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Abstract: In the present paper, we constructed an estimator of a delta
contaminated mixing density function g(λ) of an intensity λ of the Poisson
distribution. The estimator is based on an expansion of the continuous
portion g0(λ) of the unknown pdf over an overcomplete dictionary with
the recovery of the coefficients obtained as the solution of an optimization
problem with Lasso penalty. In order to apply Lasso technique in the, so
called, prediction setting where it requires virtually no assumptions on the
dictionary and, moreover, to ensure fast convergence of Lasso estimator, we
use a novel formulation of the optimization problem based on the inversion
of the dictionary elements.

We formulate conditions on the dictionary and the unknown mixing
density that yield a sharp oracle inequality for the norm of the difference
between g0(λ) and its estimator and, thus, obtain a smaller error than in a
minimax setting. Numerical simulations and comparisons with the Laguerre
functions based estimator recently constructed by [8] also show advantages
of our procedure. At last, we apply the technique developed in the paper to
estimation of a delta contaminated mixing density of the Poisson intensity
of the Saturn’s rings data.
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1. Introduction

Poisson-distributed data appear in many contexts. In the last two decades a
large amount of effort was spent on recovering the mean function in the Poisson
regression model. In this set up, one observes independent Poisson variables
Y1, · · · , Yn where EYi = λi = f(i/n), i = 1, · · · , n. Here, f is the function of
interest which is assumed to exhibit some degree of smoothness. The difficulty in
estimating f on the basis of Poisson data stems from the fact that the variances
of the Poisson random variables are equal to their means and, hence, do not
remain constant as f changes its values. Estimation techniques are either based
on variance stabilizing transforms ([3], [10]), wavelets ([1], [2], [11]), Haar frames
[13]) or Bayesian methods ([14] and [19]).

The fact that the variance of a Poisson random variable is equal to its mean
serves as a common and reliable test that data in question are indeed Poisson
distributed. However, in many practical situations, although each of the data
value Yi ∼ Poisson(λi), i = 1, · · · , n, the overall data do not have the Poisson
distribution. This is due to the fact that the consecutive values of λi are so
different from each other that f is not really a function. In this case, in order to
account for the extra-variance, it is usually reasonable to assume that λ itself is
a random variable with an unknown probability density function g which needs
to be estimated.

In particular, below we consider the following problem. Let λi, i = 1, · · · , n,
be independent random variables that are not observable and have an unknown
pdf g(λ). One observes variables Yi|λi ∼ Poisson(λi), i = 1, · · · , n, that, given
λi, are independent. Our objective is to estimate g(λ), the so called mixing
density, on the basis of observations Y1, · · · , Yn. Here, g can be viewed as the
prior density of the parameter λ, so that the model above reduces to an empirical
Bayes model where the prior has to be estimated from data.

Estimation of the prior density of the parameter of the Poisson distribu-
tion has been considered by several authors. For example, [15] suggested non-
parametric maximum likelihood estimator, [20] and [21] studied estimators based
on Laguerre polynomials, [22] considered smoothing kernel estimators and [12]
investigated Fourier series based estimators of g. All papers listed above pro-
vided upper bounds for the mean integrated squared error (MISE); [22] and [12]
also presented lower bounds for the MISE over smoothness classes. The com-
mon feature of all these estimators is that the convergence rates are very low. In
particular, if n → ∞, both [22] and [12] obtained convergence rates of the form
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(lnn/ ln lnn)−2ν where ν is the parameter of the smoothness class to which g
belongs. The latter seem to imply that there is no hope for accurate estima-
tion of the mixing density g unless the sample sizes are extremely high. On a
more positive note, in a recent paper, [8] considered an estimator of g based on
expansion of g over the orthonormal Laguerre basis. They showed that if the La-
guerre coefficients of g decrease exponentially, then the resulting estimator has
convergence rates that are polynomial in n and provided some examples where
this happens. Moreover, they proposed a penalty for controlling the number of
terms in the expansion and provided oracle inequalities for the estimators of g
under various scenarios.

The low convergence rates for the prior density of Poisson parameter are due
to the fact that its recovery constitutes a particular case of an ill-posed linear in-
verse problem. Indeed, let L2[0,∞) and �2 be the Hilbert spaces of, respectively,
square integrable functions on [0,∞) and square integrable sequences. Denote
the probability that Y = l, l = 0, 1, · · · , by P (l) = P(Y = l). Then, introducing
a linear operator Q : L2[0,∞) → �2, we can present g(λ) as the solution of the
following equation

(Qg)(l) =

∫ ∞

0

λl e−λ

l!
g(λ) dλ = P (l), l = 0, 1, · · · (1.1)

Since exact values of the probabilities P (l) are unknown, they can be estimated
by the relative frequencies νl, so the problem of recovering g appears as an
ill-posed linear inverse problem with the right-hand side measured with error.
Solution of equation (1.1) is particularly challenging since g is a function of a
real argument while P is an infinite-dimensional vector.

On the other hand, in the last decade a great deal of effort was spent on
recovery of an unknown function in regression setting from its noisy observations
using overcomplete dictionaries. In particular, if the dictionary is large enough
and the function of interest has a sparse representation in this dictionary, then
it can be recovered with a much better precision than when it is expanded over
an orthonormal basis. Lasso and its versions (see e.g. [5] and references therein)
allow one to identify the dictionary elements that guarantee efficient estimation
of the unknown regression function. The advantage of this approach is that the
estimation error is controlled by the, so called, oracle inequalities that provide
upper bounds for the risk for the particular function that is estimated rather
than convergence rates designed for the “worst case scenario” of the minimax
setting. In addition, if the function of interest can be represented via a linear
combination of just a few dictionary elements, then one can prove that it can
be estimated with nearly parametric error rate provided certain assumptions on
the dictionary hold.

In the present paper, we extend this idea to the case of estimating a mixing
density g on the basis of Y1, · · · , Yn. However, there is an intrinsic difficulty
arising from the fact that the problem above is an ill-posed inverse problem.
Currently, one can justify convergence of a Lasso estimator only if stringent
assumptions on the dictionary, the, so called, compatibility conditions, are sat-
isfied. In regression set up, as long as compatibility conditions hold, one can
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prove that Lasso estimator is nearly optimal. Regrettably, while compatibility
conditions may be satisfied for the functions in the original dictionary, they usu-
ally do not hold for their images due to contraction imposed by the operator Q.
In the present paper, we show how to circumvent this difficulty and apply Lasso
methodology to estimation of g. We formulate conditions on the dictionary and
the unknown mixing density that yield a sharp oracle inequality for the norm
of the difference between g(λ) and its estimator and, thus, result in a smaller
error than in a minimax setting. Numerical simulations and comparisons with
the Laguerre functions based estimator recently constructed by [8] also show
advantages of our procedure.

Our study is motivated by the analysis of astronomical data, in particular,
the photon counts Yi, i = 1, · · · , n that come from sets of observations of the
stellar occultations recorded by the Cassini UVIS high speed photometer at
different radial points on the Saturn’s ring plane. It is well known that the
Saturn ring is comprised of particles of various sizes, each on its own orbit about
the Saturn. With no outside influences, these photon counts should follow the
Poisson distribution, however, obstructions imposed by the particles in the ring
cause photon counts distribution to deviate from Poisson. The latter is due to the
fact that although, for each i = 1, · · · , n, the photon counts Yi ∼ Poisson(λi),
the values of λi, i = 1, · · · , n, are extremely varied and, specifically, are best
described as random variables with the unknown underlying pdf g(λ).

In addition, if a ring region contains a significant proportion of large particles,
those particles can completely block out the light leading to zero photon counts.
For this reason, we assume that the unknown pdf g is delta-contaminated, i.e.,
it is a combination of an unknown mass π0 at zero and a continuous part, so
that g(λ) can be written as

g(λ) = π0δ(λ) + f(λ) with f(λ) = (1− π0)g0(λ) (1.2)

where g0(λ) is an unknown pdf and δ(λ) is the Dirac delta function such that, for
any integrable function u one has

∫
u(x)δ(x)dx = u(0). Models of the type (1.2)

also appear in other applied settings (see, e.g., [16]). However, to the best of
our knowledge, we are the first ones to estimate the delta-contaminated density
of the intensity parameter of the Poisson distribution. In this setting, we also
obtain a sharp oracle inequality for the norm of the difference between g0(λ)
and its estimator. We also derive convergence rates for the estimator π̂0 of the
mass π0 at zero. The estimator has also been successfully applied to recovery of
delta-contaminated densities of the intensities λ for various sub-regions of the
Saturn’s rings.

Finally, we should remark on several other advantages of the approach pre-
sented in the paper. First, although in the numerical studies of the paper we
are using the gamma dictionary, all theoretical and methodological results of
the paper are valid for any type of dictionary functions since it is based on the
numerical inversion of dictionary elements. Moreover, the method can be used
even if the underlying conditional distribution is different from the Poisson. The
estimator exhibits no boundary effects and performs well in simulations deliv-
ering small errors. Moreover, since we apply the Tikhonov regularization for
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recovering the inverse images of the dictionary elements, our estimator can be
viewed as a version of the elastic net estimator described in [23].

The rest of the paper is organized as follows. Sections 2 and 3 present, respec-
tively, the method and the algorithm for the estimation of the density function,
while Section 4 studies convergence properties of the estimator. Section 5 investi-
gates precision of the estimator developed in the paper via numerical simulations
using synthetic data. Section 6 provides application of the technique proposed
in the paper to the occultation data for the Saturn’s rings. Finally, Section 7
contains the proofs of the statements presented in the paper.

2. The Lasso estimator of the mixing density

In what follows, we assume that g0(λ) in (1.2) can be well approximated by a
dictionary

D = {φk(λ), k = 1, · · · , p} .
In particular, in our simulations and real-life applications we consider the dic-
tionary that consists of gamma pdfs

φk(λ) = γ(λ; ak, bk) =
λak−1 exp(−λ/bk)

bak

k Γ(ak)
, k = 1, · · · , p. (2.1)

This is a natural choice since, for a fixed bk = b and ak = 1, 2, 3, · · · , this dictio-
nary contains various linear combinations of the Laguerre functions and, hence,
its span approximates the L2[0,∞) space. Therefore, any square integrable func-
tion can be approximated by a linear combination of φk with a small error. On
the other hand, using a variety of scales bk allows one to accurately represent a
function of interest with many fewer terms. Nevertheless, all theoretical results
in Sections 2, 3 and 4 are valid for an arbitrary dictionary in L2[0,+∞).

If π0 were known, then, using the dictionary, we would estimate g by

ĝ(λ) = π0δ(λ) + f̂(λ) with f̂(λ) =

p∑
k=1

θ̂kφk(λ),

where coefficients θk, k = 1, · · · , p, are chosen so to minimize the squared L2-
norm

‖g − ĝ‖22 = ‖g − π0δ‖22 +
∥∥∥∥∥

p∑
k=1

θkφk

∥∥∥∥∥
2

2

− 2

p∑
k=1

θk〈g − π0δ, φk〉. (2.2)

The first term in formula (2.2) does not depend on coefficients θk while the
second term is completely known. In order to estimate the last term, note that
〈g − π0δ, φk〉 = 〈g, φk〉 − π0φk(0). Moreover, if we found functions χk ∈ �2 such
that

(Q∗χk)(λ) =
∞∑
i=0

e−λλi

i!
χk(i) = φk(λ), ∀λ ∈ (0,+∞), (2.3)
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then, it is easy to check that

〈g, φk〉 =

∫ +∞

0

g(λ)

∞∑
i=0

e−λλi

i!
χk(i)dλ =

∞∑
i=0

χk(i)

∫ +∞

0

g(λ)
e−λλi

i!
dλ

=

∞∑
i=0

χk(i)P (i) = Eχk(Y ). (2.4)

Here, P (l) is the marginal probability function

P (l) = P(Y = l) = π0 I(l = 0) +

p∑
k=1

θkUk(l), l = 0, 1, 2, · · · (2.5)

where I(l = 0) is the indicator that l = 0 and

Uk(l) =

∫ +∞

0

e−λλl

l!
φk(λ)dλ =

Γ(l + ak)

Γ(ak) l!
blk(1 + bk)

−(l+ak) (2.6)

Hence, 〈g, φk〉 can be estimated by

〈̂g, φk〉 = n−1
n∑

i=1

χk(Yi) =

∞∑
l=0

χk(l)νl = 〈χk, ν〉, k = 1, . . . , p, (2.7)

where

νl = n−1
n∑

i=1

I(Yi = l), l = 0, 1, · · · (2.8)

are the relative frequencies of Y = l and I(A) is the indicator function of a set
A.

There is an obstacle to carrying out estimation above. Indeed, for some k
solutions χk(Y ) of equations (2.3) may not have finite variances or variances may
be too high. In particular, this is true for φk defined by formula (2.1) whenever
bk < 1. In order to stabilize the variances we use the Tikhonov regularization.
In particular, we replace solution χk = (Q∗)−1φk of equation (2.3) by solution

ψ̃k,ζk of equation

(QQ∗ + ζkI)ψ̃k,ζk = Qφk, ζk > 0, (2.9)

where operators Q and Q∗ are defined in (1.1) and (2.3), respectively, and I is
the identity operator, so that, for any f ,

(QQ∗f)(j) =
∞∑
l=0

(
j + l

l

)
2−(j+l+1)f(l), j = 0, 1, . . .

Observe that Var[ψ̃k,ζk(Y )] is a decreasing function of ζk while the squared bias

(Eψ̃k,ζk −〈g, φk〉)2 is an increasing function of ζk. Denote ζ̂k the unique solution
of the following equation

1

n
Var[ψ̃

k,ζ̂k
(Y )] =

(
Eψ̃

k,ζ̂k
− 〈g, φk〉

)2
(2.10)
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and replace χk(Y ) in (2.7) by

ψk(Y ) = ψ̃
k,ζ̂k

(Y ) with σ2
k = Var[ψk(Y )]. (2.11)

After the values of 〈g, φk〉, k = 1, · · · , p, are estimated, the only obstacle for
minimizing the right hand side of formula (2.2) is that we do not know the values
of π0〈φk, δ〉 = π0φk(0). Therefore, we choose a dictionary such that π0φk(0) = 0,
k = 1, · · · , p. The latter means that in our numerical studies, unless we know
that π0 = 0, we choose ak > 1 in (2.1).

In order to identify the correct subset of dictionary functions φk, we intro-
duce a weighted Lasso penalty. In particular, the vector of coefficients θ̂ with
components θ̂k, k = 1, · · · , p, can be recovered as a solution of the following
optimization problem

θ̂ = argmin
θ

⎧⎨⎩
∥∥∥∥∥

p∑
k=1

θkφk

∥∥∥∥∥
2

2

− 2

p∑
k=1

θk〈ψk, ν〉+ α

p∑
k=1

σk|θk|

⎫⎬⎭ . (2.12)

Here,
∑p

k=1 σk|θk| is the weighted Lasso penalty and α is the penalty parameter.
Note that the right hand side of formula (2.12) is independent of π0, so the value
of θ can be evaluated.

In order to implement optimization procedure suggested above, consider ma-
trix Φ ∈ Rp×p with elements Φlk = 〈φk, φl〉, l, k = 1, · · · , p, and define vector ξ
in Rp with components

ξk = 〈ψk, ν〉 =
∞∑
l=0

ψk(l) νl = n−1
n∑

i=1

ψk(Yi). (2.13)

Introduce matrix W such that Φ = WTW and vector

η = (WT )+ξ = W (WTW)−1ξ, (2.14)

where, for any matrix A, matrix A+ is the Moore-Penrose inverse of A. Then,
the optimization problem (2.12) appears as

θ̂ = argmin
θ

{
‖Wθ − η‖22 + α

p∑
k=1

σk|θk|
}
. (2.15)

Now, consider the problem of estimating the weight π0. Denote by f̃ the
projection of f(λ) onto the linear space spanned by the dictionary D and by
θ̃ the coefficients of this projection. Let supp(θ̃) = J̃ . Consider vector u with
components

uk = Uk(0) =

∫ ∞

0

e−λφk(λ) dλ, k = 1, · · · , p, (2.16)

and observe that

P (0) = P(Y = 0) = π0+uT θ̃+Δ with Δ =

∫ ∞

0

e−λ(f̃(λ)−f(λ)) dλ. (2.17)
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Since π0 ≥ 0, we estimate π0 by

π̂0 = max(0, ν0 − uT θ̂). (2.18)

3. Implementation of the Lasso estimator

Formulae (2.15) and (2.18) suggest the following procedure.

The direct algorithm

1. Evaluate sample frequencies νl, l = 0, 1, ..., given by formula (2.8).
2. Construct functions ψk(Y ), k = 1, · · · , p, satisfying conditions (2.10) and

(2.11).
3. Define a grid αl, l = 1, · · · , L, of values of α.
4. For each value αl, l = 1, · · · , L, evaluate a solution θ̂l of optimization

problem (2.15) with α = αl.

5. Select θ̂ = θ̂l which optimizes one of the data driven criteria described in
Section 5.

6. Estimate π0 by π̂0 defined in (2.18).
7. Obtain the estimator of g as

ĝ(λ) = π̂0δ(λ) +

p∑
k=1

θ̂kφk(λ). (3.1)

In order to implement Lasso estimator, for any ζk, we need to obtain a so-
lution ψ̃k,ζk of equation (2.9). For his purpose, we introduce a matrix version
Q of operator Q in (1.1). The elements of matrix Q are Poisson probabilities
Qli = e−xi(xi)

l/(l!), where xi = ih, i = 1, 2..., are the grid points at which we

are going to recover g(λ) and h is the step size. Introduce vectors φk and ψ̃k,ζk ,

k = 1, . . . , p, with elements φk(xi), i = 1, 2..., and ψ̃k(l), l = 0, 1, ..., respectively.
Then, for each k = 1, . . . , p, equation (2.9) can be re-written as

ψ̃k = (QQT + ζkI)
−1Qφk, (3.2)

where I is the identity matrix. For the sake of finding ζ̂k satisfying (2.10), we cre-

ate a grid and chose ζ̂k so that to minimize an absolute value of V̂ar[ψ̃k,ζk(Y )]−(
Eψ̃k,ζk − 〈g, φk〉

)2
where V̂ar[ψ̃k,ζk(Y )] is the sample variance of ψ̃k,ζk(Y ). Af-

ter that, we evaluate ψk(Y ) in (2.11) and replace unknown variances σ2
k in (2.11)

by their sample counterparts.

Remark 1. (Iterative estimation procedure) In the case when π0φk(0) �=
0 for some values of k ∈ P , evaluations above lead to an iterative estimation
algorithm. Indeed, in this case, for a given value of π0, the estimator θ̂ is the
solution of the following optimization procedure

θ̂ = argmin
θ

{
θTΦθ − 2θT (ξ − π̂0z) + α

p∑
k=1

σk|θk|
}
, (3.3)
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where zk = φk(0). On the other hand, for a given θ̂, the estimator of π0 is pro-
vided by formula (2.18). Combination of (3.3) and (2.18) suggest the estimation
procedure described below. However, we emphasize that, unlike the direct algo-
rithm, the iterative procedure comes without any guarantees for the estimation
errors.

The iterative algorithm

1. Carry out steps 1, 2 and 3 of the direct algorithm.

2. Choose an initial value π̂
(0)
0 = ν0 and obtain θ̂

(0)
using steps 4-5 of the

direct algorithm with (2.15) replaced by (3.3) evaluated with π̂0 = π̂
(0)
0 .

3. For j = 1, 2, ..., set π̂
(j)
0 = max[0, ν0 − (θ̂

(j−1)
)Tu] and obtain θ̂

(j)
by

steps 4-5 of the direct algorithm with (2.15) replaced by (3.3) evaluated

with π̂0 = π̂
(j)
0 . Repeat step 3 until one of the following stopping criteria

is met:

(i) π̂
(j)
0 = 0; (ii) ‖W θ̂

(j)
−W θ̂

(j−1)
‖22 < tol; (iii) j > Jmax.

Here tol and Jmax are, respectively, the tolerance level and the maximal
number of steps defined in advance.

4. Obtain the estimator

ĝ(λ) = π̂0δ(λ) +

p∑
k=1

θ̂kφk(λ).

4. Convergence and estimation error

Let ĝ(λ) be given by (3.1). In order to derive oracle inequalities for the error of
ĝ(λ), we introduce the following notations. For any vector t ∈ Rp, denote its �2,
�1, �0 and �∞ norms by, respectively, ‖t‖2, ‖t‖1, ‖t‖0 and ‖t‖∞ and

ft =

p∑
j=1

tjφj . (4.1)

Similarly, for any function f , denote by ‖f‖2, ‖f‖1 and ‖f‖∞ its L2, L1 and
L∞ norms. Denote P = {1, · · · , p}. For any subset of indices J ⊆ P , subset
Jc is its complement in P and |J | is its cardinality, so that |P| = p. Let LJ =
Span {φj , j ∈ J}. If J ⊂ P and t ∈ Rp, then tJ ∈ R|J| denotes reduction of

vector t to subset of indices J . Recall that f̃ is the projection of f(λ) onto
the linear space spanned by the dictionary D and θ̃ are the coefficients of this
projection with supp(θ̃) = J̃ .

It turns out that, as long as the sample size n is large enough, estimator f
θ̂

is close to f with high probability, with no additional assumptions. Indeed, the
following statement holds.

Theorem 1. Let π0φk(0) = 0, for k = 1, · · · , p, and let τ be any positive
constant. If n ≥ N0 and α ≥ α0, where
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N0 =
16

9
(τ +1) log p max

1≤k≤p

[
‖ψk‖2∞
σ2
k

]
and α0 = (2

√
(τ + 1) log p+1)n−1/2,

(4.2)
then with probability at least 1− 2p−τ , one has

‖f
θ̂
− f‖22 ≤ inf

t

⎡⎣‖ft − f‖22 + 4α

p∑
j=1

σj |tj |

⎤⎦ (4.3)

where θ̂ is the solution of optimization problem (2.15).

Theorem 1 provides the so called “slow” Lasso rates. In order to obtain faster
convergence rates and also to ensure that π̂0 is close to π0 with high probabil-
ity, we impose the so called compatibility condition on the dictionary φk, k =
1, · · · , p. In particular, denoting Υ = diag(σ1, · · · , σp) and considering the set
of p-dimensional vectors

J (μ, J) = {d ∈ Rp : ‖(Υd)Jc‖1 ≤ μ‖(Υd)J‖1} , μ > 1, (4.4)

we assume that the following condition holds:

(A) Matrices Φ and Υ are such that for some μ > 1 and any J ⊂ P

κ2(μ, J) = min

{
d ∈ J (μ, J), ‖d‖2 �= 0 :

dTΦd · Tr(Υ2
J)

‖(Υd)J‖21

}
> 0. (4.5)

Observe that, in the regression setup, Υ is the identity matrix, and condition
A reduces to the compatibility condition for general sets formulated in Section
6.2.3 of [5]. If one has an orthonormal basis instead of an overcomplete dictio-
nary, then matrix Φ is an identity matrix and, due to the Cauchy inequality,
κ2(μ, J) ≥ 1 for any μ and J . On the other hand, for an orthonormal basis, the
bias ‖ft − f‖2 in (4.3) may be large.

Under Assumption A, one can prove “fast” convergence rates for f̂ as well
as obtain the error bounds for π̂0.

Theorem 2. Let π0φk(0) = 0, for k = 1, · · · , p, τ be any positive constant
and Assumption A hold. Let α = �α0 where α0 is defined in (4.2) and � ≥
(μ+1)/(μ− 1). If n ≥ N0 where N0 is defined in (4.2), then with probability at
least 1− 2p−τ , one has

‖f
θ̂
− f‖22 ≤ inf

J⊆P

⎡⎣‖f − fLJ
‖22 +

(1 +�)2(2
√
(τ + 1) log p+ 1)2

κ2(μ, J) n

∑
j∈J

σ2
j

⎤⎦ ,
(4.6)

where fLJ
= projLJ

f . Moreover, with probability at least 1− 4p−τ , one has

(π̂0 − π0)
2 ≤ 2τ log p

n
(4.7)

+ inf
J⊆P

⎡⎣‖f − fLJ
‖22 +

(1 +�)2(2
√

(τ + 1) log p+ 1)2

κ2(μ, J) n

∑
j∈J

σ2
j

⎤⎦ .
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5. Numerical simulations

In order to evaluate the accuracy of the proposed estimator we carried out a
simulation study where we tested performance of the proposed estimator under
various scenarios. In order to assess precision of the estimator, for each of the
scenarios, we evaluate the relative integrated error of ĝ defined as

Δg = ‖g − ĝ‖22/‖g‖22 (5.1)

where the norm is calculated over the grid xi = ih with i = 0, 1, . . ., if π̂0 =
π0 = 0 and i = 1, 2, . . ., otherwise. In addition, we study prediction properties
of ĝ. In particular, we define the estimated frequencies

ν̂l =

∫ ∞

0

λl

l!
e−λ ĝ(λ)dλ = π̂0I(l = 0) + (1− π̂0)

p∑
k=1

θ̂kUk(l), for l = 0, 1, 2...

(5.2)
where Uk(l) are given in equation (2.6). The, we evaluate

Δν = ‖ν − ν̂‖22/‖ν‖22, (5.3)

i.e. Δν evaluates the squared relative �2 distance between the vectors of pre-
dicted and of observed frequencies. For the estimator proposed in this paper, we
tested various computational schemes that differ by the strategies for selecting
the penalty parameter αl in step 5 of the direct algorithm. In particular, we
considered the following options.

OPT : This estimator is obtained by using the direct algorithm presented
in Section 3, where in step 5 parameter αl is chosen by minimizing ‖g−ĝ‖22,
i.e. the squared �2 distance between the true and the estimated function.
Of course, this estimator represents only a benchmark for the proposed
procedure since it is not really applicable in practice because it requires
knowledge of g.
DDl2 : This estimator is obtained by using the direct algorithm presented
in Section 3, where in step 5 parameter αl is chosen by minimizing Δν ,
given in (5.3), i.e. the squared relative �2 distance between the predicted
and the observed frequencies.
DDlike : This estimator is obtained by using the direct algorithm presented
in Section 3, where in step 5 parameter αl is chosen by maximizing the
likelihood function as suggested in [6]. In particular, since ν̂ = (ν̂0, ν̂1, . . . , )
given in (5.2) and ν = (ν0, ν1, . . .) given in (2.8) are, respectively, the
predicted and the observed frequencies, the likelihood function can be
written as L(ν|ν̂) =

∏M
l=0 ν̂

νl

l , where M = maxi Yi.

For the sake of comparison we also define

NDE : This is the Nonparametric Density Estimator presented in [8], for
which the authors kindly provided the code.

The set of test functions represents different situations inspired by the real data
problem described in the next Section. In particular, we consider the following
nine test functions:
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Fig 1. The true density (red) and DDlike estimators (blue) obtained in the first 10 simulation
runs with sample size n = 5000

1. the gamma density g(λ) = Γ(λ; 3, 1)
2. the mixed gamma density g(λ) = 0.3Γ(λ; 3, 0.25) + 0.7Γ(λ; 10, 0.6)
3. the exponential density g(λ) = Γ(λ; 1, 2)
4. the Weibull density g(λ) = θp−θxθ−1 exp−(x/θ)θ I(x > 0), with p = 3

and θ = 2
5. the Gaussian density g(λ) = N(λ; 80, 1)
6. the mixed gamma density g(λ) = 0.3Γ(λ; 2, 0.3) + 0.7Γ(λ; 40, 1)
7. the delta contaminated gamma density g(λ) = 0.3δ(λ) + 0.7Γ(λ; 40, 1)
8. the delta contaminated Gaussian density g(λ) = 0.2δ(λ) + 0.8N(λ; 80, 82)
9. the delta contaminated Gaussian density g(λ) = 0.2δ(λ) + 0.8N(λ; 20, 42)

The first four test functions have been analyzed in [8] and represent cases
where most of the data is concentrated near zero. The fifth test function corre-
sponds to the situation where most of the data is concentrated away from zero.
The last four test functions represent the mixtures of the two previous scenarios.
All nine densities are showed in Figure 1.

Tables 1, 3 and 5 below display the average values of Δg defined in (5.1)
while Tables 2, 4 and 6 report Δν defined in (5.3) (with the standard devia-
tions in parentheses) over 100 different realizations of data Yi ∼ Poisson(λi),
i = 1, .., n, where n = 10000 for Tables 1 and 2, n = 5000 for Tables 3 and 4



Estimation of a random intensity of Poisson data 695

Table 1

Average values of Δg (with their standard deviations in parentheses) over 100 simulation
runs with n = 10000

test case OPT DDl2 DDlike NDE
case1 0.0007 (0.0010) 0.0023 (0.0028) 0.0022 (0.0030) 0.1183 (0.8307)
case2 0.0471 (0.0197) 0.2214 (0.0503) 0.0507 (0.0305) 0.0613 (0.0716)
case3 0.0142 (0.0398) 0.0191 (0.0127) 0.0138 (0.0087) 0.0190 (0.0399)
case4 0.0043 (0.0021) 0.0054 (0.0032) 0.0061 (0.0052) 0.0298 (0.0657)
case5 0.0042 (0.0033) 0.0023 (0.0029) 0.0014 (0.0021) 1.0000 (0.0000)
case6 0.0793 (0.0247) 0.4318 (0.0554) 0.0839 (0.0241) 0.3383 (0.0085)
case7 0.0067 (0.0012) 0.0009 (0.0008) 0.0008 (0.0008) -
case8 0.0060 (0.0010) 0.0068 (0.0009) 0.0069 (0.0010) -
case9 0.0085 (0.0013) 0.0099 (0.0014) 0.0111 (0.0026) -

Table 2

Average values of Δν (with their standard deviations in parentheses) over 100 simulation
runs with n = 10000

test case OPT DDl2 DDlike NDE
case1 0.0011 (0.0009) 0.0006 (0.0005) 0.0007 (0.0005) 0.0675 (0.5470)
case2 0.0013 (0.0007) 0.0088 (0.0024) 0.0014 (0.0010) 0.0228 (0.0431)
case3 0.0002 (0.0001) 0.0006 (0.0005) 0.0003 (0.0003) 0.1130 (0.0653)
case4 0.0014 (0.0009) 0.0011 (0.0006) 0.0012 (0.0009) 0.0205 (0.0530)
case5 0.0045 (0.0010) 0.0043 (0.0010) 0.0044 (0.0009) 1.0000 (0.0000)
case6 0.0465 (0.1402) 0.0288 (0.0045) 0.0041 (0.0020) 0.4376 (0.0618)
case7 0.0013 (0.0002) 0.0006 (0.0002) 0.0006 (0.0002) -
case8 0.0039 (0.0009) 0.0018 (0.0004) 0.0018 (0.0004) -
case9 0.0035 (0.0006) 0.0019 (0.0007) 0.0020 (0.0006) -

Table 3

Average values of Δg (with their standard deviations in parentheses) over 100 simulation
runs with n = 5000

test case OPT DDl2 DDlike NDE
case1 0.0006 (0.0008) 0.0038 (0.0049) 0.0030 (0.0046) 0.2424 (1.5002)
case2 0.0590 (0.0343) 0.2106 (0.0549) 0.0640 (0.0428) 0.2048 (0.2196)
case3 0.0148 (0.0097) 0.0251 (0.0310) 0.0178 (0.0119) 0.0309 (0.0650)
case4 0.0055 (0.0019) 0.0074 (0.0051) 0.0086 (0.0060) 0.0493 (0.1123)
case5 0.0069 (0.0052) 0.0044 (0.0048) 0.0024 (0.0036) 1.0000 (0.0000)
case6 0.0830 (0.0277) 0.4068 (0.0856) 0.0879 (0.0266) 0.3456 (0.0110)
case7 0.0077 (0.0035) 0.0023 (0.0030) 0.0023 (0.0030) -
case8 0.0065 (0.0021) 0.0074 (0.0020) 0.0075 (0.0021) -
case9 0.0096 (0.0023) 0.0114 (0.0023) 0.0128 (0.0029) -

and n = 1000 for Tables 5 and 6. We chose the grid step h = 0.5. The dictio-
nary was constructed as a collection of the gamma pdfs (2.1) where parameters
(ak, bk) belong to the Cartesian product of vectors a = [2, 3, 4, · · · , 150] and
b = [0.1, 0.15, · · · , 0.9, 0.95], hence, φk(0) = 0 and p = 2682. For this dictionary,
max1≤k≤p

[
‖ψk‖2∞/σ2

k

]
= 146.95, so that condition (4.2) holds with τ = 3.85

and τ = 1.43 for n = 10000 and n = 5000, respectively, and is not valid for
n = 1000. However, as simulation results show, our estimator shows good per-
formance even when assumption (4.2) is violated.

As it is expected, performances of all estimators deteriorate when n decreases,
although not very significantly. For a fixed sample size, estimator OPT is the
most precise in terms of Δg as a direct consequence of its definition, however, es-
timator DDlike is always comparable. Estimator DDl2 has similar performance
to DDlike except for cases 2 and 6 where the underlying densities are bimodal
and, hence, data can be explained by a variety of density mixtures.
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Table 4

Average values of Δν (with their standard deviations in parentheses) over 100 simulation
runs with n = 5000

test case OPT DDL2 DDlike NDE
case1 0.0017 (0.0016) 0.0010 (0.0007) 0.0012 (0.0007) 0.1393 (1.0084)
case2 0.0020 (0.0013) 0.0090 (0.0029) 0.0022 (0.0014) 0.1184 (0.1475)
case3 0.0004 (0.0002) 0.0009 (0.0013) 0.0006 (0.0004) 0.1131 (0.0948)
case4 0.0022 (0.0014) 0.0016 (0.0008) 0.0018 (0.0013) 0.0346 (0.0859)
case5 0.0087 (0.0019) 0.0084 (0.0018) 0.0085 (0.0018) 1.0000 (0.0000)
case6 0.0377 (0.1361) 0.0285 (0.0068) 0.0057 (0.0030) 0.4608 (0.0849)
case7 0.0020 (0.0003) 0.0013 (0.0003) 0.0013 (0.0003) -
case8 0.0052 (0.0011) 0.0032 (0.0008) 0.0032 (0.0008) -
case9 0.0044 (0.0010) 0.0031 (0.0010) 0.0031 (0.0009) -

Table 5

Average values of Δg (with their standard deviations in parentheses) over 100 simulation
runs with n = 1000

test case OPT DDl2 DDlike NDE
case1 0.0040 (0.0097) 0.0221 (0.0258) 0.0176 (0.0207) 0.3004 (0.9331)
case2 0.0992 (0.0760) 0.1973 (0.0718) 0.1335 (0.0983) 0.5370 (0.0960)
case3 0.0533 (0.0889) 0.0753 (0.0838) 0.0662 (0.0894) 0.1127 (0.3912)
case4 0.0069 (0.0014) 0.0178 (0.0183) 0.0179 (0.0135) 0.1393 (0.3381)
case5 0.0170 (0.0108) 0.0217 (0.0253) 0.0152 (0.0223) 1.0000 (0.0000)
case6 0.1223 (0.0710) 0.3151 (0.1409) 0.1270 (0.0759) 0.4479 (0.2572)
case7 0.0133 (0.0115) 0.0102 (0.0118) 0.0098 (0.0118) -
case8 0.0142 (0.0137) 0.0156 (0.0139) 0.0156 (0.0154) -
case9 0.0121 (0.0073) 0.0163 (0.0110) 0.0160 (0.0101) -

Table 6

Average values of Δν (with their standard deviations in parentheses) over 100 simulation
runs with n = 1000

test case OPT DDl2 DDlike NDE
case1 0.0063 (0.0042) 0.0043 (0.0026) 0.0047 (0.0027) 0.1458 (0.5377)
case2 0.0076 (0.0051) 0.0117 (0.0047) 0.0084 (0.0048) 0.3498 (0.0937)
case3 0.0021 (0.0022) 0.0031 (0.0033) 0.0027 (0.0037) 0.2149 (0.3773)
case4 0.0075 (0.0068) 0.0046 (0.0029) 0.0048 (0.0032) 0.0967 (0.3578)
case5 0.0427 (0.0091) 0.0411 (0.0090) 0.0416 (0.0090) 1.0000 (0.0000)
case6 0.0157 (0.0044) 0.0304 (0.0127) 0.0166 (0.0067) 0.5344 (0.1001)
case7 0.0072 (0.0018) 0.0067 (0.0018) 0.0067 (0.0018) -
case8 0.0154 (0.0038) 0.0143 (0.0038) 0.0142 (0.0037) -
case9 0.0120 (0.0034) 0.0111 (0.0032) 0.0111 (0.0032) -

In conclusion, apart from OPT which is not available in the case of real data,
estimator DDlike turns out to be the most accurate in terms of both Δg and Δν .
For completeness, Figures 1 and 2 exhibit some of the reconstructions obtained
using estimator DDlike in the case of n = 5000.

Finally, we should mention that NDE is a projection estimator that uses
only the first few Laguerre functions. For this reason, it fails to adequately
represent a density function that corresponds to the situation where values λi,
i = 1, · · · , n, are concentrated away from zero, as it happens in case 5 (where
NDE returns zero as an estimator) and case 6 (where NDE succeeds in re-
constructing only the first part of the density near zero). Also, note that NDE
errors are not displayed for cases 7, 8 and 9 since this estimator is not defined
for delta contaminated densities.
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Fig 2. Sample frequencies (red) and estimated frequencies (blue) obtained in the first 10
simulation runs with sample size n = 5000

6. Application to evaluation of the density of the Saturn ring

The Saturn’s rings system can be broadly grouped into two categories: dense
rings (A, B, C) and tenuous rings (D, E, G) (see the first panel of Figure 3). The
Cassini Division is a ring region that separates the A and B rings. The study of
structure within Saturn’s rings originated with Campani, who observed in 1664
that the inner half of the disk was brighter than the outer half. Furthermore,
in 1859, Maxwell proved that the rings could not be solid or liquid but were
instead made up of an indefinite number of particles of various sizes, each on its
own orbit about Saturn. Detailed ring structure was revealed for the first time,
however, by the 1979 Pioneer and 1980-1981 Voyager encounters with Saturn.
Images were taken at close range, by stellar occultation (observing the flickering
of a star as it passes behind the rings), and by radio occultation (measuring the
attenuation of the spacecraft’s radio signal as it passes behind the rings as seen
from Earth) (see, e.g., [9] and [7]). By analyzing the intensity of star light while
it is passing through Saturn’s rings, astronomers can gain insight into properties
that telescopes cannot visually determine. Each sub-region in the rings has its
own associated distinct distribution of the density and sizes of the particles
constituting the sub-region. This distribution uniquely determines the amount
of light which is able to pass from a star (behind the rings) to the photometer.
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Fig 3. The first panel: Names of Saturn’s rings, courtesy science.nasa.gov. The second
panel: the means of the binned total data set (100 observations per bin). The third panel: the
means (red) and the variances (blue) of the binned data

Our data Yi, i = 1, · · · , n, come from sets of observations of stellar oc-
cultations recorded by the Cassini UVIS high speed photometer and contains
n = 7615 754 photon counts at different radial points, located at 0.01-0.1 kilo-
meter increments, on the Saturn’s rings plane (see the second panel of Figure 3).
With no outside influences, these photon counts should follow the Poisson distri-
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bution, however, obstructions imposed by the particles in the rings cause their
distribution to deviate from Poisson. Indeed, if data were Poisson distributed,
then its mean would be approximately equal to its variance for every sub-region.
However, as the third panel of Figure 3 shows, observations Yi have significantly
higher variances than means. The latter is due to the fact that, although for
each i = 1, · · · , n, the photon counts Yi are Poisson(λi), the values of λi,
i = 1, · · · , n, are extremely varied and, specifically, cannot be modeled as the
values of a continuous function. In fact, intensities λi, i = 1, · · · , n, are best
described as random variables with an unknown underlying pdf g(λ).

In addition, if the ring region contains a significant proportion of large par-
ticle, those particles can completely block of the light leading to zero photon
counts. For this reason, we allow g(λ) to possibly contain a non-zero mass at
λ = 0, hence, being of the form (1.2). The shape of g(λ) allows one to deter-
mine the density and distribution of the sizes of the particles of a respective
sub-region of the Saturn rings. This information, in turn, should shed light on
the question of the origin of the rings as well as how they reached their current
configuration.

In order to identify sub-regions of the Saturn rings with different properties,
we segmented the data using the method presented in [4] which is designed
for partitioning of complicated signals with several non-isolated and oscillating
singularities. In particular, we applied the Gabor Continuous Wavelet Transform
(see, e.g. [17]) to the data and selected the highest scale where the number of
wavelet modulus maxima takes minimum value. At this scale, we segmented the
signal by the method proposed in [4]. We obtained a total of 1531 intervals of
different sizes. Figures 4 and 5 refer to six distinct sub-regions of the rings. The
left panels of both figures show raw data. The right panels exhibit the sample
and the estimated frequencies obtained by DDlike estimator for six different
intervals that are representative of different portions of the data set.

Note that in Figure 4, for all three data segments, the estimated parameter
π̂0 = 0. This is not true for the first and the second panels of Figure 5 where π̂0 =
0.5059 and π̂0 = 0.2463, respectively. The values of Δν , defined in (5.3), obtained
for the six data segments are, respectively, 0.0128, 0.0159, 0.0022, 0.0229, 0.003
and 0.0095, and are consistent with the values obtained in simulations. Both,
the right panels in Figures 4 and 5 and the values of Δν , confirm the ability of
the estimator developed in the paper to accurately explain the Saturn’s rings
data.

7. Proofs

Proofs of Theorems 1 and 2 are based on the following statement which is a
trivial modification of Lemma 2 of [18].

Lemma 1. (Pensky (2016)). Let f be the true function and fθ be its projec-
tion onto the linear span of the dictionary LP . Let Υ be a diagonal matrix with
components σj, j = 1, · · · , p. Consider solution of the weighted Lasso problem
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Fig 4. Left panels: segments of data. Right panels: sample frequencies (blue) and estimated
frequencies with the penalty parameter obtained by DDlike criterion (red). Δν = 0.0128 (top
panel), Δν = 0.0159 (middle panel), Δν = 0.0022, π̂0 = 0 for all three cases. (bottom panel)

θ̂ = argmin
t

{
tTWWT t− 2tT β̂ + α‖Υt‖1

}
. (7.1)

with Φ = WTW, β = Φθ and

β̂ = β +
√
εΥη + h, η,h ∈ Rp, (7.2)
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Fig 5. Left panels: segments of data. Right panels: sample frequencies (blue) and estimated
frequencies with the penalty parameter obtained by DDlike criterion (red). Δν = 0.0229 and
π̂0 = 0.5059 (top panel), Δν = 0.003 and π̂0 = 0.2463 (middle panel), Δν = 0.0095 and
π̂0 = 0 (bottom panel)

where h is a nonrandom vector, Eη = 0 and components ηj of vector η are
random variables such that, for some K > 0 and any τ > 0, there is a set

Ω =

{
ω : max

1≤j≤p
|ηj | ≤ K

√
(τ + 1) log p

}
with P(Ω) ≥ 1− 2p−τ . (7.3)
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Denote

Ch = max
1≤j≤p

[
|hj |

σj

√
ε log p

]
, Cα = K

√
τ + 1 + Ch. (7.4)

If α0 = Cα

√
ε log p then, for any τ > 0 and any α ≥ α0, with probability at least

1− 2p−τ , one has

‖f
θ̂
− f‖22 ≤ inf

t

[
‖ft − f‖22 + 4α‖Υt‖1

]
. (7.5)

Moreover, if Assumption A holds and α = �α0 where � ≥ (μ + 1)/(μ − 1),
then for any τ > 0 with probability at least 1− 2p−τ , one has

‖fˆθ
− f‖22 ≤ inf

t,J⊆P

⎡⎣‖ft − f‖22 + 4α‖(Υt)Jc‖1 +
(1 +�)2C2

α

κ2(μ, J)
ε log p

∑
j∈J

ν2j

⎤⎦ .
(7.6)

Proof of Theorem 1. Let vectors b and ξ, respectively, have components
bk = 〈φk, f〉 and ξk defined in (2.13). It is easy to see that

ξk − bk =
1

n

n∑
i=1

[ψk(Yi)− Eψk(Yi)] +Hk with Hk = Eψ̃
k,ζ̂k

− bk (7.7)

Applying Bernstein inequality, for any x > 0, obtain

P

(∣∣∣∣∣n−1
n∑

i=1

[ψk(Yi)−Eψk(Yi)]

∣∣∣∣∣ ≥ xσk√
n

)
≤ 2 exp

(
−x2

[
2+

4xσk‖ψk‖∞
3
√
n

]−1
)
.

Using the fact that A/(B + C) ≥ min(A/(2B), A/(2C)) for any A,B,C > 0,
under condition n ≥ N0, derive

P

(∣∣∣∣∣n−1
n∑

i=1

[ψk(Yi)− Eψk(Yi)]

∣∣∣∣∣ ≥ xn−1/2 σk

)
≤ 2 exp{−(x2/4)}. (7.8)

Choosing x = 2
√

(τ + 1) log p and recalling that, according to (2.10), |Hk| =
n−1/2σk, gather that P(|ξk − bk| > n−1/2 σk[2

√
(τ + 1) log p + 1]) ≤ 2 p−(τ+1),

so that

Ω1 =

{
ω : max

1≤k≤p

[
|ξk − bk|

σk

]
≤ 2
√
(τ + 1) log p+ 1√

n

}
with P(Ω1) > 1− 2p−τ .

(7.9)
Then, validity of Theorem 1 follows directly from Lemma 1 with ε = n−1,
ηk = ξk/σk and K = 2.

Proof of Theorem 2. Validity of inequality (4.6) follows from (7.9) and
Lemma 1 with ε = σ/

√
n, K = 2, hj = n−1/2σj and Ch = (log p)−1/2.
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In order to establish upper bounds for (π̂0−π0)
2, note that due to (2.17) and

(2.18) and π0 ≥ 0, one has

|π̂0 − π0| ≤ |P(Y = 0)− ν0|+ |uT (θ̂ − θ̃) + Δ|. (7.10)

For any τ > 0, by Hoeffding inequality obtain P{|P(Y =0)−ν0| ≤
√

τn−1 log p}≥
1 − 2p−τ . Let Ω1 be the set on which |P(Y = 0) − ν0| ≤

√
τn−1 log p. Then,

P(Ω1) ≥ 1− 2p−τ .
Now, let Ω2 be the set on which inequality (4.6) holds and P(Ω2) ≥ 1−2p−τ .

Observe that

uT (θ̂ − θ̃) =

∫ ∞

0

e−λ

p∑
j=1

(θ̃j − θ̂j)φjλ) dλ =

∫ ∞

0

e−λ(f̂(λ)− f̃(λ))dλ

where f̃ is the projection of f(λ) onto the linear space spanned by the dictionary
D. Therefore, by the definition of Δ in (2.17) obtain that

|uT (θ̂ − θ̃) + Δ| ≤
∣∣∣∣∫ ∞

0

e−λ(f̂(λ)− f(λ)) dλ

∣∣∣∣ ≤ ‖f̂ − f‖2/
√
2. (7.11)

Hence, on a set Ω = Ω1 ∩ Ω2 with P(Ω) ≥ 1 − 4p−τ , using (7.10) and (7.11),
obtain (4.7) which completes the proof.
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