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Abstract: Varying coefficient models are useful generalizations of para-
metric linear models. They allow for parameters that depend on a covariate
or that develop in time. They have a wide range of applications in time series
analysis and regression. In time series analysis they have turned out to be a
powerful approach to infer on behavioral and structural changes over time.
In this paper, we are concerned with high dimensional varying coefficient
models including the time varying coefficient model. Most studies in high di-
mensional nonparametric models treat penalization of series estimators. On
the other side, kernel smoothing is a well established, well understood and
successful approach in nonparametric estimation, in particular in the time
varying coefficient model. But not much has been done for kernel smooth-
ing in high-dimensional models. In this paper we will close this gap and we
develop a penalized kernel smoothing approach for sparse high-dimensional
models. The proposed estimators make use of a novel penalization scheme
working with kernel smoothing. We establish a general and systematic the-
oretical analysis in high dimensions. This complements recent alternative
approaches that are based on basis approximations and that allow more di-
rect arguments to carry over insights from high-dimensional linear models.
Furthermore, we develop theory not only for regression with independent
observations but also for local stationary time series in high-dimensional
sparse varying coefficient models. The development of theory for local sta-
tionary processes in a high-dimensional setting creates technical challenges.
We also address issues of numerical implementation and of data adaptive se-
lection of tuning parameters for penalization.The finite sample performance
of the proposed methods is studied by simulations and it is illustrated by
an empirical analysis of NASDAQ composite index data.
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1. Introduction

Varying coefficient models arise in a wide range of applications. They are an
important generalization of parametric linear regression models. They relax the
assumption that the parameters are constant and allow regression coefficients
to be smooth functions of other predictors, called index variables. On the one
side, the models are very flexible and give an accurate fit of complex data and
on the other side they still maintain a simple structure. This allows an intuitive
interpretation and an accurate estimation. For an overview on varying coefficient
models, we refer to Fan and Zhang [13] and Park et al. [26].

In this paper we will propose an approach based on kernel smoothing for
sparse high-dimensional varying coefficient models. Kernel smoothing has yet
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been considered mostly only for finite dimensional models. This is the case for
varying coefficient models and for other nonparametric settings. Typically, work
on sparse nonparametric high-dimensional models has made use of orthogonal
series estimators. These estimators are more closely linked to linear models and
for this reason they more easily allow to carry over theory from high-dimensional
linear models. Our paper argues that also for high-dimensional nonparametric
models kernel smoothing is an attractive alternative to orthogonal series estima-
tion. This will be shown for varying coefficient models. Our implementation of
kernel smoothing in high-dimensional settings requires the introduction of novel
penalization schemes. We will show that kernel smoothing inherits from finite-
dimensional models its intuitive interpretation and clear asymptotic theory for
the distribution of the estimator.

In our theory we will consider both, regression models and time series models.
In time series a central example of a varying coefficient model is the time varying
coefficient model where the index variable is rescaled time. This class of models
has been developed independently from varying coefficient models and it has
turned out to be a very powerful tool in the empirical analysis for structural
changes over time in time series data [see 27, 28, 9, 10, 2, 3, 44, for example]. An
important example in this class is the time varying autoregressive model. In this
model the data are non stationary because the autoregressive structure changes
over time. This complicates the asymptotic analysis. A common strategy to
handle this nonstationarity is to model the time series as locally stationary
processes, see Dahlhaus [8, 9]. Roughly speaking, a locally stationary process
behaves approximately as a stationary process over a short period of time. This
naturally suggests the use of local smoothing methods like kernel smoothing [see
32, for example]. Estimation and statistical inference based on kernel smoothing
has been established and their statistical properties have been well understood in
the time varying coefficient model [2, 3, 44]. However, all this work is restricted
to finite dimensional settings. As noted in Fan et al. [14], high dimensionality is
encountered in many time series data applications, e.g. in economics and finance.
Besides exogenous variables, often lagged variables of different lag orders and
interaction terms have to be included into the model for accurate fits. These
applications serve as an important motivation for our paper.

Sparse modeling provides an effective framework to analyze high dimensional
data. It allows for identifiability of the model and it facilitates consistent sta-
tistical estimation even in high dimensional situations. Many penalized meth-
ods such as Least Absolute Shrinkage and Selection Operator [LASSO, 29] and
Smoothly Clipped Absolute Deviation [SCAD, 12] have been proposed for vari-
able selection and estimation in sparse linear regression. The methods have
proven to possess high computational efficiency as well as desirable statistical
properties even under high dimensional settings. This has motivated to extend
the ideas to varying coefficient models for i.i.d. and longitudinal data. Varying
coefficient models using orthogonal series estimation have been considered in
Wei et al. [38], Lian [24], Xue and Qu [40] and Klopp and Pensky [21]. Their
asymptotics allowed for an increasing number of coefficients and the studies in-
clude variable selection based on groupwise penalized methods such as the group
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LASSO [41]. Moreover, Klopp and Pensky [21] developed a non-asymptotic min-
imax theory for a model where the coefficient functions possibly have different
degrees of smoothness and where they are spatially inhomogeneous. All these
papers do not treat kernel smoothing nor time series models. Furthermore, the
theoretical studies heavily rely on the assumption of independent observations
and partially they need that the covariables Xi and the predictor Zi are in-
dependent, see (2.1) for the definition of Xi, Zi. This could be considered as a
restrictive assumption. We will drop this condition on the way to cover time se-
ries models. For an initial screening procedure to handle ultra-high dimensional
variables see also Cheng et al. [5], Fan et al. [15] and Cheng et al. [6]. But, not
much is known on penalized kernel smoothing methods. For varying coefficient
models, the only work we are aware of are Wang and Xia [35], Hu and Xia [19],
Wang and Kulasekera [33] and Kong et al. [22]. However, their asymptotic anal-
ysis is restricted to the case of fixed-dimension and only the case of independent
observations is treated.

Kernel smoothing is a very popular estimation technique for a lot of non-
parametric models and it is especially recommended to use for the time vary-
ing coefficient models. In this paper we will develop kernel smoothing tech-
niques that are working theoretically and computationally for varying coeffi-
cient models with a diverging number of variables. Our first contribution to
accomplish this task is to propose a penalized local linear kernel estimation
method in varying coefficient models and to provide its sound asymptotic the-
ory under high dimensionality. We will adapt the group LASSO and SCAD
methods to the local linear method and we will systematically study variable
selection and estimation properties of these methods. Our theory will include
oracle inequalities of the group LASSO kernel method and we will show that
the group SCAD kernel method consistently identifies the true structure of
a partially linear varying coefficient model. Our methodological and theoret-
ical developments require technical treatments that are quite different from
asymptotics for groupwise penalized methods using series estimators. For ex-
ample, in the sieve approach, one approximates a nonparametric model by a
parametric model with increasing dimension. Thus the estimation problem of
the nonparametric model is methodologically very similar to the estimation
of a parametric model with increasing dimension. Such a simplifying technical
approach does not apply to kernel smoothing. Furthermore, we also treat lo-
cal stationary varying coefficient models including the above-mentioned time
varying autoregressive model. The study of this class of models requires new
mathematical tools. Locally in time the time series has to be approximated by
a stationary process. This approximation facilitates to carry over techniques
from the study of stationary processes. We are not aware that such a the-
oretical study has been done in another high dimensional nonparametric set
up. Our theory includes models with errors that have serial correlations with
lagged errors and observations and with covariates. In particular, we allow
for conditional heteroskedastic errors. We also do not assume that the er-
rors are sub-Gaussian. The latter point may be important in financial appli-
cations.
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Our second contribution is to develop a new computation method for the
implementation of our proposals. Implementing our estimator involves a quite
complicated optimization problem to which a typical group LASSO algorithm
cannot be applied. By reformulating the problem as a second order cone pro-
gramming problem, we are able to provide a simple and computationally efficient
algorithm for the implementation. The details can be found in Section 4.1. The
third contribution is to develop a criterion for determining the amount of penal-
ization in the penalized estimation. This is a crucial step in the identification of
the true partially linear structure. Although penalization methods for consistent
identification of semiparametric models have been proposed, see Cheng et al. [5]
and Zhang et al. [43], to our knowledge no work has been done on the choice
of the tuning parameters for such estimators. We propose a tuning parameter
selector based on the Bayesian information criterion (BIC) and we provide its
theoretical justification. For this task, we verify that our penalized estimators of
the relevant parametric and nonparametric components achieve the respective
optimal rates of convergence at the same time. The result is new and, compared
to the usual oracle properties in the literature (see Theorem 1 and Remark 3
in Zhang et al. [43] and Theorem 3.3 in Cheng et al. [5]) it is much stronger. It
will be used as our theoretical foundation that the proposed BIC identifies the
true partially linear structure with probability tending to one. Finally, even in
the fixed dimensional case, our methods extend other kernel smoothing-based
penalization methods.

The rest of this paper is organized as follows. The next section introduces
the model and our statistical procedures based on kernel smoothing: LASSO-
estimators that uses L1-penalties for non-zero and non-linear component func-
tions, SCAD-estimators with a BIC-choice of their penalty constants and BIC-
choices of the set of non-zero coefficient function and of the set of non-linear co-
efficient functions. Section 3 contains our theoretical results. Section 4 discusses
the numerical implementation of our methods and shows some simulation re-
sults. An illustrative data example is given in Section 5. All proofs are deferred
to Appendix.

2. Model and methodology

We suppose that the data {(Xi, Zi, Yi), 1 ≤ i ≤ n} are generated under the
model

Yi =

p∑
j=1

X
(j)
i m0

j (Zi) + εi, (2.1)

where Xi = (X
(1)
i , . . . , X

(p)
i )� are p-dimensional vectors, Zi ∈ [0, 1] and εi are

random errors. With rescaled time Zi = i/n we get the so-called ‘time varying
regression model’. This model includes the time varying autoregressive model
as a special case. In our paper, we consider both, independent data and time
series versions of model (2.1): in the i.i.d. scenario, we assume that (Xi, Zi, εi)
in (2.1) are independent and identically distributed (i.i.d.) copies of (X, Z, ε)
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with E(ε|X, Z) = 0 and E(ε2|X, Z) ≤ σ2 < ∞ for some σ2 > 0; in the time
series scenario, we suppose that Zi = i/n, E(εi| Xt, εt−1, t ≤ i) = 0 and
E(ε2i | Xt, εt−1, t ≤ i) ≤ σ2 < ∞. We allow p to tend to infinity as n → ∞. Our
main assumption is the sparsity of the model (2.1), that is, m0

j ≡ 0 for many
j’s, as specified in more detail below.

Let (m0
j )

(s) be the s-th derivative of the true coefficient function m0
j for

1 ≤ j ≤ p. Given any z ∈ [0, 1], we define m0(z) = (m0
1(z), . . . ,m

0
p(z))

� and

(m0)(1)(z) = ((m0
1)

(1)(z), . . . , (m0
p)

(1)(z))�. Motivated by a local approximation

of m0
j (Z), m0

j (Z) ≈ m0
j (z) + (m0

j )
(1)(z)(Z − z), for Z ≈ z, the local linear esti-

mator of m0(z) and (m0)(1)(z), z ∈ [0, 1] is defined by minimizing the following
local kernel weighted least squares criterion:(

m̄(z)
m̄(1)(z)

)
= argmin

m, m(1)∈Rp

n∑
i=1

[
Yi −X�

i (m+m(1)(Zi − z))
]2

Kh(z − Zi),

where Kh(u) = K(u/h)/h, K is a kernel function and h > 0 is a bandwidth.
Equivalently, the estimated coefficient functions m̄(·) and m̄(1)(·) are the mini-
mizer of

L(m,m(1)) = n−1

∫ n∑
i=1

[
Yi −X�

i (m(z) +m(1)(z)(Zi − z))
]2

Kh(z − Zi)dz

with respect to m = (m1, . . . ,mp)
� and m(1) = (m

(1)
1 , . . . ,m

(1)
p )�. From now

on, we omit the arguments of functions when no confusion arises.

Given a function g defined on [0, 1], let ||g|| = [
∫ 1

0
g2(z)dz]1/2 and ||g||c =

[
∫ 1

0
(g(z) −

∫
g(z)dz)2dz]1/2 be the respective L2 norms of g and its centered

version. They measure how much the function g differs from zero or from a
constant function, respectively. In this paper, we consider estimation of m0

j and

(m0
j )

(1), 1 ≤ j ≤ p for sparse high dimensional varying coefficient models where
sparsity is defined on a functional level (in L2 sense). Adapting the idea of the
group LASSO to our context, we propose to minimize the following penalized
criterion:

(m̃, m̃(1)) = argmin
m,m(1)

L(m,m(1)) + λ1P (m,m(1)), (2.2)

where P (m,m(1)) =
∑p

j=1

√
‖mj‖2 + h2‖m(1)

j ‖2 for any m = (m1, . . . ,mp)
�

and m(1) = (m
(1)
1 , . . . ,m

(1)
p )�. Here, λ1 > 0 is a regularization parameter. The

penalty
√
‖mj‖2 + h2‖m(1)

j ‖2 jointly controls both, for sparsity of the coefficient

function (m0
j ) and for sparsity of its derivative (m0

j )
(1). It contains the rescaled

factor h2 for technical reasons. Our proposal (2.2) is different from the penalized
local linear method in Kong et al. [22]. In that paper a penalized criterion for
a fixed value of z is considered, see (5) in Kong et al. [22]. This simplifies the
asymptotic treatment of the estimator but the chosen set of non-zero coefficient
functions depends on the value of z so that it is not applicable for our purpose
of estimation under sparsity on the functional level.
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It is well known that penalized estimators which employ the LASSO or the
group LASSO may fail to achieve consistency in model selection, see also Section
3.2. For this reason, we consider a penalized estimator that corrects for this.
Further, the method should be able to discriminate between varying coefficient
functions m0

j (z) over z ∈ [0, 1] with ‖m0
j‖ 	= 0 and ‖m0

j‖c 	= 0, nonzero constant

functions m0
j with ‖m0

j‖ 	= 0 and ‖m0
j‖c = 0 and zero functions m0

j ≡ 0 with

‖m0
j‖ = 0 and ‖m0

j‖c = 0. In the first case, we say the coefficientsm0
j are varying,

in the second case, that they are non-varying. We now propose a procedure of
estimating the coefficient functions that performs this discrimination. For this
purpose we adapt the idea of a group SCAD penalty to our setting. Our version
of the SCAD estimator (m̂, m̂(1)) is defined as the minimizer of the following
criterion:

L(m,m(1)) +

p∑
j=1

vj{‖mj‖2 + h2‖m(1)
j ‖2}1/2 +

p∑
j=1

wj{‖mj‖2c + h2‖m(1)
j ‖2}1/2,

(2.3)

where vj = p′λ2
((‖m̃j‖2 + h2‖m̃(1)

j ‖2)1/2), wj = p′λ∗
2
((‖m̃j‖2c + h2‖m̃(1)

j ‖2)1/2)
and pλ(·) is the derivative of the SCAD penalty function with regularization
parameter λ > 0, which is given by

p′λ(x) = λ

{
I(x ≤ λ) +

(γλ− x)+
(γ − 1)λ

I(x > λ)

}
(2.4)

for some γ > 2 and x > 0. In our simulations and in our data example, γ = 3.7
is chosen according to the suggestion of Fan and Li [12]. Instead of the SCAD
itself, we use a linear approximation of the SCAD penalty (around suitable
initial estimates, e.g. the minimizer of (2.2)) in order to overcome difficulties
due to non-convexity of the SCAD penalty [46].

Remark 2.1. In this paper, we consider three possibilities for coefficients: vary-
ing, non-varying and zero functions, respectively. Note that in the latter two
cases, the derivative of the coefficient function is equal to zero. The penalties
in (2.2) and (2.3) include the L1 norm of the derivative of the estimate. This
makes the estimated function exactly equal to a constant function if the coeffi-
cient function does not differ too much from a constant function.

The Bayesian information criterion (BIC) has been used for consistent model
selection in linear models. In recent years, it has been proposed as a method
of selecting regularization parameters for penalized methods. Work on linear
models with high-dimensional settings include Wang and Leng [34], Wang et al.
[36, 37], Lee et al. [23]. For our semiparametric setting, we propose the following
version of BIC for criterion (2.3): first, we only consider choices λ2 = λ∗

2. This is
done to get a stable choice of the regularization parameter. The value of λ2 = λ∗

2

is chosen which minimizes

BIC(λ2) = logL(m̂λ2 , m̂
(1)
λ2

) + Cn[dfλ2,V
log(nh)

nh
+ dfλ2,I

logn

n
]. (2.5)

Here, the estimators m̂λ2 = (m̂λ2,1, . . . , m̂λ2,p)
� and m̂

(1)
λ2

= (m̂
(1)
λ2,1

, . . . , m̂
(1)
λ2,p

)�

are defined as the minimizer of (2.3) with λ2 = λ∗
2. Furthermore, Cn > 0 is a
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sequence of positive constants whose choice will be discussed below. The terms
dfλ2,V and dfλ2,I are the estimated numbers of varying and non-varying co-

efficients, respectively. That is, dfλ2,V = |V̂λ2 | and dfλ2,I = |Âλ2 \ V̂λ2 | with
estimated index sets Âλ2 = {j = 1, . . . , p : ‖m̂λ2,j‖ 	= 0} and V̂λ2 = {j ∈ Âλ2 :
‖m̂λ2,j‖c 	= 0} of nonzero and varying coefficient functions, respectively. When
calculating the BIC in (2.5), the effective sample size nh is used for the number
of the nonparametric components instead of the original sample size n. For fixed
p the BIC with Cn = 1 guarantees consistent model selection, but it may fail
to work when p increases, see also Chen and Chen [4] and Lee et al. [23]. Using
the ideas developed in Wang et al. [37] and Lee et al. [23] for high dimensional
linear models, we consider a diverging constant Cn → ∞ as n → ∞ for high
dimensional cases. We will see that a proper choice of Cn leads to consistency
of the proposed BIC even in high dimension. See the assumption (A11) and the
discussions in Section 3.4.

Although we propose the BIC in (2.5) primarily for selecting λ2 in our pe-
nalization (2.3), the idea also applies to a direct selection problem of the index
sets V and I of varying and non-varying coefficient functions. This is done by
minimizing the following BIC:

BIC(V, I) = logL(m̄V,I , m̄
(1)
V,I) + Cn

(
|V | log(nh)

nh
+ |I| log(n)

n

)
. (2.6)

Here the minimum runs over subsets V and I of {1, . . . , p} with V ∩ I = ∅, and
(m̄V,I , m̄

(1)
V,I) are estimators of the coefficient functions and their derivatives

with index sets of varying and invaring coefficients equal to (V, I). Equivalently,

we take (m̄V,I , m̄
(1)
V,I) as the minimizer of L(m,m(1)) subject to the constraints

that ‖mj‖ = ‖m(1)
j ‖ = 0 for j ∈ (V ∪ I)c and ‖mj‖c = ‖m(1)

j ‖ = 0 for j ∈ I. A
similar type of estimator has been discussed in Xia et al. [39] in an i.i.d. setting
with fixed dimension. As far as we know, a statistical procedure for simulta-
neous identification has never been established even in fixed dimensional cases.
Only statistical methods for discriminating between zero functions and varying
functions, and methods for identifying non-varying coefficients among nonzero
functions have been developed [see 39, 35, 19, 44, for example]. Because calcula-
tion of BIC(V, I) over all sets (V, I) is too complex we propose to let BIC(V, I)

only run over sets (V, I) chosen by m̂λ2 , m̂
(1)
λ2

with λ2 in an appropriate set of
values. We have checked the performance of this estimator in our simulation
study. We will show consistency of the proposed BICs in (2.5) and (2.6) in S
ection 3.4.

3. Theoretical properties

3.1. Oracle inequality

Let A0 = {1 ≤ j ≤ p : ‖m0
j‖ 	= 0} be the true active set with cardinality a0 ≡

|A0|. For any p-tuples of (square integrable) functions m = (m1, . . . ,mp)
� and
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m(1) = (m
(1)
1 , . . . ,m

(1)
p )�, we define P (m,m(1)) =

∑p
j=1[‖mj‖2+h2‖m(1)

j ‖2]1/2,
PA0(m,m(1)) =

∑
j∈A0 [‖mj‖2 + h2‖m(1)

j ‖2]1/2 and P(A0)c(m,m(1)) =
∑

j �∈A0

[‖mj‖2 + h2‖m(1)
j ‖2]1/2. For our theoretical analysis we will make use of the

following assumptions.

(A1) It holds that maxi,j |X(j)
i | ≤ dn, a.s.

(A2) The kernel K is a symmetric probability density function with support
[−1, 1] and it is Lipschitz continuous.

(A3) There exists a constant C1 > 0, not depending on n, such that

sup
j∈A0

|m0
j (z)−m0

j (z
′)− (m0

j )
(1)(z′)(z − z′)| ≤ C1|z − z′|2

for all z, z′ ∈ [0, 1].
(A4) There exists a constant φn > 0 such that with probability tending to one

φ2
n

⎛⎝∑
j∈A0

‖mj‖2 + h2‖m(1)
j ‖2

⎞⎠
≤ n−1

∫ n∑
i=1

[
X�

i

(
m(z) +m(1)(z)(Zi − z)

)]2
Kh(z − Zi)dz(3.1)

for any m = (m1, . . . ,mp)
� and m(1) = (m

(1)
1 , . . . ,m

(1)
p )� satisfying

P(A0)c(m,m(1)) ≤ 3PA0(m,m(1)).

Assumption (A1) can be relaxed. We only need that maxi,j |X(j)
i | ≤ dn with

probability tending to 1 as n → ∞. The order of magnitude of dn in (A1)

depends on the tail probability of X
(j)
i . For example, the maximum of sub-

exponential random variablesX
(j)
i is uniformly bounded by a log factor. In many

applications, the X
(j)
i ’s are bounded by a constant, that is, dn ≤ const for some

constant const < ∞. Assumption (A2) is standard. Assumption (A3) holds if
the true coefficient functions m0

j are twice differentiable on [0, 1] and their 2nd

derivatives (m0
j )

(2) are uniformly bounded, i.e supj∈A0 supz∈[0,1] |(m0
j )

(2)(z)| <
∞. When p is fixed, it has typically been assumed that there exists a constant
φ > 0 such that

S(m,m(1)) = n−1

∫ n∑
i=1

[
X�

i

(
m(z) +m(1)(z)(Zi − z)

)]2
Kh(z − Zi)dz

≥ φ2

⎛⎝ p∑
j=1

‖mj‖2 + h2‖m(1)
j ‖2

⎞⎠ (3.2)

for m(·) = (m1(·), . . . ,mp(·)) and m(·)(1) = (m1(·)(1), . . . ,mp(·)(1)) (with large
probability). However, for very large p it may be too restrictive to assume (3.2)
for all (m,m(1)). For (A4), we adapt the concept of ‘compatibility condition’
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that has been developed for high dimensional models [see 1, for example]. For
a general comparison of different conditions on design matrices in high dimen-
sional linear models see van de Geer and Bühlmann [30]. There it has also been
pointed out that their version of the ‘compatibility condition’ allows for a fairly
general class of design matrices. Since assumption (A4) depends on the data,
we will discuss a population version of (A4) later.

The following lemma and theorem state oracle results for the estimator
(m̃, m̃(1)) defined at (2.2). Define T = T1 ∩ T2 ∩ T3 where

T1 ≡ T1(λ0) =

{∣∣∣∣∣n−1
n∑

i=1

∫
εiX

�
i [m(z) +m(1)(z)(Zi − z)]Kh(z − Zi)dz

∣∣∣∣∣
≤ λ0

p∑
j=1

(
‖mj‖+ h‖m(1)

j ‖
)

for all m = (m1, . . . ,mp)
� and m(1) = (m

(1)
1 , . . . ,m(1)

p )�

}
,

T2 ≡ T2(C2) =

{
sup

z∈[0,1]

sup
1≤j,k≤p

n−1
n∑

i=1

∣∣∣X(j)
i X

(k)
i Kh(z − Zi)

∣∣∣ ≤ C2

}
.

and where T3 is the event that (3.1) holds for m = (m1, . . . ,mp)
� and m(1) =

(m
(1)
1 , . . . ,m

(1)
p )� satisfying P(A0)c(m,m(1)) ≤ 3PA0(m,m(1)).

Lemma 3.1. Under (A1) and (A2), there exists a constant M > 0 such that

P (T1) ≥ 1−Mλ−2
0

log p

nh
d2n.

Theorem 3.1. Suppose that the assumptions (A1)–(A4) hold and that λ1 ≥
4
√
2(λ0 + C1C2a

0h2). Then, on T ,

S
(
m̃−m0, m̃(1) − (m0)(1)

)
+ λ1P

(
m̃−m0, m̃(1) − (m0)(1)

)
≤ 4λ2

1a
0/φ2

n.

Below we will state assumptions under which P (T2) → 1, see Theorem 3.2.
Here and below, we write an ≈ bn for two sequences an and bn if the ratio an/bn
is bounded away from zero and infinity. Suppose nh → ∞ and h → 0 as n → ∞.
Taking λ0 ≈ dn

√
log p/(nh) from Lemma 3.1, Theorem 3.1 gives

p∑
j=1

‖m̃j −m0
j‖ ∼

(
dn

√
log p

nh
+ a0h2

)
a0φ−2

n ,

p∑
j=1

‖m̃(1)
j − (m0

j )
(1)‖ ∼

(
dn

√
log p

nh3
+ a0h

)
a0φ−2

n .

Moreover, suppose that X
(j)
i are bounded by a log-factor, that φn is bounded

away from zero and that the cardinality of the true active set A0 is of order
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(log p)γ for some γ > 0. Then, up to a log term, the above rates coincide with
that of oracle estimators that utilize knowledge of the set A0, and that achieve
the optimal nonparametric convergence rate when h ≈ n−1/5. Thus, our re-
sults can be interpreted as oracle results for the estimators of the coefficient
functions and their derivatives. Regarding model selection, we will show in Sec-
tion 3.2 that the LASSO estimator (m̃, m̃(1)) (with any choice of λ1) cannot
achieve consistency in general. Thus, we chose λ1 which minimizes an estimate
of prediction error in the simulated and real data examples.

We present theoretical results for varying coefficient models with i.i.d. data
and for time varying regression models. We introduce some generic notations
where the definitions differ in these two settings. We define Σ(z) = E[XX�|Z =
z] under the i.i.d. setting and Σ(i/n) = E[XiX

�
i ] under the time series set-

ting. Furthermore, f denotes the density of Z under the i.i.d. setting and
f(z) ≡ 1 under the time series setting. We now state sufficient conditions for
(A4). Note that the quantity (3.1) in the assumption (A4) depends on the data
{(Xi, Zi, Yi), 1 ≤ i ≤ n}. We now state an assumption that is related to (A4),
but with random quantities replaced by nonrandom terms:

(A4’) There exists φ′
n > 0 such that

φ′2
n

⎛⎝∑
j∈A0

‖mj‖2 + h2‖m(1)
j ‖2

⎞⎠
≤
∫

m(z)�Σ(z)m(z)f(z)dz + h2

∫
m(1)(z)�Σ(z)m(1)(z)f(z)dz(3.3)

for any m = (m1, . . . ,mp)
� and m(1) = (m

(1)
1 , . . . ,m

(1)
p )� satisfying

P(A0)c(m,m(1)) ≤ 3PA0(m,m(1)).

In our notation, 0 < C < ∞ denotes a generic constant, not depending on
n. This means that the variable name C is used for different constants, even in
the same equation. We now state additional assumptions. We will show below
that under (A1)–(A2) and under these conditions, (A4’) implies (A4).

(A5) There exists a constant 0 < C < ∞, not depending on n, such that

sup
1≤j,k≤p

|Σjk(z)− Σjk(z
′))| ≤ C|z − z′|

for any z, z′ ∈ [0, 1] and sup1≤j≤p supz Σjj(z) ≤ C < ∞.
(A6) Under the i.i.d. setting, n−1h−2 logn → 0 and the density f of Z is Lips-

chitz continuous and bounded away from zero; under the time series set-
ting, {Xi, 1 ≤ i ≤ n, n ∈ Z} is α-mixing where the mixing coefficients

α(k) = sup
(m,n):m≤n−k

sup
A∈σ(Xs,s≤m)

B∈σ(Xs,s≥m+k)

|P (A ∩B)− P (A)P (B)|

satisfy α(k) ≤ Ck−α for some C > 0 and α > 1, and

np2d−2
n

(
logn+ log p

nh

)α/2

→ 0, n−1h−2 → 0. (3.4)
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(A7) Under the i.i.d. setting, (φ′
n)

−2a0
(
d2n(logn+ log p)1/2(nh)−1/2 + h

)
→ 0;

under the time series setting, (φ′
n)

−2a0
(
d2n(log n+log p)1/2(nh)−1/2+h+

n−1h−2
)
→ 0.

Since the constants φn and φ′
n in the assumptions are not unique, we suppose

that φn and φ′
n are chosen as the largest positive constants satisfying (A4) and

(A4’), respectively. In (A6), the first condition n−1h−2 logn → 0 for the i.i.d.
settings guarantees uniform bounds on N(z) of the order nh, with probability
tending to one, where N(z) is the number of Zi’s that fall into the interval
[z − h, z + h], see the discussion in the first paragraph of the Appendix for
details. Note that since Zi = i/n under the time series setting, N(z) ≤ 2nh+ 1
for z ∈ [0, 1]. Under the time series setting, the mixing condition of (A6) is not
strong, compare also recent work on local stationary processes [see 17, 32, for
example]. Time dependency of the covariates X in the time varying coefficient
model restricts the growth rate of p. The first condition in (3.4) implies that
the order of p does not exceed (nh)α/4 and thus, the larger (smaller) α is, the
more (less) covariates are allowed in the model. If the α-mixing coefficients α(k)
decrease exponentially and p grows at any polynomial rate of n, i.e. p = O(nκ)
for κ > 0 then there is no such restriction on p as long as (A7) holds. Then,
note that because of α(k) ≤ Ck−α for all α > 0 the first condition in (3.4)
is automatically satisfied. The assumption (A7) implies that the number a0 of
true nonzero coefficient functions cannot grow too fast. In the i.i.d. setting, it
allows for ultra-high dimensionality of the variables, i.e., p = o(exp(nh)) if φn,
a0, dn are bounded.

The following theorem states an asymptotic equivalence between φn and φ′
n.

Theorem 3.2. Assume that (A1)–(A2), (A4’) and (A5)–(A7) hold. Then, (A4)
holds with a sequence φn that fulfills Cφ′

n ≤ φn ≤ C−1φ′
n for some C > 0.

Let bn =
(
dn(log p)

1/2(nh)−1/2 + a0h2
)
a0(φ′

n)
−2. Theorem 3.2 also gives a

uniform rate of convergence for the estimators m̃j and m̃
(1)
j , j = 1, . . . , p.

Corollary 3.1. Under (A1)–(A3),(A4′), (A5)–(A7) and bn → 0, we have that∑p
j=1 ‖m̃j −m0

j‖+ h‖m̃(1)
j − (m0

j )
(1)‖ = Op(bn).

3.2. Consistency and inconsistency of group LASSO estimators

In this section, we study if the proposed estimator (m̃, m̃(1)) in (2.2) achieves
consistency in model selection. Here, consistency means that the selected set
Ã = {j = 1, . . . , p : ‖m̃j‖ 	= 0} by the estimator is equal to the true active set
A0 with probability tending to 1 as n → ∞. Discrimination between varying
and non-varying functions in model (2.1) would require an additional model
choice procedure. In this section we will state a condition that is necessary for
consistency, see Proposition 3.1 and Theorem 3.3. At the end of this section, we
will use these results to show inconsistency of our group LASSO (m̃, m̃(1)) in
an example.
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For simplification we make the following additional condition:

(C) the cardinality a0 = |A0| of the true active set is fixed and the smallest
eigenvalues of ΣA0,A0(z) are bounded away from zero uniformly in z ∈
[0, 1], that is, there exists a constant φ2 > 0, not depending on z, such

that a�ΣA0,A0(z)a ≥ φ2a�a for any a ∈ R
|A0|.

Before presenting our theoretical results, we introduce some notation. Let Γi(z)=

(X�
i , ((Zi − z)/h)X�

i )
� and Ŝ(z) = n−1

∑n
i=1 ΓiΓ

�
i Kh(z − Zi). We also skip

the argument and write Γi and Ŝ. Define Γi,j and Γi,A0 as Γi but with Xi

replaced by X
(j)
i and Xi,A0 = (X

(j)
i : j ∈ A0)�, respectively. Similarly, Ŝj,A0 =

n−1
∑n

i=1 Γi,jΓ
�
i,A0Kh(· − Zi) and ŜA0,A0 = n−1

∑n
i=1 Γi,A0Γ�

i,A0Kh(· − Zi).

Given any 0 ≤ z ≤ 1 and any j = 1, . . . , p, we define δ(j)(z) = n−1
∑n

i=1[Γi,j(z)−
Ŝj,A0(z)Ŝ−1

A0,A0(z)Γi,A0(z)]e0i (z)Kh(z − Zi) also denoted by (δ1,j , δ2,j)
�, where

e0i (z) = Yi − X�
i [m

0(z) + (m0)(1)(z)(Zi − z)]. Let s̃A0(·) = (s̃j(·) : j ∈ A0)�

and s̃
(1)
A0 (z) = (s̃

(1)
j (z) : j ∈ A0)� with s̃j(z) = m̃j(z)/

√
‖m̃j‖2 + h2‖m̃(1)

j ‖2 and

s̃
(1)
j (z) = hm̃

(1)
j (z)/

√
‖m̃j‖2 + h2‖m̃(1)

j ‖2.
The following proposition and theorem give a necessary condition for consis-

tency of the group LASSO.

Proposition 3.1. Suppose that (A1)–(A2), (C) and (A5)–(A7) hold and that
limn→∞ P (Ã = A0) = 1. Then, for any ε > 0, we have√∫

[Σj,A0(z)ΣA0,A0(z)−1s̃A0(z)]2 + [Σj,A0(z)ΣA0,A0(z)−1s̃
(1)
A0 (z))]2dz

≤ 1 + ε+ 2λ−1
1

√∫
δ21,j + δ22,j (3.5)

for j 	∈ A0 with probability tending to 1 as n → ∞.

Let Δ2
j,s =

∫
{n−1

∑n
i=1 X

(j)
i εi((Zi−z)/h)sKh(z−Zi)}2dz for 1 ≤ j ≤ p and

s = 0, 1. Define S1 ≡ S1(λ0) = {max1≤j≤p, s=0,1 Δ
2
j,s ≤ λ2

0} and S ′
1 ≡ S ′

1(λ
′
0) =

{maxj∈A0, s=0,1 Δ
2
j,s ≤ λ′2

0 }. Then, S1(λ0) ⊂ T1(λ0) and similarly as in the proof

of Lemma 3.1, it can be shown that P (S1) ≥ 1−Mλ−2
0 (nh)−1d2n log p for some

M > 0.

Theorem 3.3. Suppose that assumptions (A1)–(A3), (C) and (A5)–(A7) hold.
Then, the following properties are obtained: (i) on S ′

1 ∩ S1 ∩ T2 with C2 > C,

max1≤j≤p

√∫
δ21,j + δ22,j ≤

√
2(λ0 + φ−2(a0C2)λ

′
0 + C1C2a

0h2); (ii) P (S ′
1) ≥

1 − Mλ′−2
0 (nh)−1 d2n for some M > 0 where C2, C are the constants in the

definition of T2 and in assumption (A5), respectively.

Remark 3.1. For p → ∞ with asymptotically optimal choices of λ0 and λ′
0,

λ0 ≈ dn
√
log p/(nh) and λ′

0 ≈ dn
√

1/(nh), (3.5) is uniformly bounded by 3/2+
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2ε (with probability tending to one) as long as the conditions in Theorem 3.3
are fulfilled and it holds that λ1 ≥ 4

√
2(λ0 + C1C2a

0h2), see Theorem 3.1. It
easily follows that√∫

[Σj,A0(z)ΣA0,A0(z)−1s0A0(z)]2dz ≤ 3/2, (3.6)

where s0A0(·) = (s0j (·) : j ∈ A0)� and s0j (·) = m0
j (·)/

√
‖m0

j‖2.

Remark 3.2. For fixed p we get the following result under the conditions of
Theorem 3.3 and under the additional assumption that the largest eigenval-
ues of E(εε�|X1, . . . ,Xn, Z1, . . . , Zn) are bounded by a constant, not depending
on n and on the values of X1, . . . ,Xn, Z1, . . . , Zn. Here ε denotes the vector

(ε1, . . . , εn)
�. Then, on S1 ∩T2, max1≤j≤p

√∫
δ21,j + δ22,j ≤

√
2(λ0+C1C2a0h

2)

and P (S1) ≥ 1−Mλ−2
0 (nh)−1 d2n for some M > 0. This also implies (3.6) for

fixed p.

We now give an example where our group LASSO is inconsistent. Suppose
that the matrix Σ(z) is constant over z, i.e., Σ(z) ≡ Σ. Let 1K = (1, . . . , 1)� ∈
R

K . Similarly as in Corollary 1 in Zou [45], we choose A0 = {1, . . . , a0} with
a0 ≥ 2, ΣA0,A0 = (1 − ρ1)I + ρ11a01�

a0 , Σa0+1,A0 = ρ21
�
a0 ,Σjj = 1, j 	∈ A0

and Σjk = Σkj = 0 for j ≥ a0 + 2 and k ≤ a0 + 1. In this model there is one

irrelevant predictor X(a0+1) correlated with relevant predictors. It holds that√∫
[Σa0+1,A0(z)ΣA0,A0(z)−1sA0(z)]2dz=

∣∣∣∣ ρ2
1 + (a0 − 1)ρ1

∣∣∣∣
√∫

(1�
a0sA0(z))2dz

because of Σa0+1,A0Σ−1
A0,A0 = ρ2/(1 + (a0 − 1)ρ1)1

�
a0 . Therefore, if −(a0 −

1)−1 < ρ1 < −(a0)−1, 1 + (a0 − 1)ρ1 < |ρ2| <
√
(1 + (a0 − 1)ρ1)/a0 and if the

nonvanishing functions mj , j ∈ A0 are all nonnegative (or nonpositive), then,
the model selection via the method (m̃, m̃(1)) defined at (2.2) is not consistent
because condition (3.6) does not hold.

3.3. Oracle properties

In this section, we present oracle properties of the estimator (m̂, m̂(1)), defined

as minimizer of (2.3). Put m̂A0 = (m̂j : j ∈ A0)� and m̂
(1)
A0 = (m̂

(1)
j : j ∈ A0)�.

Furthermore, define V 0 = {j ∈ A0 : ‖m0
j‖c 	= 0} as the index set of true

coefficient functions that are varying over z ∈ [0, 1]. We compare m̂A0 and

m̂
(1)
A0 with the oracle estimators m̂ora = (m̂ora

j : j ∈ A0)� and (m̂ora)(1) =

((m̂ora
j )(1) : j ∈ A0)� that are defined as minimizers of

n−1

∫ n∑
i=1

[Yi −
∑
j∈A0

X
(j)
i (mj(z) +m

(1)
j (z)(Zi − z))]2Kh (z − Zi) dz (3.7)
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with respect to mj , (mj)
(1) for j ∈ A0 under the constraint that mj are constant

functions for j ∈ A0 \ V 0 and that (mj)
(1) ≡ 0 for j ∈ A0 \ V 0. The oracle

estimator is an infeasible estimator that makes use of the unknown true index
sets A0 and V 0.

For the asymptotic analysis in this section we make the following additional
assumption.

(A8) There exists a positive constant δ > 0 such that infj∈A0 ‖m0
j‖ > δ and

infj∈V 0 ‖m0
j‖c > δ.

Theorem 3.4. Suppose that assumptions (A1)–(A3),(A4′), (A5)–(A8) hold,
that max{λ2, λ

∗
2}/δ → 0 and that min{λ2, λ

∗
2}/bn → ∞. Then, (i) P (‖m̂j‖ =

‖m̂(1)
j ‖ = 0 for j 	∈ A0 and ‖m̂j‖c = ‖m̂(1)

j ‖ = 0 for j 	∈ V 0) → 1 as n → ∞;

(ii) with probability tending to 1 as n → ∞, (m̂A0 , m̂
(1)
A0 ) minimizes (3.7) with

respect to mj , (mj)
(1), j ∈ A0 subject to ‖mj‖c = 0 and ‖(mj)

(1)‖ = 0 for
j ∈ A0 \ V 0.

Theorem 3.4 states that our proposed procedure consistently identifies the
true index sets of varying and non-varying coefficients in the model. Thus, the

resulting estimators m̂j and m̂
(1)
j of the nonzero coefficient functions have the

same asymptotic properties as the oracle estimators m̂ora
j and (m̂ora

j )(1) for

j ∈ A0. Using standard arguments of kernel smoothing it can be shown that
the estimators m̂j , j ∈ A0 \ V 0 of the (nonzero) constant coefficients achieve
the parametric

√
n-rate of convergence under certain regularity conditions, see

(A.26) in Appendix A.7. The required assumptions allow h ≈ n−1/5 for the
case that a0 = |A0| is fixed. This implies that in this case the same bandwidth
h ≈ n−1/5 can be used to achieve an optimal rate of convergence for both, the
parametric and the nonparametric components, at the same time. In contrast
to other methods in semiparametrics, undersmoothing is not required for

√
n

consistency of the parametric estimators.

3.4. Consistent identification of BIC

In this section, we study consistency of the BIC methods proposed in (2.5) and
(2.6). Let I0 = A0 \ V 0 be the index set of the true non-varying coefficient
functions m0

j with ‖m0
j‖ 	= 0 and ‖m0

j‖c = 0 in model (2.1). Given a pair of
subsets V and I of {1, . . . , p} with V ∩ I = ∅, define A ≡ A(V, I) = V ∪ I.
For a technical reason, we let BIC run over index sets V of varying coefficient
functions and index sets I of non-varying coefficient functions with |A(V, I)| ≤
sn, where sn is chosen such that (A4”) and (A10) hold. For similar dimension
restrictions in model selection for (high dimensional) linear models compare
Chen and Chen [4], Kim et al. [20] and Lee et al. [23]. We put M = {(V, I) :
V, I ⊂ {1, . . . , p}, V ∩ I = ∅, |A(V, I)| ≤ sn}. Note that it is computationaly
infeasible to calculate BIC(V, I) for all elements in M, at least when p is large.
A modification where the minimization does not run over the full space M will
be discussed below and studied in the simulation section 4.3. The now developed
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theory for the estimator with (V, I) running over the full spaceM will be applied
to this modification below.

For stating our results on the BIC methods we need the following additional
assumptions.

(A4”) There exists a constant φ′′ > 0, not depending on n, such that with
probability tending to one,

(φ′′)2

⎛⎝∑
j∈A

‖mj‖2 + h2‖m(1)
j ‖2

⎞⎠ ≤ S
(
m,m(1)

)

for all m = (m1, . . . ,mp)
� and m(1) = (m

(1)
1 , . . . ,m

(1)
p )� with sets A =

{1 ≤ j ≤ p : mj 	≡ 0} whose cardinality is bounded by 2sn.
(A9) The sequences dn in (A1) and a0 = |A0| are bounded. The constant δ in

(A8) is bounded away from zero.
(A10) It holds that p = O(nκ) for some κ > 0, h ≈ n−1/5, a0 ≤ sn and

sn log n/(nh) → 0.
(A11) The constant Cn in (2.5) and (2.6) satisfies Cn →∞ and Cn logn(nh)

−1 →
0.

(A12) It holds that

max
1≤k≤p

|n−1
n∑

i=1

∫
êorai (z)Kh(z − Zi)dzX

(k)
i | = op(

√
Cn logn/n),

where êorai (z) = Yi −
∑

j∈A0 X
(j)
i [m̂ora

j (z) + (m̂ora
j )(1)(z)(Zi − z)] for

1 ≤ i ≤ n and z ∈ [0, 1].

For simplicity, we make assumptions (A4”) and (A9) that put stronger con-
ditions on φ

′′
, dn, a

0, δ than the assumptions in Subsections 3.1 and 3.3. Our
theory can be generalized to cases where the constants φ

′′
, dn, a

0 and δ depend
on the sample size n, i.e, φ

′′
, δ tend to zero as n → ∞ or dn, a

0 diverge with n.
However, then more restrictive conditions on Cn are needed that depend on the
unknown quantities φ

′′
, dn, a

0 and δ. This restricts the practical use of such a
result. The (A4′′) is a modification of the so-called ‘sparse Riesz condition’ of
Zhang and Huang [42] in high dimensional linear regression. For an application
of this assumption see also Wang et al. [37] and Lee et al. [23]. We make the
assumption (A12) in order to show that our procedures correctly classify the es-
timated constant coefficients into zeros and non-varying ones. It is also needed
for getting asymptotic properties for the oracle estimator m̂ora

j , (m̂ora
j )(1) for

j ∈ A0. The asymptotics of the oracle estimator is well understood and the
derivation of sufficient high-level conditions follows standard lines, see also Ap-
pendix A.7 for a related discussion.

The following theorem states that the BIC method defined in (2.6) consis-
tently estimates the index sets V 0 and I0.
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Theorem 3.5. Assume that (A1)–(A3), (A4”), (A8)–(A12) hold. Then, we
have

P

(
min

(V,I)∈M:V �=V 0 or I �=I0
BIC(V, I) > BIC(V 0, I0)

)
→ 1 as n → ∞.

Remark 3.3. For the theoretical statement of the theorem, any positive se-
quence {Cn} that fulfills (A11) works. In all our numerical experiments, we
used Cn =

√
log p and this choice lead to good results.

Theorem 3.5 can be translated to a consistency result of the BIC in (2.5),

which is a penalization parameter selector for the problem (2.3). Define λ̂2 =
argminλ2 BIC(λ2) where the ‘argmin’ runs over all λ2 > 0 such the cardinal-
ity |Âλ2 | of Âλ2 is smaller than or equal to sn. Here Âλ2 = V̂λ2 ∪ Îλ2 is the

subset selected by the penalized estimator m̂λ2,j and m̂
(1)
λ2,j

, for 1 ≤ j ≤ p.

Recall that V̂λ2 = {j = 1, . . . , p : ‖m̂λ2,j‖ 	= 0, ‖m̂λ2,j‖c 	= 0} and Îλ2 =
{j = 1, . . . , p : ‖m̂λ2,j‖ 	= 0, ‖m̂λ2,j‖c = 0}. From Theorem 3.4 and 3.5, one

gets that P (V̂λ̂2
= V 0, Îλ̂2

= I0) → 1 as n → ∞. That is, the BIC in (2.5)

chooses the penalty constant λ2 such that the resulting estimator (m̂λ2 , m̂
(1)
λ2

)

consistently selects the true V 0 and I0. Furthermore, we get that minimizing
BIC(V, I) over (V̂λ2 , Îλ2) leads to a consistent estimator of (V 0, I0). We denote

the minimizing sets by (Ṽ , Ĩ). We call the estimator (m̄Ṽ ,Ĩ , m̄
(1)

Ṽ ,Ĩ
) the BIC-

estimator. Recall that (m̄V,I , m̄
(1)
V,I) is the minimizer of the unpenalized criterion

L(m,m(1)) subject to the constraints that ‖mj‖ = ‖m(1)
j ‖ = 0 for j ∈ (V ∪ I)c

and ‖mj‖c = ‖m(1)
j ‖ = 0 for j ∈ I. Thus we have three types of estimators: the

LASSO-estimator, the SCAD-estimator with penalty constant chosen by BIC
and the just introduced BIC-estimator. We will compare the three estimators
in our simulation study in the next section.

4. Numerical studies

4.1. Numerical implementation

Our proposed criteria (2.2) and (2.3) include integrals over the interval [0, 1]. In
the numerical implementation of the method we propose to approximate the in-
tegrals by discretization schemes. In our computations we take J discretization
points of the interval [0, 1] with J = 100 and compute the Riemann sum of the
integral for numerical integration. Then our problems turn into a 2Jp dimen-
sional optimization problem. The discretized problem of minimizing (2.2) can
be formulated as a typical problem of the group LASSO and easily solved by any
numerical algorithm for the group LASSO. In contrast, the resulting problem of
(2.3) is quite complicated because there is an hierarchical structure between the

different penalties {‖mj‖2 + h2‖m(1)
j ‖2}1/2 and {‖mj‖2c + h2‖m(1)

j ‖2}1/2, more

precisely, {‖mj‖2c + h2‖m(1)
j ‖2}1/2 ≤ {‖mj‖2 + h2‖m(1)

j ‖2}1/2. Here, we present
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a numerical algorithm for minimizing (the discretized version of) the criterion
(2.3). The optimization problem (2.2) can be done either by using any available
software for solving a group LASSO problem or by applying our algorithm for
(2.3) with v1 = · · · = vp = λ and w1 = · · · = wp = 0.

Recall the definitions of Γi(z) and Ŝ(z) in Section 3.2, and define L(z) =
n−1

∑n
i=1 ΓiYiKh(z−Zi). With J discretization points z1, . . . , zJ of the interval

[0, 1], our problem (2.3) can be rewritten as follows:

min
x,q,s,t

⎧⎨⎩J−1
J∑

j=1

(qj − 2L(zj)
�x(zj)) +

p∑
k=1

(vksk + wktk)

⎫⎬⎭ (4.1)

such that x(zj)
�Ŝ(zj)x(zj) ≤ qj , j = 1, . . . J,

‖Akx‖2 ≤ sk, k = 1, . . . , p,

‖Bkx‖2 ≤ tk, k = 1, . . . , p,

where x = (x(z1)
�, . . . ,x(zJ )

�)�, q = (q1, . . . , qJ)
�, s = (s1, . . . , sp)

� and
t = (t1, . . . , tp)

�. Also Ak and Bk denote the 2Jp × 2Jp matrices Ak =
diag(e�k , e

�
k , . . . , e

�
k ) and

Bk =

⎛⎜⎜⎜⎜⎝
Dk 0p×2p · · · 0p×2p

0p×2p Dk
. . .

...
...

. . .
. . . 0p×2p

0p×2p · · · 0p×2p Dk

⎞⎟⎟⎟⎟⎠
with a p × 2p dimensional matrix Dk = [diag(ek − J−11); diag(ek)], where
1 = (1, . . . , 1)� is a p-dimensional vector, ek is the kth standard basis vector for
a Euclidean space with dimension p and 0p×2p is the p × 2p zero matrix with
all its entries being zero. Because of this reformulation as a second order cone
programming (SOCP) problem, the problem (2.3) can be minimized by any of
the many available numerical solvers of SOCP problems. In our simulations and
real data analysis, we used the package ‘cvx’ in MATLAB, see CVX Research,
Inc. [7] and Grant and Boyd [18] for details. Note that the dimension of x is 2Jp.
When p is large, Jp is very large so that the optimization can lead to a grave
difficulty of data handling for available softwares. This difficulty generally occurs
if one would consider penalized methods based on kernel smoothing in high
dimensional models. To circumvent the problem, we used an iterative algorithm
to minimize (4.1) in a coefficient(covariate) wise manner for our simulations and
in our data example. The idea of coordinatewise optimization is widely used in
high dimensional models for similar reasons [see 16, for example]. Although
we observed in our simulations that our iterative algorithm converges in a few
iterations (3 ∼ 10, and on average about 4.9 iterations), computation is not fast
enough. The reason is that one has to solve a SOCP problem numerically at
each covariate-wise step. It deserves further study to develop more efficient and
fast computational algorithms.
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In our numerical work we used the Epanechnikov kernel K(u) = 3/4 · (1 −
u2)I(|u| ≤ 1) with bandwidth h = 0.15. To select the regularization parameter
λ1 in (2.2), we used a 5-fold cross validation estimate of the prediction error. For
this, we partitioned randomly the original sample into 5 groups of subsamples,
X1,. . . ,X5. Then, for each j, the sample with the jth partition removed, X−j ,
is used for estimation whereas the jth partition, Xj , is used for validation. For
the method (2.2), we selected the regularization parameter λ1 that minimizes
the cross validation criterion

5∑
j=1

∑
i∈Xj

[
Yi −X�

i m̃−j(Zi)
]2
, (4.2)

where m̃−j(·) is the estimate obtained by applying (2.2) to the data X−j . For
selecting the regularization parameter λ2 in (2.3), we used BIC as defined in
(2.5). For the low dimensional case, (n, p) = (200, 10), we used BIC with Cn = 1.
In the high-dimensional cases (n, p) = (200, 100) and (200, 200), we chose λ2 for
the method (2.3) based on BIC with Cn =

√
log p.

4.2. Model identification and estimation of penalized methods

We simulated the varying coefficient model in both specifications: in the i.i.d.
and in the time series settings, introduced in Section 2. We generated data from
the following models:

• Model I (i.i.d. setting):

Yi =

p∑
j=1

X
(j)
i m0

j (Zi) + εi, (4.3)

where X
(1)
i ≡ 1. The covariates (X

(2)
i , . . . , X

(p)
i )� are generated from a

multivariate normal distribution with mean 0 and covariance matrix Σ =
(σj1,j2) with σj1,j2 = 0.5|j1−j2|, the index variables Zi are from a uniform
distribution U [0, 1], the random errors εi are from N(0, 0.52) and for the
coefficient functions we choose

m0
1(z) = 2 sin(2πz), m0

2(z) = 4z(1− z), m0
4(z) = 0.5, m0

5(z) = 0.5,

and m0
j (z) = 0 for j = 3 and j ≥ 6.

• Model II (time series setting):

Yi = 0.4 sin(2πi/n)Yi−1 + 4i/n(1− i/n)X
(1)
i + 0.5X

(2)
i + εi,

where {εi} and {Xi} are independently generated by the AR(1) models:

X
(j)
i = 0.5X

(j)
i−1 +W

(j)
i , j = 1, . . . , p/2 and εi = 0.5εi−1 + ηi.

Here W
(j)
i are independently generated from N(0, 1) and ηi are i.i.d. from

N(0, 0.252).
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Table 1

Simulation results in Model I. In Model I the respective numbers of varying, non-varying
and zero coefficients are 2, 2 and p− 4.

Method p ISE rISE CM NV →V NI→V NZ→V NI→I NV →I NZ→I

LASSO 10 0.0775 2.3190 0.00 2.00 2.00 3.80 0.00 0.00 0.00
SCAD 0.0383 1.0304 0.90 2.00 0.07 0.00 1.93 0.00 0.03

LASSO 100 0.1111 3.4336 0.00 2.00 2.00 14.79 0.00 0.00 0.00
SCAD 0.0397 1.0931 0.81 1.98 0.00 0.00 2.00 0.02 0.17

LASSO 200 0.1195 3.3620 0.00 2.00 2.00 19.53 0.00 0.00 0.00
SCAD 0.0419 1.1417 0.77 1.98 0.00 0.00 2.00 0.02 0.21

Table 2

Simulation results in Model II. In Model II the respective numbers of varying, non-varying
and zero coefficients are 2, 1 and p− 3.

Method p ISE rISE CM NV →V NI→V NZ→V NI→I NV →I NZ→I

LASSO 10 0.0291 2.3126 0.00 2.00 1.00 2.02 0.00 0.00 0.00
SCAD 0.0140 1.0079 0.83 2.00 0.15 0.00 0.85 0.00 0.02

LASSO 100 0.0342 2.5940 0.00 2.00 1.00 12.56 0.00 0.00 0.00
SCAD 0.0145 1.0281 0.90 2.00 0.01 0.00 0.99 0.00 0.10

LASSO 200 0.0346 2.6620 0.00 2.00 1.00 14.78 0.00 0.00 0.00
SCAD 0.0140 1.0397 0.83 2.00 0.00 0.00 1.00 0.00 0.17

In both models, we took n = 200 and p = 10, 100, 200 in order to see the
empirical performance of the methods when the number of the variables varies
with the sample size. In the time series scenario, i.e., Model II, we considered

p/2 lags of the response variable Yi−1, . . . , Yi−p/2 along with X
(j)
i , j = 1, ..., p/2

as potential predictors.

For an assessment of the model selection, we computed the proportion (CM)
how the true semiparametric model was correctly selected out of 100 Monte
Carlo replications, that is, the proportion of cases where the procedure cor-
rectly identified both the true index sets (V 0, I0). We also report the number
of correct and incorrect identifications of the varying and non-varying coef-
ficient functions: (NV→V ) denotes the average number of correctly identified
varying components, (NI→V ) the number of non-varying components classified
as varying and (NZ→V ) the number of zeros incorrectly identified as varying.
Furthermore, (NI→I) is the number of correctly identified non-varying compo-
nents, (NV→I) the number of varying components classified as non-varying, and
(NZ→I) the number of zeros incorrectly identified as non-varying. As measures
of estimation accuracy we report the average of the integrated squared error
(ISE),

∑p
j=1

∫
(mj(z) − m0

j (z))
2dz, and the median value of the relative inte-

grated squared error with respect to the oracle estimator (rISE). As above the
oracle estimator is defined as the minimizer of (3.7) subject to the knowledge
of the true index sets (V 0, I0).

Tables 1 and 2 summarize the simulation results of the LASSO-estimator,
see (2.2) and the SCAD-estimator, see (2.3), with penalty constant chosen by
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Fig 1. The first coefficients estimates m̃1 of the LASSO that shows good/median/poor per-
formance: they correspond to the 0.25 (red), 0.5 (green), 0.75 (blue) quantiles of the ISE
results.

BIC. The values of ISE and rISE show that both methods seem to work in the
simulation scenarios. This is expected from Theorems 3.1, 3.4 and 3.5. From
the tables, we also see, that the LASSO-estimator is not capable to discriminate
non-varying components from varying coefficients: the resulting values of CM,
NI→I , NV→I and NZ→I are always zero. Furthermore, the table shows that this
method tends to include more unnecessary varying components. In contrast, the
SCAD-method correctly discriminates both varying and non-varying coefficients
from zeros so that it gives a quite accurate estimation, also compared to the
oracle estimator. That LASSO performs relatively worse compared to SCAD this
might also be caused by the fact that LASSO generally has bias terms for all
coefficient functions because penalization applies to all coefficients by the same
amount. In Figure 1, the first components, m̃1, of the LASSO estimates in Model
I with p = 200 are displayed for the three samples that show good/median/poor
performances in estimation. More precisely, the estimates are shown for the
random samples corresponding to the 0.25, 0.5, 0.75 quantiles of the ISE results,
respectively. From the figure, it can be seen that all the estimates have a bias
but that they follow the shape of the true coefficient function m0

1 quite well.
The simulation results confirm the theoretical results in Section 3.

4.3. Consistency of BIC in semiparametric model identification

We carried out additional simulations to see how well the criterion BIC(V, I)
in (2.6) performs in model selection. For sn in the definition of M, we set
sn = 20 in the simulations. As discussed in Section 3.4 it is computationally
infeasible to calculate all values of BIC(V, I) within M when p is large and
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Table 3

Model selection and estimation results of BIC(V, I).

p ISE rISE CM NV →V NI→V NZ→V NI→I NV →I NZ→I

Model I 10 0.0368 1.0000 0.95 2.00 0.03 0.00 1.97 0.00 0.02
100 0.0396 1.0000 0.90 1.94 0.00 0.00 2.00 0.06 0.04
200 0.0424 1.0000 0.88 1.91 0.00 0.00 2.00 0.09 0.03

Model II 10 0.0143 1.0000 0.87 2.00 0.11 0.00 0.89 0.00 0.02
100 0.0136 1.0000 0.93 2.00 0.00 0.00 1.00 0.00 0.07
200 0.0148 1.0000 0.84 2.00 0.00 0.01 1.00 0.00 0.16

that for this reason, we propose to replace M by a subset of M given by
the regularization path of the penalization method (2.3). That means we let
BIC only run over the sets (V̂λ2 , Îλ2) with |Âλ2 | ≤ sn and λ2 > 0. We called
the unpenalized estimator corresponding to the choice of (V̂λ2 , Îλ2) the BIC
estimator in Section 3.4. Clearly, the unpenalized estimator with the choice

(V̂λ2 , Îλ2) is not equal to the penalized estimator (m̂λ2 , m̂
(1)
λ2

) with the same

value of λ2. Thus BIC(V̂λ2 , Îλ2) is not equal to BIC(λ2). Table 3 shows the
results of model selection by using the BIC(V, I)-criterion over the described
subset of M and it also gives the values of the integrated squared error for
the BIC-estimator. The table shows that in our simulations model choice by
BIC(V, I) works pretty well and leads to a very accurate estimator. However,
the differences between the SCAD-estimator and the BIC-estimator are small.
They both show a very excellent performance, in particular compared to the
LASSO-estimator in our simulations.

5. A data example

In this section, we apply our methods to daily observations of NASDAQ com-
posite index data from January 1, 1998 to December 31, 2011 (n = 3523). The
data include daily returns Ri, i.e., the differences between closing logarithmic
prices from today and yesterday, and the high-low ranges Yi, i.e., the differences
between the highest and lowest logarithmic prices of a day. The latter has been
proposed as a measure of daily volatility in finance. Figure 2 shows the time
series plots of the data. Note that the period of the data includes striking finan-
cial crisis events: (i) the internet bubble burst in March, 2000 and the aftermath
continued until 2002; (ii) the largest bankruptcy in U. S. history (the collapse
of Lehman Brothers) occurred in September, 2008.

The data plots show changes over time in the time series dynamics. In par-
ticular, one sees pattern in the conditional variance as heteroskedasticity and
volatility clustering. This motivates the use of time varying coefficient models.
We have fitted such a model with the daily volatility Yi as response variable.
For (potential) covariates, we took the high-low ranges as well as the value, the
squared value, the sign, the negative part and the squared negative part of the
daily returns. All these values have been taken from the last 4 weeks = 20 work-
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Fig 2. Time series plots for the daily return Ri (left) and the high-low range Yi (right).

ing days. The latter terms are included in the model to check for asymmetric
pattern. Thus, we have 120 covariates (except intercept) and the model is given
by

Yi = m0

(
i

n

)
+

120∑
j=1

X
(j)
i mj

(
i

n

)
+ εi, i = 1, . . . , 3523, (5.1)

with X = (Yi−1, . . . , Yi−20, Ri−1, . . . , Ri−20, R
2
i−1, . . . , R

2
i−20, I(Ri−1 < 0), . . .,

I(Ri−20 < 0), Ri−1I(Ri−1 < 0), . . . , Ri−20I(Ri−20 < 0), R2
i−1I(Ri−1 < 0), . . .,

R2
i−20I(Ri−20 < 0))�. In the analysis the variables are standardized to have

zero mean and unit variance, although all results are presented on the original
scale of the data.

We applied the penalization methods (2.2) and (2.3) to the dataset. The
Epanechnikov kernel was used with a bandwidth that spans approximately one
year and a half. As in the simulations we chose the regularization parameter
λ1 for (2.2) by cross validation and the choice of λ2 for (2.3) is based on ordi-
nary and high dimensional BIC. Method (2.2) identified 55 nonzero coefficient
functions whereas method (2.3) with both versions of BIC selected 12 nonze-
ros, among them, 5 varying and 7 non-varying components, see Table 4 and
Table 5. Table 6 contains the estimates of the coefficients in the data example
that were classified as non-varying by the (2.3). Figure 3 shows the plots of the
estimated (nonconstant) coefficient functions. The model fit makes sense. First,
this holds for the signs of the selected coefficients. This also concerns the se-
lected covariates depending on daily returns: Ri−1I(Ri−1 < 0), Ri−2I(Ri−2 < 0)
and R2

i−1I(R
2
i−1 < 0). This choice implies an asymmetric effect of returns on

volatility, which is well documented in the literature. Furthermore, in Figure 3
one sees that during the financial crisis periods the daily volatility tends to react
more strongly to the volatilities and the (negative) returns of last days. How-
ever, the curves differ in their shape. A past return (volatility) seems more (less)
influential in increasing volatility in the first financial crisis period (i) than in
the second period (ii). This may be explained by the difference in the pattern
of Yi during the two financial crisis periods: while rather sporadic peaks and
drop-offs were observed during the whole period (i), a number of peaks tend to
be concentrated within a relatively narrow time span (late 2008) during period
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Table 4

The selected covariates in the data example by (2.2).

Coefficient functions corresponding to Identified as

intercept, Yt−k, k = 1, ..., 6, 8, ..., 11, 13, ...17, 19, 20, nonzero
Ri−k, k = 1, ..., 5, 9, ..., 12, 19, R2

i−k, k = 4, 6, 9, 11, 12, 19, (varying)
I(Ri−k < 0), k = 4, 5, 9, 12, Ri−kI(Ri−k < 0), k = 1, ...5, 8, ...11,

R2
i−kI(Ri−k < 0), k = 1, 4, 5, 6, 8, 10, 18, 19

Table 5

The selected covariates in the data example by (2.3).

Coefficient functions corresponding to Identified as

intercept, Yt−1, Yt−3, Ri−1I(Ri−1 < 0), R2
i−1I(Ri−1 < 0) varying

Yt−2, Yt−4, Yt−5, Yt−6,Yt−8, Yt−10, Ri−2I(Ri−2 < 0) non-varying

Table 6

Estimates of the coefficients in the data example that were classified as non-varying.

Yt−2 Yt−4 Yt−5 Yt−6 Yt−8 Yt−10 Ri−2I(Ri−2 < 0)

0.1070 0.0520 0.0155 0.0248 0.0202 0.0164 -0.0285

(ii). This suggests that past volatilities can predict daily volatilities better in
period (ii) than in (i).

Following a referee’s suggestion, we checked prediction/one-day-ahead fore-
casts for the model chosen by LASSO and for the model chosen by SCAD. For
this purpose, we used the selected sets V̂ and Î of varying and non-varying coef-
ficients via either (2.2) or (2.3) as listed in Table 4 or 5, respectively. With these
two choices of (V̂ , Î), we fitted the time varying coefficient model to the observa-
tions up to the time r, {Xi, Yi : i = 1, . . . , r} with r0 ≤ r ≤ n where r0 = 3000.

Our one-day-ahead forecasts Ŷr+1 are given asX
�

r+1m̄V̂ ,Î(1; r), where m̄V̂ ,Î(1; r)

are the estimated coefficients using the r observations {Xi, Yi : i = 1, . . . , r} with
rescaled time i/r. The estimates m̄V̂ ,Î(1; r) were computed as m̄V̂ ,Î (see the dis-

cussion after (2.6)) but with the full data set replaced by {Xi, Yi : i = 1, . . . , r}.
The bandwidth hr was chosen so that the kernel window contained the same
number of observations as in the original model with scale i/n. The forecast

error (n−r0)
−1
∑n−1

r=r0
|Ŷr+1−Yr+1| was 0.0076 for the LASSO (2.2) and 0.0059

for the SCAD (2.3).

6. Conclusion

This paper closes a gap in recent interests in sparse high dimensional nonpara-
metric regression. Most papers in this area were only concerned with sieve and
orhtogonal series estimation. In this paper we have developed a penalized estima-
tion method based on kernel smoothing. This has been done for a central model
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Fig 3. Estimated coefficient functions corresponding to the intercept (top) and the variables
Yi−1 (middle left), Yi−3 (middle right), Ri−1I(Ri−1 < 0) (bottom left), R2

i−1I(Ri−1 < 0)
(bottom right).

of sparse high dimensional nonparametric regression. We considered high dimen-
sional varying coefficient models for two settings: for i.i.d. observations and for
time varying coefficient models. We showed that our methods can be easily nu-
merically implemented. We proposed several adaptations of group LASSO and
SCAD to the local linear kernel method and we carefully investigated their the-
oretical properties in model structure identification and estimation. We showed
that the group LASSO has an estimation error with nearly the same accuracy as
if the zero coefficient functions would be known but that typically, it is inconsis-
tent in model selection. Furthermore, the group SCAD estimators have the same
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asymptotic properties as when one would know the true structure of a partially
linear varying coefficient model. We also argue that the penalized estimators
of purely parametric components achieve parametric rates of convergence. This
is a stronger advantage than a oracle property as typically shown in the high
dimensionality literature. Further we proposed an extension of BIC to select the
shrinkage parameter for structure identification. We theoretically justified the
proposed BIC-methods by showing their consistency in (semiparametric) model
choice.

Appendix

Choose Zi, i = 1, . . . , n as i.i.d. copies of Z ∼ f where f is the density of Z.
Let C = supz∈[0,1] f(z) and let N(z) be the number of Zi’s which fall into
[z − h, z + h]. Note that N(z) follows a binomial distribution with parameters

n and
∫ z+h

z−h
f(u)du. If L increases at a polynomial rate of n, that is, L = O(nc)

for some c > 0, then

P ( sup
�=1,...,L

N(z�) > 3Cnh) ≤ L max
�=1,...,L

exp

(
−
2(n
∫ z�+h

z�−h
f(z)dz − 3Cnh)2

n

)
≤ L exp(−2C2nh2) → 0 (A.1)

as n → ∞. Note that using the Hoeffding’s inequality we get that P (W > M) ≤
exp(−2(np−M)2/n), where W ∼ Bin(n, p).

Here, we only present the proofs of Theorems 3.1–3.5 and of Proposition 3.1
in the time series settings. The proofs for the i.i.d. setting can be shown following
the lines of the proofs in the time series settings together with the fact (A.1),
so that we omit these proofs.

A.1. Proof of Lemma 3.1

For a given p-dimensional vector a = (a1, . . . , ap)
� ∈ R

p, we let |a|∞ =
sup1≤j≤p |aj | be the supremum norm of a. The methods leading to Theorem
2.3. of Dümbgen et al. [11] can be used to derive the following lemma for mar-
tingales.

Lemma A.1. For random variables ξt ∈ R
p, assume that ξt is Ft-measurable

for an increasing σ-field Ft with E(ξt|Ft−1) = 0 and E(ξ2t |Ft−1) < ∞. Then,
there exists a constant C > 0 such that

E(|
n∑

t=1

ξt|2∞) ≤ C log p

n∑
t=1

E(|ξt|2∞).

Now, we prove Lemma 3.1. Define ξ
(s)
i (z) = n−1εiXiKh(z−Zi)((Zi− z)/h)s

for s = 0, 1, i = 1, . . . , n and z ∈ [0, 1]. Let ξ
(s)
i,j (z), 1 ≤ j ≤ p be the j th
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component of ξ
(s)
i (z). Note that

∑n
i=1 ξ

(s)
i (z) =

∑
i:i/n∈[z−h,z+h] ξ

(s)
i (z), and

that the number of i’s satisfying z − h ≤ i/n ≤ z + h is uniformly bounded by
Cnh, where the constant C does not depend on z. Then, by applying Lemma
A.1, one can take a constant C > 0, not depending on z, so that

E|
n∑

i=1

ξ
(0)
i (z)|2∞ ≤ Cd2n

log p

nh
and E|

n∑
i=1

ξ
(1)
i (z)|2∞ ≤ Cd2n

log p

nh
(A.2)

for all z ∈ [0, 1]. Note that

|
∫ n∑

i=1

[ξ
(0)
i (z)�m(z) + ξ

(1)
i (z)�m(1)(z)h]dz|

≤
p∑

j=1

(‖
n∑

i=1

ξ
(0)
i,j ‖‖mj‖+ ‖

n∑
i=1

ξ
(1)
i,j ‖‖m

(1)
j ‖h).

This implies that T c
1 ⊂ {

∫
|
∑n

i=1 ξ
(0)
i (z)|2∞dz > λ2

0} ∪ {
∫
|
∑n

i=1 ξ
(1)
i (z)|2∞dz >

λ2
0}. Because of (A.2) this implies Lemma 3.1. �

A.2. Proof of Theorem 3.1

Let ε0i (·) = Yi−X�
i [m

0(·)+(m0)(1)(·)(Zi−·)]. Then, observe that on T = T1∩T2,

n−1

∫ n∑
i=1

ε0i (z)X
�
i (m(z) +m(1)(z)(Zi − z))Kh(z − Zi)dz

≤ (λ0 + C1C2a
0h2)

p∑
j=1

(‖mj‖+ h‖m(1)
j ‖) (A.3)

≤
√
2(λ0 + C1C2a

0h2)P (m,m(1)),

where C1 and C2 are the constants in the assumption (A3) and in the def-
inition of T2, respectively. From this and the inequality that L(m̃, m̃(1)) +
λ1P (m̃, m̃(1)) ≤ L(m0, (m0)(1)) + λ1P (m0, (m0)(1)), one has that on T ,

S
(
Δ,Δ(1)

)
+ λ1P (m̃, m̃(1))

≤ 2
√
2(λ0 + C1C2a

0h2)P (Δ,Δ(1)) + λ1P (m0, (m0)(1)),

where Δ(·) = (Δ1(·), . . . ,Δp(·))� with Δj(·) = m̃j(·) − m0
j (·), 1 ≤ j ≤ p and

Δ(1)(·) = (Δ
(1)
1 (·), . . . ,Δ(1)

p (·))� with Δ
(1)
j (·) = m̃

(1)
j (·)− (m0

j )
(1)(·), 1 ≤ j ≤ p.

This gives

S
(
Δ,Δ(1)

)
+

1

2
λ1 P(A0)c(Δ,Δ(1)) ≤ 3

2
λ1 PA0(Δ,Δ(1)). (A.4)

We conclude that
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2S
(
Δ,Δ(1)

)
+ λ1P (Δ,Δ(1)) ≤ 4λ1 PA0(Δ,Δ(1))

≤ 4λ1(a
0)1/2

⎛⎝∑
j∈A0

‖Δj‖2 + h2‖Δ(1)
j ‖2

⎞⎠1/2

≤ 4λ1(a
0)1/2φ−1

n

[
S
(
Δ,Δ(1)

)]1/2
≤ 4λ2

1a
0φ−2

n + S
(
Δ,Δ(1)

)
.

This concludes the proof of Theorem 3.1. Here, the last inequality uses the fact
that 2uv ≤ u2 + v2 for u, v ∈ R and the last second inequality follows directly
from (A.4) and the assumption (A4). �

A.3. Proof of Theorem 3.2

Let rn = d2n(logn+ log p)1/2(nh)−1/2 and Ψ̂jk,s(z) = n−1
∑n

i=1 X
(j)
i X

(k)
i ((Zi −

z)/h)sKh(z − Zi) for s = 0, 1, 2. The following lemma is taken from Liebscher
[25]. It states an exponential inequality for sums of α-mixing random variables.
We will use the result in the proof of Theorem 3.2.

Lemma A.2. (Liebscher, Theorem 2.1) For a triangular array ξi,n, 1 ≤ i ≤ n
with α-mixing coefficients α(k), assume that Eξi,n = 0 and |ξi,n| ≤ bn < ∞ a.s.
for 1 ≤ i ≤ n. Then, for all 1 ≤ m ≤ n and ε > 4mbn,

P (|
n∑

i=1

ξi,n| > ε) ≤ 4 exp

(
− ε2

64S2
mn/m+ 8εmbn/3

)
+ 4

n

m
α(m)

where S2
m = sup0≤j≤n−1 E(

∑min{(j+m),n}
i=j+1 ξi,n)

2.

Lemma A.3. Suppose that the assumptions (A1)–(A2), (A5)–(A7) hold. Then,
for sufficiently large M > 0 and s = 0, 1, 2,

lim
n→∞

P

(
sup

1≤j,k≤p
sup

z∈[0,1]

|Ψ̂jk,s(z)− EΨ̂jk,s(z)| ≥ Mrn

)
= 0 (A.5)

so that sup1≤j,k≤p supz∈[0,1] |Ψ̂jk,s(z)− EΨ̂jk,s(z)| = Op(rn) for s = 0, 1, 2.

Proof. Put Ψ̂jk(z) = Ψ̂jk,0(z). From Lemma 2.2 in Liebscher [25], note that

E

⎛⎝min{(l+m),n}∑
i=l+1

{
X

(j)
i X

(k)
i K

(
z − Zi

h

)
− E

[
X

(j)
i X

(k)
i K

(
z − Zi

h

)]}⎞⎠2

≤ C1md4n

for some constant 0 < C1 < ∞. Applying Lemma A.2 with m = r−1
n d2n, we get

that for 1 ≤ j, k ≤ p and z ∈ [0, 1]
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P
(
|Ψ̂jk(z)− EΨ̂jk(z)| > Mrn

)
= P

(∣∣∣∣∣
n∑

i=1

X
(j)
i X

(k)
i K

(z − Zi

h

)
− E(X

(j)
i X

(k)
i )K

(z − Zi

h

)∣∣∣∣∣ > Mrnnh

)

≤ C2

[
exp

(
−C−1

2

(Mrnnh)
2

nhd4n +Mrnnh · r−1
n d2n · d2n

)
+ nh(r−1

n d2n)
−1−α

]
≤ C2

[
exp

(
−(2C2)

−1M r2n
nh

d4n

)
+ nhr1+α

n d−2(1+α)
n

]
(A.6)

for M > 1 and some 0 < C2 < ∞.
Let δn = rnh and B� ≡ {z : |z − z�| ≤ δn}, 1 ≤ � ≤ N be minimal number of

balls with radius δn that cover [0, 1]. By Lipschitz continuity of K, observe that
for all z ∈ B�,

|Ψ̂jk(z)− Ψ̂jk(z�)| ≤ rn(nh)
−1

n∑
i=1

|X(j)
i X

(k)
i |K̃

(z� − z

h

)
for some bounded and nonnegative function K̃ with compact support. Then,

sup
z∈B�

|Ψ̂jk(z)− EΨ̂jk(z)| ≤ |Ψ̂jk(z�)− EΨ̂jk(z�)|

+rn

(
|Ψ̃jk(z�)|+ E|Ψ̃jk(z�)|

)
≤ |Ψ̂jk(z�)− EΨ̂jk(z�)|

+|Ψ̃jk(z�)− EΨ̃jk(z�)|+ 2rnM

for rn < 1 and sufficiently large M > 0, where Ψ̃jk(z) = n−1
∑n

i=1 |X
(j)
i X

(k)
i |

×K̃h(z − Zi). From this, (A.6) and the fact that N ≤ (1 + 4δ−1
n ) (see Section

2.4 in van de Geer [31]), we have

P
(

sup
1≤j,k≤p

sup
z∈[0,1]

|Ψ̂jk(z)− EΨ̂jk(z)| > 4Mrn

)
≤ p2N max

1≤j,k≤p

�=1,...,N

[
P
(
|Ψ̂jk(z�)− EΨ̂jk(z�)| > Mrn

)
+P
(
|Ψ̃jk(z�)− EΨ̃jk(z�)| > Mrn

)]
≤ C3

(
p2(rnh)

−1(np)−M/(2C2) + p2nrαnd
−2(1+α)
n

)
→ 0 as n → ∞

for sufficiently large M > 0, which completes the proof when s = 0. The fact
(A.5) with s = 1, 2, can be proved along the lines of the proof with s = 0. �

Let S∗(m,m(1)
)

=
∫
m(z)�Σ(z)m(z)dz + h2

∫
m(1)(z)�Σ(z)m(1)(z)dz.

Given z ∈ [0, 1] and s = 0, 1, 2, define Ψ̂s(z) to be the p×p matrix whose (j, k)th
element equals Ψ̂jk,s(z). Lemma A.3 shows that there exists a constant M1 > 0

such that sup1≤j,k≤p supz∈[0,1] |Ψ̂jk,s(z)−EΨ̂jk,s(z)| ≤ M1rn for s = 0, 1, 2 with
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probability tending to 1 as n → ∞. Define E = {sup1≤j,k≤p supz∈[0,1] |Ψ̂jk,s(z)−
EΨ̂jk,s(z)| ≤ M1rn, s = 0, 1, 2}. By assumptions (A2) and (A5), it can be
proved that for s = 0, 1, 2,

sup
1≤j,k≤p

z∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

Σjk(i/n)Kh(z − i/n)

(
i/n− z

h

)s

−Σjk(z)

∫ 1

0

Kh(z − u)

(
u− z

h

)s

du

∣∣∣∣
≤ M2

(
h+

1

nh2

)
(A.7)

for some constant M2 > 0. Let μs(K; z) =
∫ z

−1
usK(u)du for s = 0, 1, 2 and

−1 ≤ z ≤ 1. Since (μ1(K; 0))2 < μ0(K; 0)μ2(K; 0) by application of the Cauchy-
Schwarz inequality, we can take c1 > 0 and c2 > 0 that satisfy (μ1(K; 0))2 ≤
c1c2, c1 < μ0(K; 0) and c2 < μ2(K; 0). Let δ = min{μ0(K; 0)−c1, μ2(K; 0)−c2}
and M = max{M1,M2}. Note that |μ1(K; ·)| is decreasing and μ0(K; ·) and
μ2(K; ·) are increasing in an interval [0, 1]. By (A.7), we have that on E ,

S
(
m,m(1)

)
=

∫
[m�Ψ̂0m+ 2hm�Ψ̂1m

(1) + h2(m(1))�Ψ̂2m
(1)]

≥ μ0(K; 0)

∫
m(z)�Σ(z)m(z)dz − 2h

∣∣∣∣μ1(K; 0)

∫
m(z)�Σ(z)m(1)(z)dz

∣∣∣∣
+ μ2(K; 0)h2

∫
m(1)(z)�Σ(z)m(1)(z)dz

− M

(
rn + h+

1

nh2

)∫ { p∑
j=1

|mj(z)|+ h|m(1)
j (z)|

}2
dz

≥ δS∗(m,m(1)
)
− 32Ma0

(
rn + h+

1

nh2

) ∑
j∈A0

(
‖mj‖2 + h2‖m(1)

j ‖2
)

form = (m1, . . . ,mp)
� andm(1) = (m

(1)
1 , . . . ,m

(1)
p )� satisfying P(A0)c(m,m(1))

≤ 3PA0(m,m(1)). This implies φ2
n ≥ δ(φ′

n)
2 − 32Ma0(rn+h+(nh2)−1) so that

φ2
n ≥ (φ′

n)
2δ/2 with probability tending to one. By similar calculations, it can

be proved that there exists δ′ > 0 such that (φ′
n)

2 ≥ δ′(φn)
2 on a set whose

probability tends to one. �

A.4. Proofs of Proposition 3.1 and Theorem 3.3

Let ε > 0 be given. Recall Ψ̂jk,s(z) = n−1
∑n

i=1 X
(j)
i X

(k)
i ((Zi−z)/h)sKh(z−Zi)

for s = 0, 1, 2, 1 ≤ j, k ≤ p and z ∈ [0, 1]. By Lemma A.3 and (A.7), without
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loss of generality, we may assume that for s = 0, 1, 2,

Ψ̂jk,s(z)− Σjk(z)f(z)

∫ 1

0

Kh(z − u)

(
u− z

h

)s

du = op(1),

uniformly for z ∈ [0, 1] and 1 ≤ j, k ≤ p so that

Ŝj,A0(z)Ŝ−1
A0,A0(z) =

(
Σj,A0(z)Σ−1

A0,A0(z) 01×a0

01×a0 Σj,A0(z)Σ−1
A0,A0(z)

)
+ op(1),

(A.8)
where the term op(1) is uniform in z and j and 0m×n denotes the zero matrix

with dimensionm×n. Define b̃, c̃, denoting (b̃1(·), . . . , b̃p(·)) and (c̃1(·), . . . , c̃p(·)),
respectively, to be the minimizer of L(b, h−1c) + λ1P (b, h−1c) with respect to

b, c. Then, b̃j = m̃j and c̃j = hm̃
(1)
j , 1 ≤ j ≤ p. Similarly, we put b0 = m0 and

c0 = h(m0)(1).
Suppose Ã = A0. Then, by KKT condition, observe that

∂L(b, h−1c)

∂bj

∣∣∣∣
(b̃,c̃)

(·) + λ1s̃j(·) = 0 a.e., j ∈ A0

∂L(b, h−1c)

∂cj

∣∣∣∣
(b̃,c̃)

(·) + λ1s̃
(1)
j (·) = 0 a.e., j ∈ A0

∫ (
∂L(b, h−1c)

∂bj

∣∣∣∣
(b̃,c̃)

)2

+

(
∂L(b, h−1c)

∂cj

∣∣∣∣
(b̃,c̃)

)2

≤ λ2
1, j 	∈ A0 (A.9)

where
∂L(b, h−1c)

∂bj

∣∣∣∣
(b̃,c̃)

= − 2n−1
n∑

i=1

ẽi(z)Kh(z − Zi)X
(j)
i

and

∂L(b, h−1c)

∂cj

∣∣∣∣
(b̃,c̃)

= −2n−1
n∑

i=1

ẽi(z)Kh(z − Zi)X
(j)
i (Zi − z)/h

with ẽi(z) = Yi −X�
i [b̃(z) + c̃(z)(Zi − z)/h]. The first two equations give

d(z)

= ŜA0,A0(z)−1[n−1
n∑

i=1

Γi,A0(z)e0i (z)Kh(z − Zi)− 2−1λ1(s̃A0(z)� s̃
(1)
A0 (z)

�)�]

(a.e), where d(·) = (b̃j(·) − b0j (·), j ∈ A0; c̃j(·) − c0j (·), j ∈ A0)� is a 2a0

dimensional vector. Substituting this in the inequality (A.9), one gets√∫
[2δ1,j − λ1Σj,A0Σ−1

A0,A0 s̃A0 ]2 + [2δ2,j − λ1Σj,A0Σ−1
A0,A0 s̃

(1)
A0 ]2 ≤ (1 + ε)λ1
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from (A.8) and the fact that b̃j = c̃j = 0 for j 	∈ A0. This concludes the proof
of Proposition 3.1 because of√∫

h2
1 + h2

2 ≤
√∫

(g1 − h1)2 + (g2 − h2)2 +

√∫
g21 + g22 .

We now come to the proof of Theorem 3.3. For 0 ≤ z ≤ 1, let W(z) =
diag(Kh(Z1−z), . . . ,Kh(Zn−z)) ∈ R

n×n, D(z) = (Γ1(z), . . . ,Γn(z))
� ∈ R

n×2p,
Dj(z) = (Γ1,j(z), . . . ,Γn,j(z))

� ∈ R
n×2 and DA0(z) = (Γ1,A0(z), . . . ,Γn,A0(z))�

∈ R
n×2a0

. Denote the approximation error (or bias) X�[m0(Zi) − m0(·) −
(m0)(1)(·)(Zi − ·)] of the conditional mean E(Yi|Xi, Zi) = X�

i m
0(Zi) by Bi(·).

Also B = (B1, . . . , Bn)
� and P = W1/2

DA0(D�
A0WDA0)−1

D
�
A0W1/2. We will

use the following decomposition of e0i (z): e0i (z) = Bi(z) + εi, that implies
δ(j)(z) = n−1

Dj(z)
�W 1/2(z)(In×n−P(z))W 1/2(z)(B(z)+ε), where In×n is the

n×n dimensional identity matrix. Let ek, k = 1, 2 denote a 2-dimensional vector
of which the k th element is 1 and the other zero. From the fact that In×n−P(z)
is an idempotent matrix, (A.8) and the assumption (A5) with C2 > C, one can
see that on T2,

∣∣n−1e�k Dj(z)
�W 1/2(z)(In×n −P(z))W 1/2(z)B

∣∣ ≤ C1C2a
0h2 for

k = 1, 2, and z ∈ [0, 1], and that on S ′
1∩S1, ‖n−11�

2 D
�
j W

1/2(In×n−P)W 1/2ε‖ ≤
λ0 + φ−2a0C2λ

′
0. This completes the proof of Theorem 3.3. �

A.5. Proof of Theorem 3.4

Let m∗(·) = (m∗
1(·), . . . ,m∗

p(·))� and (m∗)(1)(·) = ((m∗
1)

(1)(·), . . . , (m∗
p)

(1)(·))�
be vectors of p functions whose jth entries, for j ∈ A0, are equal to m̂ora

j (·) and
(m̂ora

j )(1)(·), respectively, and where the other entries are zero functions. The
next lemma gives a rate of convergence for the oracle estimators.

Lemma A.4. Under the assumptions (A1)–(A3),(A4′) and (A5)–(A7),

∑
j∈A0

‖m∗
j−m0

j‖+h‖(m∗
j )

(1)−(m0
j )

(1)‖ = Op

(
a0(φ′

n)
−2

(
dn

√
log a0

nh
+ a0h2

))
.

Proof. Define

Pn =
∑
j∈A0

‖m∗
j −m0

j‖+ h‖(m∗
j )

(1) − (m0
j )

(1)‖,

Q(�)
n = sup

j∈A0

{∫ (
n−1

n∑
i=1

εiX
(j)
i

(
Zi − z

h

)�

Kh(z − Zi)
)2
dz

}1/2

, (A.10)

Rn = sup
z∈[0,1]

sup
j,k∈A0

n−1
n∑

i=1

|X(j)
i X

(k)
i |Kh(z − Zi), (A.11)

for � = 0, 1. From optimality of m̂ora
j , (m̂ora

j )(1) and Theorem 3.2, we get
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0 ≥ L(m∗, (m∗)(1))− L(m0, (m0)(1))

≥ −2(max{Q(0)
n , Q(1)

n }+ C1Rna
0h2)Pn + (Cφ′

n)
2(2a0)−1(Pn)

2, (A.12)

where C1 and C are the constants in assumption (A3) and in Theorem 3.2,
respectively. By Lemma A.3, (A.7) and similar calculations as in the proof of
Lemma 3.1, it can be shown that

Rn = Op(1), Q(�)
n = Op

(√
log a0

nh
dn

)
.

Together with (A.12) this implies the statement of Lemma A.4. �
Proof of Theorem 3.4. Since m∗

j , (m
∗
j )

(1) for j ∈ A0 minimizes (3.7) subject to

the constraints: ‖mj‖c = 0 and (mj)
(1) ≡ 0 for j ∈ A0 \ V 0, one has that for

any 0 ≤ z ≤ 1,

n∑
i=1

ε∗i (z)X
j
i (Zi − z)�Kh(z − Zi) = 0, � = 0, 1, j ∈ V 0, (A.13)

n∑
i=1

∫
ε∗i (z)X

j
i Kh(z − Zi)dz = 0, j ∈ A0 \ V 0, (A.14)

where ε∗i (·) = Yi−X�
i [m

∗(·)+(m∗)(1)(·)(Zi−·)]. Form(·) = (m1(·), . . . ,mp(·))�
and m(1)(·) = (m

(1)
1 (·), . . . ,m(1)

p (·))�, we define B(m,m(1)), B1(m,m(1)) and
B2(m,m(1)) as the respective integrals n−1

∫ ∑n
i=1 ε

∗
i (z)X

�
i [(m(z)+m(1)(z)(Zi−

z)]Kh(z−Zi)dz, n
−1
∫ ∑n

i=1 ε
∗
i (z)

∑
j∈A0\V 0 X

(j)
i [(mj(z)+m

(1)
j (z)(Zi−z)]Kh(z−

Zi)dz and n−1
∫ ∑n

i=1 ε
∗
i (z)

∑
j �∈A0 X

(j)
i [(mj(z)+m

(1)
j (z)(Zi−z)]Kh(z−Zi)dz,

and let c(m)(·) = (m1(·)−
∫
m1(z)dz, . . . ,mp(·)−

∫
mp(z)dz)

�. From (A.13) and

(A.14), we observe that for allm = (m1, . . . ,mp)
� andm(1) = (m

(1)
1 , . . . ,m

(1)
p )�,

B(m,m(1))

= B1(c(m),m(1)) +B2(m,m(1))

≤ Tn

⎛⎝ ∑
j∈A0\V 0

[‖mj‖c + h‖m(1)
j ‖] +

∑
j �∈A0

[‖mj‖+ h‖m(1)
j ‖

⎞⎠ , (A.15)

where Tn = max{Q(0)
n , Q

(1)
n } + Rn(a

0C1h
2 +
∑

j∈A0 ‖m∗
j −m0

j‖ + h‖(m∗
j )

(1) −
(m0

j )
(1)‖), with constant C1 chosen as in (A3) and with Q

(�)
n (� = 0, 1) and Rn

defined as in (A.10)–(A.11). Then, Tn = Op(bn) by Lemma 3.1 and Lemma A.4.
From Corollary 3.1, one has

sup
1≤j≤p

‖m̂j −m0
j‖ = Op(bn) and sup

1≤j≤p
h‖m̂(1)

j − (m0
j )

(1)‖ = Op(bn).

This together with the assumptions (A8), max{λ2, λ
∗
2}/δ → 0 and min{λ2, λ

∗
2}/

bn → ∞ implies

vj = λ2I(j 	∈ A0), and wj = λ∗
2I(j 	∈ V 0), (A.16)
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for all j = 1, . . . , p with probability tending to one as n → ∞. Thus on a set
(A.16) for all j = 1, . . . , p holds,

0 ≥ L(m̂, m̂(1))− L(m∗, (m∗)(1))

+min{λ2, λ
∗
2}

⎛⎝∑
j �∈A0

(‖m̂j‖2 + h2‖m̂(1)
j ‖2)1/2 +

∑
j �∈V 0

(‖m̂j‖2c + h2‖m̂(1)
j ‖2)1/2

⎞⎠
≥ −2B(m̂−m∗, m̂(1) − (m∗)(1))

+
min{λ2, λ

∗
2}√

2

⎛⎝∑
j �∈A0

||m̂j‖+ h‖m̂(1)
j ‖+

∑
j �∈V 0

‖m̂j‖c + h‖m̂(1)
j ‖

⎞⎠
≥ (−2Tn +

min{λ2, λ
∗
2}√

2
)

⎛⎝∑
j �∈A0

||m̂j‖+
∑

j∈A0\V 0

||m̂j ||c +
∑
j �∈V 0

h||m̂(1)
j ||

⎞⎠
because of the facts that (m̂, m̂(1)) is the minimizer of the criterion (2.3) and
that (A.15). This implies (i) and so (ii) of Theorem 3.4 because Tn = Op(bn)
and min{λ2, λ

∗
2}/bn → ∞. �

A.6. Proof of Theorem 3.5

Let (V, I) ∈ M be given. For simplicity, we denote the corresponding estimator

(m̄V,I , m̄
(1)
V,I) as (m̄, m̄(1)) whenever this may cause no confusion. Following

similar calculations as in (A.15), we have that

B(m̄−m∗, m̄(1) − (m∗)(1))

≤ Tn

{ ∑
j∈I0∩V

[‖m̄j‖c + h‖m̄(1)
j ‖] +

∑
j∈(A0)c∩V

[‖m̄j‖+ h‖m̄(1)
j ‖

}
+Sn

∑
j∈(A0)c∩I

|m̄j |, (A.17)

since B(m̄ − m∗, m̄(1) − (m∗)(1)) = B1(c(m̄), m̄(1)) + B2(m̄, m̄(1)) by (A.13)
and (A.14), where m∗, (m∗)(1), B(·, ·), B1(·, ·), B2(·, ·), Tn and ε∗i (·) are defined
as in Appendix A.5, and we denote Sn = |n−1

∑n
i=1

∫
ε∗i (z)Kh(z−Zi)dz Xi|∞.

It can be proved that

T 2
n = Op

(
(nh)−1 logn

)
. (A.18)

Without loss of generality, we may assume that

inf
j∈A0

‖m∗
j‖ > δ/2 and inf

j∈V 0
‖m∗

j‖c > δ/2 (A.19)

because
∑

j∈A0 ‖m∗
j − m0

j‖ + h‖(m∗
j )

(1) − (m0
j )

(1)‖ = Op

(
(nh)−1/2

)
= op(1)

holds as can be seen by a similar proof as in the proof of Lemma A.4. Here δ
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is the constant in assumption (A8). Since m∗ and (m∗)(1) are equal to m̄V 0,I0

and m̄
(1)
V 0,I0 respectively, we observe that

L(m̄, m̄(1))− L(m̄V 0,I0 , m̄
(1)
V 0,I0)

= −2B(m̄−m∗, m̄(1) − (m∗)(1)) + S(m̄−m∗, m̄(1) − (m∗)(1))

≥ −2Tn

{ ∑
j∈I0∩V

[‖m̄j‖c + h‖m̄(1)
j ‖] +

∑
j∈(A0)c∩V

[‖m̄j‖+ h‖m̄(1)
j ‖

}
−2Sn

∑
j∈(A0)c∩I

|m̄j |+ (φ′′)2
∑

j∈A0∪A

‖m̄j −m∗
j‖2 + h2‖m̄(1)

j − (m∗
j )

(1)‖2

≥ − T 2
n

(φ′′)2
·
(
2|I0 ∩ V |+ 2|(A0)c ∩ V |

)
(A.20)

− S2
n

(φ′′)2
· 2|(A0)c ∩ I|+ (φ′′)2δ2 dFN/2

2, (A.21)

where dFN ≡ dFN(V, I) = |V 0∩Ac|+ |V 0∩I|+ |I0∩Ac|. Here, |I0∩V |+ |(A0)c∩
V | + |(A0)c ∩ I| and dFN are the numbers of false positives or false negatives,
respectively, when the model (V, I) is chosen. The last second inequality follows
directly from (A.17) and the assumption (A4”). The last inequality uses (A.19)
and the fact that given a > 0 and b ∈ R, ax2 − 2bx ≥ −b2/a for all x ∈ R.

It suffices to show that as n → ∞,

P ( min
(V,I):dFN(V,I)≥1

BIC(V, I) > BIC(V 0, I0)) → 1 and (A.22)

P ( min
(V,I) �=(V 0,I0):dFN(V,I)=0

BIC(V, I) > BIC(V 0, I0)) → 1. (A.23)

These two properties imply Theorem 3.5.
First, we prove (A.23). Suppose (V, I) ∈ M : dFN(V, I) = 0. In this case,

|V 0 ∩ V c| = 0, |(I0)c ∩ I| = |(A0)c ∩ I| and |I0 ∩ Ic| ≤ |(V 0)c ∩ V |. Then, from
(A.18), (A.20), the assumption (A11)–(A12) and the fact that log(1+x) ≥ −2|x|
for all x : |x| < 1/2, we have that

BIC(V, I)− BIC(V 0, I0)

= log

(
1 +

L(m̄, m̄(1))− L(m̄V 0,I0 , m̄
(1)
V 0,I0)

L(m̄V 0,I0 , m̄
(1)
V 0,I0)

)

+ Cn

{
(|V | − |V 0|) log nh

nh
+ (|I| − |I0|) log n

n

}
≥ −2M

{
2T 2

n

(φ′′)2
|(V 0)c ∩ V |+ 2S2

n

(φ′′)2
|(A0)c ∩ I|

}
+Cn

{
(|(V 0)c ∩ V | − |V 0 ∩ V c|) log nh

nh
+ (|(I0)c ∩ I| − |I0 ∩ Ic|) logn

n

}
≥ |(V 0)c ∩ V | · Cn

lognh

nh
(1 + op(1)) + |(A0)c ∩ I| · Cn

logn

n
(1 + op(1)),
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where we take a constant M > 0 such that L(m0, (m0)(1)) = n−1
∑n

i=1 ε
2
i

∫
Kh

(z − Zi)dz + op(1) > M−1. This inequality implies that (A.23) holds as n →
∞.

It remains to prove (A.22). Consider the case where dFN ≥ 1. From (A.20)
and the assumption (A10), one has that with probability tending to one as
n → ∞,

L(m̄, m̄(1))− L(m̄V 0,I0 , m̄
(1)
V 0,I0) ≥ (φ′′)2δ2/23 > 0

for all (V, I) ∈ M with dFN(V, I) ≥ 1. Then, since log(1+x) ≥ min{0.5x, log 2}
for all x > 0, we get that for any (V, I) ∈ M with dFN(V, I) ≥ 1

BIC(V, I)− BIC(V 0, I0)

≥ min

{
0.5M

(
2T 2

n

(φ′′)2
|(V 0)c ∩ V |+ 2S2

n

(φ′′)2
|(A0)c ∩ I|+ (φ′′)2δ2 dFN

22

)
, log 2

}
+ Cn

{
(|(V 0)c ∩ V | − |V 0 ∩ V c|) log n

nh
+ (|(I0)c ∩ I| − |I0 ∩ Ic|) log n

n

}
≥ min

{
|(V 0)c ∩ V | logn

nh
Cn(1 + op(1)) + |(A0)c ∩ I| log n

n
Cn(1 + op(1))

+ |V 0 ∩ V c|(φ′′)2δ2/22(1 + op(1)) + |I0 ∩Ac|(φ′′)2δ2/22(1 + op(1)),

log 2 + op(1)

}
≥ min{φ′′)2δ2/23, log 2/2} > 0

by (A.18), (A.20) and assumptions (A11)–(A12). This completes the proof. �

A.7. On the assumption (A12)

In this subsection, we show that (A12) holds under some technical conditions.

Before showing this, we introduce some notation. Let Xi,A0 = (X
(j)
i : j ∈ A0)�,

Xi,I0 = (X
(j)
i : j ∈ I0)� and Xi,V 0 = (X

(j)
i : j ∈ V 0)�. Given z ∈ [0, 1],

define m0
A0(z) = (m0

j (z) : j ∈ A0)�, m0
V 0(z) = (m0

j (z) : j ∈ V 0)�, and m0
I0 =

(m0
j : j ∈ I0)�. In the same way, we define m∗

A0(·), m∗
V 0(·), m∗

I0 , (m∗)
(1)
A0 (·),

(m∗)
(1)
V 0(·), (m0)

(1)
V 0(·) and (m0)

(2)
V 0(·) where (m0)(s) = ((m0

j )
(s) : 1 ≤ j ≤ p)�

and (m0
j )

(s) is the sth derivative of m0
j . For z ∈ [0, 1], we let ΣV 0V 0(z) =

(Σjk(z) : j, k ∈ V 0) ∈ R
|V 0|×|V 0|, ΣI0V 0(z) = (Σjk(z) : j ∈ I0, k ∈ V 0) ∈

R
|I0|×|V 0| and Σ·,V 0(z) = (Σjk(z) : 1 ≤ j ≤ p, k ∈ V 0) ∈ R

p×|V 0|.

Now we will see that under suitable regularity conditions, the following prop-
erties hold:∣∣∣∣∣n−1

n∑
i=1

∫
εiKh(z − Zi)dz Xi

∣∣∣∣∣
∞

= Op

(√
log p

n

)
and (A.24)



Local linear smoothing for sparse HDVC models 891∣∣∣∣∣
n∑

i=1

∫
XiX

�
i,A0

n
[m0

A0(Zi)−m∗
A0(z)− (m∗)

(1)
A0 (z)(Zi − z)]Kh(z − Zi)dz

∣∣∣∣∣
∞

= Op(n
−1/2). (A.25)

These claims immediately imply (A12).
First, (A.24) can be easily shown by a similar proof as in Lemma 3.1. Note

that the oracle estimator (m∗
A0 , (m∗)

(1)
A0 ) is a standard nonparametric estimator

when taking (V, I) = (V 0, I0), defined in a similar fashion as in Xia et al. [39].
Using similar arguments as in Xia et al. [39], it can be proved that for the
nonparametric parts j ∈ V 0,

sup
0≤z≤1

|m∗
j (z)−m0

j (z)| = Op(n
−2/5

√
logn),

sup
0≤z≤1

|(m∗)
(1)
j (z)− (m0)

(1)
j (z)| = Op(n

−1/5
√
logn),

sup
h≤z≤1−h

|ΣV 0V 0(z)(m∗
V 0(z)−m0

V 0(z)−
μ2

2
(m0)

(2)
V 0(z)h

2)

− n−1
n∑

i=1

εiXi,V 0Kh(z − Zi)|∞ = Op(n
−1/2),

under suitable regularity conditions including h ≈ n−1/5 and m0
j (u) = m0

j (z) +

(m0
j )

(1)(z)(u− z) + (m0
j )

(2)(z)(u− z)2/2+O(h3) uniformly in u, z : |u− z| ≤ h

for j ∈ V 0 (sufficient smoothness condition of the true coefficient functions),

where μ2 =
∫ 1

0
u2K(u)du. From this with the facts that

sup
1≤j,k≤p

sup
z∈[0,1]

|Ψ̂jk,s(z)−Σjk(z)

∫ 1

0

Kh(z−u)

(
u− z

h

)s

du| = op(1), s = 0, 1, 2,

(refer to Lemma A.3 and (A.7)) and that |n−1
∑n

i=1 εiXi,V 0

∫
Kh(z−Zi)dz|∞ =

Op(n
−1/2), one can see

|
n∑

i=1

∫
Xi,I0X�

i,V 0

n
[m0

V 0(Zi)−m∗
V 0(z)− (m∗)

(1)
V 0(z)(Zi − z)]Kh(z − Zi)dz|∞

= |
∫ 1−h

h

ΣI0,V 0(z)[m0
V 0(z) +

μ2

2
(m0)

(2)
V 0(z)h

2 −m∗
V 0(z)]|∞ + op(n

−1/2)

= Op(n
−1/2).

Recall that Ψ̂jk,s(z) = n−1
∑n

i=1 X
(j)
i X

(k)
i ((Zi−z)/h)sKh(z−Zi) for s = 0, 1, 2

and z ∈ [0, 1]. So, for the parametric constant coefficients j ∈ I0,

|m∗
j −m0

j | = Op(n
−1/2) (A.26)

because the term n−1
∑n

i=1

∫
Xi,I0X�

i,I0Kh(z−Zi)dz × (m∗
I0 −m0

I0) is equal to

n−1
∑n

i=1

∫
εiKh(z−Zi)dz Xi,I0 +n−1

∑n
i=1

∫
Xi,I0X�

i,V 0 [m0
V 0(Zi)−m∗

V 0(z)−
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(m∗)
(1)
V 0(z)(Zi − z)]Kh(z − Zi)dz by (A.14). This concludes (A.25):

|
n∑

i=1

∫
XiX

�
i,A0

n
[m0

A0(Zi)−m∗
A0(z)− (m∗)

(1)
A0 (z)(Zi − z)]Kh(z − Zi)dz|∞

= |
n∑

i=1

∫
XiX

�
i,V 0

n
[m0

V 0(Zi)−m∗
V 0(z)− (m∗)

(1)
V 0(z)(Zi − z)]Kh(z − Zi)dz|∞

+Op(n
−1/2)

= |
∫ 1−h

h

Σ·,V 0(z)[m0
V 0(z) +

μ2

2
(m0)

(2)
V 0(z)h

2 −m∗
V 0(z)]|∞ +Op(n

−1/2)

= Op(n
−1/2).
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