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Abstract: We consider the detection problem of correlations in a p-dimen-
sional Gaussian vector, when we observe n independent, identically dis-
tributed random vectors, for n and p large. We assume that the covariance
matrix varies in some ellipsoid with parameter o > 1/2 and total energy
bounded by L > 0.

We propose a test procedure based on a U-statistic of order 2 which is
weighted in an optimal way. The weights are the solution of an optimiza-
tion problem, they are constant on each diagonal and non-null only for
the T first diagonals, where T' = o(p). We show that this test statistic is
asymptotically Gaussian distributed under the null hypothesis and also un-
der the alternative hypothesis for matrices close to the detection boundary.
We prove upper bounds for the total error probability of our test proce-
dure, for a > 1/2 and under the assumption T' = o(p) which implies that
n = o(p?®). We illustrate via a numerical study the behavior of our test
procedure.

Moreover, we prove lower bounds for the maximal type II error and
the total error probabilities. Thus we obtain the asymptotic and the sharp
asymptotically minimax separation rate ¢ = (C(«, L)n2p)*o‘/(4a+1), for
a > 3/2 and for o > 1 together with the additional assumption p =
o(n**~1), respectively. We deduce rate asymptotic minimax results for test-
ing the inverse of the covariance matrix.

We construct an adaptive test procedure with respect to the parameter
a and show that it attains the rate ) = (n?p/In ln(n\/ﬁ))f"‘/<4a+l).
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1. Introduction

A large variety of applied fields collect and need to recover information from
high-dimensional data. Among these we can cite communications and signal the-
ory (functional magnetic resonance imaging, spectroscopic imaging), economet-
rics, climate studies, biology (gene expression micro-array) and finance (port-
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folio allocation). Testing large covariance matrix is an important problem and
has recently been approached via several techniques: corrected likelihood ratio
test using the theory of large random matrices, methods based on the sample
covariance matrix and so on.

Let Xi,...,X,, be n independent and identically distributed p-vectors fol-
lowing a multivariate normal distribution N, (0, X), where ¥ = [0;]1<; j<p is the
normalized covariance matrix, with o;; = 1, for all ¢ = 1 to p. Let us denote by
Xk = (Xk1,---,Xpp)T for all k =1,...,n. In this paper we also assume that
the size p of the vectors grows to infinity as well as the sample size n, p — oo
and n — oco. We assume here that ¥ belongs to the class F(«, L) defined for
a > 0 by

Fla,L) = {ZZO;— Z a?j|i—j|2°‘SLforallpandU“-:l

1<i<j<p

for all i = 1,...,p}.
For any covariance matrix X, we recall that the Frobenius norm is computed as

IE—1F=t(E-D=2 Y o

1<i<y<p
We consider the goodness-of-fit test, with null hypothesis
Hy:X =1, where I is the p x p identity matrix (1)

against the composite alternative hypothesis
1
Hy: Y€ F(a,L), such that ——[|¥ — I3 > %
p

In order to test Hy : ¥ = X, for some given non negative definite covariance

matrix ¥g, we suggest rescaling the data Z; = Zal/gXi and then apply the same

test procedure provided that 251/22281/2 belongs to F(«, L). Let us denote
by

Q(a,L,w)={E€f(a7L);% ) o?j>so2}, @)

1<i<j<p

where ¢ = @, ,(a, L) is related to n and p, but also to o and L assumed
fixed. The set of covariance matrices under the alternative hypothesis consists
of matrices of size p x p, whose elements decrease polynomially when moving
away from the diagonal. This assumption is natural for covariances matrices
and has been considered for estimation problems, see e.g [3], [11]. Regulariza-
tion techniques, originally used for nonparametric estimation of functions, were
successfully employed to the estimation of large covariance matrices. Among
these works, let us mention minimax and adaptive minimax results: via band-
ing the covariance matrix [3], thresholding the entries of the empirical covariance
matrix [4], block-thresholding [10], tapering [11], ¢;-estimation [12] and so on.
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Unlike the estimation of the covariance matrix, there are very few works for
testing in a minimax setup in the existing literature.

Several types of test statistics have been proposed in the literature in order to
test the null hypothesis (1). The likelihood ratio (LR) statistic, was first designed
for fixed p and n — +o00. To treat the high dimensional case when n,p — +o0,
[1] proposed a correction to the LR statistic and showed its convergence in
law under the null hypothesis, as soon as p/n — ¢, for some fixed ¢ € (0,1).
Indeed, this correction is based on the asymptotic behavior of the spectrum of
the covariance matrix. Another approach is based on the largest magnitude of
the off-diagonal entries of the sample correlation matrix and was introduced
by [19]. Later, [8] and [22] show an original limit behavior of Gumbel type for
a self-normalized version of the maximum deviation of the sample covariance
matrix. We also note that a non-asymptotic sphericity test for Gaussian vectors
was studied by [2]. The alternative is given by a model with rank-one and sparse
additive perturbation in the variance.

Furthermore, an approach based on the quadratic form U,, = (1/p)tr(S,—1)?,
where S, = (1/n) Y., X; X, is the sample covariance matrix, was proposed
by [21], to test (1). Later, [20] shows that the test of Hy based on U, is not
consistent for large p. They introduce a corrected version of U,, and study its
asymptotic behavior when n,p — oo and p/n — ¢ € (0 + o). In order to
deal with non Gaussian random vectors, and without specifying any relation
between n and p, [13] proposed a U-statistic of order 2, as a new correction of
the previous quadratic form. They do moment assumptions in order to show
the asymptotic behavior of their U-statistic, under the null and under a fixed
alternative hypothesis. Motivated by their work, [9] used the U-statistic given
in [13] to test (1) from a sample of Gaussian vectors, and studied the testing
problem from a minimax point of view. They consider the alternative hypothesis
H; : ¥ such that || — I||p > ¢ and they establish the minimax rates of order
v/p/n in this case. In our setup the restriction to the ellipsoid F(«, L) leads to
different rates for testing.

In this paper, we introduce a U-statistic, which is weighted in an optimal way
for our problem. This can also be seen as a regularization technique for estimat-
ing a quadratic functional, as it is often the case in minimax nonparametric
test theory (see [18]). We use this test statistic to construct an asymptotically
minimax test procedure. Let us stress the fact that we study the type II error
probability uniformly over the set of all matrices ¥ under the alternative and
that induces a separation rate saying how close ¥ can be to the identity matrix
I and still be distinguishable from I. We describe the sharp separation rates for
fixed unknown « and give an adaptive procedure free of « that allows to test at
the price of a logarithmic loss in the rate.

We describe here the rate asymptotics of the error probabilities from the min-
imax point of view. We recall that a test procedure A is a measurable function
with respect to the observations, taking values in [0, 1]. Set n(A) = E;(A) =
P7(A = 1) its type I error probability, 5(A, Q(«, L, ¢)) = SuPscq(a,r,e) Es(l —
A) = suPseq(a,L,p) Px(A = 0) its maximal type II error probability over the
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set Q(a, L, @), and by

7(A7 Q(av L, 90)) = W(A) + ﬁ(Av Q(av L, 90))

the total error probability of A. Let us denote by v the minimax total error
probability over Q(«, L, @) which is defined by

7 =7(9) =7(Q(a, L, ¢)) = inf (A, Q(a, L, ¢))

where the infimum is taken over all test procedures. We want to describe the
separation rate ¢ = @(n,p) such that, on the one hand,

v=1 i 2 o
7

In this case we say that we can not distinguish between the two hypotheses.
On the other hand, we exhibit an explicit test procedure A* such that its total
error probability tends to 0

(A", Q(a, L, p)) = 0 if g, 5 4.

We say that A* is asymptotically minimax consistent test and ¢ is the asymp-
totically minimax separation rate.

In this paper, we find asymptotically minimax rates for testing over the class
F(a, L). The minimax consistent test procedure is based on a U-statistic of
second order, weighted in an optimal way. In this, our procedure is very differ-
ent from known corrected procedures based on quadratic forms of the sample
covariance matrix, see e.g. [20]. This is the first time a weighted test-statistic is
used for testing covariance matrices.

Moreover, our rates are sharp minimax. We show a Gaussian asymptotic be-
haviour of the test statistic in the neighbourhood of the separation rate. We get
the following sharp asymptotic expression for the maximal type II probability
error, under some assumptions relating ¢, n and p,

inf  B(A,Q(a, L, p)) = @(21-w — ny/Pb()) + (1),
Am(A)<w
where ® denotes the cumulative distribution function (cdf) of the standard
Gaussian distribution and z;_,, is the 1 — w quantile of the standard Gaussian
distribution for any w € (0,1). We deduce that the sharp minimax total error
probability is of the type

Y(p) = 2@(—ny/pb(p)/2) + o(1),

where b%(p) = C(a, L)p* T/ as p — 0, C(a, L) is explicitly given. Tt is usual
to call the asymptotically sharp minimax rate

= (Cla, Lyn?p)~/terh),

corresponding to n?pb?(p) = 1 and to the asymptotic testing constant C(c, L).
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Analogous results were obtained by [7] in the particular case where the co-
variance matrix is Toeplitz, that is o; ; = oj;_; for all different 7 and j from
1 to p. We note a gain of a factor p in the minimax rate. The asymptotically
sharp minimax rate for Toeplitz covariance matrices is

or = (C(a, L)n?p?) =/ atd),

This additional factor p can be heuristically explained by the number of pa-
rameters p — 1 for a Toeplitz matrix, instead of p(p — 1)/2 for an arbitrary
covariance matrix. For n = 1 the test problem for Toeplitz covariance matrices
was solved in the sharp asymptotic framework, as p — oo, by [14]. Let us also
recall that the adaptive rates (to «) for minimax testing are obtained for the
spectral density problem by [15] by a non constructive method using the asymp-
totic equivalence with a Gaussian white noise model. We also give an adaptive
procedure for testing without prior knowledge on «, for a belonging to a closed
subset of (1/2,400).

Important generalizations of this problem include testing in a minimax setup
of composite null hypotheses like sphericity, Hy : ¥ = v? - I, for unknown v?
in some compact set separated from 0, or bandedness, Hy : ¥ = ¥y such that
[Xoli; = 0 for all ¢ # j with |¢ — j| > K. Our proofs rely on the Gaussian
distribution of Gaussian vectors. Generalizations to non Gaussian distributions
with finite moments of some order can be proposed under additional assumptions
on the behaviour of higher order moments, like e.g. [13].

Section 2 introduces the test statistic and studies its asymptotic properties.
Next we give upper bounds for the maximal type II error probability and for
the total error probability and refine these results to sharp asymptotics under
the condition that n = o(1)p?®. In Section 3 we implement our test procedure
and estimate its power. In Section 4 we prove sharp asymptotic optimality and
deduce the optimality of the minimax separation rates for all & > 1 and as soon
as p = o(n**~1). In Section 5 we present the rate minimax ressults for testing
the inverse of the covariance matrix. In Section 6 we define an adaptive test
procedure and show that the price of adaptation is a loss of (In ln(n\/f)))a/(‘la*‘l)
in the separation rate.

Proofs are given in Section 7 and in the Appendix.

2. Test procedure and asymptotic properties

In the minimax theory of tests developed since [17] it is well understood that
optimal test statistics are estimators (suitably normalized and tuned) of the
functional which defines the separation of an element in the alternative from the
element of the null hypothesis. In our case this is the Frobenius norm || X —1]|% =
tr[(X — 1)?].

Weighting the elements of the sample covariance matrix appeared first as hard
thresholding in minimax estimation of large covariance matrices. Let us mention
[3] for banding i.e. truncation of the matrix to its k first diagonals (closest to the



1932 C. Butucea and R. Zgheib

main diagonal), [4] for hard thresholding, then [11] where tapering was studied.
It is a natural idea when coming from minimax nonparametric estimation.

However, that was never used for tests concerning large covariance matrices.
In this section, we introduce a weighted U-statistic of order 2 for testing large
covariance matrices, study its asymptotic properties and give asymptotic upper
bounds for the minimax rates of testing.

From now on asymptotics and symbols o, O, ~ and =< are considered as n
and p tend to infinity and as ¢ tends to 0. Recall that, given sequences of real
numbers v and real positive numbers v, we say that they are asymptotically
equivalent, u ~ v, if limu/v = 1. Moreover, we say that the sequences are
asymptotically of the same order, u =< v, if there exist two constants 0 < ¢ <
C < oo such that ¢ < liminf u/v and limsupu/v < C.

2.1. Test statistic and its asymptotic behaviour

Our test statistic is a weighted U-statistic of order 2. It can be also seen as
a weighted functional of the sample covariance matrix. The weights w}; are
constant on each diagonal (they depend on 4 and j only through i — j), non-zero
only for |[i — j| < T for some large integer T and decreasing polynomially for
elements further from the main diagonal (as |i —j| is increasing). More precisely,

we consider the following test statistic:

~ 1 .
D”:m YooD L wiXeiXe X1 Xi (3)

1<k£1<n 1<i<j<p

where
L) i-dlyy
fu T 2b(s0)(1 ( T ) )+’ T=|Cr(a,L) ¢ =] "
A= G D)o s, be) =0V e, L) T
with
1 9 1 L
CT(OZ7L) = ((4OZ+1)L)20<7 C)\(Oé,L> = aQ;— ((4a+1)L) 2057
(5)
C(OZ,L) 2a+1 _%

(4a + 1)1+1/(2a)

The weights {w;;};; and the parameters T', A, b*(¢) are asymptotically equiva-

lent (as ¢ — 0 such that p/T < pp'/* — 00) to the solution of the optimization
problem:
1 * k2 inf 1 A2
wior = sup in Z wijog;. (6)
p 1<i<j<p { (wij)ij @ wi;>0; } {Z : Z:(Uu)i.ﬁ} p 1<i<j<p
P Cisicigp =3 | BEQele)
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Indeed our test statistic D,, will concentrate asymptotically around Ex, (ﬁn) =
(1/p) Xi<ici<p wwo which is 0 for ¥ = I. The minimax paradigm considers
the worst parameter E* in the class Q(«, L, ), that will give the smallest value
Eg(ﬁn(w”)) and then finds the parameters {wj;}i<; of the test statistic to
provide the largest value Eg« (ﬁn(w”)) Such procedure performs uniformly well
over all parameters ¥ € Q(a, L, ¢). That explains why we solve the optimization
problem (6).

Note that the weights in (4) have further properties, as ¢ — 0 and pp'/* — oo:

A 1 1
w); >0, susz—SOl IS g—
1200 s = gy = O = U
and
1 2 A2 i = Jl\ 2042
2w = 1 (e
PiS<r ’ 4pb2( )1 <j< ( T >+
1
4pb2 ( 4a+1)
C’A(a,L)'CT(a,L) 8a? 1
4C (o, L) (2a+1)(da+1) 2

The following Proposition gives the moments of an under the null and their
bounds under the alternative hypothesis, respectively, as well as the asymptotic
normality under the null hypothesis.

Proposition 1. The test statistic ﬁn defined by (3) with parameters given by
(4) and (5) has the following moments, under the null hypothesis:

~ ~ 2 1
1(Pn) =0, arr(Dn) n(n — 1)p? 1<§<pw” nin=1Lp

and is asymptotically normal

nv/p Dn 4 N(0,1).

Moreover, under the alternative, if we assume that ¢ — 0, p'/* — oo and

a > 1/2, we have, for all ¥ in Q(a, L, ¢):

~ T T
Es > Dp)=——~ —
Z wo;; > b(e) and  Vars(Dy) n(n—l)p2+np2
PLiS<p
where
Ty < p-(1+0(1)+p-Ex(Dy)  O(TVT), (7

T

IA

p-Es(Dy) - OWT) +p* (BY*(D,) - O(T¥*) + Ex (D) - o(1)). (8)
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Note that, under the alternative, we have the additional assumption that
ppt/® =< p/T — +00, when p grows to infinity.

Let us look closer at the optimization problem (6): for given ¢ > 0, b(y) is the
least value that Eg(ﬁn) can take when X is in the alternative set of hypotheses.

Under the alternative, we shall establish the asymptotic normality under ad-
ditional conditions that the underlying covariance matrix is close to the solution
of (6). This will be sufficient to give upper bounds of the total error probability

of Gaussian type in the next Section.

Proposition 2. The test statistic ﬁn defined by (3) with parameters given by
(4) and (5), such that o — 0, pp/* — oo and under the additional assumption
that n?pb? () < 1, is asymptotically normal:

ny/B(Dn — Ex(Dy)) % N(0, 1),

for any ¥ in Q(«, L, ) such that Ez(ﬁn) = O(b(p)).

2.2. Upper bounds for the error probabilities

In order to distinguish between the two hypothesis Hy and H; defined previously,
we propose the following test procedure

A*=A*(t)=1(D, >t), t>0 (9)

where D,, is the estimator defined in (3).
The following theorem proves that the previously defined test procedure is
minimax consistent if ¢ is conveniently chosen.

Theorem 1. The test procedure A* defined in (9) with t > 0 has the following
properties :

Type I error probability : if ny/p-t — +oo then n(A*) = 0.

Type II error probability : if o > 1/2 and if

©— O,pgpl/o‘ — 00 and n’*pb*(p) — 400

then, uniformly over t such that t < ¢- C'/? (o, L) - 902+i , for some constant c
in (0,1), we have

BA* (), Q(a, L, p)) — 0.

If t verifies all previous assumptions, then A*(t) is asymptotically minimaz con-
sistent:

Y(A*(t), Q(e, L)) — 0.

In the next Theorem we give sharp upper bounds of error probabilities of
Gaussian type. The proof of this result explains the choice of the weights as
solution of the optimization problem (6). Moreover, we will see that the Gaussian
behavior is obtained near the separation rates.

Recall that @ is the cumulative distribution function (cdf) of standard Gaus-
sian random variable and, for any w € (0, 1), z1_,, is defined by ®(z1_,) = 1—w.
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Theorem 2. The test procedure A* defined in (9) with t > 0 has the following
properties :

Type I error probability : we have n(A*(t)) = 1 — ®(n/p-t) + o(1).

Type II error probability : if « > 1/2 and if

© — 0, pp/* = 0o and n®pb?(p) <1, (10)
then, uniformly over t, we have

BIAT(1), Q(a, L, ) < @(ny/p - (t = b(p))) + o(1).

In particular, for ¢ = t* such that n\/p - t¥ = z1_,, we have n(A*(t")) <
w + o(1) and

BAT("), Qa, L)) < (21w — ny/P - b)) + 0(1).

Another important consequence of the previous theorem, is that the test proce-
dure A*(t*), with t* = b()/2 has total error probability

A, Qo L)) <20 (<ny5 U2 ) 4 o)

3. Simulation study

We include several examples, to illustrate the numerical behavior of our test
procedure. First, we estimate the type I error probabilities to test the null
hypothesis ¥ = I. We implement D,, defined in (3) and (4) for « = L =1
and ¢ = @. We choose the threshold ¢ such that ¢ = ¢, where ¢, = z1_,/(n/p)
and z1_,, is the (1 —n)-quantile of the standard normal distribution. We show in
Table 1 the estimated type I error probabilities P;(D,, > t,) which are obtained
from 1000 repeated samples.

We observe that the estimated probabilities are all close to the corresponding
significant levels 7 except for p too small compared to n .

TaBLE 1
Estimated type I error probabilities P;(Dp > ty), when n € {0.01,0.05,0.1} and
for p € {10,20,...,90} and n € {30,60,90}

n \p 10 20 30 40 50 60 70 80 90 n
0.004 0.012 0.011 0.008 0.015 0.011 0.010 0.015 0.012 | 30
0.01 0.005 0.004 0.013 0.013 0.012 0.007 0.009 0.009 0.008 | 60
0.002 0.005 0.006 0.008 0.008 0.011 0.007 0.007 0.006 | 90
0.022 0.048 0.038 0.046 0.045 0.043 0.047 0.046 0.034 | 30
0.05 0.013  0.036 0.033 0.043 0.059 0.048 0.041 0.047 0.050 | 60
0.008 0.030 0.040 0.044 0.044 0.039 0.039 0.041 0.048 | 90
0.049 0.075 0.089 0.072 0.104 0.085 0.074 0.097 0.085 | 30
0.1 0.040 0.076  0.078 0.082  0.077  0.107 0.098 0.098 0.073 | 60
0.019 0.061  0.058 0.074 0.085 0.078 0.094 0.095 0.089 | 90
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Fic 1. Boaplots of D and D(M) = ny/p - an, when n = 50 and p = 80, under the null
hypothesis I and under the alternative hypothesis X(M).

Second, we illustrate the asymptotic behavior of our test procedure under
the null hypothesis and under alternative hypothesis defined by the symmetric
positive matrices

S -2
Uii [T —
S(M) = (o3 (M))1<ij<p ; 0ij(M) = Ly + —F—— |M | Ay, (1)

for M € [3/2, 9] and where u;; = uj; are independently sampled from a uniform
distribution on [0,1] and their role is to produce non-Toeplitz matrices. Note
that this set of matrices has been considered in the literature see e.g. [10] and
[11]. We implement the test statistic D,, for o« = L = 1, and

/
o= o) = gz (Tt li=i7) "
1<J

We denote by D(M) = n+/p - D,, the test statistic associated to $(M) and by
D the one associated to I, the identity matrix.

Third we study the power of our test procedure. We test the null hypothesis
Y = I against the alternative hypothesis constituted by the matrices (M)
given in (11). We choose the threshold ¢ of the test empirically, under the null
hypothesis ¥ = I, from 1000 repeated samples of size n, such that the type
I error probability is close to and smaller than 0.05. We use ¢ to estimate the
type II error probability, also from 1000 repetitions and then plot the power as
function of ¢(M).

Figure 2 shows that the power is an increasing function of ¢(M). Also, we
can see that for a fixed value of ¢ (M) the power increases with p. Indeed, our
procedure benefits from large values of p, which is not a nuisance parameter
here.

We also compare our test procedure to the one given in [9], which is based on
a U-statistic of order 2, denoted here by CM-test. We consider different cases
that are characterized by different values of n and p.
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F1G 2. Power curves of the A-test as function of (M) for n =30 and p € {30,70,130}

Figure 3, shows that for p smaller than, equal to or bigger than n, the A-test
based on the weighted U-statistics D,, has larger power than the CM-test based
on the non weighted U-statistic. Moreover, the improvement of the A-test over
the CM-test is larger, when the ratio p/n is bigger.

n=100, p=50 n=50, p=50
Qg Q
[ee} [oe]
o o
. 9 L 9O
0 o 0 o
8 3
a g d I3 ; i
—— A-test —— A-test
N —— CM-test N —— CM-test
o o
e | o |
© T T T T T T T ° T T T T T T T
005 010 015 020 025 030 035 010 0.15 020 025 0.30 0.35 0.40
o(M) o(M)
n=40, p=120
e
©
©
. ©
S
a Y
e —— A-test
o —— CM-test
o
o
=5

T
010 015 020 025 030 035 0.4
o(M)

Fi1c 3. Power curves of the A-test and the CM-test as functions of (M)
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Let us consider the tridiagonal matrices X(p) = (1—=j3 +plyji—ji=1})1<ij<ps
for p € (0,0.35] under the alternative hypothesis. These are the covariance ma-
trices of a MA(1) Gaussian processes. Moreover, the matrices X(p) are Toeplitz,
we also compare our the procedure to the one proposed in [7] for Toeplitz co-
variance matrices, that we denote by BZ-test. The thresholds are evaluated
empirically for each procedure at type I error probability close to and smaller
than 0.05. We plot the power curves of the three test procedures.

n=50, p=50 n=60, p=80
Q Q g
@ @
o ol
c 9 9
g o ¢ o
3 5
o ¥ —— BZ-test [ —— BZ-test
© - A-test © —— A-test
| —— CM-test o —— CM-test
o o
o S
© T T T T T T T © 5 T T T T T T T
000 005 010 015 020 025 030 035 000 005 010 015 020 025 030 035
9(p) 9(p)

Fic 4. Power curves of the BZ-test, A-test and CM-test as functions of ¢(p), for MA(1)
Gaussian processes

Figure 4 shows that, when the alternative hypothesis consists of Toeplitz
matrices the BZ-test has the better performance. However if we miss the infor-
mation that the matrix is Toeplitz, we see that the A-test is not bad and its
power dominates the power of the CM-test.

n=60, p=60 n=40,p=90
Q | O |
[ee] [ee]
o o
R 9
go go
g g. p g g i - Ez—tte?t
—— BZ-test ~ A-les
N —— A-test N | — CM-test
S] —— CM-test S]
o | o |
© T T T T T T T © T T T T T T T
0.1 0.2 0.3 04 05 0.6 0.7 0.1 0.2 0.3 04 0.5 0.6 0.7
9(p) o(p)

Fic 5. Power curves of the BZ-test, A-test and CM-test as functions of p(p), for AR(1)
Gaussian processes

Finally, as a third example, we consider the covariance matrices of AR(1)
Gaussian processes

S(p) = (03 (P)r<ij<pi  ij(p) = pl™7!
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for p € (0,0.6], under the alternative hypothesis. In this case we take L = 2.
Similarly to the previous cases the thresholds are estimated so that the type
I error probability is fixed at 0.05, and we compute the power curves of the
different test procedures.

4. Asymptotic optimality

In this section, we first state the lower bound for testing, which, in addition to
the test procedure exhibited in the previous section, shows that the asymptoti-
cally minimax separation rate is

2a
Tat1

7= (nvpC () T, (12)

where the constant C(«, L) is given by (5).
Theorem 3. Assume that, either « > 3/2, or a > 5/8 and np<p6_§ — 0. If

0 — 0, pp/* = 00, and n?pb?(p) — 0,
then v = infa v(A,Q(a, L, p)) — 1, where the infimum is taken over all test

statistics A.

Together with Theorem 1, the proof that ¢ is asymptotically minimax, under
our assumptions, is complete. Note that the condition npch_% — 0 is verified
when « > 3/2 for all n and p — 400 giving a general result in this case. When
5/8 < ae < 3/2, the same condition holds for p = o(nzi—;i ). This result is proven
by showing that the x? distance between the null hypothesis and an averaged
likelihood under the alternative (that we explicitly construct) tends to 0.

Next, the sharp lower bound for the type II error probability is of Gaussian
type.

Theorem 4. Assume that a > 1 and if
© — 0, pp'/* = 0, \/}_?cp%ﬁ — 0 and n’*pb*(p) < 1, (13)

inf _ B(A,Q(a, L, p)) = (210 — ny/Pb()) + 0(1),
Am(A)Sw
where the infimum is taken over all test statistics A with type I error probability
less than or equal to w. Moreover,

: by
7= (8, Qla L)) > 28(~ny/5 L)) + o(1).
Remark: Theorems 2 and 4 imply that for o > 1, the sharp separation rate for
minimax testing is ¢, under the additionnal assumptions (13). Let us check when
the separation rate verifies these assumptions: p@'/® — oo holds if n = o(1)p>®,

and \/]3{52_ﬁ — 0 holds if p = o(n*e~1).
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Let us assume that p = n® for B > 0 and that ¢ = @. In this case, § =
(C - n?tB)=a/(e+1) that tends to 0 with n. Upper bounds are valid as soon as
ppl/e = (C~1n2RaB-1))1/(4a+1) tends to infinity, that is B > 1/(2a). In addi-
tion the lower bounds are valid if pp*~1/@ = ¢~ (a=1)/(atl)p=2(da-1-B5)/(da+1)
tends to 0, that is B < 4a — 1.

If we assume that p = exp(Bn) for some B > 0 and that ¢ = &, than p@'/®
always tends to infinity, so the upper bounds hold. However, the additional
assumption that p@*~/* tends to 0 will never hold. In this case, we only have
the minimax separation rates (for @ > 3/2) but not the sharp constants. It is
easy to see that for p = (In(n))? we have p@'/“ tends to 0, so neither our upper
bounds nor the lower bounds hold in this case.

Note that, there is a more general test procedure independent of ¢, for which
it is possible to derive the upper bounds as in Theorems 1 and 2. It suffices to
use the test statistic D,, with the weights w; replaced by the weights w}; (@)
defined as in (4) and (5) for ¢ replaced by @. For more details see section 4.2 in
[5].

The proof of the lower bounds is given in Section 7. We construct a family of n
large centered Gaussian vectors with covariance matrices based on {07; }1<i j<p
given by the optimization problem (6) and a prior measure P, on these covari-
ance matrices. The logarithm of the likelihood ratio associated to an arbitrary
> with respect to I under the null hypothesis is known to drift away to infinity
(see [1], who corrected this ratio to get a proper limit). However, we show that
the logarithm of the Bayesian likelihood ratio with our prior measure P, verifies

2
log %(Xl, s Xa) = unZy — “24+€,in Py probability

where w,, = n./pb(y), Z, is asymptotically distributed as a standard Gaus-
sian distribution and £ is a random variable which converges to zero under Py
probability.

5. Testing the inverse of the covariance matrix

Let us consider the same model, but the following test problem
Hy:2' =1

against the alternative

1
H; : % € G(a, L, \) such that 2—|\2-1 —I||% > 4,
p

where G(a, L, \) is the class of covariance matrices ¥ in F(a, L) with the ad-
ditional constraint that the eigenvalues A;(X) are bounded from below by some
A € (0,1) for all 4 from 1 to p and all ¥ in the set.

We prove here that previous results apply to this setup and we get the same
rates, but not the sharp asymptotics. Note that, the additional hypothesis is
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mild enough so that it does not change the rates for testing. Indeed, we see
this case as a well-posed inverse problem. The cases of ill-posed inverse problem
where the smallest eigenvalue can be allowed to tend to 0 will most certainly
imply a loss in the rate and is beyond the scope of this paper.

Theorem 5. Suppose « > 3/2, L > 0 and X € (0,1). If n and p tend to infinity,
such that n = o(1)p?®, then ¢ defined in (12) is the asymptotically minimax rate
for the previous test.

Proof. Note that ¥~! = I if and only if ¥ = I. Moreover, if ¥ belongs to
G(a, L, ) such that o[~ — I||3 > ¢?, then ¥ obviously belongs to F(a, L)
and is such that

1 A2
— IS =112 > ="t — 1|2 > A2,
oI5 =1l 5 I3 = X%

Thus we can proceed with our former test procedure, with ¢ replaced by At
and we obtain the upper bounds in the definition of the separation rates.

The lower bounds in the previous Section will also remain valid. Indeed, this
proof is based on the construction of a subfamily {¥}; : v € U} on the set of
alternatives. We have proven in Proposition 3, that

min i (£f) > 1 - 0(p' /),
and we have o > 1/2 and ¢ = M) — 0 as 1) — 0, therefore, 1 —O(p!~1/(20)) > \

for ¢ > 0 small enough. Thus, this family belongs to the set of alternatives we
consider here, as well. Moreover, Proposition 3 proves also that

IS5 2 += max A (5) < 1+ 0(0'/2) < A,

for some fixed A4, free of @ and L. Thus,

1 1 1 1
ZNEEY T TR s — IS T2 > —— — 12— T
Thus we proceed the same way with ¢ replaced by A\a2%- O

6. Adaptive testing procedure

We want to built a test procedure of Hy in (1) which is free of the parameter o
belonging to some closed interval A = [a, @] C (1/2, 4+00). The radius L plays a
minor role in the procedure and we suppose that it is known (w.l.o.g we assume
that L = 1). Such a procedure is called adaptive and it solves the test problem
Hy in (1) against a much larger set of alternative hypotheses:

H :Y € agAQ(mL,Cz/JQ), (14)
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where C is a large enough positive constant and

b= (222) 50y =iy, (15)

depend on n and p, but also on a. In order to construct the adaptive test
procedure, we define a finite regular grid over the set A = [o, @] :

a—o

N_ -r;r=1,...,N}, where N = [In(n./p)].

To each r € {1,---, N}, we associate the weights :

* Ar |7' - ]| Zar
wie =5 (0= (7)),
where the parameters A, b, and T, are given in (4) and (5) with « replaced by

a, and @ by 1. Define the adaptive test procedure, for some constant C* > 0
large enough

Ay ={ar =a+

~

A= maXN]l(DnW > C*t,), wheret, =C\, - pnp/(nyD), (16)

r=1,...,

and where ﬁn’r is the test statistic in (3) with weights {w;;,}i<;. Note that
the test AZ, rejects the null hypothesis as soon as there exists at least on

r € {1,...,N} for which ﬁn’r > C*t,.

Theorem 6. Assume that

2
n a 1
p- (p_p) datd — 400 and E —0

n./p n

The test statistic defined in (16) with C* large enough verifies :

’Y( :d7 aLéJ_AQ(Oé7L’Cwa)) - O?

forallC > (c*+
a)/(4a+1)).

The proof that the adaptive procedure we propose attains the above rate is
given in Section 7. By analogy to nonparametric testing of functions, we expect
the loss py, , to be optimal uniformly over the class in the alternative hypothesis
(14) .

1 o ) )
—C(a7d)>’ where 14, is given in (15) and C(a, @) = exp(—8(a—

7. Proofs

Proof of Theorems 1 and 2. The proof is based on the Proposition 1 and the
asymptotic normality of the weighted test statistic n,/pD; in Proposition 2. We
get for the type I error probability of A*

n(A) =P(D,, > t) =1 —®(ny/p-t) + o(1).
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For the type IT error probability of A*, uniformly in 3 over Q(a, L, ¢), we have

N N N . Vars(D,,
Po(Bp<t) < Ps(|By—Es(Dn)| > Es(Dy) — 1) < —roz(Pn)

(EE (D7z) - t)2

for t < c-b(p) and 0 < ¢ < 1. It implies that n./p -t < cny/pb(p). Therefore,
we distinguish the cases where n2pb? () tends to infinity or is bounded.

We use the fact that, under the alternative, Ex, (ﬁn) > b(p). We bound from
below as follows:

Es(Dp) —t > (1 — ¢)Ex(D,).
Then, it gives
~ Ty T

PE(Dn S t) S = + =~ =
n(n—1)p?(1 — ¢)?2E4(D,) np?(1 — ¢)?’E%(D,,)

Let us bound from above S; using (7):

1+o(1) o(T3/?)
B S e - 0(p) | n(n - Dpblp)’

We have T3/2b(¢p) < ¢~ = o(1), for all @ > 1/2, which proves that :

1+4+0(1)
51 S T 1p(l = %R ()

which tends to 0 provided that n?pb?(p) — +o0o. We will see using (8) that the
term S tends to 0 as well:

OWT) O\ /2(p)) = o(l)

whe) T npble) | n/pble)
= o(1) for all & > 1/2, as soon as n./pb(yp) — +oc.

Sa

Now, if ¢ is close to the separation rate: n?pb®(p) < 1, we see that whenever
Eg(ﬁn)/b(go) tends to infinity, the bound is trivial (S; + Sz — 0).

The nontrivial bound is obtained when 3 under the alternative is close to the
optimal matrix ¥* = (07;)1<i,j<p, in the sense that Ex(D,) = O(b(p)) together
with the fact that ¢ is close to the separation rate: n?pb?(p) < 1. We apply
Proposition 2 to get the asymptotic normality

n\/p(Dy — Ex(D,)) — N(0,1).

Thus,
sup Pg(ﬁn <t) < sup O(ny/p- (t— Eg(ﬁn))) +o(1)
ZeQ(o, L)) 2eQ(a,Lyp))
< ®(nyp-(t—  inf  Ex(Dyn)))+o(1).

ZeQ(a, L))
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At this point, choosing optimal weights translates into

inf sup  P(Dy <t
wi.7>0:zi;£j w?j:l/Q 2eQ(o,L,p)) ( )
< P(nyp-(t— sup inf Esx (D +o(1
e wig >0 5 wh=1/2 BEQ(@L.9)) 2(Pn))) o)
< @(nyp- (= blp))) +o(1),

after solving the optimization problem in the Appendix, which ends the proof
of the Theorem. O

Proof of Theorems 3 and 4. The first step of the proof is to reduce the set of
parameters to a convenient parametric family. Let X* = [07;]1<; j<p be the
matrix which has 1 on the diagonal and off-diagonal entries o;; where

[NIC

o5 = VA <1 — (—|Z —J| )20‘) for i # j, (17)
T +
with A and T are given by (4) and (5).
Let us define Q* a subset of Q(a, L, ) as follows

Q" = {3 Xyl = 1(i = j) tuijoi;1(i # j) forall 1 <4, <p, UecU}
where

U={U = [uijli<i, j<p s wii = 0,Vi and w5 =uj; = x£I(|i—j| <T), fori#j}.
The cardinality of U is p(T — 1)/2.

Proposition 3. For o > 1/2, the symmetric matriz Xf; = [u;j07;]1<i j<p, with
oy =1, for all i from 1 to p, and o}; defined in (17) is non-negative definite,
for ¢ > 0 small enough, and for allU € U.

Moreover, denote by A\ u, ..., \p,u the eigenvalues of ¥3;, then [Ny — 1] <
O(1) ' =Y | for all i from 1 to p.

We deduce that
IS < 1+ 0(p725) and |Sf — I]] < O(p' " 2). (18)

Indeed, ||ZF]] = max;=1,.. p o < 1+ O((pl'*‘%) and X7, — I has eigenvalues
/\i,U —1.

Proposition 3 shows that for all ¥j; € @*, X7, is non-negative definite, for
¢ > 0 small enough.

Assume that Xi,...,X,, ~ N(0,I) under the null hypothesis and denote
by P; the likelihood of these random variables. We assume that X;,..., X, ~
N(0,X%};), under the alternative, and we denote Py the associated likelihood. In
addition let

1
Pr = op(T—1)/2 Z Pu
Ueu

be the average likelihood over Q*.



Sharp minimax tests for large covariance matrices and adaptation 1945

The problem can be reduced to the test Hy : Xq,..., X,, ~ P against the
averaged distribution H; : X1, ..., X,, ~ Py, in the sense that

inf_ BA®), Q. L,g)) > inf_ BIA(L), Py) +o(1)

Am(A)<w T Am(A)Sw

and that
inf (A, Q(a, L, 9)) = nf (A, Pr) + o(1).

It is, therefore, sufficient to show that, when u,, =< 1,

' > St —
o A, Pr) = (- (¢~ b)) + o) (19)
and that )
(A, Pr) > 20(-ny/5 ") + o). (20)
While, for u,, = o(1), we need to show that
irAlf'y(A,Pw) — 1. (21)

In order to obtain (19) and (20), we apply results in Section 4.3.1 of [18] giving
the sufficient condition that, in P; probability:

fr uz
L, =log —=(X1,...X,) = upnZ, — > +&, (22)

1
where u, = n/pb(p) =< 1, b(y) = Cz(o, L) - p*>T2a, Z, is asymptotically
distributed as a standard Gaussian distribution and £ is a random variable
which converges to zero under Py probability. Moreover, to show (21), it suffices
to show that
dPy

E; <ﬁ)2 <1+ 0(1), (23)

since

1 dpr,\?
>1_= _ _ 2 < L
v 1= P - Pl and |17y = Pl < B () -1

We first begin by showing (23), in order to finish the proof of Theorem 3. Let,

dp; 2
Hn,p = ]EI (d—P)[(Xl’ T 7Xn)>
exp (= 3 0y X (S0) ™+ (Sv) 7 - 21)X,,)
= E/Eyyv = (24)
(27‘() 2 det? (EUzv)
We have
det™ % ((EU)*l +(Zy) "t - I)
Hn,p = II':‘:U,V

det? (Sy2y)

= Euv (det*% (EU rYy - ZUEV)).
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We define Ay = Xy — I and note that Xy + 3y — Xp2y = I — AyAy. As the
matrix Ay Ay is not necessarily symmetric, we write

(I —ApAy)I —ApAy)T =TI —-M

where M = My y = AyAy + Av Ay — AypAZ Ay is symmetric. Moreover, we
prove that for all U and V' € U the eigenvalues of M are in (—1,1) for all o > 1/2
and ¢ small enough. Indeed, by Gershgorin’s theorem, for each eigenvalue Ay,
of M there exists at least one i € {1,...,p} such that

Anr = Mg < 3 | My
Jig#i
We can show that 3, ., |M;;| = O(p2~%) and |My| < O(¢%) + O(p*=).
Thus,

Hyp = Eyy(det™ (I — M)) = gy exp ( - Zlogdet(f - M))
The Taylor expansion for the logdet of a symmetric matrix writes
1 1 1
—Zlogdet(l - M) = Ztr(M) + gtr(MQ) + O(tr(M?)).

In more details,

1 1
Ztr(M) = EtT(AUAV) - itr(A%A%)
1 1 1 1
gtT<M2> = ZtT‘(AUAv>2 + ZtT(AQUA%/) + gt?"(AUA%/AU)Q

1 1
71tT(AUA%/A?]Av) - ZtT(AVA?JA%/AU)
Recall that VA, B € RP*P we have |AB||r < ||A||2||Bl|r. For all U,V € U, we
use the last inequality and the Cauchy-Schwarz inequality to get
tr(AvAGAGAY) < [|AvAvr [AvAGAY ||
_z2
< JAvizllAvliF |AvAG ]l [Av)ie <p-¢® =,
tr(AuAY Ap)® = [|Av AL Auf < [AvAY (S [AulF <p-e o
Finally, using similar arguments we can show that
_z
tr(Mg,y) = O(pp®~=).
Thus,

1 1 1 )
—logdet(I — M) = Str(AvAv) + Z”(AUAV)2 +O(pp® ).

Now we develop the terms on the right hand side of the previous equation. We
obtain

2 2
tr(AyAy) = E UjjVij - O =2 § UijVij - O}

1<i,j<p 1<i<yi<p
1<|i—j|<T 1<|i—j|<T
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and

2 * sk * %
tr(AypAy)® = E Uih Vhj U101 * Oip 00 107;
1<i,5,h,I<p
1<li=h|||h=j],li~1]|l-j|<T

x4 *2 %2
= E o + 2 E U U5 V5V - Oy O

1<i,I<p 1<i,g,l<p
1<|i—I|<T 1<j
1<|i—=1|,|l—j4|<T
* * * *
+ 4 E UihUjlVR VL * Oip 010 h ;014
1<i,5,h,I<p

1<j,l<h
1<li—=hl|,|h—=j|,li—1],[1=5]|<T

Now, we can write (24) as follows:

nlogdet (I — AUAV))
2

n
*2 *2 _*2
= Ey,v exp (n E UijVij - 055 + o g UG U1V VG - 05 O

Hn,p = IEU7V exXp ( -

2 lj
1<i<j<p 1<4,5,l<p

1<|i—j|<T i<j
1<|i—1],|l—j|<T
* * * *

+ n E Uih U1 VB VLG Uihajlahjali)
1<4,5,h,0<p
i<j,l<h

1<]i=h|,|h=3],li—1],]l=7|<T

n *4 6—2
t g > oi 4+ O0pet =),
1<s,i<p
1<|i—1|<T
We explicit the expected value with respect to the i.i.d Rademacher random
variables {uij’l}ij}i<]‘, {uilujlvljvli}i<j7l€{i7j} and {uihujlvhjvli}Kj,Kh pairwise
distinct and independent:

n
Hyp = H cosh(na;‘jz) H cosh(Eo;‘fal*f)
1<y 1<i,5,l<p
1<|i—j|<T 1<j
1<|i—1],|l—j|<T
* ok k% n *4 6—2
cosh (noj,0%,04 07 ) exp B o;; +O(npp”=)).
1<i,j,hl<p 1<ii<p

i<j,l<h 1<|i=1|<T
1<li=hl,|h—3|,li—1|,[l-jI<T

We use the inequality cosh(z) < exp(z?/2) and get

2
n * 1 *4 ok
Hn,p < exp {? ( Z 0'7;;1 + Z Z O—il4o—lj4

i<j 1<4,5,l<p
1<]i—j|<T i<j
1<|i=1],|l—5|<T
%2 %2 %2 %2 n x4 6— 2
+ E OO OhiOl )} - exp (5 g oi; +O(npp”~ =) ).
1<i4,5,h,l<p 1<4,l<p
1<j,l<h 1<]i—I|<T

1<]i=hl|,|h=j|,|i=1],[l=j|<T
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2

n x4 _ 2 32 :
Or, 2 Z ol =n"pb°(p) and since p — 0 we have that

i<j
1<|i—j|<T
2 2
n- wd x4 T " wd
Oy 0 = Ol 015
8 - 8
1<4,5,l<p

il j
i£j 1<|i—l|<T 1<|l=j|<T
1<li—l[,Jl—j|<T

= n?pb®(p) - ON’T) = n’pb” () - (1)

and
n’ 2 %2 %2 %2
o Z Oin9351 OnjOui
1<i,j,h,I<p
i#j,l#h
1<li=h|,|h=3,li=1],[l=5F|<T
1
= n*O(PA'T?) = O(n°pp*t= - o*) = n?pb®(p) - o(1).
23
Finally, npp—3 = nZppits . 7 = o(1) as soon as nZpp*ta — 0 and

8a—5
a>3/20r5/8<a<3/2andp< n=2%3.

As consequence, if n2pb?(¢) — 0 with the additional conditions on a,n and
p given previously, we get

Es (%) < exp (n?0h () (1 +0(1))) = 1+ (1),

which ends the proof of Theorem 3.

Now, we show (22) in order to finish the proof of Theorem 4. More explicitly,

L”;P = log%(XlaaXn)

1 n

log gy exp (—5 S X (%) = DX — Slog det(z*U>> ,(25)
k=1

where U is seen as a randomly chosen matrix with uniform distribution over the

set U. Let us denote Ay = X}, — I and recall that proposition 3 implies that

|Ay] < O(1)p!~2a = o(1) for all @ > 1/2. We write the following approxima-

tions obtained by matrix Taylor expansion:

5
— (- = ;;u)l” A+ 0(1)A (26)
logdet(X};) = tr(z (_1l)l+1 AL —|—O(1)A6U> (27)

=1

Note that, tr(Ay) = 0 and that tr(Af) = [|[Z* — I||% =2 Z o;? does not
1<i<y<p
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depend on U. Moreover,

Er() XL A Xe) =n-tr(Af)

< - At tr(AY) < O(1) - npt T - pg?
k=1

< O(1) - nype*tas /gt

< O(1) - un-/pp* 3?5 = o(1)

for all @ > 1 and when u,, = O(1) and /pp*~ 3¢ = O(1). Also, for all @ > 1

Varl(z X,;'—A6UX;€) = 2ntr(Af) < O(l)ngplo_% -pp? = o(1).
k=1

In conclusion, we use Y,, = E;(Y,,)+Op(+/ Var(Y,,)) for any sequence of random
variables Y,,, to get

n
Z X/ A8 X — ntr(AY) = 0p(1),  in P-probability.

1 & 1 — n
Ln, = logEyexp (5 ZX;AUXk -5 ZX,IA%,Xk +7tr(AY)  (28)

5 5 (_1)l+1
N %Z( ZHZX AZUka—Z( 12 '“"(AZU))JFOP(”'

=3 k=1 1=3

From [ = 3,4 and 5, we treat similarly the terms

SoxTabx, = Ef(> X[ ALX,) +Op( VarI(ZX,jNUXk))
k=1 k=1 k=1
= ntr(AL) 4+ 0p(1) - y/ntr(AZ) (29)

By (28), we have ntr(A%) = o(1), similarly we obtain ntr(A?') = o(1) for | = 4
and 5. Thus (28) becomes :

Lup=logEyexp ( X ApXy — = ZX AR X+ Ttr(AY)

N =
33 HM3

n 1
+ 3 (—1)“1(1 - 7) tr(A)) +op(1). (30)
1=3
We have
tr(AY) = Z Ui jUjE UK OO O i = 3 Z Ui UjK UK O 150 1 Ol
i;]isz i<j<k

and we decompose
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tr(Af) = Z Wi UL UKL OO O R O
ik
i£1£k
= Za#—i—Z Z U;‘]?U;-‘,?—i—ﬁl! Z Wi U UKL UL OO O O
i#j i£j#£k i<j<k<l
Note that
X 1 1 L
nY ol = Ompe'*H) = Olny/pe™ 3 - \/pp 3%) = o(1)
i#]
9 2042 A2T2) — O 24 5 2—
n Z 0ij Ok = (np ) = O(ny/pp="2a - \/pp~ 2)
i#£j#k

= O(un - Vip* %) = o(1),
if u, =< 1 and \/pp> 3« — 0. As for the last term :

5 * % * % _%x
tr(Ay) = E Ui UjURI UL Ui 450 51 O Ty Ty
i£j#k
k#£1#v
v#£1
* *  _*x *2
= 5 E ujkukzuljﬂjkfszUZj(E Uij)
k#l#£] @
J#k
* % * *2
+ 5 E Uijujkukigijgjkaki(aij)
i#j#k
k#i
* * * * *
+ 5! E Ui Ul URI UL UviT 50 10 1Oy O i
i<j<k<l<v

The first two terms in the decomposition of tr(A?) group with tr(A?) and
o7 N0 forall 1 <|i—j| <T,

vcops 3w = ¥ (- (),

J1<|i—i<T Jili—il<T
= O\-T)=0(¢% = o(1),

as ¢ — 0, therefore we ignore these terms in further calculations.

Let us denote by W;; = ZXk,iXk,j» then ZXJAUXk = Z Ui jO

*
i Wij
k=1 k=1 1<iA£j<p
n
TA2 o 2
Y XIALX = ) [AD W
k=1 1<i,7<p

p
* % *2
= E E uihuhjoihathij + E E Uthii

1<i#j<p h¢{i,j} i=1 he#i



Sharp minimax tests for large covariance matrices and adaptation 1951

n n .
and Ztr(A%]) =1 Z o2, Then, from (30) we get

1<i#h<p
1 1 2 n
Lyny, = logEyexp (5 Z uijo;Wij — 3 Z Oin (Wn - 5)
1<i#j<p 1<i#h<p
1 n o -1
! - !
5 _E:.lmmmvaoam@~ki§:Gd)“~AT—iMAUD4%w40
1<j#h#i<p =3
i#g
= IOgEU exp ( Z ’LLZ]O' W Z uihuhjafha,’fbjWij
1<i<j<p 1<ij#h#i<p
1<j
n o 1)L (1- 1) | . .
eoaye S0 S i o)
=3 ki <ko<---<kyp
S (W) +or() (31)
- = — — ) .
2 2) " °F
1<i#h<p

Now, we explicit the expected value with respect to the i.i.d Rademacher ran-
dom variables w;;, WinUhj, Wk ko UkpkyUkgky s - - - fOrall i < g h ki <k <- - <k
pairwise distinct. Indeed, products of independent Rademacher random vari-
ables are still Rademacher and independent. Thus,

Lpp = Z log cosh(a7; Wij) + Z log cosh(a7, 07, Wij)
1<i<j<p 1<i<j<p
hé{i.j}
n(— ) "
+ Z Z logcosh( (l—l)'(l—l)!'azlkg‘“azlm)
1=3 k1 <<k
1 2 n
— 5 Z Uih(Wii_ §)+0P(1)~ (32)
1<i#h<p

We shall use repeatedly the Taylor expansion of log cosh(u) = u?/2—(u?/12)(1+
0(1)) as u — 0. Indeed, Ef(Wi;) = 0 and E;(|o;Wi;[%) < O(1) - An = O(1) -

n” WD GatD = o(1), giving that |o};Wi;| = op(1). Thus

1
SO T +op(D).  (33)

Similarly, using the first order Taylor expansion, we get

1
log cosh(a7; Wij) = 3 (O’;}Wij)

* % 1 * %
log cosh(ojy, 07, Wij) = i(aihathij)Q(l +op(1))
and for [ = 3,4 and 5,

n(—1)+1

log cosh (% (=1)- (=Dl op g, "'Uzlkl)
w2 (-1 -1

= ( 3 ) Oty O, (L4 0(1))
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Recall now that oj; = 0, for all 4,j such that [i — j| > T and 07 < X\ =
O(1)*T& . Then,
E( Y. oieitwi) = OmpNT?) = O(npe?)
1<i<j<p
he{i,j}
= 0(1) - n/pp*t 2 - Jpp? 25 = o(1),

as soon as u, =< 1 and \/ﬁpQ—% — 0. In conclusion, as the convergence in
Ly (Pr) implies convergence in P; probability, we get

> logcosh(c},05,;Wij) — 0 in Py probability. (34)
1<i<j<p
he{i.j}

Moreover, for [ = 3,4 and 5,
2
(-1-1-1)
n2 ( 2 ) . 07212@ . .g;:l?kl
E1<--<k
= OW*pNT'™") = O(n’pp™ =) = o(1). (35)
Using (34) and (35), (32) gives

1 . 1 .
Ly 2 Z Uiygwi:;*ﬁ Z o3 Wiz (1+0p(1))
1<i<j<p 1<i<j<p
1 n
- 5 X @ (Wa-g) +er() (36)
1<i<j<p

we further decompose as follows :

1
*2 2
5 E UUWU
1<i<j<p
1 . *2 v 2 2 1 *2
= 52 Z 05 XkiXk; t 5 Z Z 055 Xb,i Xk, X1, X1,
k=11<i<j<p 1<k#I<n 1<i<j<p

With our definition: ;7 = 2 - w; - b(g), we can write

1 N ~
9 Z Z o—ijQXk,iXk,le,in,j =n/pb(p) - (n —1)\/p Dy
1<k#1<n 1<i<j<p
and we put Z, = (n—1)/p- D,, which has asymptotically standard Gaussian
under Pj probability, by Proposition 1.

By Proposition 4 given in the Appendix, we have E(W;}) = 3n*(1 + o(1)),
then

1 waa) 1 2 *4 7“%
E.E1< 3 aijWij)—E'Sn > o4 o) = (L +o(1).

1<i<j<p 1<i<j<p
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Moreover,
Vary( 20*4W4 = ZJ*SVarI W4 +ZZZO’ J*4C0V1 Wé,W /)
i<j i<j 1<i<j#j'<p

= O(n*p\*T) + O(n®*pA*T?)
= On'pg™ %) + O’ =) = o(1).
We deduce that,
1 sy u;,
D > oWy = 7 +op(1)
1<i<j<p

Remaining terms in (36) can be grouped as follows:

1 <& .
12 Y eR(XE - D(XE, - D) =op()
k

=11<i#j<p

since the random variable in the previous display is centered and

EI(Z > o sz_l)(XI%,j_l)>2

k=11<i#j<p

Z > ot EBi(XR, - D)’En(XE; —1)°

k=11<i#j<p
— S ot = O (s) = o(1),
1<i<j<p

which concludes the proof of (22). O

Proof of Theorem 6. The type I error probability tends to 0 as a consequence
of the Berry-Essen type inequality in Lemma 1 in the Appendix applied to the
degenerate U-statistic D,, ,. We have that, for some ¢ € (0,1/2) and any ¢ > 0 :

+0(3) +(5r)

for all 1 < r < N. We use the relation 1 — ®(u) < (1/u)exp(—u?/2) for all
u € R, to deduce that

n2pt2

P;(Dy, <t) — B(nyp- t)‘ < 1662 exp(—

n2px?

Pl(ﬁnW > ) < ( + 1661/2> exp(—

+0(2)+o(;7)

We use this previous result to show that the type I error probability tends
to 0. See that for all » € {1,---,N}, C\, > c(a, @), where c¢(a,@) = (2a +

1)/(2a(4a + )_a) Thus since n./p - t, = Cx.y/Inln(n,/p), we obtain that

ny/p -t > c(a,a)y/Inln(n,/p) =: t for all » € {1,---,N}. Recall that N =
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[In(n\/p)], therefore

N
Pi(Afy=1)=P/(3r €{1,....N};Dpy > C't,) < > P(Dp, > C't,)
r=1
al 1 1/2 n?p - C*2t2 1 1
< - - R had
< T_1{<n\/]_7~c*tr+165 )exp( 1 )+O(n)+o(pTr)}
1 n?p - (a, &)C*?t> N
< N 16¢1/2 - = —
- (n\/ﬁ-c(g,@)c*tJr 0 )exp( 4 )+O(n)
N
1 1
o) g
r=1""
1 1/2 1—(c(a,@)C*/2)?
< + 16¢ (In(n+/p))
c(a, @)C*y/Inln(n./p)
N
o(l o1 1
L Olntnp) 0§~ 1

ﬂ

I

-
3

See that 1/T, = (war)a_lr < (pnp/(ny/p))?/ 4+ and therefore:

Y1 [yl pug |
Zﬁg D (n\/ﬁ) = o(l).

Moreover if (Inp)/n = o(1), then In(n\/p)/n = o(1), and if C* > 2/c(a, @) we
obtain

1
p

r=1

Py(A%, = 1) = o(1).

Now, we move to the type II error probability. Let us consider ¥ € F(a, L)
such that (1/2p)|X — I||% = (1/p) Dic 07 > (Cipa)? for some o € A. We
defined a, as the smallest point on the grid such that o < o,,. We denote by
ﬁnﬂ”o? tros Args br, and T}, the test statistic, the threshold and the parameters
depending on a,,. Also we define CTTO, C)\TO and Cbro the constants defined
in (5) for a,, instead of & and L = 1. We have C. < 1 and Cp. > 1, for all
r € {1,--- N}. The type II error probability is bounded from above as follows,

Vo € [a,a] and VX € Q(a, L,Ci),,) :

Py (ALy =0)

Py (V1 <7 < N, Dy <Cy) < Pyy(Doyy < Cy, )

IN
~
™

(EZ (ﬁn,ro) - ﬁn,ro > EZ (ﬁn,ro) - C*tro)

First we have
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L Ar 2 2 i —j[>%r0
= “bO(Z%— Yoo D '%‘)
b Oro 255 i< i<j Tro
=315 Ty [i—31< Ty,
c 52
G W= S B QR R o
brq = I bro
-1 s (22 —2a Ton
> Chy (Coy) e, ) ™0 (€242 = (O, )72 - (Y, ) ™0 )
1 4a41
> O,y (€ (o)™ 42 = (O, )72 (0, ) 0 )
= (El—EQ)

Now we show that, since o < o, we have,

Bty = C(ay)™0 - ()2 (0y/P)/pny)

4(arg — @)

= (D)) T >

Moreover, use that 0 > o — o,y > —(@ — )/ In(n4/p), to obtain

4(0*047‘0)

o Br' = (pup/(0/B)) - (Cr, 2+ ()20 2 (0/B) /) ™0

exp { o2k (05 )}

exp{ - %(1 +0(1))} > C(a, @).

Y

We deduce that,

Ex(Dnr,) > (€ - @) .

Let us denote by 771 and 73 the right-hand side termes in (7) and (8), respectively.

Then by Markov inequality, for C — —— — C* > 0, we get
Cla, @)

Ps:(Azs = 0)

IN

]P)E (‘ﬁn,ro - EZ (ﬁn,ro)l Z EZ(ﬁn,ro) - C*tro)

T
Vars(Bor)  _ (c- @) Vars (Dy.r,)
RSN s s ST

a)

(€~ gma)  +0-1T)
1

n(n —1)p? (C ~C@a) C*>2E2z(ﬁn,ro)

= F1 +F2
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We use (7) to show that F) tends to zero.

1 2
€ e@a) T
Fl = 1 2 ~
n(n —1)p? (C - @ - C*) E$ (Do)
< S Bt = 0(7;3) = o),
n(n - 1)p<c - m - C*) tio mn p o

: 5
since T,«%O S O((pn,p/n\/ﬁ) 4“To+1+1> = o(1) for a,, > 1/2. Similarly we
use (8) to show that

- saa) ™

F = (o T - 2E2 ps = o(1).
np ( - C(Q,@) - ) Z( n,ro)
1
Thus we get, for C — m —C* >0,
sup sup Py (A, =0) =o0(1). O

a€la,a YeF(a,L);
SlIE-11%>C?y2

Appendix

Proof of Proposition 1. We recall that under the null hypothesis the coordinates
of the vector X are independent, so using this fact we have:

N 2 P p n n .
VarI(Dn) :mvar<zZZZWMX’”X’WX“XU)

i=1 j=11=1 k=1

i<j k#l
9 p p 9 p p
R W2md iy A 2
" nln— 1)p2,z Zw“ E*(Xi,) = n(n — 1)pQZ Zwij
i=1 j=1 i=1 j=1
i<j i<j
_ 1
n(n—1)p

For ¥ € Q(a, L, ),

Bo(D) = >3

Zw;“jE(Xk,iXk,le,in,j)

n(n—1)p i=1 j=11=1 k=1
i<j k#l
1P 2 I 2
- 1_72 > wiE(X1i X )E(XiXa) = ]_)Z > Wi
p i=1 j=1

1<j 1<j
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Remark that D,, — Eg(ﬁn) can be written as the following form

ﬁn — Ez(ﬁn) = ZZZ ZU/Z] Xk ZX]CJ Uzj)(Xl ZXl] Uzj)

llk}llljl

k#l i<j
9 n
+—ZZZ% (Xk,iXk,j — 045)0ij (37)
k: 1i=1 j=1
1<J

Then the variance of the estimator ﬁn is a sum of two uncorrelated terms

~ 2 9
VarZ(Dn) = WEE{; ;w” Xl 7,X1 N Uz])(XQ IXQ,] OZ])}
1<J
+ —EZ{Z Zw” X, szj UU)UU} (38)
=1 j=1
1<J

Now we will give an upper bound for the first term on the right-hand side of
(38). Denote by

p p
M) D wii(X1:X1; — 03)) (X2, Xa ) — 045)}
i=1 j=1
1<j

p p P P
= %Z ZZ Zw;‘jw;j,E%{(Xl’inyj — Jij)(Xl,i’Xl,j/ — Ui’j/)}

i=1 j=1i'=1j'=1
i#j i

1P PP P
- EZ DD D whwh (i + oijoig)?
i=1 j=1i'=1j/=1
i#j A

We shall distinguish three terms in the previous sum, that is (¢, j,i’,j’) € A; U
As U As, where Al,Ag,Ag, form a partition of the set{(i, j,4’,j") € {1,...,p}*
such that i # 7,7 # j'}. More precisely in A; we have (i,7) = (¢/,5') or (4,7) =
(4',1), in Ay we have three different indices (i =" and j # j') or (j = 7/ and i #
i'Yor (i=j4 and j # i) or (j =i and i # j') and finally in A3 the indices are
pairewise distinct. First, when (4,7,7,j') € A, we use that Vars(X; ;X ;) =
(14 03;)?, to get

T

p p p p
DD YUIREAES 9 ITHS NGRS
i=1 j=1 =1 j=1 =1 j=1
i#j i#j i#]
p P
< p+3Y. > wiPed <p+6-p Losupw)? (39)
]

i=1 j=1
i#£]
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and this is p(1+0(1)) since sup; ; w;; =< (1/T) — 0. When the indices are in Ay,
we have three indices out of four Wthh are equal. We assume i = i/, therefore
it is sufficient to check that,

P p
Tvo = ZZ Zw wij (05 + 0ij0i50)°
A
. J?éj
< ZZZU} Wy ,a +4ZZZU} Wy en 02,
i=1j=1j'=1 =1 j= 1]*1
TEL 5 i TFL 5 i
J#J’ J#3’

Now let us bound from above the first term of 77 o,

p p

p
T1)271 — ’LUUIUU/O'”,

i=1j=1j/=1

N
j#]'/
p P p
lj — "> o2
< Z Z waw /0]]/ + Z Z T2a 745 wajwfj/ (40)

i=1 j= 1]’—1 Jj=1j4'=1 i=1

JEL § i i J'#i

li=3'I<T li—3'1=2T

Again we will treat each term of T} 2, separately. We recall that the weights

w;; verify the following properties

p
for i —j| <[’ —5')) and » w}; =< VT.

=1

* *
(w” 2 wi/j/

In the rest of the proof we denote by ko(a, L), k1(c, L), ... different constants
that dependent only on « and/or on L.

p p p
T172,171 . ’w”’w”/U”/

i=1 j= 1J71

TEL §' i
li=3'I<T
P p P P
_ 2 o2
= Z Z Z Wi Ty + Z Z Z %55
=1 j=1j/=1 j=14=1
I 4 JFE G ki
Ij—j’IS\i—jKT li— J|<|J —Jj |<T
p P * * . /12
ZZ 2 Z Z ZZ wiwi i =37
< s w -/ + —— 0/
—= 3’733 ij |Z _ j|2a JJ
Jj=14'=1 1=1 Jj=14'=1
o o

[§=3"I<li—j|<T li—jl<li—3'1<T
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We have for a > 1/2,

Tiong < koo L)\F'pEz(ﬁ )

+ SquZJ ZZ'j 20‘2'2‘2 ]|2a

Jj= 1;;6_]1
< ko(a,L) - VT -p-Eg(Dy) + ki(e, L) - L-p- (supw )2
< p-Ex(Da)OWT) + o(p). (41)

For the second term in (40), where |j — j'| > T, we use the following bound:

P p 1
Z w;k]wm’ < Z (w'L]) < 5
i=1 i=1
i#5,5 i#5,5
then we prove that,
rana= 3.3 Lo > Lo o( )=o) (22)
1,2,1,2 -= T2a Ojj wm = T2a - 9720’ o\p
Jj=14'=1
J#]#z
li—3'12T

Note that sup; ; 0;; < 1. The second term of T3 2, is bounded as follows:

PP D
s = L3S wiwirhod = 3 (S uieh) (L wised)
i=1j=1;'=1 j'=1
JFE G £ J#l §'#i
J#3’
P PP
< (supw};)sup ( Z J%-) (Z Z w;kj,afj/)
b j=1 i=1 /=1
1<|j—il<T §'#i
< o (supul) T-p-Ex(By) <p Ex(B) OWT)  (43)
0.
As a consequence of (41) to (43),
Tip < p-Es(Dn) - O(VT) +o(p) (44)

The last case, where (4, 7,4, j’) vary in As, the indices are pairwise distinct,

— 2
T = > w00y + 0iow;)
(o' ') EAs

2 2
2 g www,J,o“/U 0+ 2 E WHW 055,05
(4,3,,5")€As (4,4,i,5")EA3

IN
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As the two previous terms have the same upper bound, let us deal with the first
one say 17 31. We should distinguish two cases, the first when |i —¢'| < T and
the second when |i — 4’| > T. We begin by the first case, which in turn will be

decomposed into three terms. First,

._ 2 2 %2 2 2
Tiz11 = E wiwy 0505 < E wiionol
(4,4, ,5' ) E A3 (i,4,4,5')EAs
li=g|2 164/, 14 =57 | > =4/ li=g| 2164/ |14/ =57 |2 =4/
< (supwj;) E wiok E a?j,
g 1<i,i'<p 1<5,5'<p
1<]i=gl,|é' =5'|<T
* 2 N
< (supwy;)-T°-p-Ex(Dy) (45)
)
Then,
._ 02,52 2 2
Tiz12 = E Wiw 0505 < E Wi W03 05
(i,5,7,§' )€ A3 (i,5,7,§')€As
limgl<|i= i |<T,[4f =5 |2 i/ li=g|<limi/ |<T, 8 31215 -4
< (supwj)T? - pEx(Dy) < ka(o, L) - TVT - p - Ex(D,,) (46)
ij

Finally, using Cauchy-Schwarz inequality, we have,

._ 2 2
Ti313 = E W Wy ;10530550

(4,5,4',3")€As
[i—jl<|i—i/|<T,|i! —j'|<|i—d/|<T

|'L _ ,L'/|2Oc

— B e .
= § : Wi Wy i — j[oli — | Tii 955!
(4,5,4,5' ) E A3
li—j|<|i—i/|<T,|i! =5’ |<|ji—i"|<T
2
T
< (supwy) E E li —i'|**a2, E —
on i = gl = 5’1
7 i=1i'=1 1< 45" <p
i# 1<]i—jl | =4’ |<T
< k3(a,L)-T71-2pL - max{1,T2*"2} = o(p) (47)
for all @ > % Now we suppose that we have |i — /| > T, then,
E * ok 2 2 E ‘7’ - il|2a 2 2
T1’372 = wijwi/jlgii/o'jj/ = ’w”w /J WU,”/UJJ/
(i,5,4",5')EA3 (4,4, ,j')EAs
li—i/|>T li—i/|>T
(sup ;)
%] 2a 2
< S D =Pl Y o
1<i,i'<p 1<j5,5"<p
1<]i—jl,|¢' —5'|<T
* \2
(supwy;)
A J k L 1
(2¥] 2 4(0[7 ) -p o
< T3a 2pL - T < Ta-1 = o(p) for a> 5 (48)
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Finally we obtain, from (45) to (48) :

Ti3<p- Es(Dy) - O(IVT) + o(p). (49)

Put together (39), (44) and (49) to obtain (7). Let us give an upper bound for
the second term of (38),

P p
AEs{) 0wy (XpiXnj — 0ij)0i; )2
i=1 j=1
1<j

p p p p
— * ok
= D> 33N whwp 000 En(X1i X — 0i)(Xew X1y — 0uge)

i=1 j=1i'=1j'=1
it i
p p p p

= DD Y wiwhoiouy (5,0, +0i00;)

i=1 j=1¢=1j'=1
it i

T3

Proceeding similarly, we shall distinguish three kind of terms. Let us begin by
the case when the indices belong to A,

P p
Toh = 22 Zw LEs[(X1iX1; —045)%) = 22 Zw;}?(’fj(l +0%)

i=1 j=1 i=1 j=1
i#] i#]
PP R R
< 4(supw )ZZw;"jafj 8(supwy;) - p-Es(Dn) = o(1) - p-Es(Dn)
J i=1j=1 %
i#]
(50)
Next, when (i, 7,4, j") € Aa,
P P
Too = 42221{) ) §10ij 0t (o) + 04045)
i=1j=1j'=1
‘7# /;ﬁz
P p P
= 4> DD wiwiyoioiy oy +4ZZZ%@U 00
i=1j=14'=1 i=1j=14'=1
J#i Jl;ﬁz Jj#i ]/;ﬁz

We bound from each term of 75 separately. Using Cauchy-Schwarz inequality
two times we obtain,

p p
To21 = E E z] 'UUUU’UJJ

p p 12, P 1/2
< Z w0 ( Z wfﬁaqu < Z 0]2]/)
=1 j=1 i'=1 j'=1
J#i g’ #i J'#i
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p p 12, P PP p 1/2
< (XX wite) (X witeta (X o)
i=1j=1 i=1j=1 j'=1 i'=1
I 7§ §'#i

< (supwy};)-p-Ex(Dy) - O(T) = OVT) - p- Ex(Dy).

The second term in T3 5 is 77 2,2 and therefore,
Too = OWT) -p-Ex(D,). (51)
Finally, when (4, j,i’,j’) € A3, we have to bound from above
Tr3 = Z W W3 51 0304110301+ Z Z W Wy 51 O Ti1 105 O i
(4,5,3',3" )€ A3 (4,5,3",3" )€ As
These last two terms, in 75 3 are treated similarly, so let us deal with :

= * * T - * *
To 31 = E WiW5 51 045041510300 5o
(4,4,7',5') € A3

S (S () (St ) (St
(ZZ > wiod) Zw,,g,,>/z< S w”02/02>1/2

i (4,4,4",5') € A3

74,
N 12
< p-Ex(D,) - ( Z w;‘jw;ﬁj,afj,afi,)
(4,5,3",5')€EA3

1/2

Using the upper bound of T} 3 obtained previously, we have

Tos < pyp- (BY*(Da) - O +Ex(D.) - o(1)) (52)

Put together (50), (51) and (52) to get (8).
The asymptotic normality under the null hypothesis is obvious. O

Proof of Proposition 2. We use the decomposition (37) in the proof of the
Proposition 1 and we treat each term separately. Recall that, by our assump-
tions, n./p - Eg( n) = O(1). Use (8) to get

Varz( Z > wh(Xa X - %‘)%‘)

l 1 1<i<j<p

~(1"?(0(1) - Bx(Do) + OB (D)) + p- Ex(D)O(VT))

IN

~ N 3/4
= o()nyp-Ex(Dn) + (nyp - Ex(Dn))*/?- %HL\[ Ex(Dn) - o(1)
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This tends to 0, since T /n?p = (n?pb?(¢)) ' - ¢*~2/® = o(1), which is true for
all > 1/2.

It follows that, for proving the asymptotic normality, it is sufficient to prove
the asymptotic normality of

WPy oD wi(XniXe — o) (X1 Xy — 04).
1<k;£l<n 1<i<j<p

We study V,, which is a centered, 1-degenerate U-statistic, with symmetric kernel
H, (X1, X5) defined as follows

Vo = ) Hu(Xi, X)),
1<k£I<n
1
Ho(X1,X2) = —= > wij(XpiXe; — 05) (X0 X15 — 045)-
WP

We apply Theorem 1 of [16]. Therefore we check that Ex(H2 (X1, X3)) < +00
and that
Ex (G (X1, X)) + n” 'Ex(H, (X1, X»))

— 0,
ES (H2 (X1, X2))

where, for z,y € RP,
G (z,y) = Ex(H, (X1, )H (X1,9))

— > > whw) i (wiay — o) (Wiyy — 03) (i 05 + 0ijoig).

1<’L<j<p 1<i'<j'<p

Since n4/p - Eg(ﬁn) = O(1), and from the inequality (7), we have

! (1+0(1)) .

Es(Hp (X1, Xs)) = oz

In order to prove that Ex (G2 (X1, X2))/E&(H2(X1, X2)) = o(1), it is sufficient
to show that

* *
Es ( YooY whwiy (XaiXy = 0)(Xaw Xajr — ouyr)
1<i<j<p 1<i'<j'<p ,
(oi oy + Ui/j%"))

= o(p”).

In fact,

> Y wiwip (XX — 05)(Xa0 Xo g — 0iryr)

1<i<j<p 1<i'<j'<p

2
(oir 0 + Uz"j%"))
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_ *
= D> 2 ) wiguhywhly

1<4; <j1<p 1<4) <G <p 1<i2<j2<p 1<i5<j5<p
‘(Uilz 1040 T 011]1Ul1j1)<0z2z O3} +Ui§j20izj§>
El(X1,0 X151 — 00 (X1, X155 — Tigin)]
B[(Xa,i Xo jp — 0y )(Xo,i, Xo gy — 0 1)]

_ *
= D> D) wiguhgwhly

1<d1 <j1<p 1<4, <51 <p 1<i2<j2<p 1<i5<j,<p
(00041 j; T 0431011 )(Ciniy Oy + T2 Tinjit)
(0111203231 + 0113201231)(011120J2J1 + 04,0 jS)

(54)

To bound from above (54), we shall distinguish four cases. The first one is when
all couples of indices are equal,

gl = Z 11J1 (1 + 011J1 )4
1<i1<j1<p
2 *
< (Sllp w71J1> (sup( + 0'11]1) ) . Z w712]1
1,51 11,51 1<ii<j1<p
< 8. (sup wz1]1) p= 0(}7) = o(pQ).
i1,J1

The second one is when we have two different pairs of couples of indices, which
can be obtained by two different combinations of the couples of indices. When

we have equal pairs of couples of indices, as for example (i1,j1) = (i2,J2),
(1.39) = (i 33) and (i1, 1) # (1. 1), we et
11,J1) = (12, J2) anl 11,01 11,J1), We ge
— 2, #2 2
Goq1 = Z Z w;}glw gjl(aili’lajlji "‘Ui’lhailji)
1<i1<j1<p 1<) <j1<p 2
(1 +0z1j1)(1 +O—Z’1]i)
2
S (Sup wzljl) (Sup(l + O-’Ll_jl) ) . Z Z wl%‘l]lw /1]1
11,71 11,71 1<iy<j1<p 1<7/ <j

2
(Uilil 04154 + Ol 41 Jilj{)

< 4 (supw,) - np-Ex(H2(X1,X2)) =4 (supwl;,) - p=o(p?).

11,J1 11,71

When we have three couples of indices equal, for example (i1, j1) = (i2,j2) =
(Z/27.]é) and (7;17.].1) 7& (1117.71)7 we get

w* 2
Z Z 1131 131 (Uili/l Tj1j; + Oig Uilj{)
1<in<ji<p 1<) <ji<p 2
(1 + 01111)(1 + Uiij{)

) -n*p - Es(H2(X1, X2)) = o(p?).

Gapo

< 4. (supw

11,71

1171
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For the third case, there are three different couples of pairs of indices, for ex-
o L o P S .
ample, (i1, 1) = (i3, j3) and (i1, j1) # (i1, 1) # (i2, j2). Using Cauchy-Schwarz
inequality we obtain,
e o * *2 . . . . . . . .
s = Z Z Z Wiy 5y Wiy 1 Wiy gy (0-111'1 05154 + Ul/ljlalu{)
1<i1<j1<p 1<) <j1 <p 1<i2<j2<p
(OirinOinjs + TingaOingi N (Oiti504jt + Oit ju0init ) (L + 07, 5,)

S Z Z wi’]{wlsz <Ul l20-32J{ + 0-11]2 022J1>(1 + 0-12 32)
1<) <j1<p 1<ia<ja<p
N\ 1/2
Z w;jl (O-ili/lo'jlji + Ui/ljlo—ilji) )
1<i1<j1<p
1/2
> w0000 + 0i1j20i2j1)2>
1<i1<j1<p
1/2
S Z 1232(1 + 0127]2)2( Z w /Jl (0'1 120J2J' + 011J2022J1)2)
1<ia<j2<p 1<i) <51 <p
N\ /2
( Z Z Wi Jl lljl (o'ili/la-jijl + Uiljio-i'ljd) )
1<i) <j; <pl<ii<j1<p
1/2
Z wfljl (Oiliz Ojajr T Tirjo 0i2j1)2> :

1<i;<j1<p
Moreover, we recognize in these bounds

Z Z w;klljiwfljl (03t Oji 1 + 0inji O 31)2 =n’p-Ex(Hp (X1, X2))

i <j1i1<ii

which is O(p). Thus,

1/2
gS S Sup(1+ai2]2 ( Z Z wlz]g *j (Uz 120]2] +011]2012J1)2)

t2:72 1<ip<j2 <pl1<if <ji <p
1/2
2 2 *2 * 2
(n pEE(Hn(Xl’X2)) E E : Wiy 52 Wiy 1 (Ui1i20j2j1 + Ui1j2gi2j1) )
1<i2<j2<pl<ii <ji<p

< 2supwy;,) - n’p¥?EYP(H2(X1, X)) < (sup wi;,) - p*/?
Z17J1 21,J1

= o(p*?) = o(”).
Now we will treat the last case, when the pairs of indices are pairwise distinct,
in this case, we have 16 terms to handle. As all terms are treated the same way,
let us deal with:

g1 = Z Z Z Z Wi 1 Wik, Wiago Wi

1<i1<j1<p 1<, <4} <p 1<ia<ja<p 1<i,<jh<p
04144 0314052550 5154 011120 jaj1 )44 0 5b 51
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In order to find an upper bound for G4, we decompose the previous sums, into
several sums, similarly to the upper bound of (49). That is (i1, j1, ], j1, @2, j2, 95,
jb) € J1UJoU---U Jyg, where Jp,. .., Jig, form a partition of the set

J = {(ilmjlaillajiai27j2ai/25jé> € {1a v 7p}8}~
Let us define,
Ji = {(ilajlai/17j17i23j2ai/27jé) €Jil< |11_7’/1|7 Iil_iQ‘, "ig—i/2|, |Z/1_Z/2| < T)}7
J2 = {(7:17.].17ig_7jiai27j2ai/2)jé) € J71 < |Zl _7//1‘7 ‘Zl _i2‘7 ‘12 _Z/2| < T7
and |i} — i > T)},

and so on, for all J,.,r = 3,...,16. To bound from above the sum over J;, we
partition again Jy, J; = J1,1 U---U Jj 16 such that,

Jl,l = {(ilvjlvZ./lajivi27j27i/27jé) € Jl; |Zl - Z/1| < |7’1 _j1|7 |7’I1 _,Ll2| < |le _]i|7
i1 —da| < |iz — ja| and [iz — 45| < |i — 73|},

and so on, until we get the partition of J;.

Gua = > > 22 W e

1< <g1<p 1<) <j; <pl<ia<ja<p 1<i,<j4<
(41,51,8%,47,%2,92,45,75)€J11

"Oiriy 041 j; Tinity O jajh Tinia 021 Oy iy 0 b1

E E 'LU 7‘11211)2/1/2'1,0 10111/10127/20'11120'11%

1<in,ij <p 1<iz,ig<p

E : § : 034234035151 9525194451
1<41,51<p 1<j2,55<p
1<|ir—g1l,|i5 =41l liz—ga|,li5 =55 <T

IN

1
< T4(Sup w“jl Z Z zlzng’lz’zwlzlz)QUili/lo-iZi,zo’ili?Uilli/z
w91 1<iy i ;§p192,22§p
3
< T (sup wy, ;) ( Z Z wz”1 1212 3”,102 2)
I 1<iy,i) <p 1<in,ij<p
1
2

2 2
( Z Z w’Ll’L2 11120 lé)

1<iy,) <p 1<ia,i)

< T*(supw -p2~E§:(13n)

11,01

ZlJl)
Again, by our assumption that n’p - E% (ﬁn) = O(1), we can see that :

Gas < oo, L) T p* B3 (Dy) = 12 O(-g) = 7 o(1)

nZp
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where, from now on, xo(«, L), k1(c, L), ..., denote constants that depend on «
and L. Now, we define Jy o := {(i1, j1,1, 71, 92, 2. 95, j5) € {1, ... ,p}8, such that
li —d'| <|i—j|, | —d}| <|i" = ', i —i1] < Jix — 1] and [ip — 4| > [ — 41[},
thus we have,

e *
g472 = E E E E wiljlw/lj{wl2j2w/J/0'11110'1‘2120']1‘710']2‘72

(41,41,84,3} iz 25,55 ) €12
"Oivig0jaj1 044 it, 0545,

5

5 *
(Supwzljl 2 E § : 1111 zlzgw ) ‘Z2_Z2‘ 0111101212011120111
o 1<y, <p1<is, iy <p

1
E : § : ‘Z'/ —j/‘a " 04254051510 j2510 jb 5,
1<j1,51<p 1<j2,54<p 22
1<livr—gu1l,# =i lsli2 =gz l,|i5 —g5 | <T

)3/2 2 : Z 2 2 \/2
oy
(Sup wlljl ( 111 |7’2 - 22| 111 U’izié)

“.d 1<iy,i) <p 1<iz,ih<p
. * 2 2 1/2 . T3 . {1 T*Qﬁ*l}
willzwzllzzzal”ga /2 max y
1<i1,i) <p 1<i2,i5<p

< V2L (sup w; )%/ T3 max{1, T~} . p? E;ﬂ(f)n)

g
Therefore,
Gio < rile, L) -max{T7/4 T4~} . EY*(D,,)
< ko, L) - max{T7/4 T /4=y 0(713/2;;)3/4)
= o(l) since T3/n’*p — 0 (55)

Using similar arguments, we can prove that all remaining terms tend to zero.
In consequence,

Ex (G (X1, X))

ES (H2 (X1, X2))

Now let us prove that, Ex(H2(X1,X2))/E2(H2 (X1, X5)) = o(n),

Ex (H4(X17X2 n4 2 Z Z Z Zwlljl 12]2wl3J3w24J4

11 <J112<J213<j3t4<ja
EE[(X1,0, X151 —0in50) (X105 X1y — i) (X160 X1 gy — 0 i) (X 1,6, X1, — 0445

— 0.

The above squared expected value is a sum of a large number of terms that
are all treated similarly. Let us consider examples of terms containing squared
terms and products of terms, respectively. For o > 1/2,

* * * * 2 2 2 2
Z Z Z Zwm&wi2j2wisjswz‘4j4Jiliﬁjug"iguom

11 <jri2<j2i3<j3ta<ja
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p D P 1

< su w;; iy — ia]?*0? su o?

= p 1 2 1112 p J1J2 y
1=1142=1

— 452
Jam1 lj1 = Jel
\11 J1|<T liz—j2|<T
PP P p 1
: ;2 2
: i3 —ia|™ a5, Sup o, 173 — a2

iz=11d4=1 ja=1 Ja jam1 W3 T4
liz—ja|<T lia—ja|<T
< 16L%- (2a—1)"%- (supw};)* - p*T? < ka(a, L) - p?

i,
The terms containing no squared values are treated as, e.g.,
* * * *
Z Z Z Z Wiy gy Wi o Wi j3 Wiy 4 Tiri29 5152 Tizia O jsja
11<J112<J213<J314<Ja
0i1ig 0415302140244
We can see that Hy coincides with G4 2. Then we can deduce that ,

Es(H, (X1, X2))

=0(1) = o(n).
B3 (HZ (X1, X2)) (1) = oln)
Finally we can apply [16], and we obtain:
c
Z > wi(Xni Xk —0i) (X1 X1 j—0i;) = N(0,1). (56)

1<k;£l<n 1<i<j<p

Combining (53) and (56), we have by Slutsky theorem that:

nyp - (D — Ex(Dy)) - N(0,1). 0

Proof of Proposition 3 . Let us check the case where u;; = 1 for all 7, j such

that |¢ — j| < T and the generalization to all U in U will be obvious. Using

Gershgorin’s Theorem we get that each eigenvalue of X7, = [uijafj]lq j<p lies
P

in one of the disks centered in 0;; = 1 and radius R; = Z luijor;| = ZJW
=1
g’;ﬁi J#Z
We have,
- - i =il 2 (1 (K
Moy = A (1) <2 (1)
j=1 j=1 + k=1
J#i J#i

IA

[N}
S
e Yl
M%
=

|
ﬂI?v
=
N—
)

Il

©
=

~
S

< O(1)p*~2« — 0 provided that o > 1/2.

We deduce that the smallest eigenvalue is bounded from below by

_L
r{un \Niv > mm{au E ot =1- max E o5 >1— O(1)p'~2a
j=1 Jj=1
J#i J#1

which is strictly positive for ¢ > 0 small enough. U
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Proposition 4. For all1 <1i < j <p, Wy; is a centered random variable with
variance, Varr(W;;) = n. Moreover, for 1 <i < j # j' < p, we have
E; (W) = 3n°+6n, E /(W W2)=n’+2n,
E;(WiWi5) = 9(n* +12n° 4 44n® + 48n).

Also we have that Er(W) = 105n*(1 + o(1)). Note that if we have i # i’ and

j# 7y, then Wg and Wd ., are not correlated for d finite integer. Moreover, for

all 1 <i<p, the mndom variables Wy; are such that,
EWiy) =n, Ep(W2)=n?>+2n, Ep(W3) =n*+12n®+ 44n> 4 48n.

Proof of Proposition 4. To show the results we use lemma 3 and some technical
computation of [9].

Var;(Wy;) =E;(W2) = Ep(X] X ;)? =E(tr(X,X ] X ;X)) =tr(I2) =
(W@) =E/ (XX ;)" =3tr2(I2) + 6tr(I2) = 3n> + 6n
Er(WaW2) =Er((X]X;)*(X]X.50)?) =tr®(I2) + 2tr(I) =n’ + 2n
Er(WWih) =Er((X]X5) (X1 X 30)") = By (Br (X X5)*(XT X 30)*1X.0) ).

Or IEI((X_IX.j)4(X.IX.j/)4|X.i> = ¢(X.;), where
9(e) = Er (0] X)" @7 X5)") = B ((@]X)")Er (@] X)")
B (1)) =B (o)

k=1
P
- Z Xk 2J + 32 Zxkl 1xk2 EEI(XM ])]EI(XkQ j)
k=1 k1#k2
p
= 3( Z b Z) (zl.4)?
k=1

then we obtain that
Er(Wis W) = 9Er (X X.i)* = 9(n* + 12n° 4 44n” + 48n).
Also we have that
n 8
EI(W%) =E; ( Z Xk,iXk,j)
k=1

= Z]E%(st) + Cg : ZZE%XEH) ]E%(Xlggi)

k=1 k1ko
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+ o ZZE%(X;‘H) B} X, )
k1#k2

Cg - C3 2/ y4 2/ 2 2/ 2

+ S Z Z ZEI(Xkl,i) BT (X, .0) - ET(Xg, )
’ k1#ka#ks3

Ci-C¢-C3 2/ 2 2/ v2 2/ v2 2/ v2

+ TR ZZZ E7(Xg, o) - ET (X, .) - BT (X, .0) - BT (XE, )
k1#ko#ks#ky

= 105%n 4 (28 x 152 +35 x 9)n(n — 1) + (210 x 9n(n — 1)(n — 2)
+ 105n(n—1)(n —2)(n — 3)
= 105n* + 12201 4 2100n* + 7560n
We use similar arguments to calculate the moments of W;. O

Lemma 1. Let 0 < e < 1/2, for any t > 0 we have that,

~ 2pt? 1 1
< — . < 1/2 771 pt —
Pi(Dyy <t) — ®(ny/p-t)| < 16e/% exp( 4 )+ O(n) + O(pTT>

foralll <r<N.

Proof of Lemma 1. For each r € {1,..., N}, ﬁn’r is a degenerated U-statistic
of order 2, and can be written as follows:

Dnr =Y > K(Xp, X)),

1<k#1<n
where 1
K(Xk, Xl) = m Z Zw;j’TXk7iXk’le7in’j.
1<i<j<p
Define,
1 k—1 n
Zp=—— > K(Xp. X)) and V7= E/(Z}/Fi-1)
Var;(D,,,) i=1 k=2

where F, is the o-field generated by the random variables { X7, ..., X} }. More-
over, fix 0 < § <1, and define

Jn =Y Er(Z)" + B|V,E — 1.
k=2

Then by Theorem 3 of [6] we get that, there exists a positive constant k de-
pending only on § such that for any 0 < ¢ < 1/2 and any real ¢,
~ t2 k
P;(Dy, <t) — @(%)’ < 16¢1/? exp(— — )+ i Jn.
Var1 (an)T) 4Var[ (Dn,'r) 9
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Now, we give upper bounds for > ;_, E;(Z;)?*?° and E;|V,2 — 1]} for 6 = 1
and get,

iEI(Zk)Al: nQ(n%Z (Z ZZM Xk leJXl zle)

=1 1<i<j<p

TN QZ{ —1(3“ZZwm+3ZZ >0 wituid,)

1<i<j<p 1<i<j<pl<i’<j’<p
s (E Yt Y XY wituid)
1<i<j<p 1<i<j<pl<i’<j’'<p
! {n(n—l) (8—1 (su w} )—l—ﬁ)
= n2(n—1)%p? 2 g PP Wi 4
(n—1n2n-1) /9 2 p?
+ 6 (5 p(supw” r) + Z)}

1
Similarly we can show that E;(V,2 — 1)?2 O( ) + O(

o)

). Thus we obtain

pT
the desired result. O
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