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Abstract: Generalized linear (GL-) statistics are defined as functionals
of an U -quantile process and unify different classes of statistics such as
U -statistics and L-statistics. We derive a central limit theorem for GL-
statistics of strongly mixing sequences and arbitrary dimension of the un-
derlying kernel. For this purpose we establish a limit theorem for U -statistics
and an invariance principle for U -processes together with a convergence rate
for the remaining term of the Bahadur representation.

An application is given by the generalized median estimator for the tail-
parameter of the Pareto distribution, which is commonly used to model ex-
ceedances of high thresholds. We use subsampling to calculate confidence in-
tervals and investigate its behaviour under independence and under strong
mixing in simulations.
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1. Introduction

Generalized linear statistics (GL-statistics) form a broad class of statistics,
which unifies not only the widely used U -statistics but also other classes like
L-statistics and even statistics which cannot be assigned to a certain class. GL-
statistics were first developed by Serfling (1984), who shows a central limit the-
orem under independence. In this paper we develop results for GL-statistics of
random variables which are short range dependent. An important tool to gain
a Central Limit Theorem for GL-statistics are U -statistics with multivariate
kernels. Up to now we can find a lot of results for bivariate U -statistics of short
range dependent data (cf. Borovkova et al. (2001), Dehling and Wendler (2010)
and Wendler (2011b)) but in the multivariate case there occur some additional
difficulties caused by the dependencies in the kernel structure.

Now let us introduce some basic assumptions and definitions which we will
use throughout the paper.

Let X1, . . . , Xn be a sequence of random variables with distribution function
F . We will assume the random variables to be short range dependent, a de-
tailed definition is given later on. Moreover, let Fn be the empirical distribution
function of X1, . . . , Xn with

Fn(x) =
1

n

n∑
i=1

1[Xi≤x], −∞ < x < ∞,

and h(x1, . . . , xm), for given m ≥ 2, a kernel, that is a measurable, symmetric
function. We define the empirical distribution function Hn of h (Xi1 , . . . , Xim)
as

Hn(x) =
1(
n
m

) ∑
1≤i1<...<im≤n

1[h(Xi1 ,...,Xim)≤x], −∞ < x < ∞,

and H−1
n (p) = inf{x|Hn(x) ≥ p} as the related generalized inverse. Further-

more, let HF with HF (y) = PF (h(Y1, . . . , Ym) ≤ y) be the distribution function
of the kernel h for independent copies Y1, . . . , Ym of X1 and 0 < hF < ∞ the
related density (this implies that HF is continuous).

We define hF ;Xi2 ,...,Xik
as the density of h(Yi1 , Xi2 , . . . , Xik , Yik+1

, . . . , Yim)
for 2 ≤ k ≤ m and i1 < i2 < . . . < im.
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Definition 1.1.
A generalized L-statistic with kernel h is given by

T (Hn) =

∫ 1

0

H−1
n (t)J(t)dt+

d∑
i=1

aiH
−1
n (pi)

=

n(m)∑
i=1

⎡⎣∫ i
n(m)

(i−1)
n(m)

J(t)dt

⎤⎦H−1
n

(
i

n(m)

)
+

d∑
i=1

aiH
−1
n (pi),

where n(m) = n(n− 1) · . . . · (n−m+ 1).

The GL-statistic T (Hn) is a natural estimator of T (HF ), which is defined
analogously.

Example 1.1.
Let h : Rm → R be a measurable function. A U -statistic with kernel h is defined
as

Un =
1(
n
m

) ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim).

If the random variables are independent and identically distributed, Un is an
unbiased estimator of θ = E(h(X1, . . . , Xm)). A U -statistic can be written as a
GL-statistic by setting d = 0 and J = 1.

Example 1.2.
A widely known L-statistic is the α-trimmed mean

X̄(α) =
1

n− 2 [nα]

n−[nα]∑
i=[nα]+1

X(i),

where X(i) is the ith value of the order statistic X(1) ≤ X(2) ≤ . . . ≤ X(n).

To rewrite it as a GL-statistic we choose J(t) = 1
1−2α for α < t < 1 − α and

J(t) = 0 everywhere else. As kernel we set h(x) = x and let the sum vanish by
the choice d = 0.

Example 1.3.
The generalized Hodges-Lehmann estimator

median

(
1

n
(Xi1 + . . .+Xim) , 1 ≤ i1, . . . , im ≤ n

)
is neither a U -statistic nor an L-statistic, but it is possible to formulate it as
a GL-statistic choosing the kernel h(xi1 , . . . , xim) = 1

n (xi1 + . . . + xim) and
setting J = 0, d = 1, and a1 = 1. We get the median of the kernel by using
the representation via the quantile function H−1

n ( 12 ). Consequently p1 = 1
2 . The

generalized Hodges-Lehmann estimator is the GL-statistic

T (Hn) = H−1
n

(
1

2

)
.
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In the following we will consider a special form of short range dependence:
strong mixing.

Definition 1.2. Let (Xn)n∈N be a stationary process. The strong mixing coef-
ficients of (Xn) are

α(k) = sup
n∈N

sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ Fn

1 , B ∈ F∞
n+k

}
,

where Fb
a is the σ-field generated by Xa, . . . , Xb.

(Xn)n∈N is called strongly mixing (or α-mixing), if α(k) → 0 as k → ∞.

Strong mixing is the weakest among the different forms of mixing since the α-
mixing coefficients are always smaller than for example the β-mixing coefficients
(cf. Bradley (2007)).

After stating the main results, among others the Central Limit Theorem
for GL-statistics, we also provide some results concerning U -statistics and U -
processes. In a second step we give an application, the generalized median es-
timator (GM -estimator) for the tail parameter of the Pareto distribution (cf.
Brazauskas and Serfling (2000b) and Brazauskas and Serfling (2000a) under in-
dependence). The Pareto distribution is commonly used for modelling heavy
tails and exceedances of a threshold (peak over threshold, POT). Especially in
hydrology it has wide application when only extreme floods above a certain
threshold should be considered in the analysis. There also occurs the need of
a robust estimator, needing a downweighting of the influence of extreme floods
in short time series. Simulations verify that the generalized median estimator
is almost as efficient as the maximum likelihood estimator under independence
and for autocorrelated data, but more robust. Short range dependence is up to
now seldom modelled in the estimation of parameters under POT, but when
considering for example monthly discharges it is very probable to find such de-
pendencies. Our investigation of the generalized median estimator aims at clos-
ing this gap and can be extended to other situations, where a robust estimator
for dependent data is needed.

Results needed for the proofs of the main results are given in Section 4, the
proofs of the results given in Section 2 can be found in Section 5.

2. Main results

An important and well known result concerning quantiles is the representation
proposed by Bahadur, which uses the representation of the quantile by the em-
pirical distribution function. A key role plays the remaining term, for which
Ghosh (1971) showed the convergence for ordinary quantiles and under inde-
pendence. In the dependent case results were shown by Sen (1972) for φ-mixing
and Babu and Singh (1978) and Yoshihara (1995) (with a weaker decay of the
mixing coefficients) for strong mixing random variables. Also Sun and Lahiri
(2006) as well as Lahiri (2009) with a specified rate show the normal approxi-
mation of the term

√
n
(
F−1
n − F−1

)
for strong mixing random variables. The
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extension to generalized quantiles can be found in Wendler (2011a) with bivari-
ate kernels. In our case we need the convergence of generalized quantiles with
a multivariate kernel and strong mixing. The result is stated in the following
theorem.

Theorem 2.1.
Let (Xn)n∈N be a sequence of strong mixing random variables with distribution
function F , E|X1|ρ < ∞ for a ρ ≥ 1 and mixing coefficients α(l) = O(l−δ) for
a δ > 2ρ+1

ρ . Moreover let h(x1, . . . , xm) be a Lipschitz-continuous kernel with
distribution function HF and related density 0 < hF < ∞ and for all 2 ≤ k ≤ m
let hF ;X2,...,Xk

be bounded. Then we have for the Bahadur representation with

ξ̂p = H−1
n (p)

ξ̂p = ξp +
HF (ξp)−Hn(ξp)

hF (ξp)
+ op(

1√
n
).

Remember that a kernel h : Rm −→ R is called Lipschitz-continuous if there
exists a constant L ≥ 0 such that

|h(x1, . . . , xm)− h(x′
1, . . . , x

′
m)| ≤ L‖(x1, . . . , xm)− (x′

1, . . . , x
′
m)‖

for all x1, . . . , xm, x′
1, . . . , x

′
m ∈ R.

Now we will state the main theorem of our paper, the asymptotic normality of
GL-statistics under strong mixing. Under independence this result was proved
by Serfling (1984).

Theorem 2.2.
Let h(x1, . . . , xm) be a Lipschitz-continuous kernel with distribution function HF

and related density 0 < hF < ∞ and for all 2 ≤ k ≤ m and all i1 < i2 < . . . < im
let hF ;Xi2 ,...,Xik

be bounded. Moreover let J be a function with J(t) = 0 for
t /∈ [α, β], 0 < α < β < 1, and in [α, β] let J be bounded and a.e. continuous
concerning the Lebesgue-measure and a.e. continuous concerning H−1

F . Addi-
tionally, let X1, . . . , Xn be a sequence of strong mixing random variables with
E|X1|ρ < ∞ for a ρ ≥ 1 and mixing coefficients α(n) with α(n) = O(n−δ) for a
δ ≥ 8. Then the following statement holds for GL-Statistics T (Hn)

√
n (T (Hn)− T (HF ))

D−→ N(0, σ2),

where

σ2 =m2
(
Var (E (A(Y1, . . . , Ym)|Y1 = X1))

+ 2

∞∑
j=1

Cov (E (A(Y1, . . . , Ym)|Y1 = X1) ,E (A(Y1, . . . , Ym)|Y1 = Xj+1))
)

with independent copies Y1, . . . , Ym of X1 and

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy
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+

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

.

For the proof of this theorem, which is given in Section 5, a key tool will be
the representation of the kernel A as a U -statistic, see Example 1.1. Additionally
also the functional Hn belongs to the class of U -statistics and therefore we make
use of several results of the theory of U -statistics. In the following section we
will extend some known results for bivariate U -statistics under strong mixing
to the multivariate case. We will see that this extension causes some problems
concerning the dependencies in the kernels and the solution of these problems
is not straightforward.

In the Theorem above the asymptotic variance is influenced by unknown
quantities. The conditionals expectation as well as the density of the distribution
function of the kernel and also the covariances are not known and cannot be
estimated directly. For the simple case of a bivariate kernel Vogel and Wendler
(2015) develop an estimator of the long-term variance and show its consistency
(Theorem 2.4). The multivariate case is more complicated and a consistency
result is beyond the scope of this paper.

Remark 2.1. In the case of bivariate kernels, similar results as Theorems 2.3
and 2.4 can be found in Borovkova et al. (2001) (Theorem 7, Asymptotic Nor-
mality of U -Statistics), Dehling and Philipp (2002) (Theorem 5.14, Invariance
Principle for U -processes) and Wendler (2011b) (Theorem 3.3.1) for near epoch
dependent (NED) sequences of absolutely regular processes. We conjecture that
an extension to the multivariate case is possible also under this other type of
weak dependence, but detailed proofs are beyond the scope of this paper.

2.1. U-statistics and U-processes

While examining U -statistics often a technique called Hoeffding decomposition
(Hoeffding (1948)) is used. It decomposes the U -statistic into a sum of different
terms, which we can examine separately.

Definition 2.1. (Hoeffding decomposition)
Let Un be a U -statistic with kernel h = h(x1, . . . , xm). Then one can write Un

as

Un = θ +

m∑
j=1

(
m

j

)
1(
n
j

)Sjn,

where

θ = E(h(Y1, . . . , Ym))

h̃j(x1, . . . , xj) = E(h(x1, . . . , xj , Yj+1, . . . , Ym))− θ

Sjn =
∑

1≤i1<...<ij≤n

gj(Xi1 , . . . , Xij )
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g1(x1) = h̃1(x1)

g2(x1, x2) = h̃2(x1, x2)− g1(x1)− g1(x2)

g3(x1, x2, x3) = h̃3(x1, x2, x3)−
3∑

i=1

g1(xi)−
∑

1≤i<j≤3

g2(xi, xj)

. . .

gm(x1, . . . , xm) = h̃m(x1, . . . , xm)−
m∑
i=1

g1(xi)−
∑

1≤i1<i2≤m

g2(xi1 , xi2)

− . . .−
∑

1≤i1<...<im−1≤m

gm−1(xi1 , . . . , xim−1).

for independent copies Y1, . . . , Ym of X1.

The term m
n

∑n
i=1 g1(Xi) is called the linear part, the remaining parts are

called degenerated.
For most of the results in this section we need a regularity condition for the

kernel h, which was first developed by Denker and Keller (1986) and is extended
for our purpose.

Definition 2.2. A kernel h satisfies the variation condition, if there exists a
constant L and an ε0 > 0, such that for all ε ∈ (0, ε0)

E

(
sup

‖(x1,...,xm)−(X′
1,...,X

′
m)‖≤ε

|h(x1, . . . , xm)− h(X ′
1, . . . , X

′
m)|

)
≤ Lε,

where the X ′
i are independent with the same distribution as Xi and ‖·‖ is the

Euklidean norm.
A kernel h satisfies the extended variation condition, if there additionally exist

constants L′ > 0 and δ0 > 0, such that for all δ ∈ (0, δ0) and all 2 ≤ k ≤ m

E

(
sup

|xi1−Yi1 |≤δ

∣∣h(xi1 , Xi2 , . . . , Xik , Yik+1
, . . . , Yim)

−h(Yi1 , Xi2 , . . . , Xik , Yik+1
, . . . , Yim)

∣∣)
≤ L′δ

for independent copies (Yn)n∈N of (Xn)n∈N and all i1 < i2 < . . . < im. If the
kernel has dimension m = 1, we note that it satisfies the extended variation
condition, if it satisfies the variation condition.

Remark 2.2. Every Lipschitz-continuous kernel satisfies the variation condi-
tion.

Now we state another main result of this paper, the asymptotic normality of
U -statistics under strong mixing. For bivariate U -statistics this result is already
known (see Wendler (2011b)), but not for arbitrary dimension m of the kernel h.
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Theorem 2.3.
Let h : Rm → R be a bounded kernel satisfying the extended variation condition.
Moreover let (Xn)n∈N be a sequence of strong mixing random variables with
E|X1|ρ < ∞ for a ρ > 0 and mixing coefficients α(l) = O(l−δ) for a δ > 2ρ+1

ρ .
Then we have

√
n(Un − θ)

D−→ N(0,m2σ2)

with σ2 = Var(g1(X1)) + 2
∑∞

j=1 Cov(g1(X1), g1(X1+j)).
If σ = 0 then the statement means convergence to 0 in probability.

The key tool for the proof of this theorem is the Hoeffding decomposition, for
which the first term converges against the given distribution while all remaining
terms converge towards zero.

As an extension to U -statistics we also analyse U -processes and their conver-
gence. In other words our U -statistic has no longer a fixed kernel h but we have
a process (Un(t))t∈R. Up to now we have had (Hn(t))t∈R as an example of such
a process.

Definition 2.3. Let h : Rm+1 → R be a measurable and bounded function, sym-
metric in the first m arguments and non-decreasing in the last. Suppose that for
all x1, . . . , xm ∈ R we have lim

t→∞
h(x1, . . . , xm, t) = 1, lim

t→−∞
h(x1, . . . , xm, t) =

0. We call the process (Un(t))t∈R empirical U -distribution function. As U -distri-
bution function we define U(t) := E (h(Y1, . . . , Ym, t)) for independent copies
Y1, . . . , Ym of X1. Then the empirical process is defined as

(
√
n(Un(t)− U(t)))t∈R.

Analogous to simple U -statistics here the Hoeffding decomposition is an im-
portant technique in our proofs. For fixed t we have

Un(t) =
1(
n
m

) ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim , t)

and therefore we can decompose Un(t) analogously to Definition 2.1.
Likewise we will need a new form of the extended variation condition.

Definition 2.4. We say h satisfies the extended uniform variation condition,
if the extended variation condition holds for h(x1, . . . , xm, t) with a constant not
depending on t.

A typical result for processes is the Invariance Principle, a result we also
need for our U -processes. For near epoch dependent sequences on absolutely
regular processes it was already proved by Dehling and Philipp (2002). A result
for strong mixing can be found in Wendler (2011b). Under independence one
can find a strong invariance principle in Dehling et al (1987). These results only
consider the bivariate case, whereas we also admit multivariate kernels. For
our purposes we only need the convergence of the first term of the Hoeffding
decomposition, so the proof will be somewhat different.
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From now on consider the case where Hn is our empirical U -process, that
is Un(t) has the kernel g(x1, . . . , xm, t) = 1[h(x1,...,xm)≤t]. Therefore U(t) =

E
(
1[h(Y1,...,Ym)≤t]

)
= P(h(Y1, . . . , Ym) ≤ t) = HF (t) and since HF has density

hF < ∞ we have that HF is Lipschitz-continuous.

Theorem 2.4.
Let h be a kernel with distribution function HF and related density hF < ∞.
Moreover, let g1 be the first term of the Hoeffding decomposition of Hn. Let
(Xn)n∈N be a sequence of strong mixing random variables with mixing coeffi-
cients α(l) = O(l−6−γ) for a 0 < γ < 1. Then(

m√
n

n∑
i=1

g1(Xi, t)

)
t∈R

D−→ (W (t))t∈R
,

where W is a continuous Gaussian process.

This theorem can be proved in the same way as Theorem 4.1 of Dehling and
Philipp (2002) and is therefore omitted.

By using results concerning the convergence of all remaining terms of the Ho-
effding decomposition, which is given in Lemma 4.4, we can state the following
corollary.

Corollary 2.1.
Let (Xn)n∈N be a sequence of strong mixing random variables with mixing coef-
ficients α(l) = O(l−δ) for δ ≥ 8 and E|X1|ρ < ∞ for a ρ > 1

4 . Moreover let h be
a Lipschitz-continuous kernel with distribution function HF and related density
hF < ∞ and for all 2 ≤ k ≤ m let hF ;X2,...,Xk

be bounded. Then

sup
t∈R

∣∣√n (Hn(t)−HF (t))
∣∣ = Op(1).

The proofs of all results in this section are given in Section 5.

3. Application: The generalized median estimator

The generalized median (GM -) estimator was developed by Brazauskas and
Serfling under independence as a robust estimator of the parameters of different
distributions, for example the Pareto distribution or Log-Normal distribution
(Brazauskas and Serfling (2000b), Brazauskas and Serfling (2000a) and Serfling
(2002)).

We will concentrate on the Pareto distribution, which is a very heavy tailed
distribution often used in hydrology and other fields for modelling the tail of a
distribution. Its distribution function is given by

F (x) =

{
1−

(
σ
x

)α
, x ≥ σ

0, x < σ
,
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where α > 0 and σ > 0. We assume σ to be unknown and estimate it through
the minimum of the sample.

We want to expand the GM -estimator to sequences of strong mixing ran-
dom variables with Pareto distributed margins and estimate the tail index α.
Therefore we have to choose a kernel which is median unbiased. Like Brazauskas
and Serfling (2000b) we choose the modified maximum likelihood estimator as
kernel, which was shown to be median unbiased under independence, and use
this result to show its asymptotical median unbiasedness under strong mixing,
that is

h(x1, . . . , xm) =
M2m−2

2m

1(
1
m

∑m
i=1 log xi − log (min ((x1, . . . , xm))

) ,
where M2m−2 is the median of the χ2

2m−2-distribution.

Lemma 3.1. For a sequence of strong mixing, Pareto distributed random vari-
ables (Xn)n∈N with E |X1|ρ < ∞ for a ρ ≥ 1 and mixing coefficients α(l) =
O(l−δ) for a δ ≥ 8 the kernel

h(x1, . . . , xm) = M2m−2

2m
1

( 1
m

∑m
i=1 log xi−log(min(x1,...,xm)))

is asymptotically me-

dian unbiased.

Proof.
We have E (Hn −HF )

2 −→ 0 using the same arguments as in Lemma 2.1. With
arguments of Glivenko-Cantelli type this implies

sup
t

|E(Hn(t))−HF (t)| −→ 0.

Following Example 1 of Pollard (1984) the proof is completed.

The GM -estimator of the parameter α is then given by

α̂GM = med(h(Xi1 , . . . , Xim)),

which can be expressed as a GL-statistic by choosing J = 0, d = 1, a1 = 1,
and p1 = 1

2 . Applying Theorem 2.2 we have

√
n (α̂GM − α)

D−→ N(0, σ2
GM ), (1)

σ2
GM =

m2

h2
F (α)

(
V ar(P(h(Y1, . . . , Ym) ≤ α|Y1 = X1))

+ 2

∞∑
j=1

Cov
(
P(h(Y1, . . . , Ym) ≤ α|Y1 = X1),

P(h(Y1, . . . , Ym) ≤ α|Y1 = Xj+1)
))

.

The results concerning robustness given by Brazauskas and Serfling (2000a)
remain valid since the kernel is unchanged. Additionally one can show that the
influence function of the GM -estimator is bounded (cf. Serfling (1984)).
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Remark 3.1. In the case of heavy tailed data one often not only deals with
exact Pareto distributed data but has Pareto-type tails. That is

F (x) = 1− x−αL(x),

with L being a slowly varying function (Vandewalle (2007)). Then, GM - as well
as ML-estimator might be biased. In our case usage of a threshold going to
infinity as the number of observations increases would be necessary in order to
decrease the bias. This would complicate our theorems further, since we would
need a formula for U-Statistics derived from a triangular array.

Before comparing the GM -estimator with another estimator we first want to
figure out, how well the approximation of the normal distribution works. We
therefore estimate the tail index of independent, identically Pareto-distributed
with α = 2 and σ = 1 and also of an AR(1)-process with different autocorre-
lation coefficient ρ = 0.2, 0.5, 0.8 and Pareto-distributed margins. We use 500
simulation runs for each setting, except for the case m = 4, where we use only
250 runs because of the large computation times. The number of simulated ran-
dom variables is chosen as n = 100 and for “asymptotic” behaviour as n = 1000.
We then compare

√
n(α̂GM − α) with the theoretical normal distribution using

a QQ-plot. The results can be found in the Appendix (Figures 2–4).

We can see that for a small kernel dimension m = 2 and a sample size of
n = 1000 the GM -estimator is approximately normal distributed for all cases
of dependence (independent and ρ = 0.2, 0.5, 0.8). If we reduce the sample size
to n = 100 we see much larger deviations of the tails from the theoretical
quantiles. Especially in the case of ρ = 0.8 we can definitely say that no normal
distribution is present. As the kernel dimension increases, the normality of the
estimator gets better. In case of m = 4 we can assume normality even for
n = 100, if the dependence is moderate (independence or ρ = 0.2), although we
were not able to simulate all 500 runs. Only for the case ρ = 0.8 normality has
not been reached yet. If we compare the results with the ML-estimator (m = n)
we can see a better normal behaviour for ρ = 0.8 and n = 1000. For all other
cases the behaviour is similar to the case of m = 4.

We can conclude that for large sample sizes of n = 1000 the GM -estimator is
normal distributed for independent and moderately dependent (ρ ≤ 0.5) data.
For small sample sizes of n = 100 normality can be seen for slightly dependent
data (ρ ≤ 0.2).

In the following simulations we compute confidence intervals for the tail index
α using subsampling (cf. Politis and Romano (1994)). We show the coverage
probability and the length of the confidence interval for different block lengths
in subsampling and three different kernel dimensions of the generalized median
estimator, that is m = 2, 3, 4. The underlying n=100 random variables are
computed as independent, identically Pareto-distributed with α = 2 and σ = 1
and also from an AR(1)-process with different autocorrelation coefficient ρ =
−0.5,−0.2, 0.2, 0.5 and Pareto-distributed margins. The simulation is repeated
500 times. The procedure of subsampling is as follows:
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Because
√
n (α̂GM − α) converges towards an unknown distribution, we es-

timate the quantiles of the distribution the following way: we first choose a
blocklength b = bn with bn → ∞ and bn

n → 0 for n → ∞. Then we calcu-
late the GM -estimator of α for each of the n− b+ 1 subsamples consisting of b
consecutive data values, getting a vector of estimates

(
α̂1
GM , . . . , α̂n−b+1

GM

)
. Using

Ln(t) =
1

n− b+ 1

n−b+1∑
i=1

1[
√
b(α̂i

GM−α̂)]≤t

the quantiles q∗γ = L−1
n (γ) are calculated, where α̂ is the GM -estimate for α

derived from the whole sample.
The confidence interval CI for a confidence level 1− γ is then

CI =

⎡⎣α̂−
q∗
1−γ

2√
n

; α̂−
q∗γ
2√
n

⎤⎦ ,

resulting from P

(
q∗γ
2

≤ √
n (α̂− α) ≤ q∗

1−γ
2

)
−→ 1− γ.

These results are compared with the case m = n corresponding to the
maximum-likelihood (ML) estimator.

We want to emphasize that the Generalized Median estimator is computa-
tionally very demanding. Wilde and Grimshaw (2013) developed an algorithm,
which approximates the estimator and speeds the calculation up. For single es-
timates it is therefore easily applicable. Nevertheless, extensive simulations are
not easily possible. This was the reason for us to limit our simulations to a single
parameter combination and small samples and runs and also using subsampling
instead of bootstrap. Exemplary simulations show that the simulation results
remain valid also for other parameter choices.

All simulations were done in R 3.0.1 using the packages VGAM and fExtremes
and the algorithm of Wilde and Grimshaw (2013) for the generalized median
estimator. We need to mention that the results can fluctuate up to 0.02 because
of the moderate number of observation runs (500). For the choice m = 4 of
the kernel dimension the calculations are very time consuming. Due to time
constraints, some simulations had to be stopped after 250 runs. When this is
the case, we mark the column with ().

First we investigate the efficiency of the GM -estimator in comparison with
the classical maximum-likelihood estimator corresponding to the case m = n.
For this we have a look at the coverage probability and the length of the con-
fidence interval under data from an ideal model. As expected we see in Tables
1 and 2 that under independence the coverage probability and the length of
the confidence interval of the GM -estimator get better for increasing m, being
best when m = n, the case of the ML-estimator. Nevertheless even for small
values of m the efficiency of the GM -estimator is not too bad compared to the
ML-estimator.

Under slight positive dependence (ρ = 0.2) the GM -estimator with m =
4 performs almost as well as the ML-estimator with m = n and the length
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Table 1

Confidence interval length and coverage probability of the 90% and 95% confidence intervals
from 100 independent, identically Pareto(2,1)-distributed random variables using

subsampling under different block lengths for 500 repetitions and kernel dimension 2, 3, 4
and n

block length
90% confidence interval 95% confidence interval

coverage probability length coverage probability length
m=2

15 0.776 0.769 0.848 0.894
20 0.738 0.701 0.818 0.795

m=3
15 0.778 0.736 0.812 0.845
20 0.770 0.674 0.792 0.738

m=4
15 0.781 0.720 0.843 0.814
20 0.772 0.683 0.805 0.697

m=n
15 0.834 0.666 0.846 0.734
20 0.792 0.585 0.818 0.658

Table 2

Confidence interval length and coverage probability of the 90% and 95% confidence intervals
from 100 random variables from an AR(1)-process with ρ = 0.2 and Pareto(2,1)-distributed

margins using subsampling under different block lengths for 500 repetitions and kernel
dimension 2, 3, 4 and n

block length
90% confidence interval 95% confidence interval

coverage probability length coverage probability length
m=2

15 0.756 0.874 0.778 1.005
20 0.756 0.789 0.770 0.878

m=3
15 0.794 0.850 0.764 0.950
20 0.724 0.779 0.780 0.864

m=4
15 0.803 0.838 0.811 0.943
20 0.769 0.744 0.776 0.822

m=n
15 0.790 0.840 0.814 0.994
20 0.770 0.749 0.796 0.853

of the confidence interval is sometimes even smaller. Note that in the case of
dependence, the GM -estimator for m = n is not the ML-estimator, since it
was constructed to maximize the likelihood under independence. But because
of Theorem 1 we have the same theoretical guarantees as for m = 2, 3, 4, . . ..
The construction of a maximum-likelihood estimator under dependence is quite
demanding (see for example Beran et al. (2013)) and sometimes the pseudo-
likelihood method is used. Nevertheless, this estimator for m = n is widely
applied also under dependence (for example in hydrological time series, see Li
et al. (2005)) since it is the Moment estimator for α and we use it for comparison.
In general the coverage probability and also the length of the confidence interval
of the GM -estimator are not influenced very much by the size of m; for the
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Table 3

Confidence interval length and coverage probability of the 90% and 95% confidence intervals
from 100 random variables from an AR(1)-process with ρ = 0.5 and Pareto(2,1)-distributed

margins using subsampling under different block lengths for 500 repetitions and kernel
dimension 2, 3, 4 and n

block length
90% confidence interval 95% confidence interval

coverage probability length coverage probability length
m=2

15 0.546 1.362 0.554 1.539
20 0.520 1.127 0.558 1.257

m=3
15 0.528 1.218 0.542 1.457
20 0.552 1.098 0.554 1.272

m=4 (�)
15 0.558 1.278 0.536 1.126
20 0.584 1.212 0.539 1.008

m=n
15 0.600 1.362 0.606 1.560
20 0.596 1.158 0.644 1.354

Table 4

Confidence interval length and coverage probability of the 90% and 95% confidence intervals
from 100 random variables from an AR(1)-process with ρ = −0.2 and

Pareto(2,1)-distributed margins using subsampling under different block lengths for 500
repetitions and kernel dimension 2, 3, 4 and n

block length
90% confidence interval 95% confidence interval

coverage probability length coverage probability length
m=2

15 0.778 0.723 0.844 0.803
20 0.748 0.634 0.768 0.715

m=3
15 0.770 0.663 0.798 0.748
20 0.716 0.602 0.802 0.687

m=4 (�)
15 0.772 0.713 0.776 0.637
20 0.724 0.622 0.728 0.578

m=n
15 0.810 0.619 0.850 0.717
20 0.772 0.547 0.812 0.635

smallest choice of m the coverage probability and the length of the confidence
interval of the GM -estimator are rather close to that of the case m = n. The
same can be seen if the dependence is increased (ρ = 0.5, Table 3). Although the
coverage probability as well as the length of the confidence interval worsen, the
same tendential behaviour as for ρ = 0.2 is shown. In the presence of dependence
often also theGM -estimator withm = 4 behaves better, especially for the length
of the interval, than the ML-estimator. The deviation in the results for m = 4
probably result from the smaller number of runs.

We also investigated the case where ρ = 0.8, but the results for a sample
size n = 100 were very poor for all cases of m with a coverage probability
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Table 5

Confidence interval length and coverage probability of the 90% and 95% confidence intervals
from 100 random variables from an AR(1)-process with ρ = −0.5 and

Pareto(2,1)-distributed margins using subsampling under different block lengths for 500
repetitions and kernel dimension 2, 3, 4 and n

block length
90% confidence interval 95% confidence interval

coverage probability length coverage probability length
m=2

15 0.508 0.659 0.532 0.744
20 0.452 0.591 0.500 0.655

m=3
15 0.466 0.608 0.546 0.707
20 0.470 0.569 0.492 0.622

m=4 (�)
15 0.444 0.627 0.444 0.572
20 0.452 0.593 0.408 0.528

m=n
15 0.516 0.571 0.542 0.640
20 0.476 0.477 0.512 0.556

always about 0.3 and a length of the confidence interval between 3 and 10, and
therefore, having in mind the results of the normality plots, they are omitted
here.

If the correlation is negative (Tables 4 and 5), the results are very similar
to case of positive dependence. For ρ = −0.2 the coverage probability is even
better than for ρ = 0.2, though the length of the interval is not.

For independence or moderate dependence (ρ = 0.2), the coverage probability
decreases when the block length b increases. For stronger dependence (ρ = 0.8),
the longer block length (b = 20) gives better results.

In almost every case of dependence and independence we can see that the
coverage probability and the length of the confidence interval worsens when
changing the dimension from m = 2 to m = 3. This cannot be explained by
the random deviation of the results, which is at most about 0.02 (see above).
It seems, that using a smaller dimension and therefore smaller groups leads
sometimes to a better estimation.

Additionally we compared the robustness of the ML-estimator (m = n) with
the GM -estimator for m = 2, the most robust case. A basic requirement for
a statistical method to be called robust is that it should be little affected by
a single observation deviating from the model. Such data scenarios are called
one-wild by Tukey (1960) and lead, e.g., to the sensitivity curves of estimators.
Our interest is in statistical inference. Therefore, we contaminate a sample by
adding a value yi lying in the interval (0, 100], and calculate the average coverage
probability that is

CP (i) =
1

n

n∑
j=1

(
1[CI1j ,CI2j ](α)− 1[CI1j(i),CI2j(i)](α)

)
,

where CI1j and CI2j are the bounds of the confidence interval calculated
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Fig 1. Difference in coverage probability for contamination by one observation y in a sample
of size n = 100

for the jth sample (X
(1)
j , . . . , X

(n)
j ) and CI1j(i) and CI2j(i) are the bounds

of the confidence interval calculated for the jth sample contaminated by yi,

(X
(1)
j , . . . , X

(n)
j , yi), for a confidence level of 0.95 respectively and j = 1, . . . , 100.

The confidence intervals were again computed by subsampling with a block
length of 15. This method is analogous to classical sensitivity curves, but fo-
cuses on the coverage probability. The results can be found in Figure 1.

Examining the robustness for data which are contaminated by a value y we
can see that for the ML-estimator in all three dependence cases (independence,
ρ = 0.2 and ρ = 0.8) the coverage probability flattens for increasing y but
does not reach a constant value. This indicates a non-robust behaviour. The
opposite can be seen for the GM -estimator, the coverage probability of which
becomes constant when y exceeds 5 and only fluctuates between two values.
The behaviour of both estimators close to zero is similar. When y decreases
towards the lower bound of the distribution, both estimators have large devia-
tions between the contaminated coverage probability and the uncontaminated
one. Nevertheless the results concerning the robustness of the GM -estimator
with m = 2 are confirmed by the simulations. The results for m = 3, 4, 5 were
very similar, showing also a robust behaviour of the estimator by a constant
coverage probability, and are therefore omitted here.



662 S. Fischer et al.

All in all the performance of the GM -estimator in the simulations depends on
the chosen kernel dimension m. Concerning asymptotic normality, large samples
of about 1000 observations are needed to get good approximations. The ML-
estimator performs better than the other methods in case of independent data,
but the asymptotic approximation works well also for the other kernel dimen-
sions in this case. For positive and moderately high values of the dependence
parameter ρ the choice m = 4 works better than the ML-estimator, and for
strong positive correlation m = 2 seems best.

Looking at the results shown in the Tables 1-5 and Figure 1, and also at
the results of Brazauskas and Serfling (2000a) for independent observations,
we can give the following recommendations for the choice of m. For small and
moderately large positive values of ρ we agree with the recommendation of
Brazauskas and Serfling (2000a) to choosem = 4, since this leads to a robust and
approximately normally distributed estimator with similar confidence intervals
compared to the ML-estimator. If ρ is negative, m = 2 seems to be the best
choice, since it leads to a more robust behaviour and to confidence intervals
with a better coverage rate than the other choices of m, at least in the scenarios
investigated here. Finally, the sample sizes considered here are apparently not
large enough to get reliable estimations in case of very large values of ρ.

4. Preliminary results

In this section we state some results, which will help us to prove or main results.
First of all we want to use the (extended) variation condition not only for the

kernel h, but also for the kernels gk, 1 ≤ k ≤ m, of the Hoeffding decomposition.
For that the following lemma is helpful.

Lemma 4.1.
If the kernel h satisfies the extended variation condition, then the kernels gk
from Definition 2.1, 1 ≤ k ≤ m, satisfy it as well.

Proof.
The proof will be made by mathematical induction. Initially let k = 1. We had
defined g1 as g1(x1) = E(h(x1, Y2, . . . , Ym))− θ. It is

E

(
sup

‖(x1,...,xm)−(X′
1,...,X

′
m)‖≤ε

|g1(x1)− g1(X
′
1)|
)

≤E

(
sup

‖x1−X′
1‖≤ε

E |(h(y1, Y2, . . . , Ym)− h(y′1, Y2, . . . , Ym))|y1 = x1, y
′
1 = X ′

1|
)

≤E

(
sup

‖x1−X′
1‖≤ε

|h(x1, Y2, . . . , Ym)− h(X ′
1, Y2, . . . , Ym)|

)
≤Lε,

because h satisfies the variation condition. So g1 satisfies the extended variation
condition.
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Now let gk−1 satisfy the extended variation condition. We show that gk also
satisfies it:

gk(x1, . . . , xk) =E(h(x1, . . . , xk, Yk+1, . . . , Ym))− θ

−
k∑

i=1

g1(xi)− . . .−
∑

1≤i1≤...≤ik−1≤k

gk−1(xi1 , . . . , xik−1
).

The space of the functions satisfying the (extended) variation condition is a
vector space (cf. Wendler (2011b)) and since we know that all kernels up to
gk−1 satisfy the variation condition, it is sufficient to show that

E(h(x1, . . . , xk, Yk+1, . . . , Ym))− θ satisfies the extended variation condition.

E

(
sup

|x1−Y1|≤δ

∣∣∣∣∣E(h(y1, X2, . . . , Xk, Yk+1, . . . , Ym)|y1 = x1)

− E(h(y′1, X2, . . . , Xk, Yk+1, . . . , Ym)|y′1 = Y1)

∣∣∣∣∣
)

≤ E

(
sup

|x1−Y1|≤δ

∣∣∣∣∣h(x1, X2, . . . , Xk, Yk+1, . . . , Ym)

− h(Y1, X2, . . . , Xk, Yk+1, . . . , Ym)

∣∣∣∣∣
)

≤ L′δ,

since h satisfies the extended variation condition.

Remark 4.1. All results shown before for the extended variation condition
without parameter t remain true for the extended uniform variation condition.

To ultimately show the asymptotic normality of U -statistics of strongly mix-
ing random variables, we will first generalize some lemmas proved by Wendler
(2011b) respectively Dehling and Wendler (2010) or Wendler (2011a) from the
case m = 2 to arbitrary m.

First we need a covariance inequality, which we can establish by the cou-
pling technique. A similar result for absolutely regular variables can be found in
Yoshihara (1976). Here we will follow Wendler (2011b) and expand the lemma
to the case m ≥ 2, meaning we will treat gk for 2 ≤ k ≤ m. The proof is analo-
gous to Wendler (2011b) using the extended variation condition instead of the
ordinary one and is therefore omitted.

Lemma 4.2.
Let (Xn)n∈N be a strong mixing sequence of random variables with E|X1|ρ < ∞
for a ρ > 0 and h a bounded kernel, which satisfies the extended variation
condition. Moreover set l = max{i(2)−i(1), i(2k)−i(2k−1)}, where {i1, . . . , i2k} =
{i(1), . . . , i(2k)} and i(1) ≤ . . . ≤ i(2k). Then there exists a constant C, such that
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for all 2 ≤ k ≤ m

|E
(
gk(Xi1 , . . . , Xik)gk(Xik+1

, . . . , Xi2k)
)
| ≤ Cα

ρ
2ρ+1 (l).

Lemma 4.3.
Let the kernel h be bounded and satisfy the extended variation condition. Let
(Xn)n∈N be a sequence of strong mixing random variables with E |X1|ρ < ∞
for a ρ > 0 and let

∑n
l=0 lα

ρ
2ρ+1 (l) = O(nγ) for a γ ≥ 0 hold. Then for all

2 ≤ k ≤ m

n∑
i1,...,i2k=1

∣∣E(gk(Xi1 , . . . , Xik)gk(Xik+1
, . . . , Xi2k))

∣∣ = O(n2k−2+γ).

Proof.
Set {i1, . . . , i2k} = {i(1), . . . , i(2k)} with i(1) ≤ . . . ≤ i(2k). We can rewrite the
above sum as

n∑
i1,...,i2k=1

∣∣E(gk(Xi1 , . . . , Xik)gk(Xik+1
, . . . , Xi2k))

∣∣
=

n∑
l=0

n∑
i1,...,i2k=1

max{i(2)−i(1),i(2k)−i(2k−1)}=l

∣∣E(gk(Xi1 , . . . , Xik)gk(Xik+1
, . . . , Xi2k))

∣∣

≤ C

n∑
l=0

∑
i1,...,i2k,

max{i(2)−i(1),i(2k)−i(2k−1)}=l

α
ρ

1+2ρ (l),

by application of Lemma 4.2.
For a further simplification we calculate via combinatorial arguments the

quantity of the terms of the inner sum, that is the quantity of tuples (i1, . . . , i2k)
where max{i(2)− i(1), i(2k)− i(2k−1)} = l. At first there are (2k)! possibilities for
a 2k-tuple to get the same ordered sequence i(1), . . . , i(2k). Now we choose i(1)
and i(2k) fixed and have n2 possibilities for doing so. Through the requirement
max{i(2) − i(1), i(2k) − i(2k−1)} = l we can also calculate the remaining possibil-
ities for i(2) and i(2k−1). Suppose i(2)− i(1) = max{i(2)− i(1), i(2k)− i(2k−1)} = l
then i(2) is automatically determined by the established choice of i(1). Because
the requirement on the maximum still has to be fulfilled, i(2k−1) can only take l
distinct values. In the other case i(2k)−i(2k−1) = max{i(2)−i(1), i(2k)−i(2k−1)} =
l we come to the same result. All remaining values of the k-tuple are arbitrary.
Consequently the inner sum altogether is (2k)! · n2ln2k−4 = l · (2k)! · n2k−2 and
therefore

n∑
i1,...,i2k=1

∣∣E(gk(Xi1 , . . . , Xik)gk(Xik+1
, . . . , Xi2k))

∣∣
≤ C ′n2k−2

n∑
l=0

lα
ρ

1+2ρ (l) = O(n2k−2+γ).
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We also need results concerning the remaining terms of the Hoeffding decom-
position for U -processes. In this case we of course do not need simple convergence
against zero, but since we consider processes need to have convergence of the
supremum.

The following lemma was proved by Wendler (2011b) for the case m = 2.
We will modify the main idea of the proof to obtain a similar result for the
degenerated terms of higher dimensional U -processes.

Lemma 4.4.
Let h be a kernel satisfying the extended uniform variation condition, such that
the U -distribution function U is Lipschitz-continuous. Moreover let (Xn)n∈N be
a sequence of strong mixing random variables with mixing coefficients α(l) =
O(l−δ) for δ ≥ 8 and E|Xi|ρ < ∞ for a ρ > 1

4 . Then for all 2 ≤ k ≤ m and

γ = δ−2
δ we have

sup
t∈R

∣∣ ∑
1≤i1,...,ik≤n

gk(Xi1 , . . . , Xik , t)
∣∣ = o(nk− 1

2−
γ
8 ) a.s..

Proof.
We define Qk

n(t) :=
∑

1≤i1,...,ik≤n gk(Xi1 , . . . , Xik , t).

For l ∈ N choose t1,l, . . . , ts−1,l with s = sl = O(2
5
8 l), such that

−∞ = t0,l < t1,l < . . . < ts−1,l < ts,l = ∞

and 2−
5
8 l ≤ |U(tr,l−U(tr−1,l)| ≤ 2 ·2− 5

8 l. Since we required Lipschitz-continuity

of U it follows that 2−
5
8 l ≤ C|tr,l−tr−1,l|. Moreover, because h is non-decreasing

in t,

E (h(Y1, . . . , Yk, Yk+1, . . . Ym, t)|Y1 = Xi1 , . . . , Yk = Xik) is non-decreasing in
t for all 2 ≤ k ≤ m. We proceed by induction.

The case k = 2 was treated by Wendler (2011b) and is therefore omitted
here.

From now on suppose that the statement of the lemma is valid for k − 1.
Together with the above consideration we have for every t ∈ [tr−1,l, tr,l] and

2l ≤ n < 2l+1

|Qk
n(t)|

=
∣∣ ∑
1≤i1<...<ik≤n

(
E(h(Y1, . . . Yk, Yk+1, . . . , Ym, t)|Y1 = Xi1 , . . . , Yk = Xik)

− g1(Xi1 , t)− · · · − g1(Xik , t)

− g2(Xi1 , Xi2 , t)− · · · − g2(Xik−1
, Xik , t)− · · · − U(t)

)∣∣
≤max

{∣∣ ∑
1≤i1<...<ik≤n

(
E(h(Xi1 , . . . , Xik , Yik+1

, . . . , Ym, tr,l)
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− g1(Xi1 , tr,l)− . . .− g1(Xik , tr,l)

− g2(Xi1 , )− · · · − g2(Xik−1
, Xik , tr,l)− · · · − U(tr,l))

)∣∣,
∣∣ ∑
1≤i1<...<ik≤n

(
E(h(Xi1 , . . . , Xik , Yik+1

, . . . , Ym, tr−1,l))

− g1(Xi1 , tr−1,l)− . . .− g1(Xik , tr−1,l)

− g2(Xi1 , Xi2 , tr−1,l)− · · · − g2(Xik−1
, Xik , tr−1,l)

− · · · − U(tr−1,l)
)∣∣}

+

(
n− 1

k − 1

)
max

{∣∣∣∣∣
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, t))

∣∣∣∣∣ ,∣∣∣∣∣
n∑

i=1

(g1(Xi, t)− g1(Xi, tr−1,l))

∣∣∣∣∣
}

+

(
n− 2

k − 2

)
max

{∣∣∣∣∣
n∑

i=1

(g2(Xi1 , )− g2(Xi1 , Xi2 , t))

∣∣∣∣∣ ,∣∣∣∣∣
n∑

i=1

(g2(Xi1 , Xi2 , t)− g2(Xi1 , Xi2 , tr−1,l))

∣∣∣∣∣
}

+ · · ·+
(
n

k

)
|U(tr,l)− U(tr−1,l)|

≤max{|Qk
n(tr,l)|, |Qk

n(tr−1,l)|}

+

(
n− 1

k − 1

) ∣∣∣∣∣
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

∣∣∣∣∣
+

(
n− 2

k − 2

) ∣∣∣∣∣∣
∑

1≤i1<i2≤n

(g2(Xi1 , Xi2 , tr,l)− g2(Xi1 , Xi2 , tr−1,l))

∣∣∣∣∣∣
+ · · ·+

(
n− (k − 1)

k − (k − 1)

)∣∣ ∑
1≤i1<...<ik−1≤n

(
gk−1(Xi1 , . . . , Xik−1

, tr,l)

−gk−1(Xi1 , . . . , Xik−1
, tr−1,l)

) ∣∣
+

(
n

k

)
|U(tr,l)− U(tr−1,l)|.

Again we will treat the first, second and last term of the sum separately.
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For the first term follows

E

(
max

n=2l,...,2l+1−1
max

r=0,...,s
|Qk

n(tr,l)|2
)

≤
s∑

r=0

E

⎛⎝( l∑
d=0

max
i=1,...,2l−d

|Qk
2l+i2d(tr,l)−Qk

2l+(i−1)2d(tr,l)|
)2
⎞⎠

≤
s∑

r=0

l

l∑
d=0

2−d∑
i=1

E

((
Qk

2l+i2d(tr,l)−Qk
2l+(i−1)2d(tr,l)

)2)

≤
s∑

r=0

l

l∑
d=0

2l+1∑
i1,...,i4=1

|E
(
gk(Xi1 , . . . , Xik , t)gk(Xik+1

, . . . , Xi2k , t)
)
|︸ ︷︷ ︸

=O((2l+1)2k−2+γ), with Lemma 4.3

≤ sl2C2(2k−2)(l+1) ≤ C ′l22(2k−2+ 5
8 )l.

For the first inequality we used the so called chaining technique: via the
triangular inequality we parted the term Qn into two differences Q2l+i2d −
Q2l+(i−1)2d .

Now we apply the Chebychev inequality getting for every ε > 0

∞∑
l=1

P

(
max

n=2l,...,2l+1−1
max

r=0...,s
|Qk

n(tr,l)| > ε2l(k−
1
2−

γ
8 )

)

≤
∞∑
l=1

1

ε22l(2k−1− γ
4 )
E

(
max

n=2l,...,2l+1−1
max

r=0...,s
|Qk

n(tr,l)|2
)

≤
∞∑
l=1

1

ε22l(2k−1− γ
4 )
C ′l22(2k−2+ 5

8 )l ≤
∞∑
l=1

C ′ l
2

ε2
2

−3+2γ
8 l < ∞.

Then with the Borel-Cantelli Lemma

P

(
max

n=2l,...,2l+1−1
max

r=0,...,s
|Q2

n(tr,l)| > ε2l(k−
1
2−

γ
8 ) infinitely often

)
= 0.

That is, max
r=0,...,s

|Qk
n(tr,l)| = o(nk− 1

2−
γ
8 ).

Now we will treat the second term of the sum for which we want to apply
Lemma 4.2.1 of Wendler (2011b). For 2l ≤ n < 2l+1 it follows

E

(
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

)4

≤ Cn2(logn)2 max
{
E|g1(Xi, tr,l)− g1(Xi, tr−1,l)|, Cn− 3

4

}1+γ

≤ Cn2(logn)2(Cn− 3
4 )1+γ .
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By usage of the assumption |U(tr,l)− U(tr−1,l)| ≥ 2−
5
8 l ≥ C2−

3
4 l ≥ Cn− 3

4 , the
last term simplifies to

Cn2(log n)2|U(tr,l)− U(tr−1,l)|1+γ .

All in all we get

E

(
max

n=2l,...,2l+1−1
max

r=1...,s

(
n− 1

k − 1

)
|

n∑
i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))|
)4

≤ n4(k−1)
s∑

r=1

E

(
max

n=2l,...,2l+1−1
|

n∑
i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))|
)4

≤ n4(k−1)
s∑

r=1

Cn2(log n)2|U(tr,l)− U(tr−1,l)|1+γ

≤ 24(k−1)(l+1)Cn2(log n)2s

(
max

r=1...,s
|U(tr,l)− U(tr−1,l)|

)1+γ

≤ C ′(l + 1)22(4k−2− 5
8γ)l.

Thereby we used Corollary 1 of Moricz (1983) and the assumption s = O(2
5
8 l).

Analogously to the above calculation we again apply the generalized Cheby-
chev Inequality and the Borel-Cantelli Lemma getting(

n− 1

k − 1

) ∣∣∣∣∣
n∑

i=1

(g1(Xi, tr,l)− g1(Xi, tr−1,l))

∣∣∣∣∣ = o(nk− 1
2− 1

8γ).

For the last term of the sum, using the assumptions and the fact that γ < 1, we
have

max
r=0,...,s

(
n

k

)
|U(tr,l)− U(tr−1,l)| ≤ Cnk2−

5
8 l ≤ Cnk− 5

8 < Cnk− 4
8− 1

8γ

= o(nk− 4
8− 1

8γ).

Now the terms including g2, . . . , gk−1 remain. For these we know for 2 ≤ j ≤
k − 1

sup
t∈R

∣∣∣∣ ∑
1≤i1,...,ij≤n

gj(Xi1 , . . . , Xij , t)

∣∣∣∣ = o(nj− 1
2−

δ−2
8δ )

and consequently(
n− j

k − j

)
max

r=1...,s
|

∑
1≤i1<...<ij≤n

(
gj(Xi1 , . . . , Xij , tr,l)− gj(Xi1 , . . . , Xij , tr−1,l)

)
|

≤ nk−j

⎛⎝ max
r=1...,s

|
∑

1≤i1<...<ij≤n

gj(Xi1 , . . . , Xij , tr,l)|
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+ max
r=1...,s

|
∑

1≤i1<...<ij≤n

gj(Xi1 , . . . , Xij , tr−1,l)|

⎞⎠
≤ nk−jo(nj− 1

2− 1
8

δ−2
δ ) = o(nk− 1

2− 1
8

δ−2
δ ).

So we could show for arbitrary k and all terms of the sum that they are of

order o(nk− 1
2− 1

8
δ−2
δ ). Using mathematical induction the proof is completed.

5. Proofs

In this section we give the proofs of the main results stated in Section 2.

Theorem 2.2. For the main proof we have to show that the following three
conditions are fulfilled. Serfling (1984) has already proved that these conditions
jointly imply asymptotic normality. From there one can see that independence
is not required, if these conditions are fulfilled. Some of the lemmas used for
proving this theorem can also be found in Choudhury and Serfling (1988).

(i) For WHn,HF
(y) =

(∫ Hn(y)
0 J(t)dt−

∫ HF (y)

0 J(t)dt
Hn(y)−HF (y) − J(HF (y))

)
holds

‖WHn,HF
‖L1 = op(1) and it is ‖Hn −HF ‖∞ = Op(n

− 1
2 ).

(ii) For the remainder term Rpi,n = ξ̂pi,n − ξpi +
pi−Hn(ξpi )

hf (ξpi )
of the Bahadur

representation of an empirical quantile holds

Rpi,n = op(n
− 1

2 ).

(iii) For a U -statistic with kernel

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

+

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

we have
√
n(Un(A)− θ)

D−→ N(0, σ2).

Proofs of the conditions
Now we show that conditions (i)-(iii) are satisfied.
For the first part of condition (i) we refer to Lemma 8.2.4.A of Serfling (1980).

Although he demands independence of the random variables in his proof this
property is not needed. The second part of condition (i) follows from Corol-
lary 2.1.

Condition (ii) is fulfilled by Lemma 2.1.
It remains to show that condition (iii) is satisfied.
For this we apply Theorem 2.3. We merely have to verify, whether A satisfies

the assumptions for the kernel, that is (a) A is bounded and (b) satisfies the
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extended variation condition. We consider again the kernel A

A(x1, . . . , xm) =−
∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

+

d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

.

(a) The boundedness is a result of the continuity of HF and J and that J
vanishes off the interval [α, β].

(b) Now we want to show that A satisfies the extended variation condition. We
will treat both terms of the sum separately, at first for arbitrary y1, . . . , ym:

E

(
sup

‖(x1,...,xm)−(y1,...,ym)‖≤ε

|A(x1, . . . , xm)−A(y1, . . . , ym)|
)

≤E

(
sup

‖(x1,...,xm)−(y1,...,ym)‖≤ε

∣∣∣∣ ∫ ∞

−∞

(
1[h(x1,...,xm)≤y] −HF (y)

)
J(HF (y))dy

−
∫ ∞

−∞

(
1[h(y1,...,ym)≤y] −HF (y)

)
J(HF (y))dy

∣∣∣∣)

+E

(
sup

‖(x1,...,xm)−(y1,...,ym)‖≤ε

∣∣∣∣ d∑
i=1

ai
pi − 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

−
d∑

i=1

ai
pi − 1[h(y1,...,ym)≤H−1

F (pi)]

hF (H
−1
F (pi))

∣∣∣∣)

≤E

(
sup

‖(x1,...,xm)−(y1,...,ym)‖≤ε

∣∣ ∫ ∞

−∞

(
1[h(x1,...,xm)≤y]

− 1[h(y1,...,ym)≤y]

)
J(HF (y))dy

∣∣︸ ︷︷ ︸
=:A1(y1,...,ym)

)

+E

(
sup

‖(x1,...,xm)−(y1,...,ym)‖≤ε∣∣∣∣∣
d∑

i=1

ai
pi − 1[h(y1,...,ym)≤H−1

F (pi)]
− 1[h(x1,...,xm)≤H−1

F (pi)]

hF (H
−1
F (pi))

∣∣∣∣∣︸ ︷︷ ︸
=:A2(y1,...,ym)

)
.

For the verification of the simple variation condition we first treat A1 getting

A1(X
′
1, . . . , X

′
m)

≤
∣∣∣∣∣
∫ ∞

−∞
J(HF (y))
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sup
‖(x1,...,xm)−(X′

1,...,X′
m)‖≤ε

∣∣1[h(x1,...,xm)≤y] − 1[h(X′
1,...,X′

m)≤y]

∣∣ dy∣∣∣∣∣
Using the Lipschitz-continuity we have

sup
‖(x1,...,xm)−(X′

1,...,X′
m)‖≤ε

∣∣1[h(X′
1,...,X′

m)≤y] − 1[h(x1,...,xm)≤y]

∣∣
=

{
1 , if h(X ′

1, . . . , X
′
m) ∈

(
y − L̃ε, y + L̃ε

)
0 , else.

One can easily see that C :=
∣∣∣∫∞

−∞ J(HF (y))dy
∣∣∣ is bounded. Therefore

E(A1(X
′
1, . . . , X

′
m))

≤ E

(
sup
t∈R

∣∣∣1[h(X′
1,...,X′

m)∈(t−L̃ε,t+L̃ε)]

∣∣∣ · ∣∣∣∣∫ ∞

−∞
J(HF (y))dy

∣∣∣∣)
≤ sup

t∈R

∣∣∣E(1[h(X′
1,...,X′

m)∈(t−L̃ε,t+L̃ε)]

)∣∣∣ · C
≤ C · sup

t∈R

∣∣∣P(h(X ′
1, . . . , X

′
m) ∈

(
t− L̃ε, t+ L̃ε

))∣∣∣
≤ C · sup

t∈R

∣∣∣∣∣
∫ t+L̃ε

t−L̃ε

hF (x)dx

∣∣∣∣∣ ≤ C ·
(
sup
x∈R

hF (x)

)
2L̃ε ≤ Lε,

since hF is bounded.
The treatment of A2 is analogous, using the same notation of the supremum
as above. Therefore A satisfies the variation condition and using the same
arguments for the extended variation condition the proof is finished.

We have shown conditions (i)-(iii) and so the proof of asymptotic normality
is completed.

Theorem 2.1.
Let be t ∈ R, ξnt = ξp + tn− 1

2 , Zn(t) =
√
nHF (ξnt)−Hn(ξnt)

hF (ξp)
and Vn(t) =

√
n

HF (ξnt)−Hn(ξ̂p)
hF (ξp)

.

Using |p−Hn(ξ̂p)| ≤ 1
n we obtain

Vn(t) =
√
n
HF (ξp + tn− 1

2 )− p

hF (ξp)︸ ︷︷ ︸
=:V ′

n(t)

+
√
n

=O(n−1)︷ ︸︸ ︷
p−Hn(ξ̂p)

hF (ξp)︸ ︷︷ ︸
=O(n− 1

2 )

−→ t.

Next we will show that Zn(t)− Zn(0)
P−→ 0. One can easily see that

V ar(Zn(t)− Zn(0))
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=
n

h2
F (ξp)

V ar

(
1(
n
m

) ∑
1≤i1<...<im≤n

1[
h(Xi1 ,...,Xim )≤ξp+tn− 1

2

]

− 1[h(Xi1 ,...,Xim )≤ξp]

)
.

To find bounds for the right hand side, we define Un and U ′
n as

Un =
1(
n
m

) ∑
1≤i1<...<im≤n

1[
h(Xi1 ,...,Xim )≤ξp+tn− 1

2

]

= θ +

m∑
j=1

(
m

j

)
1(
n
j

) ∑
1≤i1<...<ij≤n

gk(Xi1 , . . . , Xik)

U ′
n =

1(
n
m

) ∑
1≤i1<...<im≤n

1[h(Xi1 ,...,Xim )≤ξp]

= θ′ +
m∑
j=1

(
m

j

)
1(
n
j

) ∑
1≤i1<...<ij≤n

g′k(Xi1 , . . . , Xik),

where gk and g′k are the related terms of the Hoeffding decomposition as used
before.

Therefore we have√√√√√V ar

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

1[
ξp<h(Xi1 ,...,Xim )≤ξp+tn− 1

2

]
⎞⎠

≤
√
V ar(θ)︸ ︷︷ ︸

=0

+
√
V ar(θ′)︸ ︷︷ ︸

=0

+

√√√√V ar

(
m

n

n∑
i=1

(g1(Xi)− g′1(Xi))

)

+

√√√√√Var

⎛⎝(m2 )(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj)

⎞⎠+

√√√√√V ar

⎛⎝(m2 )(
n
2

) ∑
1≤i<j≤n

g′2(Xi, Xj)

⎞⎠

+ . . .+

√√√√√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

gm(Xi1 , . . . , Xim)

⎞⎠

+

√√√√√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

g′m(Xi1 , . . . , Xim)

⎞⎠.

We have shown in the proof of Theorem 2.3 that for all 2 ≤ k ≤ m it is
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V ar

⎛⎝(mk )(
n
k

) ∑
1≤i1<...<ik≤n

gk(Xi1 , . . . , Xik)

⎞⎠ = O(n−2+γ)

for a γ < 1, if the kernel is bounded and satisfies the extended variation con-
dition. Analogous to the proof of Corollary 2.1 we know that g(x1, . . . , xm) =
1[

h(Xi1 ,...,Xim )≤ξp+tn− 1
2

] and g′(x1, . . . , xm) = 1[h(Xi1 ,...,Xim )≤ξp] satisfy the ex-

tended variation condition.
Applying Proposition 1 of Doukhan et al (2010) on g1(Xi) − g′1(Xi) and

p = 2, b = 3 and using ‖g1(Xi)− g′1(Xi)‖3 < ∞, since the kernels are bounded,
we have

E

∣∣∣∣∣
n∑

i=1

(g1(Xi)− g′1(Xi))

∣∣∣∣∣
2

≤ Cn,

where the constant

C = 4

⎛⎜⎝∫ 1

0

⎛⎝min

⎧⎨⎩∑
i≥0

1[u<α(i)], n

⎫⎬⎭
⎞⎠3

du

⎞⎟⎠
1
3

‖g1(Xi)− g′1(Xi)‖23

only depends on ‖g1(Xi)− g′1(Xi)‖3, since Doukhan and Lang (2009) proved⎛⎜⎝∫ 1

0

⎛⎝min

⎧⎨⎩∑
i≥0

1[u<α(i)], n

⎫⎬⎭
⎞⎠3

du

⎞⎟⎠
1
3

< ∞.

So we get√√√√√Var

⎛⎝ 1(
n
m

) ∑
1≤i1<...<im≤n

1[
ξp<h(Xi1 ,...,Xim )≤ξp+tn− 1

2

]
⎞⎠

≤
√

m2

n2
Cn+ 2(m− 1)

√
O(n−2+γ) ≤ Cm2

√
n

+ 2(m− 1)O(n−1+γ/2),

where the constant C only depends on ‖g1(Xi)− g′1(Xi)‖3.
Let us come back to

V ar(Zn(t)− Zn(0))

≤ n

h2
F (ξp)

(
Cm2

√
n

+ 2(m− 1)O(n−1+γ/2)

)2

≤ m2

h2
F (ξp)

C2 +
4m2(m− 1)

h2
F (ξp)

C
√
nO(n−1+γ/2) + 4(m− 1)2O(n−2+γ)

≤ m2

h2
F (ξp)

C2 +
4m2(m− 1)

h2
F (ξp)

CO(n− 1
2+γ/2) + 4(m− 1)2O(n−2+γ).
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Since |g1(Xi)− g′1(Xi)| ≤ 1 for all Xi and

|g1(Xi)− g′1(Xi)| P−→ 0

the constant C converges to zero in probability and therefore

Var(Zn(t)− Zn(0))
P−→ 0.

Applying the Chebychev inequality we then have Zn(t)− Zn(0)
P−→ 0.

Altogether we have for t ∈ R and every ε > 0

P(
√
n(ξ̂p − ξp) ≤ t, Zn(0) ≥ t+ ε) = P(Zn(t) ≤ Vn(t), Zn(0) ≥ t+ ε)

≤ P

(
|Zn(t)− Zn(0)| ≥

ε

2

)
+ P

(
|Vn(t)− t| ≥ ε

2

)
−→ 0,

and analogously

P

(√
n(ξ̂p − ξp) ≥ t, Zn(0) ≤ t

)
−→ 0.

Using Lemma 1 of Ghosh (1971) the proof is completed.

Theorem 2.3.
The proof makes use of the Hoeffding decomposition

√
n(Un − θ) =

√
n

m∑
j=1

(
m

j

)
1(
n
j

)Sjn.

We show that the linear part m√
n

∑n
i=1 g1(Xi) is asymptotically normal and that

the remaining terms converge to 0 in probability.
If (Xi)i∈N is strong mixing then this also applies to (g1(Xi))i∈N, because g1 is
measurable (Korolyuk and Borovskikh (1993)), and the mixing coefficients are
smaller or equal to the original ones. With these considerations and observing
that (g1(Xi))i∈N is strong mixing with mixing coefficients α(l) = O(l−δ) for
a δ > 2 and moreover E(g1(Xi)) = 0 and g1(Xi) is bounded (because h is
bounded) we can apply Theorem 1.6 of Ibragimov (1961) getting σ < ∞ and

m√
n

n∑
i=1

g1(Xi)
D−→ N(0,m2σ2).

It remains to show that the remaining terms of the Hoeffding decomposition
are of order oP (1). For this we apply Lemma 4.3 and show

∑n
l=0 lα

ρ
2ρ+1 (l) =

O(nγ) for a ρ ≥ 0.

Using the assumption α(l) = O(l−δ) for a δ > 2ρ+1
ρ we get for a γ < 1

n∑
l=0

lα
ρ

2ρ+1 (l) ≤
n∑

l=1

l1−δ ρ
2ρ+1 = O(nγ).
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Now it is for all 2 ≤ k ≤ m

Var

⎛⎝√
n

(
m

k

)(
n

k

)−1 ∑
1≤i1<...<ik≤n

gk(Xi1 , . . . , Xik)

⎞⎠
≤ m2kk

k
2

n2k−1∑
1≤i1<...<ik≤n

∑
1≤ik+1<...<i2k≤n

∣∣E (gk(Xi1 , . . . , Xik)gk(Xik+1
, . . . , Xi2k)

)∣∣
≤ m2kk

k
2

n2k−1

n∑
i1,...,i2k=1

∣∣E (gk(Xi1 , . . . , Xik)gk(Xik+1
, . . . , Xi2k)

)∣∣
= O(n2k−2+γ−(2k−1)) = O(n−1+γ).

And so

Var

⎛⎝√
n

(
m

k

)(
n

k

)−1 ∑
1≤i1<...<ik≤n

gk(Xi1 , . . . , Xik)

⎞⎠ n→∞−→ 0

and with the Chebychev inequality we obtain

√
n

(
m

k

)(
n

k

)−1 ∑
1≤i1<...<ik≤n

gk(Xi1 , . . . , Xik)
P−→ 0 for n → ∞.

Using the Theorem of Slutsky we get the result of the theorem.

Corollary 2.1.
Using the Hoeffding decomposition we obtain

sup
t∈R

∣∣√n (Hn(t)−HF (t))
∣∣

= sup
t∈R

∣∣∣∣∣∣√n

⎛⎝HF (t) +

m∑
j=1

(
m

j

)
1(
n
j

)Sjn,t −HF (t)

⎞⎠
∣∣∣∣∣∣

= sup
t∈R

∣∣ m√
n

n∑
i=1

g1(Xi, t) +
√
n

(
m
2

)(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj , t)

+ . . .+
√
n

1(
n
m

) ∑
1≤i1<...<im≤n

hm(Xi1 , . . . , Xim , t)
∣∣

≤ sup
t∈R

∣∣∣∣∣ m√n

n∑
i=1

g1(Xi, t)

∣∣∣∣∣+ sup
t∈R

∣∣∣∣∣∣√n

(
m
2

)(
n
2

) ∑
1≤i<j≤n

g2(Xi, Xj , t)

∣∣∣∣∣∣
+ . . .+ sup

t∈R

∣∣∣∣∣∣√n
1(
n
m

) ∑
1≤i1<...<im≤n

hm(Xi1 , . . . , Xim , t)

∣∣∣∣∣∣ .
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For the first term of the sum we get, using Theorem 2.4 and the Continuous
Mapping theorem,

sup
t∈R

∣∣∣∣∣ m√n

n∑
i=1

g1(Xi, t)

∣∣∣∣∣→ ‖W‖∞.

Since W is a continuous Gaussian process we have ‖W‖∞ = Op(1).
For the remaining results we want to apply Lemma 4.4. Therefore the kernel

of the U -process g(x1, . . . , xm, t) = 1[h(x1,...,xm)≤t] has to satisfy the extended
uniform variation condition. This can be shown using the Lipschitz-continuity
of h:

sup
‖(x1,...,xm)−(X′

1,...,X′
m)‖≤ε

∣∣1[h(X′
1,...,X′

m)≤t] − 1[h(x1,...,xm)≤t]

∣∣
=

{
1 , if h(X ′

1, . . . , X
′
m) ∈ (t− Lε, t+ Lε)

0 , else

and so

E

(
sup

‖(x1,...,xm)−(X′
1,...,X′

m)‖≤ε

∣∣1[h(X′
1,...,X′

m)≤t] − 1[h(x1,...,xm)≤t]

∣∣)
≤ sup

t∈R

∣∣E (1[h(X′
1,...,X′

m)∈(t−Lε,t+Lε)]

)∣∣
≤ sup

t∈R

∣∣∣∣∣
∫ t+Lε

t−Lε

hF (x)dx

∣∣∣∣∣ ≤ 2Lε(sup
x∈R

hF (x)) ≤ L′ε,

since hF is bounded.
Using the arguments above we can also show that g satisfies the extended

uniform variation condition. For arbitrary 2 ≤ k ≤ m and i1 < i2 < . . . < im

E

(
sup

|x1−Yi1 |≤ε

∣∣∣∣∣1[h(Yi1 ,Xi2 ,...,Xik
,Yik+1

,...,Yim )≤t]

− 1[h(x1,Xi2 ,...,Xik
,Yik+1

,...,Yim )≤t]

∣∣∣∣∣
)

≤ sup
t∈R

∣∣∣∣∣
∫ t+Lε

t−Lε

hF ;Xi1 ,...,Xik
(x)dx

∣∣∣∣∣ ≤ Lε.

Applying Lemma 4.4 we get for 2 ≤ k ≤ n

sup
t∈R

∣∣∣∣∣∣√n

(
m
k

)(
n
k

) ∑
1≤i1,...,ik≤n

gk(Xi1 , . . . , Xik , t)

∣∣∣∣∣∣
≤

√
nn−kop(n

k− 1
2−

δ−2
8δ ) = op(n

− δ−2
8δ ).

With Slutsky’s Theorem the proof is completed.
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Appendix

In this section the QQ-plots for the simulation of the asymptotic normality of
the GM -estimator for the tail index of a Pareto distribution are given. Since
the calculations for n = 1000 and m = 4 are very time intensive we use only
250 runs. These cases are marked with (∗).

Fig 2. QQ-Plot of the error term
√
n(α̂GM − α) for a kernel dimension m = 2 and different

dependencies (i.i.d. and AR(1) with autocorrelation ρ)

.
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Fig 3. QQ-Plot of the error term
√
n(α̂GM − α) for a kernel dimension m = 4 and different

dependencies (i.i.d. and AR(1) with autocorrelation ρ)

.
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Fig 4. QQ-Plot of the error term
√
n(α̂GM−α) for a kernel dimension m = n (ML-estiamtor)

and different dependencies (i.i.d. and AR(1) with autocorrelation ρ)

.
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