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1. Introduction

This paper demonstrates that variants of without-replacement link-tracing net-
work sampling result in a non-uniform distribution of sampling probabilities
of network edges. This is of particular interest because common estimators for
the widely-used respondent-driven sampling (RDS, [9]) method rely on the as-
sumption of equal edge sampling probabilities. In this paper, we show that under
without-replacement link-tracing sampling, edge-sampling probabilities are non-
uniform, that edges incident to higher degree vertices tend to be sampled less
often, and that this issue can induce bias in the widely-used RDS estimator [18].
We also elaborate further properties of this phenomenon.

Respondent-driven sampling [9] is a variant of a link-tracing network sampling
procedure [8]. In link-tracing, a few units of the target population are sampled
as ‘seeds’, and links from current samples are iteratively followed to enlarge
the sample. Variants of link-tracing, often referred to as snowball sampling [7,
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8], are often used to sample hard-to-reach human populations, leveraging the
social connections of the target population to enlarge the sample beyond the
subgroup known to researchers. The resulting sample, however, is typically not
a probability sample and results in highly unequal sampling probabilities.

The RDS variant of link-tracing, introduced by Heckathorn [9, 10], is dis-
tinguished by the fact that sampling is conducted by the respondents, who are
given a small number of uniquely-identified coupons to distribute among their
un-sampled contacts in the target population. The coupon mechanism results in
reduced confidentiality concerns in sensitive populations, and the small number
of coupons controls branching so that the sample reaches many steps from the
original (convenience) sample of seeds for finite sample size, reducing sample
dependence on the seeds, making it more reasonable to treat the final sample
as a probability sample.

RDS is extensively used in public health research to study populations that
are at an elevated risk for adverse health events. In HIV surveillance, RDS has
been used extensively in populations of people who inject drugs, commercial
sex workers, and men who have sex with men [16, 15, 12], as it is not prac-
tical to sample from these populations through conventional means. RDS has
therefore been used to study HIV prevalence and other population characteris-
tics in hundreds of studies around the world, often with critical public health
implications.

We begin this paper in Section 2 by relating the assumption of uniform edge
sampling probability to inference from RDS data. Section 3 explores this result
analytically. For a special class of networks, we are able to make more defi-
nite statements of relative edge sampling probabilities for non-branching edge
sampling in Section 4. In Section 5, we investigate the equal edge sampling prob-
ability assumption for five specific networks with varying structures, assuming a
non-branching process. In Section 6 we return to branching structures approx-
imating RDS sampling, illustrate that our analytical results in non-branching
sampling apply to these structures, and demonstrate that this phenomenon can
lead to bias in estimation from RDS data. We conclude with a discussion in
Section 7. Throughout the paper we assume a simple undirected graph with no
parallel edges or self-loops.

2. RDS inference and uniform edge sampling assumption

Figure 1 illustrates a hypothetical RDS recruitment tree. This sample starts
with two seeds {1,8}, and each participant recruits another two participants.
Participants are sampled without replacement. In this way, RDS proceeds as a
branching link-tracing sample [9, 4].

Despite the branching without-replacement structure of true RDS samples,
most work in RDS [22, 18] approximates the RDS sampling procedure as a
with-replacement random walk sampling vertices along their incident network
edges.

This random walk is modeled as a Markov chain on the state space of vertices.
If the degree of vertex i, di is the number of edges incident to i, the transition
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Fig 1. Illustration of Hypothetical RDS Recruitment Tree

matrix is then T = {Tij}, where Tij = 1
di

if i and j are connected, and 0
otherwise. The stationary distribution of this Markov chain is proportional to
vertex degree: πi = αdi, for constant α. It is therefore understood that the
marginal vertex-wise sampling probabilities (marginalizing over all choice of
seeds and all sample paths) in RDS are unequal, and most common estimators
either directly use [22, 18] or adapt [5, 3] probabilities proportional to degrees.

In this setting, we can also consider the stationary distribution edge sampling
probabilities. If Pk(i → j) is the probability of transitioning from vertex i to ver-
tex j at step k, this is given by P (kth sample is i) 1

di
, which, under stationarity,

takes the value αdi

di
= α, equal for all edges of the network.

Though the with-replacement sampling assumption of this approximation is
known to be false, this assumption is required by the estimators in [18] and
[22]. Gile [3], Gile and Handcock [4], Lu et al. [14] illustrate how large sample
fractions can create substantively impactful violations of this assumption in the
estimator in [22]. Gile and Handcock [4] also suggests the estimator in [18] is
subject to bias in the case of large sample fractions, but does not suggest why.
In this paper, we clarify that this bias is due to the unequal edge-sampling
probabilities induced by without-replacement sampling.

The estimator proposed by Salganik and Heckathorn [18] relies on the as-
sumption of equal edge sampling probabilities, arguing that for a low sample
fraction, the with-replacement approximation is adequate. Thompson [20] claims
that these sampling probabilities are not equal for without-replacement sam-
pling. In this paper, we show that this approximation is inadequate in many
cases, and accounts for the finite population bias of the estimator in Salganik
and Heckathorn [18].
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3. Analytical consideration of unequal edge-sampling probabilities

Properties of random walks have been studied extensively in the graph theory
literature (e.g. [6, 13]). Self-avoiding random walks on lattices are of particular
interest in Physics and Chemistry [1, 2], where the interest is in characterizing
the random walk by determining properties of the self avoiding random walk
(such as the distribution of end-vertex, mean-square length, etc) however we
are unaware of any research on the edge sampling probabilities of self-avoiding
random walks on non-lattice graphs. In this section we analytically explore prop-
erties of self-avoiding random walks. In particular, we will derive properties of
edge sampling probabilities for without replacement random walks on arbitrary
graphs. Proofs for the theorems and corollaries in this section are provided in
the appendix.

Consider an undirected network G = {V,E}, where V is the vertex set, and
E is the edge set. Each edge is a pair of vertices such that the vertices share a
relationship of interest, where the edge between vertex 1 and vertex 2 is denoted
(v1, v2). Let the neighborhood of i, denoted N(i), be the set of all vertices with
which vertex i shares an edge. Finally, for nodal degrees {di}, let d =

∑
i di.

Consider a random walk S = {S1, S2, . . .} on the vertices of undirected graph
G, where Si is the random variable for the index of the vertex visited at the ith

step. Let Pk(i) denote P (Sk = i). We begin by defining edge passage probabili-
ties.

Definition 1. The k-step directed passage probability of vertex pair (i, j)∈
E is the probability that the kth observed passage originates at vertex i and ter-
minates at vertex j along edge (i, j). This probability is denoted Pk(i → j).

Definition 2. The k-step undirected passage probability of undirected
edge (i, j) ∈ E is the probability that the kth observed passage traverses edge
(i, j) in either direction. This probability is denoted P ′

k(i → j), and P ′
k(i → j) =

Pk(i → j) + Pk(j → i).

We first show that in the first few steps of a without-replacement random
walk beginning at with-replacement stationarity (the first vertex is chosen with
probability proportional to degree), edge sampling probabilities look very similar
to those of with-replacement random walks. In particular, each edge is equally
likely to be sampled in the first or second edge passage.

Theorem 1. Consider a without replacement (self-avoiding) random walk on
an undirected network with minimum degree 2. Let S1 be chosen with probability

proportional to degree. That is, P1(s1) =
ds1

d . Then P1(s1 → s2) = P2(s2 →
s3) =

1
d for all (s1, s2) and (s2, s3) ∈ E.

Several other results follow from Theorem 1 (with proof in the appendiz).
Since we know the exact directed edge sampling probabilities for the first and
second edges, we can also derive the exact undirected edge sampling probabilities
for the first and second edges, again assuming that the first vertex is sampled
with probability proportional to degree.
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Corollary. P ′
1(s1 → s2) = P ′

2(s2 → s3) =
2
d for all (s1, s2) and (s2, s3) ∈ E.

In addition to analytically determining the edge sampling probabilities for
the first two edges, we can also analytically find the vertex sampling probability
for the second vertex in the random walk.

Corollary. P2(s2) =
ds2

d for all s2 ∈ V .

Again following from Theorem 1, we can show that when the first vertex is
chosen with probability proportional to degree then each vertex has probability
proportional to degree of being the third vertex in the non-repeating random
walk.

Corollary. P3(s3) =
ds3

d for all s3 ∈ V .

Thus far we have proved results for the first two steps of without-replacement
random walks that are identical to those for their with-replacement counter-
parts. We establish that these results do not hold for the third sampled edge in
the theorem below, proved in the appendix:

Theorem 2. There exists a graph G for which P3(s3 → s4) �= 1
d .

4. Unequal probabilities for isolate join complete graphs

In the previous section we showed that the third edge probability depends upon
the graph structure. Here we introduce a class of graphs for which it is possible
to evaluate P3(i → j) > 1

d , given that we know di and dj . Consider a graph G
where q > 3 vertices are maximally connected, meaning each of these vertices
shares an undirected edge with every other vertex in the graph. Further w > 1
vertices only share edges with the q maximally connected vertices. We will refer
to these vertices as minimally connected. In total there are q + w vertices,
where the maximally connected vertices all have degree q − 1 + w, and the
minimally connected vertices have degree q. We call this class of graphs Isolate
Join Complete graphs or IJC since they are formed by joining w isolates with a
q complete graph.

In this section we will concern ourselves with deriving the probabilities of
the third edge traversed on a without replacement random walk of an IJC
graph when the initial vertex is chosen in proportion to degree. Specifically,
we treat the three equivalence classes of edges in such a network: when the
third edge is between two maximally connected vertices, when the third edge
goes from a minimally connected vertex to a maximally connected vertex, and
when the third edge goes from a maximally connected vertex to a minimally
connected vertex. Note that there are no edges connecting two minimally con-
nected vertices. We are able to show that the third edge of a random walk
is more likely to transverse an edge incident to a vertex with a lower de-
gree.

While the topology of G would be unlikely to occur in practice, this example
allows us to derive the sampling probabilities of the third edge, conditional
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on the degree of the incident vertices, which would be impossible to do for any
realistic graph. We address this limitation in lack of generalizability by including
simulations on graphs that are more realistic in Sections 5 and 6.

4.1. Analytic results

First we consider the third edge between two maximally connected vertices, and
provide proofs for this and the other theorems in the appendix. In an IJC graph
we are interested in finding the P3(s3 → s4) where both s3 and s4 are maximally
connected vertices.

Theorem 3. P3(s3 → s4) <
1
d when s3, s4 are maximally connected vertices in

an IJC graph.

Next we consider the third edge from a maximally connected vertex to a
minimally connected vertex. Specifically, in an IJC graph we are interested in
finding the P3(s3 → s4) where vertex s3 is maximally connected with degree
w + q − 1 and vertex s4 is minimally connected with degree q.

Theorem 4. P3(s3 → s4) >
1
d when s3 is a maximally connected vertex and s4

is a minimally connected vertex in an IJC graph.

Finally, we consider the third edge from a minimally connected vertex to a
maximally connected vertex. In an IJC graph we are interested in finding the
P3(s3 → s4) where vertex s3 is minimally connected with degree q and vertex
s4 is maximally connected with degree q + w − 1.

Theorem 5. P3(s3 → s4) = 1
d when s3 is minimally connected and s4 is

maximally connected in an IJC graph.

Thus, we have shown that for this special class of networks which allow for
analytics, the third step of a without-replacement random walk is less likely to
sample edges incident to two higher degree vertices. In the subsequent sections,
we illustrate that this trend is consistent with later steps of the random walk,
and with more general network structures.

5. Comparison across network structures

We showed analytically that in an IJC graph, edges that are between two high
degree vertices are least likely to be sampled in without-replacement random
walks after the second step. To further demonstrate that this phenomenon is
not specific to those idealized networks, we performed simulations of without
replacement random walks on several different networks: an Erdos-Renyi net-
work with 100 vertices, an Erdos-Renyi network with 10,000 vertices, an IJC
network, Zachary’s Karate Club network [24], and the Colorado Springs network
[17].

In each set of simulations, we consider a without replacement non-branching
random walk, beginning with a vertex selected with probability proportional to
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degree, with each subsequent vertex chosen completely at random from among
the un-sampled incident vertices of the previous vertex. The random walk con-
tinues until there are no candidate subsequent samples available, or until the
desired maximum sample is obtained. The directed edges sampled (traversed)
are the edges joining each consecutive pair of vertices in the sample. In partic-
ular, we consider the degree of the vertex at each end of a sampled edge. We
refer to the degree of the first vertex in the sequence as the send degree and the
degree of the second as the receive degree. We simulate 10 million such without
replacement random walks on each example network, and record the sampling
rates of edges with various incident degrees. We describe each network in more
detail before presenting simulation results.

The 100 vertex Erdos-Renyi network was formed with probability that vertex
i and vertex j share an edge equal to 0.07, for all vertices. In the particular
network we used in the simulations below, this resulted in a network with a
total of 344 edges. The mean degree in the network is 6.88, the minimum degree
is 3, and the maximum degree is 14. This Erdos-Renyi network is visualized in
Figure 2(a).

The 10,000 vertex Erdos-Renyi network was formed with probability that
vertex i and vertex j share an edge equal to 0.0017, for all vertices. In the
particular network we used in the simulations below, this resulted in a network
with a total of 85,206 edges. The mean degree in the network is 17.04, the
minimum degree is 4, and the maximum degree is 36.

The IJC network was also formed on 100 vertices, with 40 vertices that are
maximally connected (q = 40), and 60 vertices that are minimally connected
(w = 60). This network is visualized in Figure 2(b).

Zachary’s Karate Club network [24] represents social relations between 34
members of a karate club. We treated a binary undirected version of this net-
work, treating a tie in either direction, of any weight as an edge. We also removed
one vertex that had degree one. This resulted in a network with 77 edges, mean
degree 4.67, minimum degree 2, and maximum degree 17. The karate club net-
work is visualized in Figure 2(c).

The Colorado Springs network [17] represents social relations between het-
erosexual adults who were identified at being at high risk for contracting HIV.
As with Zachary’s Karate Club network, we also treated a symmetrized ver-
sion of this network, treating a nomination in either direction as an edge. We
considered the largest connected component, and successively removed vertices
of degree of one until all vertices have at least degree two. Once modified, this
network has a total of 2813 undirected edges and 822 vertices. The mean degree
is 6.84, the minimum degree is 2, and the maximum degree is 100. The Colorado
Springs network is visualized in Figure 2(d).

5.1. Simulation results

We display the draw-wise probability of sampling an edge by send degree in
Figure 3, and by receive degree in Figure 4. Consistent with our analytic deriva-
tions in Section 3, we see that for the first two edges traversed in our without
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Fig 2. Four Networks (The Erdos-Renyi network on 10,000 vertices is not pictured): (a)
Erdos-Renyi on 100 vertices; (b) IJC on 100 vertices; (c) Zachary’s Karate Club Network;
and, (d) Colorado Springs Network.

replacement random walk, each edge has the same probability of being sampled,
regardless of incident degrees or network structure. However, as the without re-
placement random walk continues to three or more edges, the probability of an
edge being sampled begins to diverge. The edge sampling probabilities of the
IJC network in Figures 3(c) and 4(c) which only has two kinds of vertices (those
with degree 99 and those with degree 40) is perhaps simplest to interpret. As
more edges are traversed, the edges incident to vertices with degree 40 (whether
as send or receive degree) have an increasing chance of being sampled, while the
edges that are incident to vertices with degree 99 have a decreasing chance of
being sampled. This inverse relationship between degree of incident vertex and
edge sampling probability also seems to hold for the other four networks.
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Fig 3. Draw-wise Edge Sampling Probability by Send Degree for Five Networks: (a) Erdos-
Renyi on 100 vertices; (b) Erdos-Renyi on 10,000 vertices; (c) IJC on 100 vertices; (d)
Zachary’s Karate Club Network; and, (e) Colorado Springs Network.

However, there are exceptions to this pattern of an inverse relationship be-
tween degree of incident vertex and edge sampling probability. Most notably,
when looking at the edge sampling probabilities by send degree in the Zachary’s
Karate Club network in Figure 3(d) we see that edges with degree 2 have the
lowest probability of being sampled after the first two edges are sampled. This
aberration can be easily explained. With the simulations on Zachary’s Karate
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Fig 4. Draw-wise Edge Sampling Probability by Receive Degree for Five Networks: (a) Erdos-
Renyi on 100 vertices; (b) Erdos-Renyi on 10,000 vertices; (c) IJC on 100 vertices; (d)
Zachary’s Karate Club Network; and, (e) Colorado Springs Network.

club, each non-repeating random walk continued either until 10 edges were sam-
pled, or until the walk could not continue without repeating a vertex. When a
vertex with degree 2 is sampled later on in the non-repeating random walk, the
probability that there are no un-sampled vertices in its neighborhood is quite
high, and therefore the random walk is likely to end on a vertex with degree 2.
This results in edges with a send degree 2 having a lower probability of being
sampled.
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Fig 5. Cummulative Edge Sampling Probability by Send Degree for Five Networks: (a) Erdos-
Renyi on 100 vertices; (b) Erdos-Renyi on 10,000 vertices; (c) IJC on 100 vertices; (d)
Zachary’s Karate Club Network; and, (e) Colorado Springs Network.

We also display the simulation results looking not at the draw-wise edge
sampling probability, but the cumulative edge sampling probability (i.e. has the
edge been sampled anytime before and including step k?) both by send degree
(Figure 5) and receive degree (Figure 6). Again, the edges incident to lower
degree vertices (represented by darker colors) tend to have a higher cumulative
probability of being included in the without replacement random walk than the
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Fig 6. Cumulative Edge Sampling Probability by Receive Degree for Five Networks: (a) Erdos-
Renyi on 100 vertices; (b) Erdos-Renyi on 10,000 vertices; (c) IJC on 100 vertices; (d)
Zachary’s Karate Club Network; and, (e) Colorado Springs Network.

edges incident to higher degree vertices (represented by lighter colors), especially
as the random walk increases in length.

Finally we consider both the send degree and receive degree simultaneously
in heatmaps in Figure 7. In these heatmaps higher probabilities are denoted
with darker colors while lower probabilities are denoted with lighter colors.
We see that edges that are incident to two low degree vertices tend to have
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Fig 7. Cumulative Edge Sampling Probability Heatmaps for Five Networks: (a) Erdos-Renyi
on 100 vertices, 10 edges sampled; (b) Erdos-Renyi on 10,000 vertices, 250 edges sampled;
(c) IJC on 100 vertices, 10 edges sampled; (d) Zachary’s Karate Club Network, 10 edges
sampled; and, (e) Colorado Springs Network, 50 edges sampled.

the highest probability of being included in the without replacement random
walk, edges incident to one high degree vertex and one low degree vertex have
lower probability, and edges incident to two high degree vertices have lowest
probabilities, across network structures. All walks have 10 edges sampled, except
for the walks on the 10,000 vertex Erdos-Renyi network (250 edges) and the
Colorado Springs network (50 edges).



1122 M. Q. Ott and K. J. Gile

6. Implications of unequal edge sampling probabilities

The premise of uniform edge sampling probability underlies many different
facets of estimation and diagnostic assessments of RDS. In this section we in-
troduce one of the most commonly implemented RDS prevalence estimators,
the Salganik-Heckathorn (SH) estimator [18], then explore how falsely assum-
ing uniform edge sampling probabilities can induce bias in the SH estimator of
prevalence.

6.1. The Salganik-Heckathorn estimator

The SH estimator uses information on the number of between-group ties in an
RDS sample. For instance, suppose population group A is comprised of those
who are HIV positive, while group B is comprised of those who are HIV negative.
We consider the case where we are interested in estimating the proportion of
a networked-population that is HIV positive P(A). Suppose we know T(BA) is
the average number of ties each HIV negative person has to someone who is
HIV positive, and T(AB) is the average number of ties each HIV positive person
has to an HIV negative person. Since we assume the network is undirected the
total number of ties from someone who is HIV negative to someone HIV positive
must equal the total number of ties from someone HIV positive to someone HIV
negative. Therefore, if T(AB) = a · T(BA) then there must be a times as many
people who are HIV negative than HIV positive. Using this equality, we can use
the average number of cross-ties from each group to find the prevalence of HIV
which we denote as P(A):

P(A) =
T(BA)

T(BA) + T(AB)
.

By symmetry we also have that:

P(B) =
T(AB)

T(AB) + T(BA)
.

Next we substitute D(B) ·C(BA) for T(BA) and D(A) ·C(AB) for T(AB) where
D(B) is the average degree for those who are HIV negative and C(BA) is the
proportion of ties incident to HIV negative nodes that go to HIV positive nodes.
Then we have:

P(A) =
D(B) · C(BA)

D(B) · C(BA) +D(A) · C(AB)
.

If the entire network structure and the HIV status of each member of the pop-
ulation were known, we wouldn’t need to perform RDS. Salganik and Heckathorn
[18]’s method involves performing RDS, while keeping track of the between and
within group referrals and the degree for each participant sampled. They esti-
mate:

Ĉ(AB) =
r(AB)

r(AB) + r(BB)
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Ĉ(BA) =
r(BA)

r(BA) + r(AA)
,

where r(AB) is the number of referrals from someone who is HIV positive to
someone who is HIV negative, r(AA) is the number of referrals from someone
who is HIV positive to another person who is HIV positive, and so on. Further,
D(A) and D(B) are also unknown and need to be estimated in order to compute
prevalence estimates. The SH estimator uses the generalized Horvitz-Thompson
[11, 19] estimator to estimate the average degree for the positive and negative
groups, assuming sampling probabilities are proportional to reported degrees:

D̂(A) =
n(A)∑n

i=1
1

diI(Ai)

D̂(B) =
n(B)∑n

i=1
1

diI(Bi)

,

where n(∗) is the number of observed vertices in class ∗. Then the estimator
takes the form:

P̂(A) =
D̂(B) × Ĉ(BA)

D̂(B) × Ĉ(BA) + D̂(A) × Ĉ(AB)

P̂(B) =
D̂(A) × Ĉ(AB)

D̂(A) × Ĉ(AB) + D̂(B) × Ĉ(BA)

.

The SH estimator out-performs other estimators in certain situations, partic-
ularly when there is differential recruitment effectiveness [21]. However, the SH
estimator has been noted to perform poorly in the presence of differential activ-
ity (when infected individuals have different average degree than non-infected
individuals), and when there is a large sample fraction [4, 21, 5].

6.2. Simulation study on effect of without-replacement sampling on
SH estimator

In order to further demonstrate the bias that is incurred in the SH prevalence
estimator, we simulated RDS on the Colorado Springs network. The Colorado
Springs Network dataset includes information on which individuals are involved
in sex work (either as a sex worker or as a pimp), and we used involvement in sex
work as the binary outcome of interest, treating those involved in sex work as
group A and those not involved in sex work as group B. As above, we limited our
analyses of the Colorado Springs network to the largest connected component,
treated all edges as undirected, and deleted vertices that had degree less than
2, resulting in a network (Figure 2(d)), with 822 vertices and 2813 undirected
edges. Those who were involved in sex work accounted for 9% of the vertices
and had an average degree of 8.12, while those who were not involved in sex
work had an average degree of 6.72.



1124 M. Q. Ott and K. J. Gile

Fig 8. Edge Sampling Probabiltiy Densities on the Same Network when sampling is with and
without replacement.

RDS was simulated by starting with 2 seeds chosen with probability propor-
tional to degree, and allowing each vertex to refer up to two adjacent previously-
unsampled vertices, until the sample size reached 250 vertices. We repeated this
procedure 1,000,000 times. For each of the 1,000,000 simulations performed on
the same network described above, we kept track of which vertices were sampled,
which edges were sampled, and calculated the SH prevalence estimates for sex
work involvement, P̂(A). We also calculated Ĉ(AB) and Ĉ(BA), as well as D̂(A)

and D̂(B). We then repeated these simulations with the key difference that we
allowed for visiting the same vertex more than once, in other words, we allowed
RDS to proceed with-replacement.

If edges incident to higher degree vertices have a lower probability of being
included in a sample, we would expect to see that Ĉ(BA) will be an underesti-

mate, Ĉ(AB) will be an over estimate, and consequently P̂(A) will be an under
estimate, when RDS sampling is without replacement.

6.3. Simulation results

Earlier in this paper we demonstrated edges incident to higher degree vertices
have a lower probability of being sampled in a non-branching without replace-
ment random walk. In these simulations, we now are investigating a branching
process both with and without replacement. Figure 8 displays the densities of
the cumulative edge sampling probabilities for each of the 2813 edges from the
1,000,000 simulations with and without replacement on the Colorado Springs
network. The distribution of edge sampling probabilities is narrower, symmet-
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Fig 9. Cummulative Edge Sampling Probability Heatmaps Under Two Conditions: (a) With-
out Replacement; (b) With Replacement.

ric, and uni-modal when sampling with replacement, and markedly wider, right-
skewed and bimodal when sampling without replacement.

Figures 9(a) and 9(b) present heatmaps of the cumulative edge sampling
probabilities for the without replacement and with replacement simulations by
send (recruiter) degree on the x-axis and receive (recruitee) degree on the y-
axis. In these heatmaps, higher probability edges are denoted by darker colors,
while lower probability edges are denoted by lighter colors. In Figure 9(a) (where
sampling is without replacement) it is apparent that edge sampling probabilities
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Table 1

Error Rates of Simulated RDS With and Without Replacement

MSE ×103 |Bias| ×103 SE×102

Estimator w/ R w/o R w/ R w/o R w/R w/o R

P̂(A) 1.54 0.46 0.87 10.92 3.93 1.85

Ĉ(AB) 5.70 2.48 9.13 13.34 7.50 4.79

Ĉ(BA) 1.54 0.38 1.75 14.63 3.92 1.29

D̂(A) 26793.38 9313.93 168.66 286.33 491.21 105.61

D̂(B) 1212.88 4831.99 185.25 2193.27 108.56 14.69

vary by degree of incident vertices, where edges incident to receivers with lower
degrees have a higher edge sampling probability. In Figure 9(b) (where sampling
is with replacement) there is no discernible relationship between edge sampling
probabilities and the degrees of the incident vertices, as we would expect.

Having established that edges incident to higher degree vertices have a lower
sampling probability, we next investigated how these non-uniform edge inclusion
probabilities impact prevalence estimation with the SH estimator. In Table 1
we compare P̂ , Ĉ(AB), Ĉ(BA), D̂(A), D̂(B), from the RDS simulations with and

without replacement. From Table 1 we see that Ĉ(AB) and Ĉ(BA) are less bi-
ased when sampling is with replacement. These results are consistent with the
direction of bias we would expect to see since those who are involved in sex
work (group A) have a higher average degree than those who are not involved
in sex work. The standard errors are larger when sampling is with replacement
as opposed to without replacement, which we would expect since the without
replacement process involves sampling more of the network. The estimated av-
erage degrees D̂(A), D̂(B), are also biased. Bias in estimating average degree
induced by without-replacement sampling has been explored elsewhere by [3].
However, the biases are larger when sampling is without replacement as opposed
to with replacement, and in the direction we would expect to see assuming that
edges incident to lower degree vertices have a higher chance of being sampled.

7. Discussion

In this paper, we have shown that even in the simplest non-branching without-
replacement link-tracing sampling designs, edge sampling probabilities past the
second sample step are non-uniform. In general, edges incident to higher-degree
vertices are less likely to be sampled. We have shown that this result extends to
branching without-replacement link-tracing designs, such as respondent-driven
sampling (RDS). When estimating population prevalence of a characteristic re-
lated to network connectivity (e.g. HIV positive population members have sys-
tematically more ties than HIV negative), we have shown that this induces bias
in the estimator in [18]. This is of critical importance because this estimator is in
wide use, included in the ubiquitous RDSAT [23] software. Recent comparisons
of RDS estimators have also shown that this estimator out-performs others in
several ways: It is robust to differential rates of recruitment by vertex category
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[21], and not heavily affected by the initial convenience sample [5]. However,
it does exhibit extensive bias when the sample fraction is large and the groups
unequally connected [4, 21, 5]. The present paper explains this phenomenon, to
date the greatest weakness of this estimator. We hope that the current work
will pave the way to the improvement of this estimator.

While our results are primarily focused on edge sampling probabilities and
their relationship to RDS prevalence estimation, the issue of non-uniform edge-
sampling probabilities will also impact other estimates relying on an assumption
of equal link-tracing edge-sampling probabilities. The seed-bias correction of
the RDS estimator in Gile and Handcock [5], and the RDS-based estimator
of homophily in Heckathorn [10] may also be subject to bias induced in this
manner.

8. Appendices

8.1. Proof for Theorem 1

Theorem. Consider a without replacement (self-avoiding) random walk on an
undirected network with minimum degree 2. Let S1 be chosen with probability

proportional to degree. That is, P1(s1) =
ds1

d . Then P1(s1 → s2) = P2(s2 →
s3) =

1
d for all (s1, s2) and (s2, s3) ∈ E.

Proof. Since P1(s1) =
ds1

d , for (s1, s2) ∈ E, P1(s1 → s2) = P1(s1) · 1
ds1

=
ds1

d · ds1 = 1
d .

P2(s2 → s3) = P2(s2 → s3|S2 = s2 ∩ S1 �= s3) · P (S2 = s2 ∩ S1 �= s3)

= P2(s2 → s3|S2 = s2 ∩ S1 �= s3)
[∑

s1∈N(s2)/s3
P1(s1 → s2|S1 = s1) · P1(s1)

]
= 1

ds2−1

[∑
s1∈N(s2),s1/s3

1
ds1

ds1

d

]
= 1

ds2−1

[∑
s1∈N(s2),s1/s3

1
d

]
= 1

ds2−1
1
d

[∑
s1∈N(s2)/s3

1
]

= 1
d .

8.2. Proofs of Corollaries to Theorem 1

Corollary. P ′
1(s1 → s2) = P ′

2(s2 → s3) =
2
d for all (s1, s2) and (s2, s3) ∈ E.

Proof. Follows directly from the theorem.

Corollary. P2(s2) =
ds2

d for all s2 ∈ V .

Proof. P2(s2) =
∑

s1∈N(s2)
[P1(s1 → s2|S1 = s1)P (S1 = s1)]

=
∑

s1∈N(s2)

[
1

ds1
· ds1

d

]
= 1

d

∑
s1∈N(s2)

1

= 1
d · ds2 .
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Corollary. P3(s3) =
ds3

d for all s3 ∈ V .

Proof. P3(s3) =
∑

s2∈N(s3)
[P2(s2 → s3|S2 = s2, S1 �= s3)P (S2 = s2, S1 �= s3)]

=
∑

s2∈N(s3)

[
1

ds2−1 ·
∑

s1∈N(s2)/s3
P1(s1 → s2|S1 = s1)P (S1 = s1)

]
=

∑
s2∈N(s3)

[
1

ds2−1 ·
∑

s1∈N(s2)/s3
1

ds1

ds1

d

]
=

∑
s2∈N(s3)

[
1

ds2−1 ·
∑

s1∈N(s2)/s3
1
d

]
=

∑
s2∈N(s3)

[
1

ds2−1 · 1
d · (ds2 − 1)

]
= 1

d

∑
s2∈N(s3)

1

=
ds3

d .

8.3. Proof for Theorem 2

Theorem. There exists a graph G for which P3(s3 → s4) �= 1
d .

Proof. We provide a counter-example by enumerating the edge sampling prob-
abilities for a without replacement random walk on the network displayed in
Figure 10 in Table 2.

Fig 10. Graph with One Degree Four Vertex and Four Degree Three Vertices

Table 2

Edge Inclusion Probabilities for Graph in Figure 10

Edge P(sampled 1st) P(sampled 2nd) P(sampled 3rd)
Degree 3 → Degree 3 0.06250 0.06250 0.078125
Degree 3 → Degree 4 0.06250 0.06250 0.031250
Degree 4 → Degree 3 0.06250 0.06250 0.062500

This table shows that the first two edges are sampled with probability equal
to 1

d , and for the third edge, edges incident to vertex C, which has the highest
degree in the network, have a lower probability of being sampled, in either
direction.
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8.4. Proof for Theorem 3

Theorem. P3(s3 → s4) < 1
d when s3, s4 are maximally connected vertices in

an IJC graph.

Proof. P3(s3 → s4) = P3(s3 → s4|S3 = s3, S1 �= s4, S2 �= s4) · P (S3 = s3, S1 �=
s4, S2 �= s4)

P3(s3 → s4) =
[
P (S1∈N(s3))

ds3−2 + P (S1 /∈N(s3))
ds3−1

]
·
∑

s2∈N(s3)/s4
1
d

ds2−1−I(s2∈N(s4))

ds2−1 .

Here we know that both s3 and s4 are maximally connected, therefore S1 ∈
N(s3) and S2 ∈ N(s4) both with probability 1. Therefore

P3(s3 → s4) =
1
d · 1

ds3−2 ·
∑

s2∈N(s3)/s4

ds2−2

ds2−1 .

Further, we know that ds3 = q − 1 + w, that vertex s3 is connected to q − 1
vertices with degree q − 1 + w, and that vertex s3 is connected to w vertices
with degree q. Using this, we can evaluate the above summation:

P3(s3 → s4) =
1
d · 1

q+w−3 ·
[
(q−2)·(q+w−3)

q+w−2 + w·(q−2)
q−1

]
.

By the above equality, we can conclude P3(s3 → s4) < 1
d if q + w − 3 >

(q−2)·(q+w−3)
q+w−2 + (w)·(q−2)

q−1 . By algebraic manipulation, we show that P3(s3 →
s4) <

1
d is equivalent to w > 1, which is known:

q + w − 3 > (q−2)·(q+w−3)
q+w−2 + w·(q−2)

q−1

q + w − 3 > q − 2− q−2
q+w−2 + w − w

q−1

−1 > − q−2
q+w−2 − w

q−1

1 < q−2
q+w−2 + w

q−1

0 < q−2
q+w−2 + w

q−1 − 1

0 < (q−2)·(q−1)+w·(q+w−2)−(q+w−2)·(q−1)
(q+w−2)·(q−1)

0 < (q − 2) · (q − 1) + w · (q + w − 2)− (q + w − 2) · (q − 1)

1 < w is given.

Thus, P3(s3 → s4) <
1
d when s3, s4 are maximally connected vertices in an

IJC graph.

8.5. Proof for Theorem 4

Theorem. P3(s3 → s4) >
1
d when s3 is a maximally connected vertex and s4

is a minimally connected vertex in an IJC graph.
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Proof. From above we have that:
P3(s3 → s4) = P3(s3 → s4|S3 = s3, S1 �= s4, S2 �= s4) · P (S3 = s3, S1 �=

s4, S2 �= s4)

P3(s3 → s4) =
1
d ·

[
P (S1∈N(s3)

ds3−2 + P (S1 /∈N(s3))
ds3−1

]
·
∑

s2∈N(s3)/s4

ds2−1−I(s2∈N(s4))

ds2−1 .

Here we know that s3 is maximally connected, therefore P (S1 ∈ N(s3)) = 1.
However since s4 is minimally connected, we cannot directly evaluate S2 ∈
N(s4). Using this, we find

P3(s3 → s4) =
1
d · 1

ds3−2 ·
∑

s2∈N(s3)/s4

ds2−1−I(s2∈N(s4))

ds2−1 .

P3(s3 → s4) =
1
d · 1

q+w−3 ·
[
(q − 1) · q+w−3

q+w−2 + (w − 1) · q−1
q−1

]
.

P3(s3 → s4) =
1
d ·

[
q−1

q+w−2 + w−1
q+w−3

]
.

Therefore if we show that q−1
q+w−2 + w−1

q+w−3 > 1 then P3(s3 → s4) >
1
d .

First we can state that:
q−1

q+w−2 + w−1
q+w−3 > q−1

q+w−2 + w−1
q+w−2 = 1.

So q−1
q+w−2 + w−1

q+w−3 > 1 and therefore P3(s3 → s4) >
1
d .

8.6. Proof for Theorem 5

Theorem. P3(s3 → s4) =
1
d when s3 is minimally connected and s4 is maxi-

mally connected in an IJC graph.

Proof. We will use a different approach to prove this Theorem. There are two
possible cases where s3 is minimally connected and s4 is maximally connected
in an IJC graph. In the first case the first vertex that is sampled is minimally
connected (and therefore s1 is in the neighborhood of s3), whereas in the second
case the first vertex is maximally connected (s1 is in the neighborhood of s3).
It follows that:

P3(s3 → s4) = P (s3 → s4, S3 = s3)

P (s3 → s4, S3 = s3) = P (s3 → s4, S3 = s3, S1 /∈ (N(s3))

+ P (s3 → s4, S3 = s3, S1 ∈ (N(s3))

Multiplying out the terms in order in the two sampling cases above, we first
have the case where the 4 ordered vertices sampled are: arbitrary min connected
(except s3), arbitrary max connected (except s4), s3, s4. The probability of this
sequence is:

P (s3 → s4, S3 = s3, S1 /∈ (N(s3)) = (w − 1)
q

d
· (q − 1)

q
· 1

q + w − 2
· 1

q − 1

=
(w − 1)

d(q + w − 2)
.
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The second case involves 4 nodes sampled in sequence: arbitrary max connected
(except s4), arbitrary max connected (except s1, s4), s3, s4. The probability of
this sequence is:

P (s3 → s4, S3 = s3, S1 ∈ (N(s3))

= (q − 1)
(q + w − 1)

d
· (q − 2)

(q + w − 1)
· 1

q + w − 2
· 1

q − 2

=
q − 1

d(q + w − 2)
.

Combining these, we have:

P3(s3 → s4) =
1

d
.

Therefore P3(s3 → s4) =
1
d when s3 is minimally connected and s4 is maximally

connected.
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