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Abstract: In this paper, we present several estimators of the diagonal el-
ements of the inverse of the covariance matrix, called precision matrix, of
a sample of independent and identically distributed random vectors. The
main focus is on the case of high dimensional vectors having a sparse pre-
cision matrix. It is now well understood that when the underlying distri-
bution is Gaussian, the columns of the precision matrix can be estimated
independently form one another by solving linear regression problems un-
der sparsity constraints. This approach leads to a computationally efficient
strategy for estimating the precision matrix that starts by estimating the
regression vectors, then estimates the diagonal entries of the precision ma-
trix and, in a final step, combines these estimators for getting estimators of
the off-diagonal entries. While the step of estimating the regression vector
has been intensively studied over the past decade, the problem of deriving
statistically accurate estimators of the diagonal entries has received much
less attention. The goal of the present paper is to fill this gap by pre-
senting four estimators—that seem the most natural ones—of the diagonal
entries of the precision matrix and then performing a comprehensive em-
pirical evaluation of these estimators. The estimators under consideration
are the residual variance, the relaxed maximum likelihood, the symmetry-
enforced maximum likelihood and the penalized maximum likelihood. We
show, both theoretically and empirically, that when the aforementioned re-
gression vectors are estimated without error, the symmetry-enforced maxi-
mum likelihood estimator has the smallest estimation error. However, in a
more realistic setting when the regression vector is estimated by a sparsity-
favoring computationally efficient method, the qualities of the estimators
become relatively comparable with a slight advantage for the residual vari-
ance estimator.
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1. Introduction

We consider the problem of precision matrix estimation that has been exten-
sively studied in recent years partly because of its tight relation with the graphi-
cal models. More precisely, assuming that we observe p features on n individuals,
an interesting object to display is the graph of associations between the features,
especially when the number of features is large. The associations may be of dif-
ferent type: linear correlations, partial correlations, measures of independence
and so on. A measure of association between the features, which is particularly
relevant for Gaussian (Lauritzen, 1996) and, more generally, non paranormal
distributions (Liu et al., 2009; Lafferty et al., 2012) is the partial correlation.
This leads to a Gaussian graphical model in which two nodes are connected by
an edge if the partial correlation between the features corresponding to these
two nodes is nonzero, which is equivalent to the nonzeroness of the correspond-
ing entry of the precision matrix (Lauritzen, 1996, Proposition 5.2). The graph
constructed in such a way relies on the population precision matrix, which is not
available in practice. Therefore, an important statistical problem is to infer this
graph from n iid observations of the p-dimensional feature-vector. In view of the
aforementioned connection with the precision matrix, the estimated graph may
be deduced from the estimated precision matrix by comparing its entries with
a suitably chosen threshold.

Another important problem for which the precision matrix estimation is rele-
vant1 is the linear (Fisher, 1936) or quadratic discriminant analysis (Anderson,
2003). Indeed, the decision boundary in the binary or multi-class classification
problem—under the assumption that the conditional distributions of the fea-
tures given the class are Gaussian—is defined in terms of the precision matrix. In
order to infer this decision boundary from data, it is therefore relevant to start
with estimating the precision matrix. The simplest way of estimating the latter
is by inverting the sample covariance matrix or, if the inverse does not exist, by
computing the pseudo-inverse of the sample covariance matrix. However, when
the dimension p is such that the number of unknown parameters p(p+1) is com-
parable to or larger than the sample-size n, the (pseudo-)inversion of the sample
covariance matrix leads to very poor results. To circumvent this shortcoming,
additional assumptions on the precision matrix should be imposed which should
preferably be realistic, interpretable and lead to statistically and computation-
ally efficient estimation procedures. The sparsity of the precision matrix offers
a convenient setting in which these criteria are met.

To present in a more concrete fashion the content of the present work, let
X be a n × p random matrix representing the values of p variables observed
on n individuals. Assume that the rows of the matrix X are independent and
Gaussian with mean μ∗ and covariance matrix Σ∗. The inverse of Σ∗, called
the precision matrix and denoted by Ω∗ = (ω∗

ij), is an object of central interest

1In the case of linear discriminant analysis for binary classification, a simpler approach
consisting in replacing the sparsity of the precision matrix by the sparsity of the product of
the latter with the difference of the class means has been proposed and studied by Cai and
Liu (2011).
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since—as mentioned earlier—it encodes the conditional dependencies between
pairs of variables given the values of all the other variables. Based on the preci-
sion matrix, the graph G ∗ of relationships between the p variables is constructed
as follows: each node of the graph represents a variable and two nodes i and j are
connected by an edge if and only if ω∗

ij �= 0. Estimating this graph from a sample
of size n represented by the rows of X is a challenging statistical problem that
has attracted a lot of attention in the past decade. In a frequently encountered
situation of the dimension p comparable to or even larger than n, a commonly
used assumption is the sparsity of the graph G ∗. Namely, it is assumed that the
maximal degree of the nodes of G ∗ is much smaller than p (see, for instance,
Meinshausen and Bühlmann (2006); Yuan and Lin (2007) for early references).

Most approaches of estimating sparse precision matrices that gained popular-
ity in recent years rely on weighted �1-penalization of the off-diagonal elements
of the precision matrix; recent contributions on the statistical aspects of this ap-
proach can be found in Yuan (2010); Cai et al. (2011); Sun and Zhang (2013);
Cai et al. (2016) and the references therein. The rationale behind this approach
is that the weighted �1-penalty can be viewed as a convexified version of the
�0-penalty, the latter being understood as the number of nonzero elements. The
convexity of the penalty in conjunction with the convexity of the data fidelity
term leads to estimators that can be efficiently computed by convex program-
ming (Friedman et al., 2008; Banerjee et al., 2008).

To further improve the computational complexity, it is possible to split the
problem of estimating p2 entries of the precision matrix into p independent prob-
lems of estimating the p-dimensional columns of it (Meinshausen and Bühlmann,
2006). To this end, the matrix Ω∗ is written as B∗D∗, where D∗ is a diagonal
matrix while B∗ is a p × p matrix with all diagonal entries equal to one. Each
columns of the matrix B∗ can be estimated by regressing one column of the data
matrix X on all the remaining columns. In the context of high dimensionality
and sparse precision matrix, this can be performed by sparsity favoring methods
(Bühlmann and van de Geer, 2011) such as the Lasso (Tibshirani, 1996), the
Dantzig selector (Candes and Tao, 2007), the square-root Lasso (Belloni et al.,
2011), etc. A crucial observation at this stage is that the sparsity patterns, i.e.,
the locations of nonzero entries, of the matrices B∗ and Ω∗ coincide. In par-
ticular, the degree of the j-th node in the graph G ∗ is equal to the number of
nonzero entries of the j-th column of B∗, for every j = 1, . . . , p.

Once the columns of B∗ successfully estimated, one needs to estimate the
diagonal matrix D∗, the diagonal entries of which coincide with those of the
precision matrix Ω∗. This step is necessary for recovering the precision matrix
(both diagonal and nondiagonal entries) but it is also important for constructing
the graph2 of conditional dependencies. Of course, the latter can be estimated by
thresholding the entries of the estimator of B∗ without resorting to an estimator
of D∗, but the choice of the threshold is in this case a difficult issue deprived of
clear statistical interpretation. In contrast with this, if along with an estimator
of B∗, an estimator of D∗ is available, then one may straightforwardly estimate

2We put an emphasize on this last point since we did not find it in the literature.
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Fig 1. The average �2-error (computed from 50 independent trials) of the four estimators
considered in this work as a function of the sample size. The plots concern Model 2 described
in Section 4.1 and dimension p = 60. One can observe, in particular, that when B∗ is
estimated without error (left panel), the estimators SML and PML improve on the residual
variance and relaxed maximum likelihood estimators.

the partial correlations and threshold them to infer the graph of conditional
dependencies. In this case, the threshold has a more clear statistical meaning
since the partial correlations are in absolute value bounded by one.

It follows from the above discussion that the problem of estimating the ma-
trix D∗ built from the diagonal entries of the precision matrix is an important
ingredient of the estimation of the precision matrix and the graph of conditional
dependencies between the features. The purpose of the present work is to pro-
pose several natural estimators of D∗ and to study their statistical properties,
essentially from an empirical point of view. Combining standard arguments,
we present four estimators, termed residual variance (RV), relaxed maximum
likelihood (RML), symmetry-enforced maximum likelihood (SML) and penal-
ized maximum likelihood (PML). The first one, residual variance, is the most
commonly used estimator when the matrix B∗ is estimated column-wise by a
sparse linear regression approach briefly mentioned in the foregoing discussion.
The other three methods considered in this paper are based on the principle of
likelihood maximization under various approaches for handling the prior infor-
mation. In order to give the reader a foretaste of the content of next sections, we
present in Figure 1 the accuracy of the four methods of estimating the diagonal
elements of the precision matrix on a synthetic data-set. More details are given
in Section 4.1.

2. Notation and preliminaries on precision matrix estimation

This section introduces notation used throughout the paper and presents some
preliminary material on sparse precision matrix estimation.

2.1. Notation

For an unknown parameter θ we note θ∗ its true value. As usual, Np(μ
∗,Σ∗)

is the Gaussian distribution in R
p with mean μ∗ and covariance matrix Σ∗.
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The expectation of a random vector X is denoted by E(X) and its covariance
matrix by V(X). We denote by 1n the vector from R

n with all the entries equal
to 1 and by In the n×n identity matrix. We write 1 for the indicator function,
which is equal to 1 if the considered condition is satisfied and 0 otherwise. The
smallest integer greater than or equal to x ∈ R is denoted by �x�. In what
follows, [p] := {1, . . . , p} is the set of positive integers from 1 to p. For i ∈ [p],
the complement of the singleton {i} in [p] is denoted by ic. For a vector v ∈ R

p,
Dv stands for the p× p diagonal matrix satisfying (Dv)j = vj for every j ∈ [p].
The matrix build keeping only the diagonal of a square matrix M is denoted by
diag(M).

The transpose of the matrix M is denoted by M�. If this matrix is square,
we note |M| its determinant. For a n× p matrix M, the vector of the elements
of the kth row (resp. the jth column) whose indices are given by the subset J
of [p] (resp. K of [n]) is denoted by Mk,J (resp. MK,j). In particular, the vector
made of all the elements of the jth column of the matrix M at the exception
of the element of the kth row is given by Mkc,j . Moreover, the whole kth row
(resp. jth column) of M is denoted by Mk,• (resp. M•,j). We use the following
notation for the (pseudo-)norms of matrices: if q1, q2 > 0, then

‖M‖q1,q2 =

{
n∑

i=1

‖Mi,•‖q2q1

}1/q2

.

With this notation, ‖M‖2,2 and ‖M‖1,1 are the Frobenius and the element-wise
�1-norm of M, respectively. The sample covariance matrix of the data points
{Xk,•}k∈[n] is defined by

Sn =
1

n

n∑
k=1

(X�
k,• − μ̂)(X�

k,• − μ̂)� =
1

n
(X− 1nμ̂

�)�(X− 1nμ̂
�),

where μ̂ is either the sample mean 1
n (1

�
nX)� (when the mean μ∗ is unknown)

or the theoretical mean μ∗ (when it is considered as known).

2.2. Preliminaries

Throughout the paper we will present estimators of the diagonal elements of the
precision matrix in the case of a general multidimensional Gaussian distribution,
but in all theoretical developments we will assume that the marginals of X are
standard Gaussian distributions, i.e., μ∗ = 0 and Σ∗

jj = 1 for every j ∈ [p]. This
assumption is reasonable, since we are concerned with the problems in which the
sample size is large enough to consistently estimate the individual means and
the individual variances of the variables. So, one can always center the variables
by the sample mean and divide by the sample standard deviation to get close
to the assumption3 that random variables X1,j , . . . ,Xn,j are i.i.d. N (0, 1) for
every j.

3Unless expressly stated otherwise, in the whole article, 1 ≤ i, j ≤ p and 1 ≤ k ≤ n.
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Let us recall that the precision matrix is closely related to the problem of
regression of one feature on all the others. Indeed, there exists a p × p matrix
B∗ and two vectors c∗,φ∗ ∈ R

p such that

X•,j = c∗j1n −X•,jcB
∗
jc,j + φ∗

j
1/2 ξj , (1)

where ξj is drawn from Nn(0, In) and is independent of X•,jc . According to the
theorem on normal correlations (Marsaglia, 1964), the regression coefficients
B∗

jc,j ∈ R
p−1 and the variance φ∗

j ∈ R of residuals can be expressed in terms of
the elements of the precision matrix Ω∗ as follows:

B∗
ij = ω∗

ij/ω
∗
jj , φ∗

j = 1/ω∗
jj , (NC)

whereas c∗j = μ∗
j + (μ∗

jc)
�B∗

jc,j = (μ∗)�B∗
•,j . If we assume that μ∗ = 0 then

c∗j = 0 for any j. With these notation, the precision matrix can be written as

Ω∗ = B∗D−1
φ∗ .

Several state-of-the-art methods for estimating sparse precision matrices pro-
ceed in two steps (Meinshausen and Bühlmann, 2006; Cai et al., 2011; Liu and
Wang, 2012; Sun and Zhang, 2013). The first step consists in estimating the
matrix B∗ and the vector φ∗ by solving the sparse linear regression problems
(1) for each j, while in the second step an estimator of the matrix Ω∗ is inferred
from the estimators of B∗ and φ∗ using relations (NC). The goal of the present
work is to explore both theoretically and empirically different possible strategies
for this second step.

The square-root Lasso is perhaps the method of estimating the matrix B∗

that offers the best trade-off between the computational and the statistical com-
plexities. It can be redefined as follows: scaled Lasso estimates the matrix B∗

by solving the convex optimization problem

B̂ = argmin
B∈R

p×p

Bjj=1

min
c∈Rp

{
‖XB− 1nc

�‖2,1 + λ‖B‖1,1
}
, (2)

where the first min is over all matrices B having all their diagonal entries equal
to 1. The tuning parameter λ > 0 corresponds to the penalty level. The purpose
of the penalization is indeed to get a precision matrix estimate which fits the
sparsity assumption. As the penalty of a matrixB is its ‖·‖1,1 norm, the resulting
precision matrix estimator is expected to be sparse in the sense that its overall
number of non-zero elements should be small. In addition, one can check that
computing a solution to problem (2) is equivalent to computing each column of

B̂ separately (and independently) by solving the optimization problem

B̂•,j = argmin
β∈R

p

βj=1

min
cj∈R

{
‖Xβj − cj1n‖2 + λ‖β‖1

}
, j ∈ [p]. (3)

In addition to being efficiently computable even for large p, this estimator has
the following appealing property that makes it preferable, for instance, to the
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column-wise Lasso (Meinshausen and Bühlmann, 2006) and the CLIME (Cai
et al., 2011). The choice of the parameter λ in (2-3) is scale free: it can be
chosen independently of the noise variance in linear regression (1). This fact has
been first established by Belloni et al. (2011) and then further investigated in
(Sun and Zhang, 2012; Belloni et al., 2014a). In the context of precision matrix
estimation, this method has been explored4 by Sun and Zhang (2013).

3. Four estimators of φ∗

As mentioned earlier, the aim of this work is to compare different estimators of
the vector φ∗ based on an initial estimator of the matrix B∗. Clearly, the error
of the estimation of B∗ impacts the error of the estimation of φ∗ and, therefore,
the latter is not easy to assess in full generality. In order to gain some insight on
the behavior of various natural estimators, in theoretical results we will consider
the ideal situation where the matrix B∗ is estimated without error.

3.1. Residual variance estimator

In view of the regression equation (1), a standard and natural method—used,
in particular, by the square-root Lasso of Sun and Zhang (2013)—to deduce

estimators φ̂ and Ω̂ from an estimator B̂ is to set

φ̂j =
1

n
‖(In − n−11n1

�
n )XB̂•,j‖

2

2; Ω̂ = B̂ ·D−1

φ̂
. (4)

Note that the matrix (In − n−11n1
�
n ) present in this expression is the orthog-

onal projector in R
n onto the orthogonal complement of the linear subspace

Span(1n) of all constant vectors. The multiplication by this matrix annihilates
the intercept c∗j in (1) and is a standard way of reducing the affine regression

to the linear regression. In what follows, we refer to φ̂ defined by (4) as the

residual variance estimator and denote it by φ̂RV. Using the sample covariance
matrix Sn, the residual variance estimator of φ∗ can be written as

φ̂RV
j = B̂�

•,jSnB̂•,j .

Note also that if we consider the linear regression model (1) conditionally to
X•,jc , then the residual variance estimator of φ∗

j coincides with the maximum
likelihood estimator.

Proposition 1. If B̂•,j estimates B∗
•,j without error, then the residual variance

estimator of φ∗
j has a quadratic risk equal to 2

nφ
∗
j
2, that is

E[(φ̂RV
j − φ∗

j )
2] =

2φ∗
j
2

n
.

4Although Sun and Zhang (2012, 2013) refer to this method as the scaled Lasso, we prefer
to use the original term square-root Lasso coined by Belloni et al. (2011) in order to avoid
any possible confusion with the earlier method of Städler et al. (2010a,b), for which the term
“scaled Lasso” has been already employed.
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Furthermore, for every t > 0, the following bound on the tails of the maximal
error holds true:

P

(
max
j∈[p]

|φ̂RV
j − φ∗

j |
φ∗
j

> 2
( t+ log p

n

)1/2

+
2(t+ log p)

n

)
≤ 2e−t.

Proof. Using equation (1) and the assumption B̂•,j = B∗
•,j , we get

φ̂RV
j =

1

n
‖XB∗

•,j‖
2

2
=

φ∗
j

n
‖ξj‖

2

2
. (5)

Since ξj is a standard Gaussian vector, the random variable ζ = ‖ξj‖
2

2
is drawn

from a χ2
n distribution. This implies that E(ζ) = n and V(ζ) = 2n. Therefore,

E[(φ̂RV
j − φ∗

j )
2] = E

[(φ∗
jζ

n
− φ∗

j

)2]
=

φ∗
j
2

n2

(
V(ζ) +

(
E(ζ)− n

)2)
=

2φ∗
j
2

n
.

This completes the proof of the first claim. To prove the second claim, we set
z = t+ log p and use the union bound to get

P

(
max
j∈[p]

|φ̂RV
j − φ∗

j |
φ∗
j

> 2

√
z

n
+

2z

n

)
≤ pmax

j∈[p]
P

( |φ̂RV
j − φ∗

j |
φ∗
j

> 2

√
z

n
+

2z

n

)
= pP

(
|ζ − n| > 2

√
zn+ 2z

)
.

The second claim follows from the tail bound of the χ2 distribution established,
for instance, in (Laurent and Massart, 2000, Lemma 1).

Note that in this result, the case of known means μ∗
j is considered. The case

of unknown μj can be handled similarly, the estimation bias is then φ∗
j/n and

the resulting mean squared error is (2n − 1)φ∗
j
2/n2. One may observe that, as

expected, the rate of convergence of the quadratic risk is the usual parametric
rate 1/n and that the asymptotic variance is 2φ∗

j
2.

3.2. Relaxed maximum likelihood estimator

One could expect that the global maximum likelihood estimator of φ∗ would be
better than the maximum of the conditional likelihood, since it is well known
that under proper regularity conditions, the quadratic risk of the maximum
likelihood estimator is the smallest, at least asymptotically. Since the vectors
Xk,• ∼ Np(μ

∗,Ω∗−1) are independent, the log-likelihood is given by (up to
irrelevant additive terms independent of the unknown parameters μ∗ and Ω∗)

L(X|μ,Ω) =
n

2
log |Ω| − 1

2

n∑
k=1

(Xk,• − μ�)Ω(Xk,• − μ�)�. (6)

Maximizing the log-likelihood with respect to μ ∈ R
p leads to

max
μ∈Rp

L(X|μ,Ω) =
n

2

(
log |Ω| − trace

[
SnΩ

])
. (7)
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Recall now that in view of (NC), we have Ω∗ = B∗D−1
φ∗ . Therefore, the profiled

log-likelihood (w.r.t. μ) of X given the parameters B and φ is

max
μ∈Rp

L(X|μ,B,φ) =
n

2

(
log |B| −

p∑
j=1

{
log(φj) + (SnB)jjφ

−1
j

})
. (8)

For a given B, this profiled log-likelihood is a decomposable function of φ and,
therefore, can be easily maximized with respect to φ. This leads to

arg max
φ∈R

p
+

max
μ∈Rp

L(X|μ,B,φ) =
(
(SnB)jj ∨ 0

)
j∈[p]

. (9)

Thus, when an estimator B̂ of B∗ is available, one possible approach for esti-
mating φ∗ is to set

φ̂RML
j = (SnB̂)jj ∨ 0, j ∈ [p]. (10)

We call this estimator relaxed maximum likelihood (RML) estimator. It will
be clear a little bit later why it is called relaxed. The analysis of the risk of
the RML estimator is more involved than that of the RV estimator considered
in the previous section. This is due to the truncation at the level 0. For this
reason, the next result does not provide the precise value of the risk, but just
an inequality which is sufficient for our purposes.

Proposition 2. If B̂ estimates B∗
•,j without error, then the risk of the RML

estimator of φ∗
j satisfies E[(φ̂RML

j − φ∗
j )

2] ≥ 1
n

(
φ∗
j
2 + φ∗

jΣ
∗
jj −O(n−1/2)

)
.

Before providing the proof of this result, let us present a brief discussion. Note
that in view of (1), Σ∗

jj is always not smaller than φ∗
j . Furthermore, Σ∗

jj > φ∗
j

if B∗
jc,j has at least one nonzero entry. Therefore, the last proposition, com-

bined with Proposition 1, establishes that the residual variance estimator has
an asymptotic variance which is smaller (and, in many cases, strictly smaller)
than the asymptotic variance of the maximum likelihood estimator. At a first
sight, this is very surprising and seems to be in contradiction with the well es-
tablished theory (Le Cam and Yang, 2000; Ibragimov and Has′minskĭı, 1981) of
asymptotic efficiency of the maximum likelihood estimator for regular models.
Our explanation of this inefficiency of φ̂RML

j is that it is not really the maxi-
mum likelihood estimator. It maximizes the likelihood, certainly, but not over
the correct set of parameters. Indeed, when we defined the RML we neglected
an important property of the vector φ∗: the fact that B∗D−1

φ∗ = D−1
φ∗B∗� (this

follows from the symmetry of Ω∗). Ignoring this constraint allowed us to get
a tractable optimization problem but caused the loss of the (asymptotic) effi-

ciency of the estimator. This also explains why we call φ̂RML relaxed maximum
likelihood estimator.

Proof of Proposition 2. Since μ∗ is assumed to be known and equal to zero,
according to (1), we have

(SnB̂)jj =
1

n
X�

•,jXB∗
•,j =

φ∗
j
1/2

n
X�

•,jξj =
φ∗
j
1/2

n

(
−X•,jcB

∗
jc,j + φ∗

j
1/2 ξj

)�
ξj .
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Denoting η1 = −ξ�j X•,jcB
∗
jc,j , we get (SnB̂)jj = 1

n (φ
∗
j
1/2 η1 + φ∗

j ‖ξj‖22).
Furthermore, it follows from (1) that E[(Xk,jcB

∗
jc,j)

2] = Σ∗
jj − φ∗

j for each
k. Since, in addition, for different ks the random variables Xk,jcB

∗
jc,j are in-

dependent, centered and Gaussian, we get that—in view of the independence
of ξj and X•,jc—the conditional distribution of η1 given ξj is Gaussian with
zero mean and variance ‖ξj‖22(Σ∗

jj − φ∗
j ). Hence, the random variable η =

η1/(‖ξj‖2(Σ∗
jj − φ∗

j )
1/2) is standard Gaussian, independent of ‖ξj‖22 and

(SnB̂)jj =

√
φ∗
j‖ξj‖22(Σ∗

jj − φ∗
j )

n
η +

φ∗
j

n
‖ξj‖22.

This relation readily implies that E[(SnB̂)jj ] = φ∗
j and

E[((SnB̂)jj − φ∗
j )

2] = V[(SnB̂)jj ] =
Σ∗

jjφ
∗
j + φ∗

j
2

n
.

Furthermore, for the fourth moment, we have

E[((SnB̂)jj − φ∗
j )

4] ≤
8φ∗

j
2(Σ∗

jj − φ∗
j )

2

n4
E[‖ξj‖42]E[η4] +

8φ∗
j
4

n4
E[(‖ξj‖22 − n)4]

≤
72φ∗

j
2(Σ∗

jj − φ∗
j )

2

n2
+

8φ∗
j
4

n4
(60n+ 12n2).

To analyze the truncated estimator, we set ζ = (SnB̂)jj . Then φ̂RML
j = ζ ·1(ζ >

0) and hence,

E[(φ̂RML
j − φ∗

j )
2] = E[(ζ − φ∗

j )
21(ζ > 0)] + φ∗

j
2P(ζ ≤ 0)

= E[(ζ − φ∗
j )

2]−E[(ζ − φ∗
j )

21(ζ ≤ 0)] + φ∗
j
2P(ζ ≤ 0)

≥ E[(ζ − φ∗
j )

2]−E[(ζ − φ∗
j )

4]1/2P(ζ ≤ 0)1/2.

We have already computed the first expectation in the right-hand side, as well
as upper bounded the second one. Let us show that the probability of the event
ζ ≤ 0 goes to zero as n increases to ∞. This follows from the Tchebychev
inequality, since P(ζ ≤ 0) = P(φ∗

j − ζ ≥ φ∗
j ) ≤ V[ζ]/φ∗

j
2 = O(1/n). This

completes the proof of the proposition.

3.3. MLE taking into account the symmetry constraints

As we have seen in previous sections, the relaxed maximum likelihood estimator
is suboptimal; in particular, it is less accurate than the residual variance esti-
mator. To check that this lack of efficiency is indeed due to the relaxation of the
symmetry constraints, we propose here to analyze the constrained maximum
likelihood estimator in the following idealized set-up. We will consider, as in
Propositions 1 and 2, that B̂ estimates B∗ without error, and that5 there is a

5This assumption will be relaxed later in this subsection.
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column B∗
•,i in B∗ such that all the elements of B∗

•,i are different from zero.
Without loss of generality, we suppose that i = 1 and, consequently, for every
j ∈ [p], we haveB∗

j1 �= 0 which is equivalent to ω∗
j1 �= 0. Therefore, the symmetry

constraint B∗D−1
φ∗ = Ω∗ = Ω∗� = D−1

φ∗B∗� implies that Dφ∗B∗ = B∗�Dφ∗

and, in particular, that

B∗
1jφ

∗
1 = B∗

j1φ
∗
j , ∀j ∈ [p].

This relation entails that in the case of known matrix B∗ and unknown vector
φ∗, only the first entry of φ∗ needs to be estimated, all the remaining entries
can be computed using the first one by the formula φ̂j = (B∗

1j/B
∗
j1)φ̂1.

Proposition 3. Under the assumption that the rows of X are i.i.d. Gaussian
vectors with precision matrix Ω∗ = B∗D−1

φ∗ , the maximum likelihood estimator

of φ∗ is defined by

φ̂ SML
j =

1

p
(B∗

1j/B
∗
j1)trace

(
SnB

∗DB∗
•,1

D−1
B∗

1,•

)
. (11)

The quadratic risk of this estimator is given by

E[(φ̂ SML
j − φ∗

j )
2] =

2

np
φ∗
j
2. (12)

Furthermore, for every t > 0, the following bound on the tails of the maximal
error holds true:

P

(
max
j∈[p]

|φ̂ SML
j − φ∗

j |
φ∗
j

> 2
( t+ log p

np

)1/2

+
2(t+ log p)

np

)
≤ 2e−t.

Proof. To ease notation, we denote byD∗ the diagonal matrix whose jth element
is B∗

j,1/B
∗
1,j . Then, applying (8) for a given B∗, the profiled Gaussian log-

likelihood can be written as

max
μ∈Rp

L(X|μ,B∗,φ) =
n

2
log |B∗| − n

2

p∑
j=1

{
log(φj) + (SnB

∗)jjφ
−1
j

}
.

The goal is to maximize the right-hand side over all the vectors φ ∈ R
p such

that B∗D−1
φ is a valid precision matrix.

Let us first check that under the conditions of the proposition, for B∗D−1
φ

to be a valid precision matrix it is necessary and sufficient that φ1 > 0 and
φj = (B∗

1j/B
∗
j1)φ1 for every j ∈ [p]. The necessary part follows from that fact

that a precision matrix is symmetric and positive-semidefinite, which entails
that (B∗D−1

φ )1j = (B∗D−1
φ )j1 and (B∗D−1

φ )jj = φ−1
j > 0. Therefore, φj =

(B∗
1j/B

∗
j1)φ1 and φ1 > 0. To check the sufficient part, we remark that if φ

satisfies φj = (B∗
1j/B

∗
j1)φ1 with φ1 > 0, then B∗D−1

φ = (φ∗
1/φ1)B

∗D−1
φ∗ =

(φ∗
1/φ1)Ω

∗. This implies that B∗D−1
φ is symmetric and positive-semidefinite,

hence a valid precision matrix.
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The maximum likelihood estimator φ̂ SML is thus given by

φ̂ SML ∈ arg min
φ∈R

p
+

φj=(B∗
1j/B

∗
j1)φ1

p∑
j=1

{
log(φj) + (SnB

∗)jjφ
−1
j

}
,

which leads to φ̂ SML
1 ∈ argminφ1>0

{
p log(φ1) + φ−1

1

∑
j(SnB

∗)jjB
∗
j1/B

∗
1j

}
.

The cost function of the last minimization problem is convex, since we have
(SnB

∗)jjB
∗
j1/B

∗
1j = (SnB

∗)jjφ
∗
1/φ

∗
j = φ∗

1(SnΩ
∗)jj . This implies that∑

j

(SnB
∗)jjB

∗
j1/B

∗
1j = φ∗

1trace(SnΩ
∗) = φ∗

1trace(Ω
∗1/2SnΩ

∗1/2) ≥ 0.

The aforementioned cost function is continuously differentiable and convex, its
minimum is attained at the point where the derivative vanishes, which pro-
vides φ̂ SML

1 = 1
p

∑
j(SnB

∗)jjB
∗
j1/B

∗
1j . Combining with the relation φ̂ SML

j =

(B∗
1j/B

∗
j1)φ̂

SML
1 , this leads to (11).

To check (12), we start by noting that

φ̂ SML
j =

1

p
φ∗
j trace(SnΩ

∗) =
1

np
φ∗
j trace(X

�XΣ∗−1).

Using the well-known commutativity property of the trace operator and setting
Y = Σ∗−1/2X�, we get trace(X�XΣ∗−1) = trace(Y�Y). Since X has iid rows
drawn from a Np(0,Σ

∗) distribution, Y has iid columns drawn from Np(0, Ip)
distribution. Hence, the random variable trace(Y�Y) =

∑
j∈[p],k∈[n] Y

2
jk is dis-

tributed according to χ2
np distribution. This readily implies that φ̂ SML

j is an
unbiased estimator of φ∗

j and, therefore, its quadratic risk coincides with its
variance and is given by (12).

The proof of the last claim of the proposition is very similar to that of the
second claim of Proposition 1.

Assuming that there exists i ∈ [p] such that for any j ∈ [p], ω∗
ij �= 0, put

differently that the i-th node of the graph G ∗ is connected by an edge to any
other node is quite restrictive. Among other implications, it entails that the
graph G ∗ is connected which might be a strong assumption. It is therefore
useful to adapt what precedes to the case where the graph G ∗ has more than one
connected component. The rest of this subsection is devoted to the description
of this adaptation.

We note C the set of the connected components of the graph G ∗. Each
connected component c ∈ C is a subset of vertices of G ∗ whose cardinality
is denoted by pc. Clearly, the sum of pc over all c ∈ C equals p. For two vertices
i and j, we will write i ∼G ∗ j for indicating that they belong to the same
connected component. Thus, each connected component is a class of equivalence
with respect to the relation ∼G ∗. Let i ∼G ∗ j be two vertices from c ∈ C and let
Cji be a path connecting these two vertices,i.e., Cji is a sequence of q distinct
vertices {v1, . . . , vq} such that v1 = j, vq = i, q ≤ pc and each pair (vh, vh+1) is
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connected by an edge in G ∗. Recall that the symmetry of the precision matrix
Ω∗ = B∗D−1

φ∗ implies that B∗
vh,vh+1

φ∗
vh

= B∗
vh+1,vh

φ∗
vh+1

for every h ∈ [q − 1].
This readily yields

φ∗
j = φ∗

i

∏
1≤h<q

(
B∗

vh+1,vh
/B∗

vh,vh+1

)
.

To ease notation, we introduce the p×p diagonal matrix Δ∗
j the diagonal entries

of which are defined by

(Δ∗
j )ii = 1(i ∼G ∗ j)

∏
1≤h<q

(
B∗

vh+1,vh
/B∗

vh,vh+1

)
, (13)

where {v1, . . . , vq} = Cji is any path connecting j to i in G ∗. With this notation,
φ∗
j = (Δ∗

j )iiφ
∗
i . One can reproduce the arguments of the proof of Proposition 3

to check that the maximum likelihood estimator of φ∗, if B∗ is known (and
therefore so is Δ∗

j ), is defined by

φ̂ SML
j =

1

pc
trace

(
Δ∗

jSnB
∗), (14)

for j belonging to the connected component c.
Comparing the results of Propositions 1, 2 and 3, we observe that the RV-

estimator outperforms the RML estimator, but—at least in the case where there
is a column in B∗ which has only nonzero entries—they are both dominated by
the maximum likelihood estimator that takes advantage of the symmetry con-
straints. Furthermore, using the same type of arguments as those of Proposi-
tion 3, one can check that if the vertex j of the graph G ∗ belongs to a connected
component of cardinal pc then the risk of the MLE in the ideal case of known B∗

is equal to 2
npc

φ∗
j
2. This shows that in the ideal case the MLE systematically

outperforms the widely used residual variance estimator, and the gain in the
risk may be huge for vertices belonging to large connected components. On the
other extreme, all the three estimators discussed in the previous section coincide
when the matrix B∗ is diagonal.

In order to apply equation (14) for estimating φ∗ when an estimator B̂ of B∗

is available, we need to construct an estimator Ĝ of the graph G ∗. We propose
here an original approach for deriving Ĝ from B̂. It is based on the observation
thatB∗

ijB
∗
ji = ω∗

ij
2/(ω∗

iiω
∗
jj)

2, the square of the partial correlation between the i-
th and j-th variables. As mentioned earlier, this quantity is always between 0 and
1 and provides a convenient rule of selection for the edges to keep in the graph.
More precisely, we connect i to j if the estimated squared partial correlation
B̂ijB̂ji is larger than a prescribed threshold t ∈ (0, 1). In our implementation,
we chose (somewhat arbitrarily) the threshold t = 0.01 ∧ n−1/2.

Note that when B∗ is replaced by an estimator, the right-hand side of (14)
is not necessarily invariant with respect to the choice of the path connecting
i to j. Therefore, even when B̂ and Ĝ are fixed, if Ĝ contains loops there are
different ways of estimating φ∗ based on (14) depending on how the paths are
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chosen. We have tried two possible approaches: the minimum spanning tree and
the shortest path tree based on the following weight function6 defined on the
edges:

Wij =

{
exp

(
− B̂ijB̂ji

)
1(B̂ijB̂ji > t), for i �= j,

0, otherwise.

Combining these ingredients, we get the algorithm summarized in Algorithm 1.

Algorithm 1 Estimator φ̂ SML based on shortest path trees or minimum span-
ning trees

Input: matrices X and B̂, threshold t.
Output: vector φ̂ SML.
1: compute the matrix of weights W.
2: initialize k to 1.
repeat
3: choose the node with the largest degree as root.
4: compute the shortest path tree (or the minimum spanning tree) Tk from
the chosen root.
5: estimate φ̂ SML’s elements related to Tk using Eq. (14)
6: remove all the nodes of the tree Tk from the initial graph.
7: increment k.

until graph is empty

The rationale behind the foregoing definition of the weights and the use of the
minimum spanning tree or shortest path tree algorithm is to favor the paths that
are short and contain edges corresponding to large (in absolute value) partial
correlations. The aim is to reduce the risk of propagating the estimation error
of B̂. We have implemented both versions of the algorithm and have observed
that the version using the minimum spanning tree leads to better results. More
details on the implementation and computational complexity are given in the
next section.

3.4. Penalized maximum likelihood estimation

We have seen that enforcing symmetry constraints is beneficial when the matrix
B̂ has a small error, but raises intricate issues related to the graph estimation
and, more importantly, path selection in the graph. A workaround to this issue
is to replace the hard constraints by a penalty term that measures the degree of
violation of the constraints. This provides an intermediate solution between the
SML and the RML. More precisely, we propose a penalized maximum likelihood

6A weight equal to zero corresponds to the absence of edge.
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Table 1

Performance of the estimators of diagonal elements of the precision matrix in Model 1. The
number of replications in each case is R = 50. More details on the experimental set-up are

presented in Section 4.1.

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.883 0.399 0.224 1.425 0.649 0.374 1.849 0.853 0.495
(.077) (.036) (.016) (.075) (.030) (.022) (.085) (.029) (.019)

RML 1.356 0.786 0.532 2.114 1.234 0.841 2.705 1.590 1.086
(.079) (.040) (.017) (.082) (.032) (.022) (.090) (.029) (.019)

SML 1.476 0.805 0.548 2.388 1.250 0.852 3.104 1.608 1.096
(.098) (.040) (.018) (.164) (.032) (.021) (.188) (.028) (.020)

PML 1.371 0.792 0.539 2.134 1.236 0.846 2.728 1.593 1.089
(.079) (.041) (.017) (.078) (.032) (.021) (.091) (.030) (.019)

B∗ estimated by square-root Lasso followed by OLS

RV 0.726 0.340 0.241 1.088 0.616 0.354 1.365 0.854 0.443
(.079) (.045) (.016) (.076) (.051) (.020) (.080) (.046) (.018)

RML 0.726 0.340 0.241 1.088 0.616 0.354 1.365 0.854 0.443
(.079) (.045) (.016) (.076) (.051) (.020) (.080) (.046) (.018)

SML 0.807 0.440 0.280 1.193 0.793 0.381 1.557 1.116 0.468
(.082) (.058) (.018) (.088) (.066) (.018) (.170) (.089) (.018)

PML 0.737 0.419 0.302 1.095 0.722 0.405 1.377 0.984 0.494
(.074) (.051) (.018) (.071) (.052) (.019) (.081) (.044) (.019)

B∗ is estimated without error

RV 0.263 0.132 0.081 0.370 0.179 0.115 0.455 0.222 0.143
(.034) (.017) (.012) (.038) (.017) (.008) (.038) (.019) (.012)

RML 0.322 0.165 0.104 0.463 0.227 0.144 0.562 0.280 0.178
(.042) (.018) (.013) (.038) (.022) (.011) (.040) (.020) (.015)

SML 0.043 0.024 0.010 0.042 0.018 0.011 0.042 0.015 0.010
(.030) (.018) (.010) (.030) (.014) (.009) (.037) (.013) (.007)

PML 0.079 0.043 0.023 0.107 0.049 0.030 0.128 0.059 0.039
(.025) (.015) (.007) (.028) (.012) (.007) (.027) (.011) (.007)

(PML) estimator of φ∗ defined by

φ̂PML ∈ argmin
φ∈(0,1]p

{ p∑
j=1

{log(φj)+(SnB̂)j,jφ
−1
j }+κ

∑
i<j

B̂jiB̂ij>t

(B̂jiφ
−1
i − B̂ijφ

−1
j )2

B̂2
ij + B̂2

ji

}
,

(15)
where κ > 0 is a tuning parameter responsible for the trade-off between the
likelihood and the constraint violation. The choice κ = ∞ corresponds to en-
forcing the symmetry constraints: its main shortcoming is that the feasible set
might very well be empty. On the other extreme, when κ = 0, PML coincides
with the RML. The PML estimator also coincides with the previous ones if B̂
is known to be diagonal.
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Note that the parameter t appearing in the penalty term of the PML plays
the same role as the one used in the SML. The definition of the feasible set
in the above optimization problem is justified by the fact that we assume all
the individual variances of the features to be equal to one. In other terms, the
assumption V(X1,j) = 1 in (1) implies that φ∗

j ≤ 1. Making the change of
variable v = (1/φj)j∈[p], the optimization problem of Eq. (15) becomes convex
with the feasible set v ∈ [1 +∞)p and the objective function:

f(v) =

p∑
j=1

{
− log(vj) + (SnB̂)j,jvj

}
+ κ

∑
i<j

B̂jiB̂ij>t

(B̂jivi − B̂ijvj)
2

B̂2
ij + B̂2

ji

. (16)

Furthermore, if we restrict the feasible set to v ∈ V = [1, n1/2]p, the problem
becomes strongly convex. In addition, on this restricted feasible set the gradient
of the objective function is Lipschitz-continuous.

It is possible to use the standard steepest gradient descent algorithm with a
fixed step-size for efficiently approximating the solution φ̂PML. Indeed, in the
optimization problem (16), if ∇f is Lipschitz-continuous with constant L < ∞
and strongly convex with constant l > 0, the gradient descent algorithm with a
constant step-size t = 2/(l + L) converges at a linear rate (see Nesterov (2004)
for a detailed proof). Note that the convergence rate depends on L/l which is
an upper bound on the condition number of the Hessian matrix ∇2f(v); this
ratio should not be too high for the algorithm to converge fast. Unfortunately,
the values of l and L that we manage to obtain in our problem are far too
loose. That is why we resort to a steepest descent algorithm with adaptive
step-size and scaled descent direction −∇f(vh)/‖∇f(vh)‖2. More details on
the implementation are provided in Section 4.2.

4. Experimental evaluation

In this section, we describe the experimental set-up and report the results of
the numerical experiments performed on synthetic data-sets. We also provide
detailed explanation of the implementation used for the symmetry-enforced and
the penalized maximum-likelihood estimators. A companion R package called
DESP (for estimation of Diagonal Elements of Sparse Precision-matrices) is cre-
ated and uploaded on CRAN7.

4.1. Experiments on synthetic datasets

We conducted a comprehensive experimental evaluation of the accuracy of dif-
ferent estimates of diagonal elements of the precision matrix. In order to cover
as many situations as possible, we used in experiments our six different forms of
precision matrices along with various values for n and p. In each configuration,
we considered several methods of estimating the matrix B∗.

7http://cran.r-project.org/web/packages/DESP/index.html

http://cran.r-project.org/web/packages/DESP/index.html
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Table 2

Performance of the estimators of diagonal elements of the precision matrix in Model 2. The
number of replications in each case is R = 50. More details on the experimental set-up are

presented in Section 4.1.

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.400 0.125 0.070 0.632 0.174 0.094 0.821 0.215 0.113
(.059) (.020) (.009) (.047) (.023) (.011) (.051) (.020) (.012)

RML 1.048 0.508 0.320 1.644 0.780 0.491 2.120 0.997 0.626
(.061) (.020) (.015) (.048) (.023) (.014) (.053) (.023) (.014)

SML 1.334 0.539 0.340 2.246 0.824 0.520 3.243 1.047 0.653
(.221) (.028) (.018) (.277) (.039) (.023) (.516) (.034) (.020)

PML 1.130 0.530 0.333 1.790 0.813 0.508 2.311 1.036 0.645
(.068) (.020) (.016) (.049) (.026) (.016) (.054) (.024) (.015)

B∗ estimated by square-root Lasso followed by OLS

RV 0.247 0.101 0.065 0.322 0.129 0.081 0.381 0.150 0.095
(.053) (.015) (.009) (.057) (.019) (.007) (.061) (.017) (.009)

RML 0.247 0.101 0.065 0.322 0.129 0.081 0.381 0.150 0.095
(.053) (.015) (.009) (.057) (.019) (.007) (.061) (.017) (.009)

SML 0.329 0.096 0.065 0.622 0.129 0.076 0.882 0.147 0.090
(.107) (.016) (.010) (.299) (.021) (.010) (.501) (.020) (.011)

PML 0.247 0.098 0.064 0.337 0.125 0.077 0.441 0.142 0.089
(.068) (.017) (.011) (.075) (.021) (.009) (.101) (.017) (.011)

B∗ is estimated without error

RV 0.204 0.101 0.065 0.258 0.129 0.081 0.300 0.149 0.095
(.032) (.015) (.008) (.033) (.019) (.007) (.030) (.015) (.009)

RML 0.280 0.136 0.086 0.354 0.177 0.113 0.429 0.214 0.135
RML (.038) (.017) (.011) (.032) (.019) (.010) (.038) (.021) (.012)

SML 0.033 0.012 0.008 0.024 0.012 0.008 0.027 0.011 0.007
SML (.022) (.008) (.007) (.017) (.009) (.006) (.019) (.008) (.006)

PML 0.065 0.027 ( 0.019 0.065 0.031 0.021 0.073 0.035 0.023
PML (.021) (.011) (.006) (.020) (.009) (.006) (.022) (.010) (.006)

Let us first describe in a precise manner the precision matrices used in our ex-
periments. It is worthwhile to underline here that all the precision matrices are
normalized in such a way that all the diagonal entries of the corresponding co-
variance matrixΣ∗ = (Ω∗)−1 are equal to one. To this end, we first define a p×p

positive semidefinite matrixA and then setΩ∗ = (diag(A−1))
1
2A(diag(A−1))

1
2 .

The matrices A used in the six models for which the experiments are carried
out are defined as follows.

Model 1: A is a Toeplitz matrix with the entries Aij = 0.6|i−j| for any i, j ∈
[p].
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Model 2: We start by defining a p× p pentadiagonal matrix with the entries

Āij =

⎧⎪⎪⎨⎪⎪⎩
1 , for |i− j| = 0,

−1/3 , for |i− j| = 1,
−1/10 , for |i− j| = 2,

0 , otherwise.

Then, we denote byA the matrix with the entriesAij = (Ā−1)ij1(|i−j| ≤
2). One can check that the matrix A defined in such a way is positive
semidefinite.

Model 3: We set Aij = 0 for all the off-diagonal entries that are neither on
the first row nor on the first column of A. The diagonal entries of A are

A11 = p, Aii = 2, for any i ∈ {2, . . . , p},

whereas the off-diagonal entries located either on the first row or on the
first column are A1i = Ai1 =

√
2 for i ∈ {2, . . . , p}.

Model 4: We introduce the integer k = �√p� and define a sparse k× k matrix
Ā so that its only non-zero elements are Ā11 = k and, for any i ∈ [2; k],
Āii = 2k and Ā1i = Āi1 =

√
2. Then, we set

A =

(
Ā 0
0 Ip−k

)
.

Model 5: We introduce k = �√p� and define a sparse k × k matrix Ā so that
its only non-zero elements are Ā11 = 50 and, for any i ∈ [2; k], Āii = 5
and Ā1i = Āi1 = 5/2. Then, similarly to previous model, we set

A =

(
Ā 0
0 Ip−k

)
.

Model 6: We set k = 6, p′ = k�p/k� and define the k×k matrix Ā as in model
5 above. Then, we build the p′ × p′ block-diagonal matrix A by

A =

(
Ā 0

. . .
0 Ā

)
︸ ︷︷ ︸
�p/k�−times

.

Note that, in general, the resulting precision matrix in this model is not
of size p × p but of size p′ × p′ with p′ = 6�p/6�. However, since in the
experiments reported in this section p is always a multiple of 6, we have
p = p′.

In this experimental evaluation, we compare the performance of the following
four estimators—introduced in previous sections—of the diagonal elements of
the precision matrix:

• RV corresponds to the residual variance estimator defined in Section 3.1.
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• RML corresponds to the relaxed maximum likelihood estimator described
by equation (10).

• SML corresponds to the symmetry-enforced maximum likelihood estima-
tor described in Algorithm 1.

• PML corresponds to the penalized maximum likelihood estimator de-
scribed by equation (15).

Note that all these algorithms need an estimator of the matrix B∗ to produce
an estimator of the diagonal entries of the precision matrix. We conducted ex-
periments in three different scenarios. The first scenario is when the matrix B∗

is estimated column-by-column by the square-root Lasso, using the penalization
parameter λ =

√
2 log p. This value for λ is commonly called the universal choice

and has proved to lead to optimal theoretical results and fairly good empirical
results (Dalalyan and Chen, 2012; Sun and Zhang, 2012; Dalalyan et al., 2013).
The second scenario is when the matrix B∗ is estimated column-by-column by
the ordinary least squares estimator applied to the covariates that correspond
to nonzero entries of the square-root Lasso estimator8 with the aforementioned
value of λ. Finally, the third scenario is an unrealistic one; it corresponds to the
case of a known matrix B∗. This scenario is included in the experimental evalua-
tion in order to check the consistency between the theoretical and the empirical
results as well as in order to better understand how the error in estimating B∗

impacts the quality of estimation of the diagonal entries of the precision matrix.
Thus, each configuration of our empirical study corresponds to choosing

• a model out of 6 models described above,
• a dimension p ∈ {30, 60, 90},
• a sample size n ∈ {200, 800, 2000},
• a method of estimating B∗.

In each configuration, we computed the estimators RV, RML, SML and PML for
50 independent datasets. Using these R = 50 replications, we estimate the ex-
pected risk of estimating φ∗, E(‖φ∗−φ̂‖2), by the average 1

R

∑R
r=1 ‖φ

∗−φ̂(r)‖2.
In Tables 1–6, we report these averages along with the standard deviations of
the errors measured by �2-vector norm. All the experiments were conducted in
R, using the Mosek solver (see Andersen and Andersen (2000)) for computing
the square-root Lasso estimator by second-order cone programming.

In the ideal case when B∗ is estimated without error (by itself), the empiri-
cal results reflect perfectly the theoretical results of the previous sections. The
comparison of the performance of the estimators indicates that the maximum
likelihood estimators SML and PML are preferable to the residual variance es-
timator. The maximum likelihood estimator considering symmetry constraints
outperforms all the other estimators. However, in practice when B̂ is obtained
by the square-root Lasso without any refinement, φ̂RV outperforms all the other
estimators in the vast majority of configurations. Some exceptions can be ob-
served in Models 5 and 6 (see the top part of Tables 5 and 6, where RV is slightly

8A discussion on the strengths and weaknesses of this estimator can be found in (Belloni
and Chernozhukov, 2013; Lederer, 2014).
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Table 3

Performance of the estimators of diagonal elements of the precision matrix in Model 3. The
number of replications in each case is R = 50. More details on the experimental set-up are

presented in Section 4.1.

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.273 0.138 0.084 0.402 0.194 0.123 0.524 0.243 0.150
(.042) (.016) (.010) (.036) (.014) (.012) (.037) (.017) (.011)

RML 0.509 0.272 0.173 0.722 0.395 0.261 0.880 0.496 0.321
(.062) (.022) (.018) (.061) (.026) (.013) (.069) (.028) (.014)

SML 1.080 0.678 0.375 1.276 0.802 0.641 1.235 0.651 0.454
(.132) (.095) (.045) (.146) (.075) (.050) (.137) (.052) (.029)

PML 0.509 0.272 0.173 0.722 0.395 0.261 0.880 0.496 0.322
(.062) (.021) (.017) (.061) (.026) (.013) (.069) (.028) (.014)

B∗ estimated by square-root Lasso followed by OLS

RV 0.792 0.144 0.084 2.251 1.857 0.943 3.261 3.815 3.689
(.192) (.051) (.010) (.203) (.161) (.221) (.184) (.157) (.120)

RML 0.792 0.144 0.084 2.251 1.857 0.943 3.261 3.815 3.689
(.192) (.051) (.010) (.203) (.161) (.221) (.184) (.157) (.120)

SML 1.211 0.610 0.336 2.515 1.956 1.095 3.415 3.832 3.700
(.131) (.106) (.057) (.189) (.143) (.194) (.175) (.152) (.118)

PML 0.879 0.150 0.084 2.366 1.857 0.943 3.342 3.816 3.689
(.175) (.051) (.011) (.207) (.160) (.221) (.176) (.157) (.120)

B∗ is estimated without error

RV 0.267 0.138 0.084 0.380 0.192 0.122 0.476 0.237 0.148
(.041) (.016) (.010) (.036) (.014) (.011) (.033) (.018) (.011)

RML 0.330 0.163 0.104 0.469 0.229 0.151 0.584 0.289 0.178
(.046) (.016) (.013) (.044) (.023) (.013) (.048) (.020) (.014)

SML 0.042 0.019 0.012 0.044 0.021 0.011 0.048 0.021 0.011
(.035) (.013) (.009) (.033) (.015) (.007) (.041) (.017) (.010)

PML 0.330 0.163 0.104 0.470 0.229 0.151 0.584 0.289 0.178
(.046) (.016) (.013) (.044) (.023) (.012) (.048) (.020) (.014)

worse than the other procedures for small sample sizes (n = 200). It should be,
however, acknowledged that the difference of the quality between the estimators
in these cases is not large enough to advocate for using RML, SML or PML.
Note also that the RV estimator satisfies the following simple inequality:

(φ̂RV
j − φ∗

j )
2 =

( 1

n
‖XB̂•,j‖22 − φ∗

j

)2

≤ 2

n2

(
‖XB̂•,j‖22 − ‖XB∗

•,j‖22
)2

+ 2
( 1

n
‖XB∗

•,j‖22 − φ∗
j

)2

.

The second term of the right-hand side is the error evaluated theoretically in
the previous sections, while the first term can be further bounded from above
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Table 4

Performance of the estimators of diagonal elements of the precision matrix in Model 4. The
number of replications in each case is R = 50. More details on the experimental set-up are

presented in Section 4.1.

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.372 0.184 0.113 0.526 0.269 0.161 0.655 0.327 0.206
(.066) (.036) (.023) (.066) (.035) (.024) (.076) (.046) (.025)

RML 0.419 0.212 0.134 0.583 0.301 0.183 0.722 0.361 0.228
(.067) (.033) (.020) (.065) (.033) (.023) (.074) (.045) (.024)

SML 0.468 0.228 0.144 0.664 0.334 0.201 0.843 0.405 0.252
(.076) (.033) (.020) (.079) (.032) (.024) (.095) (.042) (.024)

PML 0.450 0.224 0.142 0.622 0.326 0.198 0.763 0.394 0.247
(.070) (.032) (.020) (.069) (.032) (.024) (.073) (.042) (.023)

B∗ estimated by square-root Lasso followed by OLS

RV 0.368 0.182 0.113 0.516 0.267 0.160 0.641 0.324 0.205
(.065) (.036) (.023) (.064) (.035) (.024) (.075) (.046) (.025)

RML 0.368 0.182 0.113 0.516) 0.267 0.160 0.641 0.324 0.205
(.065) (.036) (.023) (.064) (.035) (.024) (.075) (.046) (.025)

SML 0.392 0.191 0.118 0.558 0.286 0.173 0.712 0.351 0.220
(.069) (.037) (.025) (.078) (.033) (.025) (.084) (.043) (.025)

PML 0.383 0.188 0.116 0.539 0.280 0.169 0.680 0.343 0.215
(.067) (.037) (.024) (.067) (.033) (.024) (.077) (.043) (.025)

B∗ is estimated without error

RV 0.366 0.182 0.113 0.515 0.267 0.160 0.640 0.324 0.204
(.066) (.036) (.023) (.065) (.035) (.024) (.074) (.046) (.025)

RML 0.374 0.187 0.116 0.524 0.271 0.163 0.649 0.330 0.208
(.065) (.035) (.023) (.066) (.035) (.024) (.073) (.046) (.025)

SML 0.352 0.173 0.108 0.500 0.259 0.156 0.624 0.316 0.199
SML (.065) (.039) (.024) (.066) (.036) (.025) (.074) (.046) (.025)

PML 0.353 0.174 0.109 0.500 0.259 0.156 0.625 0.317 0.200
(.065) (.039) (.024) (.066) (.036) (.025) (.074) (.046) (.025)

by 8
(
1
n{‖XB̂•,j‖22 ∨ ‖XB∗

•,j‖22}
)(

1
n‖X(B̂•,j − B∗

•,j)‖22
)
. This inequality partly

explains the behavior of the RV-estimator in the reported numerical results.
More importantly, it shows that the error of estimating the matrix B∗ might
have a strong impact on the quality of estimating the diagonal elements.

It is interesting to observe what happens when an additional step of estima-
tion of B∗ using the ordinary least squares on the sparsity pattern provided by
the square-root Lasso is performed. The impact of this step is not the same in
all the models under consideration. In particular, the quality of estimation is
mostly improved for all the four estimators in models 1 and 2. Furthermore,
thanks to this variable selection step, the maximum-likelihood-type estimators
perform nearly as well as the residual variance estimator RV. In model 3, the
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Table 5

Performance of the estimators of diagonal elements of the precision matrix in Model 5. The
number of replications in each case is R = 50. More details on the experimental set-up are

presented in Section 4.1.

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.384 0.202 0.125 0.543 0.279 0.185 0.701 0.342 0.222
(.077) (.029) (.023) (.060) (.039) (.024) (.064) (.040) (.021)

RML 0.380 0.206 0.128 0.539 0.287 0.190 0.697 0.352 0.230
(.076) (.027) (.023) (.060) (.040) (.025) (.064) (.041) (.021)

SML 0.380 0.205 0.131 0.539 0.290 0.194 0.697 0.353 0.233
(.076) (.029) (.024) (.060) (.042) (.024) (.064) (.041) (.024)

PML 0.380 0.206 0.128 0.539 0.287 0.190 0.697 0.352 0.230
(.076) (.027) (.023) (.060) (.040) (.025) (.064) (.041) (.021)

B∗ estimated by square-root Lasso followed by OLS

RV 0.379 0.209 0.130 0.534 0.295 0.194 0.693 0.367 0.235
(.076) (.029) (.025) (.061) (.040) (.027) (.064) (.044) (.025)

RML 0.379 0.209 0.130 0.534 0.295 0.194 0.693 0.367 0.235
(.076) (.029) (.025) (.061) (.040) (.027) (.064) (.044) (.025)

SML 0.379 0.209 0.134 0.534 0.297 0.199 0.693 0.368 0.241
(.076) (.031) (.026) (.061) (.041) (.027) (.064) (.043) (.027)

PML 0.379 0.209 0.130 0.534 0.295 0.194 0.693 0.367 0.236
(.076) (.029) (.025) (.061) (.040) (.027) (.063) (.043) (.025)

B∗ is estimated without error

RV 0.384 0.201 0.125 0.530 0.275 0.184 0.686 0.339 0.221
(.075) (.030) (.022) (.060) (.038) (.023) (.066) (.040) (.022)

RML 0.383 0.201 0.126 0.531 0.277 0.184 0.687 0.339 0.221
(.076) (.029) (.022) (.061) (.037) (.023) (.066) (.040) (.022)

SML 0.347 0.180 0.112 0.498 0.257 0.170 0.647 0.319 0.206
(.078) (.032) (.024) (.061) (.042) (.025) (.067) (.042) (.023)

PML 0.383 0.201 0.126 0.531 0.277 0.184 0.687 0.339 0.221
(.076) (.029) (.022) (.061) (.037) (.023) (.066) (.040) (.022)

variable selection step deteriorates the quality of estimation in most config-
urations, whereas in models 4–6 this step has almost no consequence on the
estimation accuracy.

The graphics of Figure 1 are drawn for Model 2 with p = 60. The left plot
corresponds to the estimation error—measured by �2-vector norm—as a function
of the sample size in the scenario B̂ = B∗, whereas the central plot corresponds
to the same error when B∗ is estimated by the OLS on the sparsity pattern
furnished by the square-root Lasso. The right plot is just a zoom on the center
plot. These plots illustrate the convergence to zero of the error of estimation
for the estimators considered in this paper. The speed of convergence in these
empirical results, as expected, is nearly n−1/2 for fixed dimension p.
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Table 6

Performance of the estimators of diagonal elements of the precision matrix in Model 6. The
number of replications in each case is R = 50. More details on the experimental set-up are

presented in Section 4.1.

p 30 60 90

n 200 800 2000 200 800 2000 200 800 2000

B∗ estimated by square-root Lasso

RV 0.383 0.207 0.140 0.534 0.310 0.205 0.651 0.374 0.255
(.059) (.031) (.018) (.054) (.031) (.017) (.057) (.034) (.018)

RML 0.378 0.223 0.157 0.531 0.335 0.236 0.648 0.408 0.299
(.058) (.030) (.020) (.052) (.033) (.020) (.055) (.036) (.019)

SML 0.378 0.229 0.169 0.531 0.339 0.249 0.649 0.410 0.312
(.058) (.030) (.022) (.052) (.036) (.021) (.055) (.036) (.019)

PML 0.378 0.223 0.157 0.531 0.335 0.236 0.648 0.408 0.299
(.058) (.030) (.020) (.052) (.033) (.020) (.055) (.036) (.019)

B∗ estimated by square-root Lasso followed by OLS

RV 0.383 0.245 0.170 0.534 0.373 0.262 0.649 0.453 0.341
(.058) (.030) (.019) (.053) (.030) (.024) (.053) (.033) (.025)

RML 0.383 0.245 0.170 0.534 0.373 0.262 0.649 0.453 0.341
(.058) (.030) (.019) (.053) (.030) (.024) (.053) (.033) (.025)

SML 0.383 0.251 0.186 0.534 0.375 0.281 0.649 0.454 0.357
(.058) (.027) (.022) (.053) (.030) (.023) (.053) (.033) (.026)

PML 0.385 0.245 0.170 0.534 0.373 0.262 0.650 0.453 0.341
(.057) (.029) (.019) (.053) (.030) (.024) (.053) (.033) (.025)

B∗ is estimated without error

RV 0.408 0.210 0.141 0.569 0.309 0.205 0.697 0.370 0.251
(.068) (.030) (.018) (.068) (.031) (.018) (.063) (.030) (.018)

RML 0.411 0.212 0.142 0.578 0.313 0.208 0.702 0.372 0.254
(.070) (.030) (.019) (.067) (.033) (.018) (.064) (.031) (.018)

SML 0.182 0.097 0.061 0.277 0.142 0.094 0.311 0.178 0.110
(.057) (.023) (.020) (.064) (.033) (.022) (.073) (.030) (.019)

PML 0.411 0.212 0.142 0.578 0.313 0.208 0.702 0.372 0.254
(.070) (.030) (.019) (.067) (.033) (.018) (.064) (.031) (.018)

4.2. Details on the implementation

Symmetry-enforced maximum likelihood As we explained earlier, the
product structure of the term Δ∗

j in (13) may cause the amplification of the

estimation error when passing from B̂ to φ̂. In order to reduce as much as
possible this phenomenon, we suggested to choose the path C by minimizing its
length. In addition, the fact that some entries of B∗ appear in the denominator
of Δ∗

j , make it unsuitable to include in C edges corresponding to small values

of B̂ij . The combination of these two arguments suggests to define edge weights

as decreasing functions of B̂ij and to look for paths that somehow minimize
the overall weight defined as the sum of the weights of the edges contained
in C .
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The two versions of the SML algorithm that have been implemented and
tested in this work make use of the minimum spanning tree (MST) and the
shortest path tree in the step of determining the way of computation the ele-
ments of φ̂ belonging to a connected component C of the graph Ĝ . A MST of C
is a tree that spans C and has the smallest total weight among all the spanning
trees of C . The shortest path tree having a given node r as a root is a spanning
tree T of C such that for any node j ∈ C the weight of the path from j to r in
T is the smallest among the weights of all possible paths from j to r in C .

We have used the Kruskal (Kruskal, 1956) algorithm for finding the MST
and the Jarnik-Prim-Dijkstra algorithm (Jarńık, 1930; Prim, 1957; Dijkstra,
1959) for the shortest path tree. The worst-case computational complexities of
the construction of these trees are the following (Cormen et al., 2009). When
the graph G has p nodes and q edges, the Kruskal algorithm runs in O(q log p)
time. Its output is a set of MSTs per connected component. The version of
the SML based on the shortest path tree requires O(p + q) operations to find
the connected components. In a connected component having pc nodes and qc
edges, the node of largest degree can be obtained in O(qc) operations, while the
computational complexity of finding the shortest paths from a node to all the
others isO(qc log(pc)). Therefore, determining a shortest path tree per connected
component has a complexity of O(p + q log(p)), or O(sp log(p)) where s is the

maximal degree of a node of Ĝ . Thus, the computational complexities of the
two versions of the SML estimator are comparable and, at most, of the order
O(sp log(p)).

In our experiments, we have also tried9 a third version consisting in comput-
ing the shortest path trees from every node of a connected component and then
choosing the one with the minimal overall weight, rather than first choosing the
root as the node having largest degree. Several other variants have been tested
as well, but the simplest version based on choosing the MST has lead to the
best empirical results.

Penalized maximum likelihood As mentioned earlier, the PML estima-
tor is computed by solving the optimization problem (16). We implement a
steepest descent algorithm with adaptive step-size and scaled descent direction
−∇f(vh)/‖∇f(vh)‖2. At each iteration, one common adaptation for every coor-
dinate of the descent direction is performed. If the objective function increases,
the current iteration is done again with a halved step-size. On the opposite, if
the objective function decreases, the step-size is increased by a constant factor
for the next iteration.

Mathematically speaking, the update operations for our gradient descent al-
gorithm are

v0 = 1, vh+1 = vh + thuh, h = 0, 1, 2, . . . , (17)

where the descent direction is uh = −∇f(vh)/‖∇f(vh)‖2 and th is the step-
size. Thanks to the convexity, the convergence of this algorithm is guaranteed

9We used the package RBGL of R (Long et al., 2016) for various algorithms related to
weighted graphs.



Estimation of the diagonal elements of a sparse matrix 1575

Fig 2. The estimation error of the PML as a function of κ. The plots are obtained for the
synthetic experiment of Model 2 with various values of p and for n = 200 (left), n = 800
(middle) and n = 2000. Please note that the limits of the y-axis are not the same in the three
plots and that the x-axis is presented in logarithmic scale.

Fig 3. The estimation error of the PML as a function of κ. The plots are obtained for the
synthetic experiment of Model 4 with various values of p and for n = 200 (left), n = 800
(middle) and n = 2000. Please note that the limits of the y-axis are not the same in the three
plots and that the x-axis is presented in logarithmic scale.

for any starting point v0. The step-size is updated at each iteration according
to the following rule:

th+1 =

{
1.2× th, for f(vh+1) < f(vh),
0.5× th, otherwise.

The multiplicative factors we use for adaptive step-size are those propose by
Riedmiller and Braun (1992) for the Rprop algorithm. We stop iterating when
the gradient magnitude measured in the �2-norm is below a certain level (10−5

in our experiments) or when the limit of 5000 iterations is attained.

For the choice of the tuning parameter κ, we did a cross-validation by choosing
a geometric grid over the values of κ ranging from 1/p to

√
p. The results, for

Models 2 and 4, are plotted in Fig. 2 and 3, respectively. We can clearly see that
there is a large interval of values of κ for which the error is nearly minimal. Based
on this observation, we chose κ = 1

3

√
log p for all the numerical experiments

reported in Tables 1–6.
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5. Conclusion

This paper introduces three estimators of the diagonal entries of a sparse preci-
sion matrix when n iid copies of a Gaussian vector with this precision matrix are
observed. The properties of these estimators are discussed and compared with
those of the commonly used residual variance estimator. At a theoretical level,
an interesting finding is that the naive maximum likelihood estimator (MLE)
that does not take into account the symmetry constraints has a significantly
larger risk than the residual variance estimator and, hence, is not optimal even
asymptotically. The symmetry-enforced MLE and the penalized MLE circum-
vent this drawback and are shown in all numerical experiments to outperform
the residual variance estimator when the matrix B∗ is known. Similar but un-
reported results are obtained when the estimators of the diagonal entries use a
noisy matrix B̂ = B∗ + Ξ, provided the noise matrix Ξ has iid Gaussian en-
tries with zero mean and small variance. However, in a more realistic situation
when B∗ is estimated by the square-root Lasso or by the ordinary least squares
conducted over the submodel selected by the square-root Lasso, the accuracies
of the four estimators of the diagonal entries become comparable with a slight
advantage for the residual variance estimator.

We would like also to mention the introduction of a novel and simple method
of estimating partial correlations and of symmetrizing the precision matrix esti-
mator derived from the nonsymmetric matrix B̂. It is based on the observation
that the square of the partial correlation between i-th and j-th variables is equal
to B∗

ijB
∗
ji.

In the future, it would be interesting to look for an estimator of B∗ which is
more accurate than the square-root Lasso and could hopefully—in combination
with the symmetry-enforced MLE or the penalized MLE—lead to better preci-
sion matrix estimate than the one obtained by the association of the square-root
Lasso and the residual variance estimator. Another appealing avenue for future
research is the investigation of the case when the matrix X is observed with
an error. Recent papers (Rosenbaum and Tsybakov, 2013; Belloni et al., 2014b)
may provide valuable guidance for accomplishing this task.
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