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Abstract: Regression models with functional responses and covariates
constitute a powerful and increasingly important model class. However,
regression with functional data poses well known and challenging problems
of non-identifiability. This non-identifiability can manifest itself in arbitrar-
ily large errors for coefficient surface estimates despite accurate predictions
of the responses, thus invalidating substantial interpretations of the fit-
ted models. We offer an accessible rephrasing of these identifiability issues
in realistic applications of penalized linear function-on-function-regression
and delimit the set of circumstances under which they are likely to occur
in practice. Specifically, non-identifiability that persists under smoothness
assumptions on the coefficient surface can occur if the functional covari-
ate’s empirical covariance has a kernel which overlaps that of the rough-
ness penalty of the spline estimator. Extensive simulation studies validate
the theoretical insights, explore the extent of the problem and allow us
to evaluate their practical consequences under varying assumptions about
the data generating processes. A case study illustrates the practical signifi-
cance of the problem. Based on theoretical considerations and our empirical
evaluation, we provide immediately applicable diagnostics for lack of iden-
tifiability and give recommendations for avoiding estimation artifacts in
practice.
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1. Introduction

The last two decades have seen rapid progress in regression methodology for
high-dimensional data, largely driven by applications to genomic data in the
“small n, large p” paradigm. In regression models with functional predictors,
similar problems arise from the fact that covariate information comes in the
shape of high-dimensional, strongly auto-correlated vectors of function evalua-
tions. Whenever the number of regression parameters to estimate exceeds the
number of observations, estimates are not unique and the resulting model is not
identifiable. To overcome this lack of identifiability, it then becomes necessary
to use heuristics or prior knowledge to impose additional structural constraints
like sparsity or smoothness. Results then inherently depend – at least to some
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degree – on the assumptions underlying the chosen regularization method. In
the following, we present a detailed analysis of the way in which smoothness
assumptions combined with properties of the data generating process affect es-
timation results for function-on-function regression. We differentiate between
two kinds of non-identifiability: First, simple non-identifiability arising from
low information content in the functional data. This can be cured by imposing
structural assumptions like smoothness or sparsity on the estimators, i.e., by
regularization of the estimators. Fig. 1 shows an example for 4 estimates under
different structural assumptions all yielding identical fits in such a scenario. Sec-
ond, persistent non-identifiability that remains despite regularization for certain
combinations of models and data. Figures 4 and 8 show examples for the latter
on synthetic and real data, respectively.

The problem of – especially persistent – non-identifiability is as yet under-
appreciated in the functional data literature and analyzed here in depth for the
first time. As software capable of fitting increasingly complex models with func-
tional data becomes available (e.g. fda, Ramsay et al. (2014); fda.usc, Febrero-
Bande and Oviedo de la Fuente (2012); refund, Huang et al. (2015); PACE, Yang
et al. (2012); WFMM, Herrick (2013)), investigating the practical relevance of
identifiability issues arising in these models is both timely and important in this
rapidly developing field. The present work aims to perform such an investigation
for the model class described in Scheipl et al. (2015) and implemented in refund’s
pffr function, while results carry over to other penalized function-on-function
regression approaches such as those implemented in the fda package.

A popular approach in regression for functional data restricts the functional
coefficients to lie in the span of the first K < n estimated eigenfunctions of
a functional covariate’s covariance operator with the largest eigenvalues, (see
Cardot et al., 1999, 2003; Yao et al., 2005; Reiss and Ogden, 2007; Yao and
Müller, 2010; Wu et al., 2010, for example). This functional principal component
regression (FPCR) approach solves the problem of overparameterization (i.e.,
non-identifiability of the functional effect) by a – usually drastic – dimension
reduction. The main challenges in this approach then become 1) achieving good
estimates of the covariance’s eigenfunctions (“functional principal components”
or FPCs), eigenvalues, and FPC scores from observed functional data and 2)
choosing the regularization parameter K. In practice, the effect of the functional
covariate is estimated by using the first K estimated FPC scores as synthetic
covariates. However, the critical assumption that the true coefficient lies in the
span of the first few empirical eigenfunctions of a suitable (cross-)covariance
operator estimate is impossible to verify empirically. Due to the often wiggly
and unsmooth nature of eigenfunctions of real data this assumption can also
lead to estimates that are difficult to interpret or implausible to practitioners.

An alternative approach is to make assumptions on the functional coefficients
informed by insights into the problem at hand, e.g., sparsity or smoothness of
functional coefficients, and to estimate these functional coefficients subject to
an appropriate penalty (e.g., LASSO or smoothness penalties). In this work,
we will focus on smooth spline-based penalized regression models for functional
responses with functional covariates as described in Ivanescu et al. (2015) and
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Scheipl et al. (2015), which constitute a powerful and flexible model class able
to deal with the wealth of functional data increasingly collected in many fields
of science. Nevertheless, our considerations carry over to other approaches to
estimate smooth coefficient functions, such as approaches using derivative-based
penalties as advocated by Ramsay and Silverman (2005). This paper describes
the data settings in which penalized models remain unidentifiable despite the
penalty in Section 3 and develops and evaluates suitable diagnostics and modi-
fied penalties for such settings.

Identifiability issues in functional regression have previously been discussed
in Cardot et al. (2003) in the context of functional regression models for scalar
responses and also, briefly, in the context of models with both functional re-
sponses and functional predictors by He et al. (2000), Chiou et al. (2004) and
Prchal and Sarda (2007). While results therein provide conditions for the theo-
retical existence and unicity of solutions based on functional analysis arguments,
they do not yield empirically verifiable criteria to determine whether the condi-
tions for unicity are violated for a given data set. They also always assume that
the true coefficient surface lies in the space spanned by the eigenfunctions of a
(cross-)covariance operator. As far as we are aware, case studies in the previous
literature have implicitly assumed that this assumption and the necessary con-
ditions based on it will be satisfied for observed data. This is problematic since
1) the theoretical conditions found in the previous literature are impossible to
satisfy, or at least verify, on finite samples of functional data in finite resolu-
tion, and 2) our experience with applications of functional regression models as
well as results from simulation studies indicate that persistent non-identifiability
leading to spurious coefficient estimates may occur quite regularly. This is obvi-
ously a concern for applied statisticians desiring interpretable regression models
associating functional covariates and (functional) responses.

Instead of relying on the functional analysis arguments suitable for investi-
gations of asymptotic properties of the theoretical model, we use simple linear
algebra to derive a condition for unicity of coefficient surface estimates in realis-
tic, finite sample data settings in which functional covariates are observed with
finite resolution in Section 3. This allows us to give a necessary and sufficient
condition for persistent non-identifiability in penalized function-on-function re-
gression that is empirically verifiable and thus applicable in realistic problems.
The criterion is based on the amount of overlap between the kernel of the penalty
matrix and the kernel of the design matrix for the functional effect. Simulation
studies indicate that, in practice, severe errors due to non-identifiability are
strongly associated with our criterion; thus, this criterion is the first one that
can be used in a wide variety of applications to assess identifiability or lack
thereof. Our analyses also indicate that many widely used preprocessing tech-
niques for functional data which replace observed curves with spline-based or
FPC-based low-rank approximations (i.e., pre-smoothing) or the centering of
individual observed curves will considerably increase the likelihood of identifia-
bility issues in many settings.

We use the well-known DTI data set – publicly available in R-package refund
(Huang et al., 2015) – to illustrate the issues we discuss here. These data contain
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Fig 1. Four coefficient surfaces for regressing RCST-FA on pre-smoothed CCA-FA truncated
to its first 6 empirical FPCs. All lead to identical fitted values. First [second] panel: Tensor
product spline-based fits (12 marginal cubic B-spline basis functions) with second [first] order
difference penalty. Third panel: Tensor product spline-based fit with a Ridge penalty. Fourth
panel: FPC regression result (6 FPCs). All fits performed with pffr().

spatially indexed, i.e., functional, measurements of fractional anisotropy (FA), a
proxy variable for neuronal health, along 3 cerebral white matter tracts (WMTs)
of multiple sclerosis (MS) patients. To illustrate how strongly different structural
assumptions about the regression coefficient surface can affect the results, we
fit simple univariate functional linear models E(Y (t)) = β0(t) +

∫
X(s)β(s, t)ds

regressing FA along the right cortico-spinal WMT (RCST-FA, Y (t)) on pre-
smoothed FA along the corpus callosum WMT (CCA-FA, X(s)). Figure 1 shows

estimated coefficient surfaces β̂(s, t) for penalized spline based fits with second
or first order difference penalties (two leftmost panels) or a ridge penalty (third
panel from left), as well as the coefficient surface implied by a functional prin-
cipal component (FPC) based fit (right). Even though the surfaces are quite
different, they result in (practically) identical fitted values in this example for a
setting with simple non-identifiability. The first and third panels from the left in
the top row of Figure 7 show the data used in this example. Graphical examples
of the second kind of non-identifiability that persists even under penalization
are shown in Figures 4 and 8 for synthetic and real data, respectively.

Our paper is structured as follows: Section 2 defines the model and data struc-
ture under discussion. We present an accessible rephrasing of the fundamental
issue (Section 3) and derive necessary and sufficient conditions for settings in
which β(s, t) is or is not identifiable in Section 3.2. Section 4 follows up with an
analysis of the scope of the problem based on simulated data, while Section 5
describes a real-world example of the issue. The main conclusions we draw from
our analysis are that the complexity of observed functional covariates puts hard
limits on the identifiability of coefficient surfaces in a number of ways, that these
limits can be diagnosed based on the data at hand, and that pre-processing of
functional covariates can often exacerbate identifiability issues.

2. Model and data structure

In the following, bold symbols denote vectors and matrices, and calligraphic
letters denote function domains, function spaces, or sets of functions or vectors.
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Define a simple function-on-function regression model as

Yi(t) =

∫
S
Xi(s)β(s, t)ds+ εit, (1)

where Yi(t) and Xi(s), i = 1, . . . , N , are functional responses and covariates on
closed intervals T and S in R, respectively, and assume that they are realizations
of zero-mean square integrable stochastic processes Y (t) ∈ L2[T ] and X(s) ∈
L2[S] with continuous covariance functions, respectively. To simplify notation
and exposition but without loss of generality, we assume that E(Yi(t)) ≡ 0 and
E(Xi(s)) ≡ 0. Propositions 3.1 to 3.3 in Section 3 directly carry over to any
model with an additive predictor that includes terms like

∫
S Xi(s)β(s, t)ds. The

further development in Section 3 leading up to Proposition 3.4 assumes that
the estimate for β(s, t) minimizes a (penalized) quadratic loss function, which
is equivalent to maximizing the likelihood of a model with i.i.d. Gaussian errors
εit, but does not strictly speaking depend on distributional assumptions about
εit and is also very similar to the system of equations solved in each iteration of
the penalized iteratively re-weighted least squares algorithm (P-IWLS; Wood,
2000) used to fit additive models like (1) for non-Gaussian responses.

Due to the assumptions on the functional covariates, they can be represented
by a Karhunen-Loève expansion

Xi(s) =

∞∑
m=1

ξimφm(s), (2)

with orthonormal φm(s),
∫
S φm(s)φm′(s)ds = δmm′ , and uncorrelated zero-

mean FPC scores ξim with variances ν1 ≥ ν2 ≥ · · · ≥ 0,m ∈ N. The νm
and φm(s),m = 1, . . . ,M, are the ordered eigenvalues and eigenfunctions of
the covariance operator KX of X(s), respectively, with the covariance function
given by Mercer’s theorem as

kX(s, s′) = E (X(s)X(s′)) =

∞∑
m=1

νmφm(s)φm(s′). (3)

Since estimating β(s, t) is an inverse problem, some kind of regularization is
required. Functional principal component based approaches like, for example,
Yao et al. (2005) restrict β(s, t) to lie in the span of the first K estimated

eigenfunctions φ̂m(s), m = 1, . . . ,K for all t. The number of eigenfunctions K
that is used serves as the (discrete) regularization parameter. In contrast, we will
discuss and analyze a penalized approach. The underlying assumption is that
β(s, t) is a smooth function that can be well represented as a linear combination
of suitable basis functions defined on S × T .

In practice, functional responses Yi(t) and functional covariates Xi(s) are
observed on grid points si = (si1, . . . , siSi

) and ti = (ti1, . . . , tiTi
). For simplicity,

we assume those to be identical vectors s, t with lengths S and T , respectively,
for each observation i. In the following, expressions a(s) or a(t) with a bold
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argument denote the vector of evaluations of a(·) on the respective grid, e.g.,
a(s) = (a(s1), . . . , a(sS))>.

Model (1) can then be approximated for observed data as

Yi(t)
>

1×T

≈
(
w
S×1

·Xi(s)
S×1

)>
β(s, t)

S×T

+ εi
1×T

, (4)

with β(s, t) = [β(sj , tk)] j=1,...,S
k=1,...,T

and εi = (εit1 , . . . , εitT )>. We also define a

weight vector w for numerical integration, e.g. w = (wj)j=1,...,S for simple
quadrature via Riemann sums, with wj the length of the sub-interval of S rep-
resented by sj . The symbol · denotes element-wise multiplication. The coefficient
surface β(s, t) is represented using a tensor product spline basis

β(s, t) = Bs
S×Ks

Θ
Ks×Kt

Bt
Kt×T

>, (5)

with basis matrices Bs and Bt of Ks and Kt basis functions evaluated in s and
t, respectively, and spline coefficient matrix Θ. The roughness penalty matrix
for the surface is given by P ≡ P (λs, λt) = λs(Ps⊗IKt

)+λt(IKs
⊗Pt) (Wood,

2006), where λs, λt are smoothing parameters to be estimated from the data
and Ps and Pt are the fixed and known marginal penalty matrices for the s-
and t-directions, respectively.

Estimation and inference is described in more detail in Ivanescu et al. (2015)
and Scheipl et al. (2015). In the following, our considerations are not limited to
simple models such as model (1), but carry over to more general models Ỹi(t) =
ηi(t)+

∫
S Xi(s)β(s, t)ds+εit by using Yi(t) = Ỹi(t)−ηi(t). The additive predictor

ηi(t) represents the sum of other terms in the model such as a global functional
intercept β0(t), index-varying linear or smooth effects of scalar covariates x
like xiβ(t) or f(xi, t), scalar or functional random effects, etc. Scheipl et al.
(2015) contains methods and applied examples for this class of flexible additive
functional regression models. Of course, these more general models may suffer
from additional identifiability problems caused by collinearity or concurvity of
the terms in the additive predictor which are outside the scope of this paper.
While we focus our discussion on a spline-based approach, the representation in
(5) also accommodates other choices of basis functions and penalties.

3. Identifiability

In this section, we discuss potential sources of non-identifiability in model (1).
The first subsection restates some known results on these issues for the theo-
retical model (1) with truly functional observations Xi(s) and Yi(t). Subsection
3.2 then discusses identifiability for the finite resolution vector data available in
practice.

3.1. Identifiability in the theoretical model

It is well known (e.g. Prchal and Sarda (2007, c.f. p. 5), He et al. (2000,
Th. 4.3. c)) that coefficient surfaces are identifiable only up to the addition
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of functions in the kernel of KX , i.e., if β(·, t) fulfills model (1), so does β(·, t) +
βK(·, t) for any βK(·, t) with

∫
S k

X(s, v)βK(v, t)dv = 0 for all s, t. Thus, we have
identifiability only when the kernel is trivial.

Proposition 3.1. The coefficient surface β(s, t) in (1) is identifiable if and
only if ke(KX) = {0}.

An important secondary consequence is that large changes in β(s, t) can leave
the predicted responses

∫
S Xi(s)β(s, t)ds entirely unaffected. Thus, strategies for

detection of identifiability problems cannot be based on predictive performance
in cross-validation, bootstrapping and related methods.

Non-identifiability in Proposition 3.1 occurs when ke(KX) is non-trivial,
when the eigenfunctions in (2) with non-zero eigenvalues νm do not span the
L2[S]. While it is possible to assume a trivial kernel in theory (e.g. Prchal and
Sarda, 2007, equation (4)), in practice, functional covariates are observed on
a finite number of grid points S and the empirical covariance for N observa-
tions thus can have at most min(N,S) non-zero eigenvalues. As is exploited
in functional principal component analysis (e.g. Ramsay and Silverman, 2005),
functional observations are often simple enough to be represented accurately
by a relatively small number of eigenfunctions, with eigenvalues of higher order
small compared to noise or measurement error. It is also wide-spread practice to
use pre-smoothed versions of observed functional covariates as inputs for models
like (1) (e.g. James, 2002; Ramsay and Silverman, 2005), and these will have
a non-empty kernel since they are represented as linear combinations of a lim-
ited number of basis functions. Basis function representations of X(s) are also
used when sparsely or incompletely observed functional covariates have to be
imputed on a grid of s-values to be used as inputs for model (1) (e.g. Goldsmith
et al., 2011).

In the following section, we thus investigate identifiability problems for finite-
sample finite-resolution functional data and the interplay between the rank of
the observed covariance, the rank of the basis used to represent β(s, t) in s-
direction and the penalty used in the penalized estimation approach for β(s, t)
introduced in Section 2.

3.2. Identifiability in practice

Rank-deficient design matrix

In practice, β(s, t) is represented as a linear combination of a finite number
KsKt of basis functions, see (5). For the following, we will assume that the
corresponding approximation error is negligible and that a suitably flexible basis
has been chosen for β(s, t). Combining (4) and (5), we can write the model as

Y
N×T

= X
N×S

W
S×S

Bs
S×Ks

Θ
Ks×Kt

BT
t

Kt×T

+ ε
N×T

, (6)

where Y = [Yi(tj)] i=1,...,N
j=1,...,T

, X = [Xi(sl)] i=1,...,N
l=1,...,S

, W = diag(w) and ε =[
εitj
]

i=1,...,N
j=1,...,T

. Using vec(ACB) = (BT ⊗A) vec(C) yields
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vec(Y )
NT×1

= [ Bt
T×Kt

⊗ ( X
N×S

W
S×S

Bs
S×Ks

)]vec(Θ)
KtKs×1

+ vec(ε)
NT×1

. (7)

In the linear regression model (7) for y = vec(Y ), the parameter vector θ =
vec(Θ) is identifiable if and only if the design matrix D = Bt ⊗ (XWBs) is of
full column-rank.

The rank of D is equal to rank(D) = rank(Bt) rank(XWBs). Bt will typ-
ically be of full rank Kt as long as Kt ≤ T , as the Kt spline functions form a
basis and the columns of Bt are thus linearly independent for non-pathological
cases. For X, let X = ΞΦ be the empirical version of the Karhunen-Loève
expansion (2), where X>X = Φ>ΛΦ with Φ> an S ×M orthonormal ma-

trix of eigenvectors, M = rank(X), Λ = diag(λ̂1, . . . , λ̂M ) a diagonal matrix of
ordered positive eigenvalues and Ξ containing M columns of estimated scores
with empirical variances λ̂1, . . . , λ̂M . Then, by construction, the matrix XWBs

is at most of rank min(N,M,Ks, S) = min(M,Ks), since M ≤ min(N,S).
We then have the following proposition:

Proposition 3.2. Assume that Bt is of full rank Kt. Then, the design matrix
D = Bt ⊗ (XWBs) in model (7) is rank-deficient if and only if

a) M < Ks or
b) if M ≥ Ks, but rank(ΦWBs) < Ks.

Proof. See Appendix A.1.

Proposition 3.2 yields a direct criterion to check for rank-deficient design
matrices. Case a) corresponds to a low-rank covariance for the X-process. In this
case, the functional predictor does not carry enough information, as measured
by the number of eigenfunctions φm(s) with non-zero eigenvalues, compared to
the number of parameters to estimate. Case b) means that even if M ≥ Ks,
non-identifiability can occur if the span of the basis used for β(s, t) in s-direction
contains functions in ke(KX), as measured by numerical integration using the
integration weights w. More intuitively, this means that the basis for the s-
direction of β(s, t) accommodates modes of variation orthogonal to those of the
X(s)-process.

Note that identifiability is determined by the interplay between the com-
plexity of the X(s) and the coefficient basis for β(s, t). Thus, more data will
not necessarily resolve identifiability issues: A finer grid s will only eliminate
identifiability problems present on a coarser grid if there is sufficient small-scale
structure in X(s) that is also present in the basis used for β(s, t) in s-direction.
Increasing the sample size N will likewise eliminate problems with identifiability
only if the low-rank of the covariate’s covariance is due to small sample size.

The effect of the penalty

In cases of non-identifiability, the best we can hope for is partial identifiability
of the parameters in a parameter subspace, i.e., identifiability under additional
assumptions on the parameters. In this vein, functional principal component
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regression (e.g. Yao et al., 2005) restricts β(s, t) to lie in the span of the first K
eigenfunctions φm(s), m = 1, . . . ,K, for all t. Remaining problems then include

the fact that the φ̂m(s) are estimated quantities in practice, with corresponding
measurement error, and the choice of K, which can strongly affect the shape of
the resulting function estimate (Crainiceanu et al., 2009). Also, this approach
couples assumptions on the shape of β(s, t) to properties of the space spanned
by the retained φm(s). In particular, their smoothness determines that of β(s, t),
and inclusion of higher-order eigenfunctions often leads to wiggly surface esti-
mates that are hard to interpret and unstable under replication.

Here, we focus on a penalized approach assuming smoothness of β(s, t) and
investigate the effects of the penalty on identifiability. While the use of a pe-
nalized approach is well-known to avoid identifiability problems due to high
correlation between observations at neighboring grid points (e.g. Ramsay and
Silverman, 2005, Ch. 15.2), the full interplay between penalty and identifiability
is, we believe, not fully understood and under-appreciated.

Consider again the design matrix D = Bt ⊗ (XWBs) of rank d with the
singular value decomposition D = V ΣU> = (Vt ⊗ Vs)(Σt ⊗Σs)(U

>
t ⊗ U>s ),

with VtΣtU
>
t and VsΣsU

>
s the singular value decompositions of Bt and Ds :=

XWBs, respectively. Let indices + and 0 denote the corresponding sub-matrices
obtained by removing columns and/or rows corresponding to zero and non-zero
singular values, respectively. We assume in the following that Bt is of full rank
Kt. Then, D = V+Σ+U

>
+ = (Vt ⊗ Vs+)(Σt ⊗Σs+)(U>t ⊗U>s+).

Thus, for any given θ? with Dθ? =: f , there exists a linear subspace Hf ⊂
RKsKt of dimension (KsKt − d) given by

Hf = {θ ∈ RKsKt : Dθ = f} = {θ? + θ0 : θ0 ∈ im(U0)}

that yields identical fits f .
If we assume our parameter function to come from a space of smooth func-

tions, we can select the smoothest solution on a given hyperplane Hf by mini-
mizing θ>Pθ for a suitable penalty matrix P that penalizes roughness of the
function parameterized by θ. Simple non-identifiability occurs if this minimum
is unique, persistent non-identifiability occurs if it is not. We have the following
proposition regarding uniqueness of the corresponding minimum.

Proposition 3.3. Let P = λs(IKt
⊗Ps)+λt(Pt⊗IKs

), with Ps and Pt positive
semi-definite matrices. Assume that Bt is of full rank Kt, that rank(Pt) < Kt

and that λs > 0, λt ≥ 0. Then, for any f ∈ im(D) there is a unique minimum
minθ∈Hf

{θ>Pθ} if and only if ke(D>s Ds) ∩ ke(Ps) = {0}.

Proof. See Appendix A.2.

The assumption that Pt is of less-than-full rank is natural in the context of
derivative-based penalties and excludes cases like the ridge penalty Pt = IKt ,
which would have the same effect as a full-rank penalty Ps = IKs

, even in cases
of a kernel overlap between D>s Ds and Ps. A potentially full-rank Pt would
change the ‘if and only if’ in Propositions 3.3 and 3.4 below to ‘if’.
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Proposition 3.3 shows that in the case of a kernel overlap ke(D>s Ds) ∩
ke(Ps) 6= {0}, the additional side condition θ>Pθ → min does not yield a
unique smoothest point on the hyperplane and the model remains unidentifi-
able. On the other hand, if there is no kernel overlap, there is a unique smoothest
point θf ∈ Hf and this unique point has the form of a projection of θ along
the hyperplane. Note that for the ridge penalty P = λIKsKt , one obtains the
projection onto the image im(D), which sets the part in the kernel of D>D to
zero. More generally, a smoothness penalty P generates a projection that may
have a non-zero component in the kernel of D>D if this yields a smaller overall
penalty value. In this case of no kernel overlap, we thus have a weak form of
identifiability, which guarantees that there is a unique smoothest representative
on any hyperplane of parameters giving the same conditional distribution for Y .

This characterization, which only requires checking of design matrix and
penalty in s-direction and not for the full model, carries over to the penalized
maximum likelihood or least squares estimation problem

min
θ
{‖y −Dθ‖2 + λsθ

>(IKt
⊗ Ps)θ + λtθ

>(Pt ⊗ IKs
)θ} (8)

for some λs > 0, λt ≥ 0.

Proposition 3.4. Assume that Bt is of full rank Kt, that rank(Pt) < Kt and
that λs > 0, λt ≥ 0. Then, there is a unique penalized least squares solution for
(8) if and only if ke(D>s Ds) ∩ ke(Ps) = {0}.

Proof. See Appendix A.3.

Proposition 3.4 gives a criterion for the uniqueness of the penalized least
squares solution. We can show how the penalty achieves this uniqueness by
writing (8) as a nested minimization problem. Here, the outer minimization
finds the f = Dθ with optimal fit to the data, and the inner minimization
minimizes the penalty term over Hf to obtain the smoothest solution for a
given level of residual variation.

min
θ
{‖y −Dθ‖2 + λsθ

>(IKt
⊗ Ps)θ + λtθ

>(Pt ⊗ IKs
)θ}

= min
f∈im(D)

min
θ
{‖y − f‖2 + θ>Pθ s.t. Dθ = f}

= min
f∈im(D)

{‖y −Dθf‖2 + θ>f Pθf}

= min
v+∈Rd

{‖y − V+Σ+v+‖2 + v>+U
>
+H

>PHU+v+

where θf = HU+v+ for a given f is uniquely defined as in (11), with v+ =
Σ−1+ V >+ f and H = (IKsKt − U0(U>0 PU0)−1U>0 P ), if ke(D>s Ds) ∩ ke(Ps) =
{0}.

As V+Σ+ is a matrix of full column rank d, this minimization problem has a
unique solution that, for given λs, λt, balances the fit to the data and smooth-
ness.
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To summarize, in the case of no kernel overlap, i.e., ke(D>s Ds)∩ke(Ps) = {0},
we obtain a weaker form of identifiability even when the design matrix D is not
of full rank, which guarantees that there is a unique smoothest representative
on any hyperplane of parameters giving the same conditional distribution for y.
Then, there will also be a unique solution to the penalized estimation problem,
which is the smoothest representative on the hyperplane of possible solutions
with equally good fit.

In practice, λs and λt are estimated from the data. We here do not investigate
the more complex case when λs, λt are not fixed. It should also be noted that
(D>D+λs(IKt

⊗Ps)+λt(Pt⊗IKs
)) may still be close to singular even in cases

of no kernel overlap if smoothing parameters are very small, with corresponding
reduced stability in estimation.

3.3. Diagnostics, practical recommendations and countermeasures

In order to safeguard against misleading coefficient estimates in practical appli-
cations of functional regression, it is necessary 1) to develop empirical criteria
for diagnosing problematic data settings in which the coefficient function is not
identifiable based on the available data, or where only the penalty ensures unique
estimates, 2) to avoid pre-processing protocols and tuning parameters that in-
crease the likelihood of identifiability issues and 3) to develop improved algo-
rithms for estimating function-on-function effects that are less prone to severely
misleading estimates in problematic settings.

Diagnostics We are interested in identifying settings with simple non-identi-
fiability in which only the penalty term guarantees the existence of a unique
solution. Following Proposition 3.2, the most direct approach to do so is to
compute the condition number of D>s Ds = (XWBs)

T
XWBs and choose a

suitable cut-off (106, in the following) for numeric rank deficiency.
In addition, propositions 3.3 and 3.4 indicate that a measure of the degree of

overlap between the spans of ke(D>s Ds) and ke(Ps) can be used to detect per-
sistent non-identifiability that remains despite the penalization. In our empirical
evaluation of such measures, we found that a measure for the distance between
the spans of two matrices introduced in Larsson and Villani (2001), when mod-
ified for our setting, showed the most promise as the resulting measure is free
of tuning parameters and can be computed quickly from the data.

In particular, we modify the original definition of Larsson-Villani in order
to accommodate two matrices of unequal column numbers. We then define the
amount of overlap

⋂
LV between the span of two matrices A ∈ Rn×pA , B ∈

Rn×pB , n > pA, pB , by⋂
LV

(A,B) = trace(V >B VAV
>
A VB).

Here, VZ is a matrix containing the left singular vectors of the matrix Z and is
thus an orthogonal matrix spanning the same column space as Z, Z ∈ {A,B}.
It is easy to see that this measure is symmetric,

⋂
LV (A,B) =

⋂
LV (B,A).
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Similarly to Theorem 2 in Larsson and Villani (2001), one can also show that⋂
LV (A,B) ∈ [0,min(pA, pB)], with the overlap assuming its maximum of

min(pA, pB) iff A ∈ im(B) or B ∈ im(A) and its minimum of 0 iff A ∈ im(B⊥)
or B⊥ ∈ im(A), where the n× (n− pZ) matrix Z⊥ is the orthonormal comple-
ment of Z, Z ∈ {A,B}.

To measure the degree of overlap between the kernels of D>s Ds and of Ps,
we could use

⋂
LV ((D>s Ds)⊥,Ps⊥), as the span of (D>s Ds)⊥ corresponds to

the kernel of D>s Ds and the span of Ps⊥ corresponds to the kernel of Ps. In
the following, we will however use⋂

X⊥P⊥
=
⋂

LV
((XTX)⊥,WBsPs⊥) =

⋂
LV

((X>)⊥,WBsPs⊥), (9)

as this choice obtained slightly better sensitivity and specificity for the detection
of problematic settings in our simulations in Section 4. Moreover, one can easily
show that

ke(D>s Ds) ∩ ke(Ps) = {0} ⇔ ke(X>X) ∩ {WBsx | x ∈ ke(Ps)} = {0}

such that the two formulations address the same question. For W = IS , this
measure has the interpretation of the overlap between the empirical null-space
of the observed X(s) process or ke(KX) and Ps⊥, the space of functions not
penalized by the penalty defined by Ps, evaluated on the grid given by s. It
can be determined quickly and accurately before the model is fit. Problematic
cases are indicated by overlap measures ≥ 1, as this is indicative of an at least
one-dimensional sub-space of functions contained in the kernel overlap.

Practical recommendations The theoretical results suggest several recom-
mendations for pre-processing of functional covariates and choice of the penalty
in practice.

1. Pre-smoothing of functional covariates is commonly done to remove mea-
surement error and/or obtain functions on a common grid (e.g. James,
2002; Ramsay and Silverman, 2005; Goldsmith et al., 2011). If the result-
ing (effective) rank of the smoothed covariate process drops below Ks, this
will lead to models that are only identifiable through the penalty term.
We thus recommend to use a sufficiently large number of FPCs and/or
spline basis functions if such pre-processing is required.
As a peculiar consequence of this point it may be preferable in some cases
to accept a small amount of measurement error-induced attenuation in
β̂(s, t) based on noisy, unprocessed X(s) in order to avoid a potentially

much larger non-identifiability-induced error in β̂(s, t) based on low-rank,
pre-processed X(s).

2. Curve-wise centering of functional covariates such that
∑S
l=1Xi(sl) = 0

for all i is sometimes used e.g. in the context of spectroscopy data to
remove the optical offset (c.f. Fuchs et al., 2015). Then, constant functions
lie in the kernel of KX , ke(KX). This is not recommended if a penalty
is used that does not penalize constant functions (as most difference or
derivative-based penalties do) to avoid non-identifiability.
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3. Penalties with larger null-spaces increase the likelihood of a kernel over-
lap and resulting non-identifiability problems. For difference or derivative-
based penalties, for example, a penalty penalizing deviations from constant
functions (first order differences or derivatives) would thus be preferable
in this sense to higher-order differences/derivatives. Constant coefficient
functions, which then span the penalty null-space, correspond to models
with the mean over the functions as covariate – which are often used by
practitioners – and thus also lend themselves to intuitive interpretations.
In particular, for penalties where constant coefficient functions span the
penalty nullspace, it is straightforward to see that only X-processes that
are centered curve-wise will result in a kernel overlap (unless smoothing
parameters are estimated to be very small). Unless curve-wise centering is
performed as discussed in 2., such processes will typically occur rarely and
using first-order difference/derivative penalties should thus guard against
many if not most serious identifiability issues in practice.

Countermeasures The third point above suggests modifications of the pe-
nalty null-space to avoid non-identifiability caused by potential overlap between
the penalty null-space Ps⊥ and ke(KX). Alternatively, the estimated coefficient
surface can be constrained to be orthogonal to functions in the overlap of Ps⊥
and ke(KX). We describe three approaches using penalties with empty null-
spaces and one constraint-based approach; a systematic comparison of their
performance is given in Section 4.2.

1. The simplest approach is the use of a simple ridge penalty Ps = IKs
.

However, the resulting estimates will typically not have good smoothness
properties as the ridge penalty is not a roughness penalty in the con-
ventional sense and its bias towards small absolute values of β(s, t) may
increase estimation error, cf. Figures 1, 4 and 5.

2. A second approach uses a modified marginal penalty matrix without null-
space along the lines of the so-called “shrinkage approach” described in
Marra and Wood (2011) and originally developed for the purpose of vari-
able selection in generalized additive models. Marra and Wood (2011)
replace the marginal penalty Ps = Γ diag(ρ1, . . . , ρKs

)ΓT , with eigenvec-
tors contained in Γ, eigenvalues ρ1, . . . , ρKs

and rank K̃s < Ks, by a full
rank marginal penalty

P̃s = Γ diag(ρ1, . . . , ρK̃s
, ερK̃s

, . . . , ερK̃s
)ΓT .

This substitutes the zero eigenvalues ρK̃s+1, . . . , ρKs
with ερK̃s

for all k =

K̃s + 1, . . . ,Ks using 0 < ε � 1, and thereby adds a small amount of
penalization to parameter vectors in the null space of the original penalty.
In the following, we will refer to such a modified penalty as a full-rank
penalty. By imposing a small degree of regularization on functions in Ps⊥
one can in principle preserve the attractive smoothing properties of the
original penalty while still avoiding large artifacts due to non-identifiability
resulting from a kernel overlap. We use ε = 0.1 as suggested in Marra and
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Wood (2011), but results show that this choice is not always effective in
removing artifacts if the estimated smoothing parameter is very small and
overall penalization of the fit is weak.

3. In a similar effort to avoid spurious estimates in scalar-on-function re-
gression, James and Silverman (2005, their eq. (16)) suggested using the
empirical FPCs of X(s) scaled by their inverse eigenvalues as a penalty.
This penalizes coefficient functions with large variability in directions in
which X(s) varies very little or not at all (i.e., in ke(KX)). We adapted
this approach to our function-on-function setting by replacing the conven-
tional difference operator based B-spline penalty matrix with

Ps = BT
s

min(N,S)∑
m=1

ν̂−1m diag
(
w · φ̂m(s)2

)
Bs

with estimated FPCs and eigenvalues φ̂m(s) and ν̂m,m= 1, . . . ,min(N,S).
For a given t0, this penalty matrix approximates the marginal penalty

term
∑min(N,S)
m=1

∫
(ν̂
−1/2
m φ̂m(s)β(s, t0))2ds suggested by James and Silver-

man (2005).

The empirical φ̂m(s) and ν̂m have to be estimated from a singular value
decomposition of X. It is unclear, however, how to compute the inverse
eigenvalues if X is of low rank, i.e., if some of the ν̂m are (numerically)
zero, which is of course precisely the setting in which this penalty might
yield more stable estimates. In our experiments, we tried replacement of
the zero eigenvalues with the smallest non-zero eigenvalue and a variety
of other replacement schemes, but results from this approach seem to be
fairly sensitive to both the chosen replacement scheme for zero eigenvalues
and to the estimated FPCs themselves.

4. Instead of the augmented or alternative penalization schemes for compo-
nents of the coefficient surface that lie in the overlap ke(KX) ∩ Ps⊥, we
can also directly constrain these components to be zero. As these com-
ponents are not estimable from the data, such constraints are a plausible
default but need to be taken into account for the interpretation of the
estimated surface. To implement them, we compute a basis of the overlap
and constrain the coefficient surface evaluated on the observed grid to be
orthogonal to vectors in the span of that basis. Let X>⊥ = (X>)⊥ and the
S×Ks matrixBs containing the marginal basis functions over S evaluated
on s. A basis spanning the overlap is then defined by the left singular vec-

tors VCs+ of the matrix X>⊥
(
(X>⊥ )>X>⊥

)−1
(X>⊥ )> diag(w)BsPs⊥ that

have positive singular values. For intuition, consider that if w = 1, the
expression above projects BsPs⊥, i.e., a basis for Ps⊥, into the span of
X>⊥ , i.e, a basis for ke(KX). This yields a basis for the intersection of
the spans of BsPs⊥ and X>⊥ . The expression above is cheap to com-
pute in a numerically stable way using the QR decomposition of X>⊥ . We

then estimate Θ under the constraints V >Cs+ diag(w)BsΘ
!
= 0. To give

an example, the constrained coefficient surface estimate for a curve-wise
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centered functional covariate that does not contain any constant compo-
nents will be centered around zero and not be offset in any direction if the
penalty null-space includes constant functions. Note that, different from
the augmented or alternative penalties described above, these constraints
are empty if ke(KX) ∩ Ps⊥ is empty and penalties with constraints then
reduce to the usual penalties without constraints. The constraint defini-
tion above is quite general and can be used for any basis with a quadratic
penalty, it is not limited to the difference penalties we focus on. Specifi-
cally, it will also be applicable for derivative based penalties as well as
some of the PDE-based penalties introduced by Ramsay et al. (2007)
whenever identifiability issues arise. By default, the pffr function uses
the diagnostic criterion (9) combined with a check for a rank-deficient de-
sign matrix to determine the presence of persistent non-identifiability. If
persistent non-identifiability is found, a corresponding warning is issued
and the constraints developed here are applied to the fit. Interpretation
of the constrained coefficient surface estimates requires careful attention.
For example, if constrained surface estimates are centered around zero
because ke(KX) ∩ Ps⊥ contains constant functions, the signs of different

regions of β̂(s, t) are not interpretable due to the estimated absolute level

of β̂(s, t) being essentially arbitrary.

4. Simulation study

This section presents results on the practical consequences of the theoretical
development in Section 3. Specifically, we investigate the performance of the
tensor product spline-based approach given in Section 2 on artificial data of
varying complexity and noise levels in terms of estimation accuracy and use the
simulation results to validate the diagnostics for problematic settings we have
developed. Subsequently, we present results for the modified full-rank penalties
of Marra and Wood (2011), the FPC-based penalty of James and Silverman
(2005) and the constrained estimates described in Section 3.3. All models were
fitted with the pffr() function available in the refund package, which estimates
the smoothing parameters using restricted maximum likelihood (REML).

4.1. Simulation setup

We simulate data from data generating process (1), with n = 50 subjects, T =

S = [0, 1] and S = 100 grid-points for Xi(s) =
∑M
m=1 ξimφm(s). The effect

surface β(s, t) is estimated using tensor product cubic B-splines. We set Kt = 10
and use a marginal first order difference penalty for the t-direction. Test runs
showed that results are insensitive to the number of grid-points for the response;
we used T = 50 grid-points for Y (t). Twenty replications were simulated for all
sensible combinations of the following parameters (144000 replicates in total).
For the fitting algorithm, we vary
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• the marginal roughness penalties for the spline coefficients: either sec-
ond order difference penalties (“∆2”) or first order difference penalties
(“∆1”). For the second order differences, coefficient vectors in the penalty’s
null-space ke(P (λs, λt)) parameterize surfaces that are constant or linear
in both directions. For the first order differences, coefficient vectors in
ke(P (λs, λt)) parameterize constant surfaces. Note that rank deficiencies
can increase if associated smoothing parameters become sufficiently small.
In that case, the penalty null-space effectively becomes the entire span of
the associated basis functions.

• and the number of basis functions over S: Ks ∈ {5, 8, 12}.

For the data generating process, we vary the following parameters:

• number of eigenfunctions for the X(s)-trajectories with non-zero
eigenvalues:
M ∈ {3, 5, 8, 12, 20}. This means we have settings with M ≤ Ks and
M > Ks for most M . Note that the effective numerical rank of a simulated
X can be (much) lower than M depending on the speed with which the
eigenvalues decrease.

• signal-to-noise ratio: SNRε =
sd(

∫
S Xi(s)β(s,t)ds))

sd(εit)
∈ {2, 10, 1000}, where

sd(x) is the empirical standard deviation of x. This corresponds to high
and intermediate noise levels for realistic scenarios as well as settings with
almost no noise to check the theoretical properties.

• FPC systems for Xi(s) =
∑M
m=1 φm(s)ξim with ξim ∼ N(0, νm), with

different patterns of decrease in the eigenvalues νm of the covariance oper-
ators: either a linear decrease (νm = M+1−m

M ) or an exponential decrease
(νm = exp

(
−m−12

)
). Some of these processes are constructed so that their

covariance operator kernels ke(KX) include functions in the penalty null-
space Ps⊥.

– Poly : eigenfunctions are orthogonal polynomials of degree 0 to M−1
with linear or exponentially decreasing eigenvalues (Poly,Lin and
Poly,Exp, respectively). For Poly, ke(KX) is disjunct from Ps⊥, since
the first and second eigenfunctions are constant and linear polyno-
mials.

– Fourier : eigenfunctions are those of a standard Fourier basis. Al-
though a complete Fourier basis is a basis for all square-integrable
functions, in practice the kernel ke(KX) of a truncated Fourier basis
contains functions that are very close to the constant since no linear
combination of a finite set of Fourier basis functions yields an exactly
constant function, so ke(KX) is not disjunct from Ps⊥. We used this
basis with constant (νm ≡ 1 for Fourier,Const) or exponentially de-
creasing (for Fourier,Exp) eigenvalues νm.

– Wiener : eigenfunctions and eigenvalues are those of the standard
Wiener process on [0, 1]:

φm(s) =
√

2 sin (π(m− 0.5)s) ; νm =
(
π
2 (2m+ 1)

)−2
.
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The ke(KX) is close to Ps⊥ in this case as no linear combination of a
finite set of these basis functions yields an exactly constant or linear
function.

– BrownBridge: eigenfunctions and eigenvalues are those of the stan-
dard Brownian bridge on [0, 1]: φm(s) =

√
2 sin (πms); νm = 1

πm .
The ke(KX) is close to Ps⊥ in this case as no linear combination of a
finite set of these basis functions yields an exactly constant or linear
function.

– Poly(1+), Poly(2+), Poly(-1): eigenfunctions are orthogonal poly-
nomials of degree 1 [2] to M [M + 1] for Poly(1+) [Poly(2+)], so
that ke(KX) includes the (complete) null-space of the rank-deficient
penalties, i.e., the constant [and linear] functions. Poly(-1) has poly-
nomial eigenfunctions of degree {0, 2, 3, 4, . . . ,M+1} so that ke(KX)
overlaps the null-space of the second differences penalty but not the
first differences penalty. All three processes are associated with lin-
early decreasing νm.

From top to bottom, these processes become increasingly more “antag-
onistic” in the sense that 1) the kernels of these eigenfunction systems
move increasingly closer to the kernels of the penalties we consider and 2)
more quickly decreasing eigenvalues result in lower effective rank of the
observed X(s).

• coefficient functions β(s, t) = BsΘB
T
t are drawn randomly for each

setting. The associated coefficients are drawn as

vec(Θ) ∼ N
(
0, (0.1I + P (λs, λt))

−1
)
,

where P (λs, λt) is a first order difference tensor penalty matrix.

– The marginal B-spline bases Bs and Bt have either 4 or 8 basis func-
tions for each direction.

– λs = λt are either 0.1 or 1.

This generates coefficient surfaces of varying complexity and roughness.
We do not fit models where the basis used to generate β(s, t) is larger
than that used to estimate β(s, t) since that could introduce a distracting
approximation error not relevant to the issues at hand.

In order to make results comparable across the different settings, we use the

relative integrated mean squared errors rIMSEβ =
∫
(β(s,t)−β̂(s,t))2dsdt∫

(β(s,t))2dsdt
and

rIMSEY = 1
N

∑N
i=1

∫
(Ŷi(t)−E(Yi(t)))

2dt∫
(Yi(t)−Yi(t))2dt

, where Yi(t) is the mean of Yi(t) over t.

4.2. Results

Identifiability The estimation accuracy for Ŷ (t) (not shown) is excellent
across the board even for the very noisy settings, with 90% of relative integrated
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Fig 2. Boxplots for relative integrated mean square error rIMSEβ for all 18000 results for
SNRε = 10 with conventional difference penalties. Columns show results for full rank Ds ver-
sus numerically rank deficient Ds. Rows show results for the first and second order difference
penalties. Boxplots grouped by overlap between ke(KX) and Ps⊥ as computed by

⋂
X⊥Ps⊥

,

color-coded for the different processes the X(s) are sampled from. Vertical axis on log10-scale,
extreme errors > 105 for Poly(2+) are cut off.

mean square errors below 0.01 and a median of 0.00051. Estimation accuracy for
β̂(s, t), however, varies wildly over a range of 18 magnitudes between 1.3×10−8

and 2.2×1010. Further analysis shows that the simulation study design succeeds
in creating the identifiability issues described by the results in Section 3.2. To
quantify the severity of identifiability issues, we compute rank correlations be-
tween rIMSEβ and rIMSEY over the 20 replicates of each simulation setting.
As expected, we observe low or even negative correlations mostly for settings in
which Ds is rank-deficient. This effect increases both for lower signal-to-noise
ratios and for more complex true shapes of β(s, t). For intuition, consider that
the “best” solution for (8) for any given error will be the smoothest surface
(i.e., the one with the smallest penalty term) in the set of surfaces that can be
generated by adding functions from ke(KX) to any initial β(s, t) with the given
error. This may be quite close or quite far from the true β(s, t), depending on
the specific setting, with more noisy data and more complex true shapes more
likely to result in fits that are quite far from the truth and still producing good
model fit.

Estimation performance for β(s, t) Figure 2 shows the estimation errors for
coefficient surfaces generated with SNRε = 10. The right column shows results
for numerically rank deficient Ds (i.e., condition number κ(D>s Ds) ≥ 106),
the left column for designs with κ(D>s Ds) < 106. The top row shows results for
first differences penalty, bottom row for second differences penalty. Boxplots are
grouped by the amount of overlap between ke(KX) and Ps⊥ as computed by
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Fig 3. Mosaic plot for contingency table of “flagged” replicates and and categorized rIMSEβ .⋂
X⊥Ps⊥

(see (9)), color-coded for the different processes the X(s)-trajectories

are sampled from. Results for SNRε = 2 and 103 were qualitatively very similar –
errors obviously become larger for noisier data but the pattern shown in Figure 2
remains the same. Note that relative estimation errors below ≈ 0.01 correspond
to estimates that are visually indistinguishable from the true surfaces, and that
errors below ≈ 0.1 (thick black horizontal line) usually preserve most essential
features of the true β(s, t) well. Results with rIMSEβ > 1 bear little resemblance
to the “true” function. Also recall that all of these fits, with rIMSEβ values
varying by more than 14 magnitudes, resulted in a comparatively small range
of rIMSEY between 10−5 and 10−3. Closer inspection of results shows that
the extremely large errors for Poly(1+), Poly(-1) and Poly(2+) are caused by
the expected behavior: estimates are shifted by functions from the overlap of
ke(KX) and Ps⊥. The top row of Figure 4 shows an example of this behavior:
the estimate for first order difference penalty is shifted by a large constant, while
the estimate for the second order difference penalty is shifted by both a constant
and a huge linear trend in s-direction. The fitted values of all models shown in
Figure 4 are practically identical.

These results mostly corroborate the results derived in Section 3 – we see
that:

• Serious errors rIMSEβ > 0.1 are rare for both full-rank and rank-deficient
Ds if the generating process for X(s) is not antagonistic in the sense that
ke(KX)∩Ps⊥ = {0}, i.e. for the Poly, Fourier, Wiener and BrownBridge
processes.

• As long as ke(KX)∩Ps⊥ = {0} (approximated numerically by the criterion
that

⋂
X⊥Ps⊥

< 0.95), regularization of the estimated coefficient surface
allows us to achieve good estimates even if the unpenalized regression
model per se would not be identifiable due to rank deficiency of Ds.

• The larger Ps⊥ (top to bottom), and the closer ke(KX) is to Ps⊥ (left to
right in each group of boxplots), the larger the likelihood of estimates far
from the truth and the larger the average rIMSEβ .

Diagnostics As in Figure 2, we use
⋂
X⊥Ps⊥

(see (9)) as a measure of the

overlap between ke(KX) and Ps⊥. We consider a replicate to be “flagged” as
problematic if both

⋂
X⊥Ps⊥

≥ 0.95 and κ(DT
s ,Ds) > 106.
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Fig 4. Example estimates for different penalties in a very difficult setting with X(s) from
Poly(2+), M = 5, Ks = 12, SNRε = 2. Center left panel: true coefficient surface. Top
row, left to right: first order difference penalty, second order difference penalty, ridge penalty,
FAME penalty. Bottom row, left to right: full-rank first and second order difference penalties,
first and second order difference penalties with constraints. Note the different z-axis scales in
the two left panels of the top row. Subtitles give rIMSEβ and rIMSEY for each fit.

Figure 3 shows a mosaic plot of the contingency table of “flagged” replicates
and categorized rIMSEβ . While the sensitivity for identifying replicates with
rIMSEβ > 1 is 0.92, the specificity is only 0.28. The sensitivity for identifying
replicates with rIMSEβ > 0.1 is 0.58, the specificity is 0.09. These fairly low
specificities indicate that the penalized approach to function-on-function re-
gression discussed here can outperform theoretical expectations and frequently
finds good solutions even in very difficult settings. Total accuracy for identifying
settings with rIMSEβ > 0.1 is 0.88 and 0.94 for rIMSEβ > 1. The positive pre-
dictive value (precision) of the criterion for rIMSEβ > 1 is 0.72, while it is 0.91
for rIMSEβ > 0.1. The negative predictive value of the criterion for rIMSEβ > 1
is 0.99, while it is 0.87 for rIMSEβ > 0.1. Also note that certainly not all er-
rors in the (0.1, 1]-range are due to identifiability issues, so not all of the (rare)
non-detections are failures of the criterion.
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Performance of modified penalties We broadened the scope of our sim-
ulation study by additionally comparing the performance of the non-standard
penalties and constraints introduced in Section 3.3:

• a full-rank ridge penalty (“∆0”),
• the modified full-rank roughness penalties as suggested by Marra and

Wood (2011); in our case we used both full-rank first order differences
penalties (“∆̃1”) and full-rank second order differences penalties (“∆̃2”),

• the FPC penalty of James and Silverman (2005) (“ke(KX) (FAME)”).
We replace ν̂m by max(ν̂m, 10−10ν̂1) in order to remove any (numerically)
zero or negative eigenvalues,

• and conventional first and second order differences penalties with addi-
tional constraints (“∆1 +C“, “∆2 +C“) that enforce orthogonality of the
estimated coefficient surface to functions in ke(KX) ∩Ps⊥ if the data are
flagged as problematic by our diagnostic criterion (κ(DT

s Ds) ≥ 106 and⋂
X⊥Ps⊥

> .95). Note that ∆1 + C and ∆2 + C reduce to ∆1 and ∆2,

respectively, if ke(KX)∩Ps⊥ = ∅ and need not be compared to the other
techniques in that case.

Figure 5 shows the rIMSEβ for SNRε = 10 for the different X(s)-processes
and penalties. Note that, in contrast to Figure 2, colors now represent the differ-
ent penalties, not the different X(s)-processes. Boxplots for ∆1 and ∆2 contain
the same results as those shown in Figure 2.

The full-rank difference penalties ∆̃1 and ∆̃2 (cyan and turquoise boxes) seem
to drastically reduce the size and likelihood of severe estimation errors in the
difficult settings, especially compared to ∆2 (dark blue). We occasionally incur
slightly worse estimates for the easier settings, but these differences are small and
hardly relevant here. However, we have found that neither ∆̃1 nor ∆̃2 with ε = .1
are effective in removing non-identifiability artifacts if the estimated smoothing
parameter is very small, i.e., if the effect of the penalty on the fit is weak. This
explains the large outliers observed for some replicates for the antagonistic X-
processes (top row) for ∆̃1 and ∆̃2. Figure 8 (bottom row, leftmost two panels)
shows this for the DTI data set, where the estimated smoothing parameters are
small. Note that no such outliers occur for the ridge (∆0) and FAME penalties
(green boxes). However, both penalties are not competitive for numerically rank
deficientDs for the non-pathological X(s)-processes in the bottom two rows and
perform worse than the (modified) difference penalties in all other settings, and
so cannot be recommended for general use as well. Furthermore, in the simulated
settings we use, the true β(s, t) are centered around 0, which reduces the negative
effect of these penalties’ bias towards small absolute values of β(s, t).

Figure 6 shows results only for simulated data sets flagged as problematic by
our diagnostic criterion for ∆1 or ∆2. In such settings, it makes sense to use dif-
ference penalties combined with “orthogonal-to-null-space-overlap” constraints
on the fitted surface, these results are denoted by ∆1 +C or ∆2 +C (violet and
purple), respectively.

Figure 4 shows illustrative exemplary fits for the modified penalties and
penalties with constraints in a data setting with κ(DT

s Ds) ≥ 106. in the two
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Fig 5. rIMSEβ for SNRε = 10 for the 8 X(s)-processes (panels) and the 8 different penal-
ties (color). Separate boxplots in each panel for settings with numerically rank deficient Ds
(κ(DT

s Ds) ≥ 106) versus settings with full rank Ds.
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Fig 6. rIMSEβ for SNRε = 10 only for “pathological” data-sets. X(s)-processes in panels,
penalties coded by color.

rightmost panel of the top row and the panels in the bottom row. While rIMSEY
is very similar for all 8 penalties except FAME (top right), the shapes of the cor-
responding coefficient surface estimates differ from each other in the expected
fashion: The ridge penalty’s bias towards small |β(s, t)| and tendency to under-
smooth the estimated surface is visible, as is the typical wiggliness of FAME fits
which are also not roughness penalized in the conventional sense. Compared to
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the result for ∆1, the fit for ∆̃1 is much closer to the level of the true β(s, t)
and adds a much smaller (spurious) constant to the fit. Similar remarks apply
for the comparison between ∆2 and ∆̃2: The huge spurious linear trend in s is
almost completely removed. The overlap criterion

⋂
X⊥Ps⊥

is ≈ 1 for ∆1, ≈ 2 for

∆2 and 0 by construction for all others. Both constrained fits (∆1 +C, ∆2 +C,
two bottom right panels) completely suppress the spurious constant (and trend)
present in the unconstrained fits (two top right panels), and ∆2 + C yields a
slightly smoother fit than ∆1 + C as expected.

Note that the true β(s, t) are centered around 0 in our simulation. As all
modified penalties and penalties with additional constraints result in estimated
surfaces around 0, results will be shifted up- or downwards compared to the true
surfaces if this is not the case in a real application. Such a shift reflects the fact
that the average level of the surface cannot be inferred from the data in set-
tings with corresponding persistent non-identifiability. Thus, in cases where our
diagnostics indicate persistent non-identifiability, estimated coefficient surface
values can only be interpreted relative to one another, but no interpretation of
their sign is possible due to the estimated absolute level being essentially arbi-
trary. A corresponding implication regarding linear trends applies to the case of
second order difference penalties.

Summary of simulation results We can draw the following conclusions
based on the entirety of simulation results:

• the potential for extreme estimation errors is large for X(s)-processes with
low effective rank whose ke(KX) is not disjunct from Ps⊥.

• there is no strong positive correlation between accuracy of fitted values
(rIMSEY ) and accuracy of the estimated coefficient surface (rIMSEβ) for
rank deficient Ds. Even extremely wrong estimates of β(s, t) can yield
good model fits.

• calculating
⋂
X⊥Ps⊥

and κ(DT
s Ds) yields a suitable criterion that can

diagnose persistent non-identifiability reliably, albeit with a substantial
rate of “false alarms” in which conventional difference penalties work well
despite an antagonistic data situation.

• the full-rank roughness penalties often stabilize estimates in persistent
non-identifiability settings without diminishing accuracy in other settings
by a relevant amount, but not reliably so.

• for problematic data settings flagged by the criterion developed here, the
combination of difference penalties with suitable constraints on the coef-
ficient surface (“∆ + C”), ridge penalties (“∆0”) and penalties based on
the spectrum of the functional covariate (“FAME”) all perform similarly
and outperform both full-rank and conventional difference penalties.

5. Case study

To illustrate the practical relevance of the theoretical development given in Sec-
tion 3 and the performance of the countermeasures developed therein, we de-
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scribe a deliberately constructed but realistic setting in which non-identifiability
persists despite penalization. We use a subset of 100 patients from the DTI-data
described in the introduction and fit a realistic model in which investigators try
to separate the effect of mean CCA-FA levels on RCST-FA from that of the
shape of CCA-FA along the tract. Such a model can be defined as

Yi(t) = β0(t) + x̄iβ1(t) +

∫
S
Xc
i (s)β(s, t)ds+ εit; εit

i.i.d.∼ N(0, σ2),

where Yi(t) is RCST-FA for patient i, β0(t) is a global functional intercept, x̄i =
Xi(s) are the mean CCA-FA levels with associated effect β1(t), and Xc

i (s) ≈
Xi(s)−x̄i are the denoised, curve-wise centered CCA-FA curves. In this example,
we use a reconstruction Xc

i (s) based on the six largest empirical FPCs (ca. 90 %
of total variance explained) to denoise CCA-FA and interpolate missing values.
Note that curve-specific mean centering causes all constant functions to be in
the kernel of the covariance of Xc

i (t), i.e.
⋂
X⊥Ps⊥

≥ .95 for first and second
order difference penalties. All fits shown below use Ks = Kt = 12 marginal
basis functions, so by construction we expect κ(DT

s Ds) to be large since the
rank of the functional covariate is at most M = 6. More than 6 marginal basis
functions are required, however, so that the basis for β(s, t) is flexible enough for
approximating the rather complex shape we observe here. Note that curve-wise
centering is also a necessary pre-processing step for many spectroscopic data
analyses where absorption spectra are used as functional covariates and different
mean intensity levels of such spectra are often pure laboratory artifacts (Fuchs
et al., 2015), and more generally in settings such as this one where practitioners
try to separate effects of the mean level of a functional covariate from those of
its shape.

From left to right, the top row of Figure 7 shows the responses and fitted
values for this model, the uncentered functional covariates used for the models
shown in Figure 1, and the centered functional covariates used for the mod-
els in this section. For uncentered covariates, this setting provides an example
of simple non-identifiability, while centered covariates induce persistent non-
identifiability for difference penalties. Figure 8 shows the estimated coefficient
surfaces β̂(s, t) for this model for various penalties. Despite the divergent shapes
of the different coefficient surface estimates, all 8 fits lead to practically iden-
tical fitted values on the training data (100 patients) and practically identical
predictions for the test set (155 patients), with integrated MSE ≈ 0.0031 and

predictive integrated MSE ≈ 0.0046 for each model. Both β̂0(t) and β̂1(t) are
also practically identical for all 8 models, they are shown in the bottom row of
Figure 7 along with the estimated contributions

∫
S X

c
i (s)β̂(s, t)ds of the func-

tional covariate to the additive predictor.
The model specification is appropriately flagged as causing persistent non-

identifiability (i.e.,
⋂
X⊥Ps⊥

= .98 [1.15] and κ(DT
s Ds) → ∞) for first [sec-

ond] order difference penalties ∆1 [∆2]. It is instructive to compare the result-
ing estimates for β(s, t) for different penalty specifications: the first difference
penalty fit (top, left) includes a constant offset from 0, while the second dif-
ference penalty fit (top, second from left) includes different offsets from 0 for
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Fig 7. Top row, left to right: Observed RCST-FA Yi(t); estimated RCST-FA Ŷi(t) for the
model described in this Section; presmoothed CCA-FA based on 6 largest FPCs as used in
the example shown in Figure 1; presmoothed, curve-wise centered CCA-FA based on 6 largest
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95% confidence intervals; estimated contributions of the functional effect
∫
S X

c
i (s)β̂(s, t)ds to

the additive predictor.

s

20
40

60
80

t

10

20
30
40
50

0.10

0.15

0.20

0.25

∆1

s

20
40

60
80

t

10

20
30
40
500.2

0.3

0.4

0.5

∆2

s

20
40

60
80

t

10

20
30
40
50

-0.10

-0.05

0.00

0.05

0.10

∆0

s

20
40

60
80

t

10

20
30
40
50

-0.10

-0.05

0.00

0.05

0.10

ke(KX) (FAME)

s

20
40

60
80

t

10

20
30
40
500.00

0.05

0.10

0.15

∆̃1 (M-W)

s

20
40

60
80

t

10

20
30
40
500.10

0.15

0.20

0.25

0.30

∆̃2 (M-W)

s

20
40

60
80

t

10

20
30
40
50

-0.10

-0.05

0.00

0.05

0.10

∆1 + C

s

20
40

60
80

t

10

20
30
40
50

-0.10

-0.05

0.00

0.05

0.10

∆2 + C

Fig 8. Estimated coefficient surfaces β̂(s, t) for regressing RCST-FA on mean CCA-FA and
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each t, in a linear decrease that is unpenalized by the marginal second order
difference penalty in t direction, as well as a linear trend in s. The presence of
this spurious linear trend is surprising since we did not explicitly remove linear
components from the functional covariate and it is not present in the fits for
the uncentered data (c.f. Figure 1). Further investigation revealed that the cen-
tered functional covariate’s null-space contains a fairly strong linear component
(
⋂
LV ((Xc)>⊥,w ·s) = 0.77, where (Xc)>⊥ denotes the orthogonal complement of

the observed Xc(s)), which is overlap enough to produce spurious linear shifts
in this example. Note that the linear component is much stronger in the non-
centered covariates (

⋂
LV ((X)>⊥,w · s) = 0.11) and its lack is caused by the

curve-wise centering in this example. It is straightforward to show that this can
occur if

∫
Xi(s)sds ≈ x̄i

∫
sds ∀i = 1, . . . , n, as is the case here.

Both offset and trends are reduced, but not entirely removed, by instead
using the full-rank difference penalties with ε = 0.1 (bottom row, two leftmost
panels). Due to the wiggliness of the coefficient surface, the estimated smoothing
parameters are quite small, so there is only little penalization going on. Conse-
quently, the additional small penalty on Ps⊥ is not strong enough to eliminate
non-identifiability artifacts from the fit in this case. Estimated coefficient sur-
faces with full-rank difference penalties with ε = 1 (not shown), however, are
very similar to the those in the four right-most panels of Figure 8. That results
for the full-rank difference penalties depend so strongly on this tuning parameter
is a considerable disadvantage.

The four right-most panels show results based on the ridge penalty (∆0, sec-
ond from right, top row), the penalty based on the FPCs of ke(KX) (FAME,
top right), and the difference penalties with additional “orthogonal-to-kernel-
overlap” constraints (∆ + C, bottom row). It is reassuring to see that all four
of these penalties lead to very similar results in this setting despite their differ-
ent motivations and mathematical properties. Admittedly, understanding the
estimated coefficient surfaces in terms of the supposed data generating process
remains difficult. First, because of their complex shape and secondly (and more
pertinently to the main points of this paper), because the restriction to sur-
faces centered around 0 that is enforced for ∆ + C and implied by the ∆0 and
ke(KX) penalties precludes facile interpretation of, e.g., the sign of features of
β(s, t). Since the “true” offset of the coefficient surface is not estimable from

the data, negativity or positivity of certain peaks or troughs of β̂(s, t) is not
directly interpretable and interpretation can thus only rely on relative heights
across the surface. Higher dimensional overlaps between penalty and covariate
null-spaces than the one encountered here will compound these expositional
difficulties.

This example demonstrates how reasonable, but unfortunate combinations
of data pre-processing and model specifications can lead to simply as well as
persistently non-identifiable models despite penalization. The diagnostics and
countermeasures developed in Section 3, however, seem to be suitable for de-
tecting and remedying such problems in a real data setting.
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6. Conclusion and discussion

Coefficient surface estimates in spline-based function-on-function-regression (1)
can suffer from persistent identifiability problems if the span of the marginal
basis for the coefficient surface over a functional covariate’s domain overlaps
the kernel of its covariance operator. A rank deficient design matrix can occur
in particular if the functional covariate’s covariance operator is of effective rank
smaller than the number of marginal basis functions – either because the num-
ber of eigenfunctions with non-zero eigenvalues is truly below the number of
marginal basis functions, or if eigenvalues of the covariance operator decrease
too rapidly compared to the noise level of the data.

In practice, spline based approaches are typically fitted with a regularization
penalty corresponding to a smoothness assumption on the coefficient surface.
We have shown that identifiability problems persist if, and only if, in addition
to a rank deficiency of the design matrix, the kernel of the functional predic-
tor’s covariance ke(KX) overlaps the function space Ps⊥ spanned by parameter
vectors in the null-space of the spline’s roughness penalty. In the case of no over-
lap, there is a unique smoothest representative on any hyperplane of parameter
vectors leading to the same additive predictor and the penalized estimation
problem finds a unique smoothest solution. Similar results hold for the simpler
case of penalized scalar-on-function regression models (Happ, 2013). They are
also expected to hold for more general loss functions than the quadratic loss
analysed here since generalized additive models are typically estimated by the
penalized iteratively re-weighted least squares (P-IWLS) method, where the sys-
tem of equations solved in each step is identical to that of (8) except for the
introduction of a vector of IWLS weights and the substitution of y by IWLS
working responses that are element-wise linear transformations of y.

A lack of identifiability also implies a lack of correlation between accuracy
of the coefficient estimates and goodness of fit for the responses. As this ex-
tends to prediction errors for out-of-sample data from the same process, it is
usually not possible to detect identifiability issues for a given data set based
on subsampling or cross-validation schemes. Instead, based on theoretical con-
siderations and simulation results, we have identified two easily computable
diagnostic criteria in order to detect non-identifiable model specifications be-
fore estimation. The criteria combine the condition number of a partial de-
sign matrix with a measure of the amount of overlap between the kernel of
the functional predictor’s covariance and the null-space of the penalty. Non-
identifiability may in particular be an issue if both criteria are indicative of a
problematic setting, or if the partial design matrix is numerically rank deficient
and the penalty smoothing parameter is estimated to be close to zero. If a non-
identifiable model specification is discovered, we recommend that practitioners
choose modified full-rank roughness penalties to safeguard against spurious esti-
mates or estimate coefficient surfaces under constraints that force these spurious
components to zero. The pffr-function in the refund package uses a first or-
der differences penalty by default, incorporates the diagnostic checks developed
and evaluated in this work, and issues corresponding user warnings and en-
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forces suitable constraints if a persistently non-identifiable model specification
is detected.

Another practical consequence of our results is that pre-processing meth-
ods for functional covariates should be avoided if they reduce their effective
rank (such as pre-smoothing with low-dimensional bases) or if they increase the
amount of overlap between ke(KX) and Ps⊥ (such as curve-wise centering).

Jointly, these provisions seem to be sufficient to diagnose and safeguard
against most serious artifacts of non-identifiability in practice. Our results in-
dicate that in many cases, penalization allows the reasonable estimation of co-
efficient surfaces that are not identifiable in the theoretical model under an ad-
ditional smoothness assumption, avoiding instead the common assumption that
the estimated coefficient surface lies in the span of the first few eigenfunctions
of the covariance operator of the covariate.

This work drives home the point that we cannot hope to reliably estimate
arbitrarily complex effect shapes from functional covariates with low informa-
tion content. In that sense, assuming smoothness of the coefficient surface and
constraining its non-identifiable components to be zero is simply following a
principle of parsimony. At the same time, substantial interpretation of coeffi-
cient surface estimates derived from rank-deficient designs is difficult and has
the potential to be very misleading. Functional principal component regression
approaches do not suffer from the potential identifiability issues discussed here,
but they do so at the price of restricting the estimated coefficient surface to the
span of the estimated functional principal components. These are significant
challenges for the maturing field of functional regression methods, at least in
applications where these methods are used not only for prediction, but also for
inferring and understanding the underlying data generating processes. It is our
hope that the theoretical development and practical examples presented here
can serve as a starting point for critical reflection on this important issue.

Appendix A: Proofs

A.1. Proof of Proposition 3.2

Assume that Bt is of full rank Kt. Then, the design matrix D = Bt⊗(XWBs)
in model (7) is rank-deficient if and only if

a) M < Ks or
b) if M ≥ Ks, but rank(ΦWBs) < Ks.

Proof. As rank(X) = rank(ΞΦ) = rank(Φ) = M ,

rank(ΦWBs) ≥ rank(ΞΦWBs) = rank(XWBs)

≥ rank(ΞΦ) + rank(ΦWBs)− rank(Φ) = rank(ΦWBs)

using Harville (1997, Th. 17.5.1). Thus, rank(XWBs) = rank(ΦWBs). The
rank will be less than full if rank(ΦWBs) < Ks, including if M < Ks, as
rank(ΦWBs) ≤M by construction.
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A.2. Proof of Proposition 3.3

Let P = λs(IKt ⊗ Ps) + λt(Pt ⊗ IKs), with Ps and Pt positive semi-definite
matrices. Assume that Bt is of full rank Kt, that rank(Pt) < Kt and that λs >
0, λt ≥ 0. Then, for any f ∈ im(D) there is a unique minimum minθ∈Hf

{θ>Pθ}
if and only if ke(D>s Ds) ∩ ke(Ps) = {0}.

Proof. We have

min{θ>Pθ} s.t. θ ∈ Hf
= min{θ>UU>PUU>θ} s.t. Dθ = f

= min

{
(θ>U+|θ>U0)

(
U>+PU+ U>+PU0

U>0 PU+ U>0 PU0

)(
U>+ θ
U>0 θ

)}
s.t. U>+ θ= Σ−1+ V >+ f .

Denote v+ = U>+ θ and v0 = U>0 θ, with (v>+ ,v
>
0 )> = U>θ a bijective re-

parametrization of θ. Note that v+ is fixed while v0 is free to vary within the
hyperplane. Setting the derivative with respect to v0 equal to zero yields

U>0 PU0v0 = −U>0 PU+v+. (10)

Now, if ke(D>s Ds) ∩ ke(Ps) 6= {0}, choose us 6= 0 with Us0us ∈ ke(D>s Ds) ∩
ke(Ps) and ut 6= 0 with Utut ∈ ke(Pt). As U0 = Ut ⊗Us0, we have

(u>t ⊗ u>s )U>0 PU0(ut ⊗ us) =

λs(u
>
t ut)u

>
s U
>
s0PsUs0us + λtu

>
t U
>
t PtUtut(u

>
s us) = 0.

Thus, U>0 PU0 is not of full rank, no unique solution v0 of (10) exists, so there
is no unique minimum minθ∈Hf

{θ>Pθ}.
On the other hand, if ke(D>s Ds) ∩ ke(Ps) = {0}, for any x with

x>U>s0PsUs0x = 0 we have Us0x ∈ ke(D>s Ds) ∩ ke(Ps) = {0} and thus
x = U>s0Us0x = 0. As this means that U>s0PsUs0 is positive definite, we
also have that U>0 PU0 = λsIKt ⊗ (U>s0PsUs0) + λt(U

>
t PtUt) ⊗ I(Ks−d/Kt)

is positive definite and thus invertible. Therefore, there is a unique minimum
v0 = −(U>0 PU0)−1U>0 PU+v+ and a unique smoothest point

θf = U(v>+ ,−[(U>0 PU0)−1U>0 PU+v+]>)> = HU+v+ = Hθ, (11)

with H = (IKsKt
−U0(U>0 PU0)−1U>0 P ) and θ>f Pθf = minθ∈Hf

θ>Pθ.

A.3. Proof of Proposition 3.4

Assume that Bt is of full rank Kt, that rank(Pt) < Kt and that λs > 0, λt ≥ 0.
Then, there is a unique penalized least squares solution for (8) if and only if
ke(D>s Ds) ∩ ke(Ps) = {0}.
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Proof. Problem (8) has a unique solution iff (D>D + λs(IKt ⊗ Ps) + λt(Pt ⊗
IKs

)) ≥ 0 is invertible, i.e., positive definite. Now, suppose that ke(D>s Ds) ∩
ke(Ps) = {0}. For any x ∈ RKtKs with

x>(D>D + λs(IKt ⊗ Ps) + λt(Pt ⊗ IKs))x = 0,

we have, with b = U>x = (bkj)kj∈{11,12,...,KtKs},

x>D>Dx = b>
(

Σ2
t ⊗

(
Σ2
s+ 0
0 0

))
b = 0

⇒ bkj = 0 ∀ 1 ≤ j ≤ d/Kt; 1 ≤ k ≤ Kt,

(12)

and also

b>[IKt
⊗ ((Us+|Us0)>Ps(Us+|Us0))]b

(12)
= b̃>[IKt

⊗ (U>s0PsUs0)]b̃ = 0,

where b̃ is obtained by removing the zero entries given by (12) which correspond
to Us+ from b. Thus, for all 1 ≤ k ≤ Kt, and letting b̃k = (bk(d/Kt+1), . . . , bkKs),

we have Us0b̃k ∈ ke(D>s Ds) ∩ ke(Ps) = {0}. Thus, b̃ = 0, b = 0, x = 0 and
(D>D + λs(IKt

⊗ Ps) + λt(Pt ⊗ IKs
)) is of full rank.

On the other hand, if ke(D>s Ds) ∩ ke(Ps) 6= {0}, there is a us 6= 0 with
Dsus = 0 and Psus = 0. Choose 0 6= ut ∈ kePt. Then,

(u>t ⊗ u>s )(D>D + λs(IKt
⊗ Ps) + λt(Pt ⊗ IKs

))(ut ⊗ us)
= u>t B

>
t Btut · 0 + λsu

>
t ut · 0 + λt · 0 · u>s us = 0.

Thus, (D>D+ λs(IKt ⊗Ps) + λt(Pt⊗ IKs)) is singular and not invertible.
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