT (1))E
[
(ĥk,λ(ξk)− hk)

21{ξk∈Bk}

]
(9.12)

uniformly in k ∈ JT,α. For the other term R2 in eq. (9.7), with ΔT = (ΔT,1, . . . ,
ΔT,S)

′ = (T ν , . . . , T ν) for some ν > 0, using an upper bound for multivariate
Gaussian tail probabilities we find that,

P (|Ỹ k| ≥ ΔT ) ≤ C
(u)
T P (Zk ≥ ΔT )

≤ C
(u)
T

(
S∏

s=1

ΔT,s

)−1

(2π)−S/2 exp

(
−1

2
Δ′

T ISΔT

)
� C

(u)
T T−Sν exp

(
−S

2
T 2ν

)
= O((ST )−μ) (9.13)

for arbitrary 0 < μ < ∞, since the exponential rate above decays faster than
any arbitrary polynomial rate.

Furthermore, it can be verified that

E[(ĥk,λ(Y ·k)− hk)
4] ≤ E[(|w′

kY ·k − hk|+ |hk|)4] ≤ max
s

E[(|Ysk − hk|+ |hk|)4]
(9.14)

By Parseval’s relation,

sup
k

|hk| = ‖h‖∞ ≤ ‖h‖2 =
1√
T
‖hf‖2 = ‖hf‖L2 + oT (1) = O(1) (9.15)

where the last equality is due to the fact that hf ∈ L2([0, 1/2]) (here ‖ · ‖2
denotes the Euclidian norm). By Jensen’s inequality,

E[|Ysk − hk|n] ≤
√

E[(Ysk − hk)2n] =
√
E[(Usk + εsk)2n] for 1 ≤ n ≤ 4

(9.16)
By eq. (9.4) and the cumulant bounds in eq. (9.2) for all s = 1, . . . , S,

cum1(εsk) = O(T−1/2T−α/2) = O(T−1/2)

cumn(εsk) = O(T−n/2(T−α/2)n−2) = O(T−n/2) for n ≥ 2

Therefore,

E[εnsk] = O

⎛⎝ n∑
m=1

∏
i1,...,im : i1+...+im=n,ij≥1

|cumij (εsk)|

⎞⎠ = O(T−n/2) (9.17)
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Also, since the random effects coefficients are assumed to be Gaussian E[Un
sk] =

O(1) for 1 ≤ n ≤ 8, we obtain from eq. (9.14)–(9.17) that

E[(ĥk,λ(Y ·k)− hk)
4] = O(1) (9.18)

Combining the Cauchy-Schwarz inequality and eq. (9.13) and eq. (9.18) we find,

R2 ≤
√
P (|Ỹ k| ≥ ΔT )

√
E[(ĥk,λ(Y ·k)− hk)4] = O((ST )−μ)

for arbitrary 0 < μ < ∞, (abusing notation for μ). Combining eq. (9.7),
eq. (9.12), and eq. (9.19) yields,

E[(ĥk,λ(Y ·k)− hk)
2] = (1 + oT (1))E[(ĥk,λ(ξk)− hk)

2] +O((ST )−μ) (9.19)

Since the above equation holds uniformly over k ∈ JT,α, with |JT,α| = O(T 1−α)
for α > 0, it follows that,∑

k∈JT,α

E[(ĥk,λ(Y ·k)− hk)
2] =

(1 + oT (1))
∑

k∈JT,α

E[(ĥk,λ(ξk)− hk)
2] +

∑
k∈JT,α

O((ST )−μ)

= (1 + oT (1))
∑

k∈JT,α

E[(ĥk,λ(ξk)− hk)
2] +O(S−μT−μ+1)

for arbitrary 0 < μ < ∞, which concludes the proof.

10. Proof of Theorem 4.1

Proof. We split up, using Lemma 9.1:

E‖ĥ(Y )− h‖2 =
∑

k∈JT,α

E[(ĥk(Y ·k)− hk)
2] +

∑
k/∈JT,α

h2
k

= (1 + oT (1))
∑

k∈JT,α

E[(ĥk(ξk)− hk)
2]

+O(S−μT 1−μ) +
∑

k/∈JT,α

h2
k (10.1)

for arbitrary 0 < μ < ∞. For T sufficiently large (T ≥ T ∗) since 0 < α ≤ α∗

with T ∗, α∗ as in (A2), the last term on the right-hand side disappears by (A2).
It remains to show that the remaining part behaves according to the claimed
rates.

By (A1), h ∈ �0,T (kh,T ) and σ2
u ∈ �0,T (ku,T ) with Ku,T ⊆ Kh,T . We de-

compose the first sum on the right-hand side above into three different regions
{k /∈ Kh,T }, {k ∈ Kh,T \Ku,T }, and {k ∈ Kh,T ∩Ku,T }, and upper bound by
Lemma 9.2,
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k∈JT,α

E[ĥk(ξk)− hk)
2] ≤

(T − kh,T )

(
2σ2

e

TS

(
1− Φ

(√
TSλh,T

σe

))
+

2σeλh,T√
TS

φ

(√
TSλh,T

σe

))

+ (kh,T − ku,T )

(
σ2
e

TS
+ λ2

h,T

)
+ ku,T sup

k

[
w′

kV kwk + λ2
h,T

]
(10.2)

We observe that λh,T = σe√
TS

√
2 log(T/kh,T ) >

σe√
TS

for T large, since kh,T /T →
0 as T → ∞. Therefore, for T sufficiently large,

2σ2
e

TS

(
1− Φ

(√
TSλh,T

σe

))
=

2σ2
e

TS

∫ ∞

√
TSλh,T /σe

1√
2π

exp

(
−1

2
z2
)

dz

≤ 2σ2
e

TS

σe√
TSλh,T

∫ ∞

√
TSλh,T /σe

z√
2π

exp

(
−1

2
z2
)

dz

≤ 2σeλh,T√
TS

φ

(√
TSλh,T

σe

)

=
2σ2

e

TS

√
2 log

(
T

kh,T

)
φ(0)

kh,T
T

(10.3)

where in the second step we use z√
TSλh,T /σe

≥ 1 and in the third step
σ2
e

TS ≤ λ2
h,T

and
∫∞
λ

zφ(z)dz = φ(λ). By eq. (10.3) and plugging in λh,T , the right-hand side
in eq. (10.2) is upper bounded by:

∑
k∈JT,α

E[ĥk(ξk)− hk)
2] ≤ (T − kh,T )

(
4σ2

e

TS

√
2 log

(
T

kh,T

)
φ(0)

kh,T
T

)

+(kh,T − ku,T )

(
σ2
e

TS
+

2σ2
e

TS
log

(
T

kh,T

))
+ku,T sup

k

[
w′

kV kwk +
2σ2

e

TS
log

(
T

kh,T

)]
≤ kh,Tσ

2
e

TS

(
1 + 4φ(0)

√
2 log

(
T

kh,T

)

+2 log

(
T

kh,T

))
+ ku,T

(
sup
k

w′
kV kwk − σ2

e

TS

)
� kh,T

TS
log

(
T

kh,T

)
+ ku,T

(
sup
k

w′
kV kwk − σ2

e

TS

)
(10.4)
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By plugging eq. (10.4) into eq. (10.1), we obtain for T sufficiently large

E‖ĥ(Y )− h‖2 �
kh,T
TS

log

(
T

kh,T

)
+ ku,T

(
sup
k

w′
kV kwk − σ2

e

TS

)
+ S−μT 1−μ

Since 0 < μ < ∞ can be chosen arbitrarily large, for μ > 2 the first term on
the right side dominates the last term on the right side, thus concluding the
proof.

11. Proof of Theorem 4.2

11.1. Almost sure convergence of the estimated set K̂u(Y )

Proof. First we show that the inclusion Ku,T ⊆ K̂u(Y ) holds with probability

tending to 1 as S, T → ∞. Since K̂u(Y ) = {k : |Tk(Y ·k)| ≥ λu,T }, it suffices
to show that

P

(
inf

k∈Ku,T

|Tk(Y ·k)| ≥ λu,T

)
→ 1, as S, T → ∞ (11.1)

Writing σ2
k,T = σ2

uk + σ2
e/T and σ̂2

k(Y ·k) = 1
S

∑S
s=1(Ysk − ĥk)

2, since

infk∈Ku,T
σ2
k,T ≥ δ > 0 we can lower bound,

inf
k∈Ku,T

|Tk(Y ·k)| =

inf
k∈Ku,T

∣∣∣∣log(σ̂2
k(Y ·k)) + log

(
T

σ2
e

)
−
(
log

(
2

S

)
+ ψ(0)

(
S

2

))∣∣∣∣
≥ inf

k∈Ku,T

∣∣∣∣log(σ2
k,T ) + log

(
T

σ2
e

)
−
(
log

(
2

S

)
+ ψ(0)

(
S

2

))∣∣∣∣
− sup

k∈Ku,T

∣∣log(σ̂2
k(Y ·k)− log(σ2

k,T )
∣∣

It can be verified that ψ(0)(x) = log(x)+O(x−1), therefore | log(2/S)+ψ(0)(S/2)|
= oS(1), and the first term on the right-hand side is seen to grow at the rate ∼
log(T ) for S, T increasing. For the second term, we show that
supk∈Ku,T

| log(σ̂2
k(Y ·k)− log(σ2

k,T )| = oS,Tp (1). First, decompose

σ̂2
k(Y ·k) =

1

S

S∑
s=1

((Ysk − hk) + (hk − ĥk))
2

=
1

S

S∑
s=1

(Ysk − hk)
2

︸ ︷︷ ︸
(i)

+
2

S

S∑
s=1

(Ysk − hk)(hk − ĥk)︸ ︷︷ ︸
(ii)

+
1

S

S∑
s=1

(hk − ĥk)
2

︸ ︷︷ ︸
(iii)

(11.2)
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For k ∈ Ku,T , term (ii) and term (iii) uniformly converge to zero in probability

as S, T → ∞, which follows from the fact that supk |hk − ĥk| = oS,Tp (1) and
2
S

∑S
s=1(Ysk − hk) = Op(1) since Var(Ysk) < ∞.

For term (i), by linearity of the expectation and recalling that Ysk = hk +
Usk + εsk,

E

[
1

S

S∑
s=1

(Ysk − hk)
2

]
=

1

S

S∑
s=1

Var(Usk + εsk) = σ2
uk + σ2

e/T = σ2
k,T

where we use that by assumption εsk ∼ (0, σ2
e/T ). Also,

Var

(
1

S

S∑
s=1

(Ysk − hk)
2

)
=

1

S2

S∑
s=1

Var((Usk + εsk)
2) +

1

S2

∑
s 
=s′

Cov((Usk + εsk)
2, (Us′k + εs′k)

2)

=
1

S2

S∑
s=1

Var((Usk + εsk)
2) +

1

S2

∑
s 
=s′

Cov(U2
sk, U

2
s′k)

where in the second step we use that εsk ⊥ Us′k for all s, s′, εsk ⊥ εs′k for s �= s′,
and the fact that E[εsk] = 0 for all s, k. We observe that Var((Usk + εsk)

2) =
O(1) uniformly over k = 1, . . . , T , since Usk ∼ N(0, σ2

uk) with supk σ
2
uk < ∞,

and εsk ∼ (0, σ2
e/T ) with E[ε4sk] = O(T−2) is independent of Usk for all s, k.

Moreover, by Gaussianity of the random effects coefficients, it can be verified
that

Cov(U2
sk, U

2
s′k) = 2ρ2ss′σ

4
uk

Therefore, using that supk σ
2
uk < ∞,

Var

(
1

S

S∑
s=1

(Ysk − hk)
2

)
= O(S−1) + 2σ4

uk

‖GS‖2F
S2

= O(S−1) +O

(
‖GS‖2F

S2

)
which converges to zero uniformly over k ∈ {1, . . . , T}, since ‖GS‖F /S → 0 by

assumption. By Chebychev’s inequality 1
S

∑S
s=1(Ysk − hk)

2 P→ σ2
k,T uniformly

over k ∈ Ku,T as S → ∞, and by Slutsky’s lemma it follows from eq. (11.2)

that σ̂2
k(Y k)

P→ σ2
k,T uniformly over k ∈ Ku,T as S, T → ∞.

For the uniform convergence in probability of log(σ̂2
k(Y ·k)) over k ∈ Ku,T ,

we show that for any ε, γ > 0, there exist S0, T0 sufficiently large (depending on
only ε, γ) such that

P (| log(σ̂2
k(Y ·k))− log(σ2

k,T )| > ε) < γ (11.3)
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for S > S0, T > T0 and all k ∈ Ku,T . For arbitrary ε > 0, by the law of total
probability,

P (| log(σ̂2
k)− log(σ2

k,T )| > ε) =

P (| log(σ̂2
k)− log(σ2

k,T )| > ε : σ̂2
k ≥ δ/2)P (σ̂2

k ≥ δ/2) + P (σ̂2
k < δ/2)

Since log(x) has bounded derivative on x ∈ [δ/2,∞) for δ bounded away from
zero, it is uniformly continuous on the domain [δ/2,∞). Thus, there exists ε1 > 0
such that |x − x0| ≤ ε1 implies | log(x) − log(x0)| ≤ ε for all x, x0 ∈ [δ/2,∞).
Using that infk∈Ku,T

σ2
k ≥ δ, for this choice of ε1 we get,

P (| log(σ̂2
k)− log(σ2

k,T )| > ε : σ̂2
k ≥ δ/2)P (σ̂2

k ≥ δ/2) ≤
P (|σ̂2

k − σ2
k,T | > ε1 : σ̂2

k ≥ δ/2)P (σ̂2
k ≥ δ/2)

≤ P (|σ̂2
k − σ2

k,T | > ε1)

By the uniform convergence in probability of σ̂2
k(Y ·k), there exist S

(1)
0 , T

(1)
0 such

that
P (|σ̂2

k − σ2
k,T | > ε1) < γ/2

for S > S
(1)
0 , T > T

(1)
0 and all k ∈ Ku,T . Similarly, using that infk∈Ku,T

σ2
k,T ≥ δ,

there exist S
(2)
0 , T

(2)
0 such that

P (σ̂2
k < δ/2) < P (|σ̂2

k − σ2
k,T | > δ/2) < γ/2

for S > S
(2)
0 , T > T

(2)
0 and all k ∈ Ku,T . The uniform convergence in probability

in eq. (11.3) now follows from the above arguments with S0 = S
(1)
0 ∨ S

(2)
0 and

T0 = T
(1)
0 ∨ T

(2)
0 .

We conclude that the left-hand side inside the probability in eq. (11.1) grows
at the rate∼ log(T ) in probability for increasing S, T . On the other hand, λu,T =
o(log(T )) by assumption. Combining these two results implies that Ku,T ⊆
K̂u(Y ) with probability tending to 1 as S, T → ∞.

Next, we show that the other inclusion K̂u(Y ) ⊆ Ku,T also holds with prob-
ability tending to 1 as S, T → ∞, which is equivalent to showing

P

(
sup

k/∈Ku,T

|Tk(Y ·k)| ≥ λu,T

)
→ 0, as S, T → ∞

For k /∈ Ku,T , eq. (11.2) term (ii) and term (iii) are oS,Tp (T−1), which is obtained

by combining supk/∈Ku,T
|hk − ĥk| = oS,Tp (T−1/2) and (Ysk − hk) = Op(T

−1/2)

since Var(Ysk) = σ2
e/T . Term (i) in eq. (11.2) satisfies uniformly over k /∈ Ku,T ,

1

S

S∑
s=1

(Ysk − hk)
2 = E[(Ysk − hk)

2] +Op

⎛⎝
√√√√Var

(
1

S

S∑
s=1

(Ysk − hk)2

)⎞⎠
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=
σ2
e

T
+ oS,Tp (T−1) (11.4)

since Var((Ysk −hk)
2) = Var(ε2sk) = O(T−2) for k /∈ Ku,T . Combining the three

terms it follows that,

sup
k/∈Ku,T

∣∣∣∣ Tσ2
e

σ̂2
k(Y ·k)− 1

∣∣∣∣ P→ 0, as S, T → ∞ (11.5)

By continuity of the logarithm, for arbitrary ε > 0 and fixing x0 = 1, there exists
ε1 = ε1(x0) independent of k, such that |x−x0| ≤ ε1 implies | log(x)− log(x0)| ≤
ε. For this choice of ε1,

P (| log(T σ̂2
k(Y ·k)/σ

2
e)− log(1)| > ε) ≤ P (|T σ̂2

k(Y ·k)/σ
2
e − 1| > ε1)

Since ε1 only depends on x0 = 1, and T σ̂2
k(Y k)/σ

2
e

P→ 1 uniformly over k /∈ Ku,T ,
we obtain

sup
k/∈Ku,T

| log(σ̂2
k(Y ·k)) + log(T/σ2

e)|
P→ 0, as S, T → ∞

Therefore, by the triangle inequality,

sup
k/∈Ku,T

|Tk(Y ·k)| ≤ sup
k/∈Ku,T

| log(σ̂2
k(Y ·k)) (11.6)

+ log(T/σ2
e)|+ | log(2/S) + ψ(0)(S/2)|

P→ 0, as S, T → ∞

since | log(2/S)+ψ(0)(S/2)| = oS(1). On the other hand, λu,T ≥ C for some con-

stant C > 0 by assumption. Combining these two results implies that K̂u(Y ) ⊆
Ku,T with probability tending to 1 as S, T → ∞. To conclude, since both

P (Ku,T ⊆ K̂u(Y )) → 1 and P (K̂u(Y ) ⊆ Ku,T ) → 1 as S, T → ∞, this also

implies P (K̂u(Y ) = Ku,T ) → 1 as S, T → ∞.

11.2. Uniform consistency of the estimators of σ2
uk

Proof. From the proof in Section 11.1 we know that supk |σ̂2
k(Y ·k)− σ2

k,T |
P→ 0

as S, T → ∞ for k ∈ {1, . . . , T}. It remains to show that supk |σ̂2
uk(Y ·k)−σ2

uk| =
oS,Tp (1) with k ∈ {1, . . . , T}. For the linear part of the estimator, consider the

function g(x) = {x − σ2
e

T }+ which is uniformly continuous on x ∈ [0,∞) since
|g(x)− g(x0)| ≤ |x− x0| for all x, x0 ∈ [0,∞). Therefore, by a similar argument
as in Section 11.1,

sup
k

∣∣∣∣∣
{
σ̂2
k(Y ·k)−

σ2
e

T

}
+

− σ2
uk

∣∣∣∣∣ P→ 0, as S, T → ∞ (11.7)
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In order to show the uniform convergence in probability of the nonlinear esti-
mators σ̂2

uk(Y ·k) over k ∈ {1, . . . , T}, it suffices to show that for any ε, γ > 0,
there exist S0, T0 sufficiently large (depending only on ε, γ) such that

P (|σ̂2
uk(Y ·k)− σ2

uk| > ε) < γ

for S > S0, T > T0 and all k ∈ {1, . . . , T}.
First, consider the case k ∈ Ku,T , by the law of total probability for arbitrary

ε > 0,

P (|σ̂2
uk − σ2

uk| > ε | k ∈ Ku,T ) =

P (|σ̂2
uk − σ2

uk| > ε | k ∈ K̂u)P (k ∈ K̂u | k ∈ Ku,T )

+ P (|σ̂2
uk − σ2

uk| > ε | k /∈ K̂u)P (k /∈ K̂u | k ∈ Ku,T )

≤ P (|{σ̂2
k − σ2

e/T}+ − σ2
uk| > ε) + P (k /∈ K̂u | k ∈ Ku,T )

For any γ > 0, there exist S
(1)
0 , T

(1)
0 such that for S > S

(1)
0 , T > T

(1)
0 we have

P (|{σ̂2
k − σ2

e/T}+ − σ2
uk| > ε) < γ/2 for all k ∈ Ku,T due to eq. (11.7), and

P (k /∈ K̂u | k ∈ Ku,T ) < γ/2 for all k ∈ Ku,T , since P (Ku,T ⊆ K̂u(Y )) → 1.
Thus for any ε, γ > 0,

P (|σ̂2
uk(Y ·k)− σ2

uk| > ε) < γ

for S > S
(1)
0 , T > T

(1)
0 and all k ∈ Ku,T .

Second, consider the case k /∈ Ku,T , again by the law of total probability for
arbitrary ε > 0,

P (|σ̂2
uk − σ2

uk| > ε | k /∈ Ku,T ) =

P (|σ̂2
uk − σ2

uk| > ε | k ∈ K̂u)P (k ∈ K̂u | k /∈ Ku,T )

+ P (|σ̂2
uk − σ2

uk| > ε | k /∈ K̂u)P (k /∈ K̂u | k /∈ Ku,T )

≤ P (|{σ̂2
k − σ2

e/T}+ − σ2
uk| > ε) + P (σ2

uk > ε | k /∈ Ku,T )

We note that P (σ2
uk > ε | k /∈ Ku,T ) = 0 for all ε > 0 since σ2

uk = 0 for

k /∈ Ku,T , and again by eq. (11.2) for any γ > 0 there exist S
(2)
0 , T

(2)
0 such that

P (|{σ̂2
k − σ2

e/T}+ − σ2
uk| > ε) < γ for all k /∈ Ku,T . Thus for any ε, γ > 0,

P (|σ̂2
uk(Y ·k)− σ2

uk| > ε) < γ

for S > S
(2)
0 , T > T

(2)
0 and all k /∈ Ku,T . Let T0 = T

(1)
0 ∨ T

(2)
0 and S0 =

S
(1)
0 ∨ S

(2)
0 , then the uniform convergence in probability with k ∈ {1, . . . , T} in

accordance with Theorem 2 follows from the above arguments.

11.3. Consistency of the estimators of ρij

Proof. We show consistency of the estimators ρ̂ij(Y ) marginally for each i, j

with i �= j. Writing K̂u = K̂u(Y ) and k̂u = |K̂u(Y )|, we decompose:

ρ̂ij(Y ) =
1

k̂u

∑
k∈K̂u

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ
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=
ku,T

k̂u

(
1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ︸ ︷︷ ︸

(i)

+
1

ku,T

∑
k∈K̂u\Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ︸ ︷︷ ︸

(ii)

− 1

ku,T

∑
k∈Ku,T \K̂u

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ

)
︸ ︷︷ ︸

(iii)

(11.8)

In part (i) below it is shown that term (i) converges to ρij in probability as
S, T → ∞. In part (ii) it is shown that the terms (ii) and (iii) converge to zero
in probability as S, T → ∞. Then, combining these results, and observing that

ku,T /k̂u
P→ 1 as S, T → ∞ since P (K̂u = Ku,T ) → 1, an application of Slutsky’s

lemma yields the claimed result.
Part (i) From the proof in Section 11.2, we know that supk∈Ku,T

|σ̂2
uk(Y ·k)−

σ2
uk| = oS,Tp (1). Therefore, term (i) in eq. (11.8) can be rewritten as,

1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ

=

1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ2
uk

· σ2
uk

(σ2
uk + oS,Tp (1)) ∨ δ

= (1 + oS,Tp (1)) ·

⎛⎝ 1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ2
uk

⎞⎠ (11.9)

where we also use that infk∈Ku,T
σ2
uk ≥ δ. We show that,

1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ2
uk

P→ ρij , as S, T → ∞ (11.10)

Writing out further,

1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ2
uk

=

1

ku,T

∑
k∈Ku,T

(Yik − hk)(Yjk − hk)

σ2
uk︸ ︷︷ ︸

(i)

+
1

ku,T

∑
k∈Ku,T

(Yjk − hk)(ĥk − hk)

σ2
uk︸ ︷︷ ︸

(ii)
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+
1

ku,T

∑
k∈Ku,T

(Yik − hk)(ĥk − hk)

σ2
uk︸ ︷︷ ︸

(iii)

+
1

ku,T

∑
k∈Ku,T

(ĥk − hk)
2

σ2
uk︸ ︷︷ ︸

(iv)

(11.11)

Term (ii), (iii), and (iv) converge to zero in probability as S, T → ∞. This is

observed from combining supk(ĥk − hk) = oS,Tp (1), infk∈Ku,T
σ2
uk > 0, and re-

spectively 1
ku,T

∑
k∈Ku,T

(Yjk−hk) = Op(1) for term (ii) and 1
ku,T

∑
k∈Ku,T

(Yik−
hk) = Op(1) for term (iii).

It remains to show that term (i) in eq. (11.11) converges to ρij in probability.
By linearity of the expectation,

E

⎡⎣ 1

ku,T

∑
k∈Ku,T

(Yik − hk)(Yjk − hk)

σ2
uk

⎤⎦ =
1

ku,T

∑
k∈Ku,T

σ2
ukρij
σ2
uk

= ρij

Thus, by Chebychev’s inequality:

P

⎛⎝∣∣∣∣∣∣ 1

ku,T

∑
k∈Ku,T

(Yik − hk)(Yjk − hk)

σ2
uk

− ρij

∣∣∣∣∣∣ > ε

⎞⎠ ≤

1

ε2
Var

⎛⎝ 1

ku,T

∑
k∈Ku,T

(Yik − hk)(Yjk − hk)

σ2
uk

⎞⎠ (11.12)

Since E[Y 4
ik] = O(1) for all i = 1, . . . , S, by Cauchy-Schwarz’s inequality

supk∈Ku,T
Var((Yik − hk)(Yjk − hk))/σ

4
uk = O(1) for all i �= j. Recalling that

Yik = hk + Uik + εik, it can be verified that,

Cov

(
(Yik − hk)(Yjk − hk)

σ2
uk

,
(Yik′ − h′

k)(Yjk′ − h′
k)

σ2
uk′

)
=

1

σ2
ukσ

2
uk′

Cov(εik, εik′)Cov(εjk, εjk′)

where we use that, Cov(Uik, Ujk′) = 0 for all i, j and k �= k′, Uik ⊥ εjk′ for
all i, j and k, k′, and εik ⊥ εjk′ for all i �= j and k, k′. We argue that εik
and εik′ are asymptotically uncorrelated for all i and k �= k′. In the frequency
domain, the noise terms at different frequencies Ef

i (ω�) and Ef
i (ω�′) for � �= �′

are asymptotically independent (see [4]), therefore

Cov(Ef
i ) = σ2

eIT +Δf
i , s.t. ‖Δf

i ‖F = oT (1)

where Ef
i = (Ef

i (ω0), . . . , E
f
i (ωT−1))

′. Projecting to the coefficient domain with
orthogonal discrete wavelet transform-matrix W and εi = (εi1, . . . , εiT )

′, this
yields

Cov(εi) = Cov(WEf
i ) = σ2

eW ITW
′ +WΔf

i W
′
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=
σ2
e

T
IT +WΔf

i W
′

and by the rotational invariance of the Frobenius-norm,

‖WΔf
i W

′‖F = ‖Δf
i W

′W ‖F =
1

T
‖Δf

i ‖F = oT (T−1)

from which we conclude that εik and εik′ are asymptotically uncorrelated for all
k �= k. Combining the arguments above, it follows that,

Var

⎛⎝ 1

ku,T

∑
k∈Ku,T

(Yik − hk)(Yjk − hk)

σ2
uk

⎞⎠ � 1

ku,T
+

(k2u,T − ku,T )

k2u,T
· oT (T−1)

→ 0, as T → ∞

using that ku,T → ∞ as T → ∞. From eq. (11.11), eq. (11.12) and Slutsky’s
lemma, we conclude that,

1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ2
uk

P→ ρij as S, T → ∞

Returning to eq. (11.9),

1

ku,T

∑
k∈Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ

= (1 + oS,Tp (1)) · (ρij + oS,Tp (1))

P→ ρij as S, T → ∞

Part (ii) First we show that term (ii) in eq. (11.8) converges to zero in
probability. Since σ̂2

uk(Y ·k) ∨ δ ≥ δ,

P

⎛⎝∣∣∣∣∣ 1

ku,T

∑
k∈K̂u\Ku,T

(Yik − ĥk)(Yjk − ĥk)

σ̂2
uk(Y ·k) ∨ δ

∣∣∣∣∣ > ε

⎞⎠ ≤

P

⎛⎝∣∣∣∣∣ 1

ku,T

∑
k∈K̂u\Ku,T

(Yik − ĥk)(Yjk − ĥk)

δ

∣∣∣∣∣ > ε

⎞⎠
Therefore it suffices to show that the probability on the right-hand side con-
verges to zero for all ε > 0 as S, T → ∞. For ease of notation write ζk :=
(Yik−ĥk)(Yjk−ĥk)

δ . By the law of total probability, for all ε > 0,

P
(∣∣∣ 1

ku,T

∑
k∈K̂u\Ku,T

ζk

∣∣∣ > ε
)
=

P
(∣∣∣ 1

ku,T

∑
k∈K̂u\Ku,T

ζk

∣∣∣ > ε : #{K̂u \Ku,T } = 0
)
P
(
#{K̂u \Ku,T } = 0

)
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+P
(∣∣∣ 1

ku,T

∑
k∈K̂u\Ku,T

ζk

∣∣∣ > ε : #{K̂u \Ku,T } > 0
)
P
(
#{K̂u \Ku,T } > 0

)
≤ 0 · P

(
#{K̂u \Ku,T = 0

)
+ 1 · P

(
#{K̂u \Ku,T } > 0

)
Since P (K̂u = Ku,T ) → 1 as S, T → ∞, also P (#{K̂u \Ku,T } = 0) → 1, thus
the right-hand side above converges to zero as S, T → ∞.

Completely analogous, using that P (#{Ku,T \K̂u} = 0) → 1 as S, T → ∞, we
find that term (iii) in eq. (11.8) converges to zero in probability as S, T → ∞.

12. Proof of Corollary 4.3

Proof. The proof consists of two parts. In the first part the convergence in
distribution in the first part of the Corollary is shown. In the second part we
show that K̂u(ξ) = Ku,T with probability tending to 1 as S, T → ∞.

Part (i) For uncorrelated replicates (GS = IS), we can write ξ1, . . . , ξT
iid∼

N(0, (σ2
uk + σ2

e/T )IS), and thus

log

{
1

S

S∑
s=1

(ξsk − hk)
2

}
d
= log(σ2

uk + σ2
e/T ) + log(A2

S/S), for k = 1, . . . , T

for some A2
S ∼ χ2

S . The term log(A2
S/S) tends to a normal distribution as

S → ∞, and by [32],

E
[
log(A2

S/S)
]

= log(2/S) + ψ(0)(S/2)

Var(log(A2
S/S)) = ψ(1)(S/2)

where ψ(0)(·) and ψ(1)(·) denote the digamma and trigamma function. Combin-
ing the above results with the definition of Tk(ξk) implies the weak convergence
in the first part of the Corollary. For correlated replicates, the noise coefficients
εsk remain independent across replicates, and since σ2

uk = 0 for k /∈ Ku,T , it
remains true that,

1√
ψ(1)(S/2)

Tk(ξk)
d→ N(0, 1) if k /∈ Ku,T (12.1)

where the convergence is uniformly over k /∈ Ku,T , since σ2
uk = 0 implies that

Tk(ξk) is independent of k.

Part (ii) By the same argument as in Section 11.1, it follows that Ku,T ⊆
K̂u(ξ) with probability tending to 1 as S, T → ∞, using that λu,T = o(log(T ))
as in Theorem 4.2.

In order to show K̂u(ξ) ⊆ Ku,T with probability tending to 1 as S, T → ∞,
we use a standard argument (see e.g. [19, Chapter 8]). By the uniform weak
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convergence in eq. (12.1) for k /∈ Ku,T ,

P

(
Tk(ξk)√
ψ(1)(S/2)

≤ x

)
= (1 +RS)P (Z ≤ x), Z ∼ N(0, 1)

where RS = oS(1) is uniform over k /∈ Ku,T . By independence across indices k
and using Gaussian tail probabilities, we upper bound

P

(
sup

k/∈Ku,T

|Tk(ξk)|√
ψ(1)(S/2)

≥
√

2 log(T − ku,T )

)
≤

1−
(
1− 2P

(
Tk(ξk)√
ψ(1)(S/2)

≥
√
2 log(T − ku,T )

))T−ku,T

= 1−
(
1− 2(1 +RS)Φ̃

(√
2 log(T − ku,T )

))T−ku,T

≤ 2(T − ku,T )(1 +RS)
φ(
√

2 log(T − ku,T ))√
2 log(T − ku,T )

=
2(1 +RS)√

π log(T − ku,T )
→ 0, as S, T → ∞

from which we conclude that also K̂u(ξ) ⊆ Ku,T with probability tending to 1
as S, T → ∞.

13. Proof of Theorem 5.1

Proof. For ease of notation we write ξk := ξ
(2)
k ∼ N(hk, 2V k) with hk = hk1S .

In the first part of this proof we show that, conditional on ĥ = ĥ(ξ(1)), the

estimators R̂(ξ, ĥ) are asymptotically normal, i.e.

R̂(ξ, ĥ)− ‖h− ĥ‖2

τ(h, ĥ)

d→ N(0, 1), as S → ∞ (13.1)

Asymptotic confidence regions can then be constructed (unconditional on ĥ)
based on Gaussian quantiles.

Conditional on ĥ, we decompose

R̂(ξ, ĥ)− ‖h− ĥ‖2

τ(h, ĥ)
=

1

τ(h, ĥ)

(
T∑

k=1

[
S∑

s=1

[
wsk(ξsk − ĥk)

2
]
− 2σ2

k,T − (ĥk − hk)
2

])
= (13.2)

T∑
k=1

1

τ(h, ĥ)

[
S∑

s=1

wsk(ξsk − hk)
2 − 2σ2

k,T

]
︸ ︷︷ ︸

(i)

+

T∑
k=1

2(hk − ĥk)

τ(h, ĥ)

S∑
s=1

wsk(ξsk − hk)︸ ︷︷ ︸
(ii)
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where we use that
∑

s wsk = 1 for each k ∈ {1, . . . , T}.
First, we derive the asymptotic distribution of term (i). WriteZk = 1√

2
V

−1/2
k ·

(ξk − hk), such that Zk ∼ N(0, IS). Here V
−1/2
k is a symmetric matrix square

root of V −1
k . We can rewrite,

S∑
s=1

wsk(ξsk − hk)
2 = (ξk − hk)

′diag(wk)(ξk − hk)

= (ξk − hk)
′V

−1/2
k V

1/2
k diag(wk)V

1/2
k V

−1/2
k (ξk − hk)

= Z ′
kΓkZk

= Z ′
kP

′
kΛkP kZk

with P ′
kΛkP k the eigendecomposition of Γk = 2V

1/2
k diag(wk)V

1/2
k , such that

P kZk ∼ N(0,P ′
kP k)

d
= N(0, IS). It follows that,

S∑
s=1

wsk(ξsk − hk)
2 = Z ′

kP kΛkP kZk
d
=

S∑
s=1

λskA
2
sk

with λk = (λ1k, . . . , λsk)
′ the eigenvalues of Γk and A2

1k, . . . , A
2
Sk

iid∼ χ2
1. Fur-

thermore,

S∑
s=1

λsk = tr(Λk) = tr(Γk) = 2tr(diag(wk)V k) = 2σ2
k,T

since
∑

s wsk = 1, and

‖λk‖ =

√
tr(Λ2

k) =
√

tr
(
Γ′
kΓk

)
= 2‖diag(wk)V k‖F

Term (i) in eq. (13.2) can now be rewritten as,

T∑
k=1

1

τ(h, ĥ)

[
S∑

s=1

wsk(ξsk − hk)
2 − 2σ2

k,T

]
d
=

T∑
k=1

√
8‖diag(wk)V k‖F ·

∑S
s=1

λsk

‖λk‖ (A
2
sk − 1)/

√
2√∑T

k=1 8‖diag(wk)V k‖2F + 8(hk − ĥk)2w′
kV kwk

:= C(1)
T∑

k=1

[
B

(1)
k ·

S∑
s=1

λsk

‖λk‖
(A2

sk − 1)/
√
2
]

(13.3)

with,

B
(1)
k :=

√
8‖diag(wk)V k‖F√∑T
k=1 8‖diag(wk)V k‖2F
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C(1) :=

√∑T
k=1 8‖diag(wk)V k‖2F√∑T

k=1 8‖diag(wk)V k‖2F + 8(hk − ĥk)2w′
kV kwk

such that ‖B(1)‖ = 1, and C(1) ∈ [0, 1]. We show that
∑S

s=1
λsk

‖λk‖ (A
2
sk−1)/

√
2

d→
N(0, 1) independently for all k = 1, . . . , T by the Lindeberg-Feller central limit
theorem. First note that,

E

[
S∑

s=1

λsk

‖λk‖
(A2

sk − 1)/
√
2

]
= 0

Var

(
S∑

s=1

λsk

‖λk‖
(A2

sk − 1)/
√
2

)
=

∑S
s=1 λ

2
sk

‖λk‖2
= 1

Writing Xsk := (A2
sk − 1)/

√
2, the Lindeberg conditions are satisfied if:

lim
S→∞

S∑
s=1

λ2
sk

‖λk‖2
E

[
X2

sk1

{
|λsk|
‖λk‖

|Xsk| > ε

}]
= 0 for all ε > 0

Since
∑S

s=1
λ2
sk

‖λk‖2 = 1, it suffices to show that sups E
[
X2

sk1
{

|λsk|
‖λk‖ |Xsk| > ε

}]
→ 0 as S → ∞, which holds if sups |λsk|/‖λk‖ → 0 as S → ∞. This is seen by
combining Cauchy-Schwarz’s inequality and the fact that E[X4

sk] < ∞ (see also
[39, Ex. 2.28]). Note that by the triangle inequality and the Gershgorin circle
theorem,

sup
s

|λsk| ≤ sup
s

{
|λsk − Γk[s,s]|+ |Γk[s,s]|

}
≤ sup

s

S∑
i=1

|Γk[s,i]| = ‖Γk‖1

Therefore, since by assumption ‖Γk‖1/‖Γk‖F → 0,

sups |λsk|
‖λk‖

≤ ‖Γk‖1
‖Γk‖F

→ 0 as S → ∞

By an application of the Lindeberg-Feller central limit theorem, we conclude

that
∑S

s=1
λsk

‖λk‖ (A
2
sk − 1)/

√
2

d→ N(0, 1) for all k = 1, . . . , T .

Remark Under the stronger assumption κ(Γk) < ∞, where κ(·) denotes the
condition number (the maximum eigenvalue divided by the minimum eigen-
value), all the eigenvalues λsk for s = 1, . . . , S are of the same order, and it
follows that,

sups |λsk|
‖λk‖

� 1√
S

→ 0 as S → ∞

which is also sufficient for the Lindeberg conditions to hold.
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Next, we derive the distribution of term (ii) in eq. (13.2). We note that for each

k,
∑S

s=1 wsk(ξsk − hk) is a mean-zero Gaussian random variable, with variance

Var

(
S∑

s=1

wsk(ξsk − hk)

)
= w′

kCov(ξk − hk)wk = 2w′
kV kwk

Therefore,

T∑
k=1

2(hk − ĥk)

τ(h, ĥ)

S∑
s=1

wsk(ξsk − hk)
d
=

T∑
k=1

√
8(hk − ĥk)

√
w′

kV kwk · Zk√∑T
k=1 8‖diag(wk)V k‖2F + 8(hk − ĥk)2w′

kV kwk

:= C(2)
T∑

k=1

B
(2)
k Zk (13.4)

where Z1, . . . , ZT
iid∼ N(0, 1) and,

B
(2)
k :=

√
8(hk − ĥk)

√
w′

kV kwk√∑T
k=1 8(hk − ĥk)2w′

kV kwk

C(2) :=

√∑T
k=1 8(hk − ĥk)2w′

kV kwk√∑T
k=1 8‖diag(wk)V k‖2F + 8(hk − ĥk)2w′

kV kwk

such that ‖B(2)‖ = 1, and C(2) ∈ [0, 1].
Combining eq. (13.2), eq. (13.3) and eq. (13.4) we conclude that, conditional

on ĥ,

R̂(ξ, ĥ)− ‖h− ĥ‖2

τ(h, ĥ)

d
=

C(1)
T∑

k=1

[
B

(1)
k ·

S∑
s=1

λsk

‖λk‖
(A2

sk − 1)/
√
2
]
+ C(2)

T∑
k=1

B
(2)
k Zk

d→ C(1)Z1 + C(2)Z2 ∼ N(0, 1) as S → ∞ (13.5)

where we use that ‖B(1)‖ = ‖B(2)‖ = 1 and also ‖C‖ = 1 with C = (C(1),
C(2))′, combined with the fact that a standard normal random vector is invariant
under rotation by a vector of norm 1.

By the asymptotic normality result in eq. (13.5), for a given confidence level
1− α

lim inf
S→∞

inf
h∈�2

P

(
R̂(ξ, ĥ)− ‖h− ĥ‖2

τ(h, ĥ)
≥ −zα

∣∣∣ ĥ) ≥ 1− α

with zα a standard normal quantile. By Fatou’s lemma, the asymptotic uncon-
ditional coverage probability is also at least 1−α (see [35, Section 2]). Therefore,
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lim inf
S→∞

inf
h∈�2

P (h ∈ Ĉα(ξ)) ≥ 1− α

where,

Ĉα(ξ) =

{
h ∈ �2 : ‖h− ĥ‖ ≤

√
zατ(h, ĥ) + R̂(ξ, ĥ)

}
which concludes the proof.
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