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As our main tools, we derive exponential tail probability inequalities for
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non-sub-Gaussian errors that arise from linear or non-linear processes.
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1. Introduction

During the past two decades there has been a substantial development on high-
dimensional linear regression models. Consider the model

yi = x�
i β + ei, 1 ≤ i ≤ n, (1.1)

where yi, xi and ei are the response variable, the p× 1 covariate vector and the
error term respectively, and β is a p-dimensional regression parameter vector.
In matrix notation, we can write it as Y = Xβ + e, where Y is the n × 1
response vector, X is the n × p design matrix, and e is the n × 1 vector of
errors. The covariate xi can be random or deterministic. Here the dimension
p can be much larger than the sample size n. Clearly in this case the classical
least squares method fails to estimate β since the matrix X�X is singular.
Under certain sparsity conditions on β = (β1, . . . , βp)

�, namely if only a small
number of components of β are non-zero, one can apply the �1 penalized least
squares (Lasso) procedure [37]. A closely related approach is the Dantzig-type
estimator [9], which is the optimizer of certain objective function under linear
inequality constraints. Other variants include the SCAD estimator [13] and the
MCP estimator [47], among others. Theoretical properties of those estimators
have been extensively studied in the literature; see for example [4], and the
recent book [5] for a thorough treatment and further references.

In most of the theoretical investigations of model (1.1), it is assumed that
the errors (ei, i = 1, . . . , n) are independent and identically distributed (i.i.d.)
Gaussian, sub-Gaussian or sub-exponential random variables which have finite
exponential moments. Similar assumptions are also adopted for the covariates
(xi, i = 1, ..., n) in the case of random design. The associated tools for obtain-
ing performance bounds are the exponential-type concentration inequalities, in-
cluding, among others, the Bennett, Bernstein and Hoeffding inequalities; see
Chapter 14 of [5] for a review. With the help of such inequalities, assuming
certain sparseness conditions, one can deal with the case in which p is much
larger than n and still obtain consistency under the very mild condition of the
type log p = o(n).

Despite the extensive literature on Lasso and Dantzig-type estimates, there
has been very limited research on theoretical properties of the estimates when
the errors (ei) or the covariates (xi) are dependent and/or non-sub-Gaussian.
If the data are observed over time or space, the independence assumption for
the errors (ei) or the covariates (xi) is violated. The sub-Gaussian assumption
is also questionable as the errors and the covariates may be heavy-tailed and
may not have finite exponential moments. In econometric analysis of vector
autoregressive processes, in [34] Sims cautioned that fat tails can affect the
validity of the associated statistical inference. In terms of dependent errors, [41]
proposed a Lasso estimator when the errors follow an autoregressive model.
Gupta [15] analyzed Lasso estimator for weakly dependent errors. Both papers
mainly deal with the case where n is greater than p. Ravikumar et al [33]
applied the Rosenthal’s [35] inequality. Recently [18] studied Lasso with long
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memory errors with very light tails such that the Cramér condition is met,
Loh [24] considered M -estimators for linear models with i.i.d. data, and in [3]
Basu and Michailidis investigated theoretical properties of Lasso estimates for
high-dimensional Gaussian processes.

The goal of this paper is threefold: (i) To lay a theoretical foundation for high-
dimensional inference in situations in which the errors or the covariates can be
dependent; (ii) To develop sharp inequalities for tail probabilities for dependent
and/or non-sub-Gaussian processes under mild and easily verifiable conditions;
and (iii) To apply our inequalities to Lasso and constrained �1 minimization
estimators for β of model (1.1). It is expected that our framework, inequalities
and tools will be useful in other high-dimensional inference problems that involve
dependent errors.

In our theoretical framework, we shall adopt the dependence concept of [43].
Assume that the errors (ei) in (1.1) has the form

ei = g(. . . , εi−1, εi), (1.2)

where εi, i ∈ Z, are i.i.d. random variables, and g(·) is a measurable function. It
has a clear physical meaning, where (εi) are the inputs and (ei) are the outputs.
Such a representation is very natural for modeling time series. It was studied by
[42] for representing stationary and ergodic processes, and it is sometimes called
nonlinear Wold representation. The framework (1.2) is general enough to include
a wide range of stochastic processes ([38, 44]). It subsumes linear processes, their
nonlinear transforms, as well as the Volterra processes that involve interactions
between the innovations. The representation (1.2) also includes recursive model
of the form ei = G(ei−1, εi), which includes Markov chain models and nonlinear
autoregressive models such as threshold autoregressive models, autoregressive
models with conditional heteroscedasticity (ARCH), exponential autoregressive
models, bilinear autoregressive models etc. Therefore, there is no much loss of
generality by assuming representation (1.2).

One advantage of the representation (1.2) is that it enables us to define
physically meaningful and easily workable dependent measures of the process
(ei). Since the inputs (εi) are i.i.d., all the dependencies among the outputs (ei)
are caused by the input-output transformation g(·). Therefore, we can define the
dependence measures in terms of how the outputs are affected by the inputs, or
how the change of the inputs leads to the change in the outputs. Specifically,
assume ‖ei‖q := (E|ei|q)1/q < ∞, q ≥ 1, define the functional dependence
measure

δi,q = ‖ei − e∗i ‖q = ‖ei − g(F∗
i )‖q = ‖g(Fi)− g(F∗

i )‖q, (1.3)

where Fi = (· · · , εi−1, εi) and the coupled process

e∗i = g(F∗
i ), F∗

i = (. . . , ε−1, ε
′
0, ε1, . . . , εi−1, εi), (1.4)

with ε′0, εj , j ∈ Z, being i.i.d. Intuitively, δi,q measures the dependency of ei on
ε0, i.e., how replacing ε0 by an i.i.d. copy while freezing all other innovations af-
fects the output ei. We can interpret δi,q as nonlinear impulse response function.
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We shall assume short-range dependence so that

Δm,q :=

∞∑
i=m

δi,q < ∞. (1.5)

Then for fixed m, Δm,q measures the cumulative effect of ε0 on (ei)i≥m. Con-
dition (1.5) assumes that the cumulative effect is finite. As a closely related
concept, we define the predictive dependence measure

θl,q = ‖E(el|F0)− E(el|F−1)‖q = ‖P0el‖q, (1.6)

where Pi· = E(·|Fi) − E(·|Fi−1) is the projection operator. Note that θl,q also
measures the input-output dependence in the representation (1.2) by quantifying
how much the prediction of el changes by concealing ε0 from F0. Similar to Δm,q,
we can also define the cumulative predictive dependence measure

Θm,q :=

∞∑
l=m

θl,q. (1.7)

Compared to the mixing conditions such as the α-, β-, φ-, and ρ-mixing in the
literature, our δi,q and θl,q are more physically meaningful and easier to use. In
many situations theoretical results based on them are optimal or nearly optimal.
They lead to natural definitions for norms of random processes by adjusting for
dependence; see the dependence-adjusted Lq norm (2.8) and sub-exponential
norm (2.21).

Equipped with the above dependence measures, we shall establish inequali-
ties for tail probabilities, including an exponential inequality and Nagaev-type
inequalities for dependent random variables. The latter are generalizations of
the classical Nagaev inequality [30] that deals with independent random vari-
ables. Using the functional and predictive dependence measures δi,q and θl,q
introduced above, we show that if the dependence does not exceed a threshold,
then our Nagaev-type inequality is as sharp as the original Nagaev inequality
under independence. If the dependence of (ei) is stronger, then the tail can be
heavier and a correction should be used. Our form of tail probability inequalities
is neat, easy-to-use and, in many cases, sharp.

With our probability inequalities as primary tools, we can analyze the prop-
erties of the Lasso and the constrained �1 minimization estimators under de-
pendent and/or non-sub-Gaussian errors and covariates in the context where p
is much larger than n. In comparison with the traditional situation where the
errors (ei) are i.i.d. with finite exponential moments, we shall show that the
allowed range of the dimension p can be narrower in our setting, though it can
still allow the high-dimensional situation with p > n. Roughly speaking, p can
be at most a power of n if ei has only finite polynomial moment and the power is
related to the moment condition of ei. Also the convergence can become slower
due to the dependencies in errors as well as in the covariates. We shall give a
detailed description on how the dependence measures and moment conditions
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of the errors and the covariates affect the rates of convergence and the selection
consistencies of the estimators.

The rest of the paper is structured as follows. Section 2 presents exponen-
tial and Nagaev inequalities, using the framework of functional and predictive
dependence measures. Section 3 deals with the constrained �1 minimization esti-
mators in the random design scheme in which the covariate process (xi) in (1.1)
is a high-dimensional stationary process. Lasso estimators with deterministic
covariates are treated in Section 4. In both sections we present rates of conver-
gence, model selection consistency and support recovery results. A simulation
study is carried out in Section 5.

We now introduce some notation. For a matrix A = (aij)i≤I,j≤J , we define

|A|q = (
∑I

i=1

∑J
j=1 |aij |q)1/q, q > 0, |A|∞ = maxij |aij |, and |A|0 = #{(i, j) :

aij �= 0}. Define the matrix norm ‖|A‖|q = maxx �=0 |Ax|q/|x|q. Hence ‖|A‖|1 =

maxj≤J

∑I
i=1 |aij |, and ‖|A‖|2 is the spectral norm. For a random variable W ,

we write W ∈ Lq, q ≥ 1, if ‖W‖q := [E(|W |q)]1/q < ∞. We use C,C1, C2, . . . to
denote constants that do not depend on p and n and they may vary from place
to place.

2. Probability inequalities under dependence

Exponential inequalities play a fundamental role in high dimensional inference.
In this section we shall present new and powerful inequalities for tail probabili-
ties of weighted sums of dependent and/or non-sub-Gaussian random variables.
In Sections 2.1 and 2.2 we provide Nagaev inequalities (cf. Theorems 1 and 2)
for linear and nonlinear processes, respectively. The processes can be non-sub-
Gaussian ones that do not have finite exponential moments. If the error process
satisfies stronger moment condition that it has finite moments of all orders,
then under suitable dependence conditions we can have an exponential inequal-
ity which is optimal in view of [21]; cf Theorem 3 in Section 2.3. The functional
dependence measure provides a convenient framework and it greatly facilitates
the formulation of such inequalities.

The Nagaev inequality for tail probability is a useful result in probability the-
ory. However, it appears little known in statistical community. As a result, some
of the performance bounds obtained by the Markov inequality in the statistical
literature under polynomial moment conditions are not sharp. Let X1, . . . , Xn

be mean 0 independent random variables with ‖Xi‖q = [E(|Xi|q)]1/q < ∞,
q > 2; let Sn =

∑n
i=1 Xi, μn,q =

∑n
i=1 E(|Xi|q) and cq = 2e−q(q + 2)−2. By

Corollary 1.7 in [30], for x > 0, the tail probability

P(|Sn| ≥ x) ≤ (1 + 2/q)q
μn,q

xq
+ 2 exp

(
−cqx

2

μn,2

)
. (2.1)

Inequality (2.1) implies two types of bounds for P(|Sn| ≥ x). For moderate
deviation, if x2 is around the variance μn,2, then one can use the Gaussian type
tail. For large deviation, namely if x2 is much bigger than the variance μn,2, then
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the polynomial tail dominates. If one applies the Markov and the Rosenthal [35]
inequalities, one has

P(|Sn| ≥ x) ≤ E(|Sn|q)
xq

≤ c′q
μn,q + μ

q/2
n,2

xq
, (2.2)

for some constant c′q only depends on q. Simple calculations show that, up to a
multiplicative constant, the upper bound (2.1) is sharper than the one in (2.2),
especially when x is big. For example, when Xi are i.i.d., if x is big, (2.1) yields
the bound O(n/xq), while (2.2) gives a worse bound O(nq/2/xq).

Here we shall present probability inequalities for dependent errors. Consider
the weighted sum of the form Sn = a1e1+ . . .+anen, where a1, . . . , an are fixed
coefficients. Write a = (a1, . . . , an)

�. In Theorems 1, 2 and 3 below we assume
that |a|22 =

∑n
i=1 a

2
i = n. Recall that |a|q = (

∑n
i=1 |ai|q)1/q.

2.1. Nagaev inequality for linear processes

To begin with, in Theorem 1, we assume that (ei) follow a linear process

ei =

∞∑
j=0

fjεi−j , (2.3)

where εj , j ∈ Z, are i.i.d. with mean zero and εj ∈ Lq, q > 2, and fj are real
coefficients with |f |22 :=

∑∞
j=0 f

2
j < ∞, so that by Kolmogorov’s three series

theorem ei exists. Linear processes are widely used in practice and they include
the popular ARMA processes.

Theorem 1 (Nagaev inequalities for linear processes). Assume (2.3).
(i) (Short-range dependence) Let cq = 2e−q(q + 2)−2. If |f |1 :=

∑∞
j=0 |fj | <

∞, then

P(|Sn| ≥ x) ≤ (1 + 2/q)q
|a|qq|f |q1‖ε0‖qq

xq
+ 2 exp

(
− cqx

2

n|f |21‖ε0‖22

)
. (2.4)

(ii) (Long-range dependence). Assume K = supj≥0 |fj |(1 + j)β < ∞, where
1/2 < β < 1. Then there exists constants C1, C2, only depend on q and β such
that

P(|Sn| ≥ x) ≤ C1

Kq|a|qqnq(1−β)‖ε0‖qq
xq

+ 2 exp

(
− C2x

2

n3−2β‖ε0‖22K2

)
. (2.5)

Proof of Theorem 1. Let fj = 0 for j < 0. We write Sn =
∑

j∈Z
bjεj , where

bj =
∑n

i=1 aifi−j . Let q
′ = q/(q − 1). By Hölder’s inequality,

∑
j∈Z

|bj |q ≤
∑
j∈Z

(
n∑

i=1

|ai|q|fi−j |
)(

n∑
i=1

|fi−j |
)q/q′
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≤
∑
j∈Z

(
n∑

i=1

|ai|q|fi−j |
)
|f |q/q

′

1 ≤ |a|qq|f |q1. (2.6)

Clearly
∑

j∈Z
|bj |2 ≤ |a|22|f |21. Hence (2.4) follows from the original Nagaev

inequality (2.1). (ii). Let f∗
m = maxj≥m |fj | and Fn =

∑n
j=0 |fj |. Then Fn ≤

K
∑n+1

l=1 l−β ≤ K(n+ 1)1−β/(1− β). By (2.6), we have

n∑
j=1−n

|bj |q ≤
n∑

j=1−n

(
n∑

i=1

|ai|q|fi−j |
)
F

q/q′

2n ≤ |a|qqF q
2n. (2.7)

If j ≤ −n, |bj | ≤ |a|1f∗
1−j . Then

∑
j≤−n |bj |q ≤ |a|q1

∑
j≤−n(f

∗
1−j)

q. Note

that |a|1 ≤ n1−1/q|a|q and
∑

j≤−n(f
∗
1−j)

q ≤ C3n(Kn−β)q. Hence by (2.7)∑
j∈Z

|bj |q ≤ C4|a|qqKqnq(1−β). Similarly
∑

j∈Z
|bj |2 ≤ C5|a|22K2n2(1−β). So

(2.5) follows.

2.2. Nagaev inequality for nonlinear processes

For nonlinear processes, with functional dependence measure Δm,q in (1.5), we
have Theorem 2, a Nagaev-type inequality for Sn = a1e1 + . . . + anen. The
special case of Theorem 2 with a1 = . . . = an = 1 was treated in [23]. As an
important improvement, in the stronger dependence case with slow decay of
Δm,q, Theorem 2 provides a sharper bound than the one in the latter paper.
To account for dependence, for the process e· = (ei)

∞
i=−∞ we introduce the

following dependence adjusted norm (DAN)

‖e·‖q,α = sup
m≥0

(m+ 1)αΔm,q = sup
m≥0

(m+ 1)α
∞∑

i=m

δi,q, α ≥ 0. (2.8)

It can happen that, due to dependence, ‖e·‖q,α = ∞ while ‖ei‖q < ∞. Since

e0 =
∑0

l=−∞ Ple0, we have Δ0,q = ‖e·‖q,0 and

‖e0‖q ≤
∞∑
i=0

‖P−ie0‖q =

∞∑
i=0

‖P0ei‖q ≤
∞∑
i=0

‖ei − e∗i ‖q = Δ0,q,

by stationarity, Jensen’s inequality and the fact that P0ei = E(ei − e∗i |F0). If
ei ∈ Lq are i.i.d. with mean 0, then δi,q = 0 for all i ≥ 1, and δ0,q = ‖e0 − e′0‖q.
Note that in this case the dependence-adjusted norm ‖e·‖q,α and the Lq norm
‖e0‖q are equivalent in the sense that ‖e0‖q ≤ δ0,q ≤ ‖e0‖q + ‖e′0‖q = 2‖e0‖q.
Theorem 2. Assume that ‖e·‖q,α < ∞, where q > 2 and α > 0, and

∑n
i=1 a

2
i =

n. Let 
n = 1 (resp. (log n)1+2q or nq/2−1−αq) if α > 1/2 − 1/q (resp. α = 0
or α < 1/2− 1/q). Then for all x > 0,

P(|Sn| ≥ x) ≤ C1


n|a|qq‖e·‖qq,α
xq

+ C2 exp

(
− C3x

2

n‖e·‖22,α

)
, (2.9)

where C1, C2, C3 are constants that only depend of q and α.
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The Nagaev inequality of form (2.9) provides a very natural extension of
the classical one (2.1) in that the dependence-adjusted qth norm ‖e·‖q,α plays
the role of the Lq norm ‖Xi‖q, while the dependence-adjusted 2nd order norm
‖e·‖2,α play the role of the L2 norm ‖Xi‖2.
Proof of Theorem 2. In the proof the constants C1, C2, . . ., may change from
line to line. They only depend on q and α, and are independent of n, (ai)

n
i=1

and x. It suffices to deal with the case in which x ≥ √
n‖e·‖2,α since otherwise

(2.9) trivially holds. Let L = 	(logn)/(log 2)
, τl = 2l if 1 ≤ l < L and τL = n.
Define ei,τ = E(ei|εi−τ , εi−τ+1, . . . , εi), τ ≥ 0, and

Mi,l =

i∑
k=1

ak(ek,τl − ek,τl−1
). (2.10)

Let Sn,m =
∑n

k=1 akek,m and write

Sn = Sn,0 + (Sn − Sn,n) +
L∑

l=1

Mn,l. (2.11)

The proof is based on the above decomposition. Note that the summands akek,0
of Sn,0 are independent. By the Nagaev inequality (2.1),

P(|Sn,0| ≥ x) ≤ cq
|a|qq‖e0‖qq

xq
+ 2 exp

(
− cqx

2

n‖e0‖2
)
, (2.12)

where cq is a constant only depending on q, and it may vary at each occurrence.
By the Burkholder inequality [7],

‖Sn − Sn,n‖q ≤
∞∑

m=n

‖Sn,m+1 − Sn,m‖q ≤
∞∑

m=n

cqn
1/2δm+1,q = cqn

1/2Δn+1,q,

which in view of the Markov inequality implies

P(|Sn − Sn,n| ≥ x) ≤
‖Sn − Sn,n‖qq

xq
≤ cq

nq/2Δq
n+1,q

xq
. (2.13)

Let δ̃l,q =
∑τl

t=1+τl−1
δt,q and δ̃l,2 =

∑τl
t=1+τl−1

δt,2. For 1 ≤ i < i′ ≤ n, we
have by the Burkholder inequality and the Hölder inequality that

‖Mi′,l −Mi,l‖q ≤
τl∑

t=1+τl−1

∥∥∥∥∥∥
i′∑

k=i+1

ak(ek,t − ek,t−1)

∥∥∥∥∥∥
q

≤
τl∑

t=1+τl−1

cq

⎛
⎝ i′∑

k=i+1

a2kδ
2
t,q

⎞
⎠

1/2

≤
cq(

∑i′

k=i+1 a
q
k)

1/q

(i′ − i)1/q−1/2
δ̃l,q. (2.14)
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By definition the summands Dk = ak(ek,τl − ek,τl−1
) of Mn,l are τl-dependent.

Let A = {2τli+ j : i ∈ Z, 1 ≤ j ≤ τl}, B = {2τli+ j : i ∈ Z, 1 + τl ≤ j ≤ 2τl},
An =

∑
k≤n,k∈A Dk and Bn =

∑
k≤n,k∈B Dk. Then E(A2

n) ≤ nδ̃2l,2 and E(B2
n) ≤

nδ̃2l,2. By the τl-dependence, (2.14) and (2.1),

P (|An| ≥ y) ≤ cq
|a|qq
yq

τ
q/2−1
l δ̃ql,q + 2 exp

(
− cqy

2

nδ̃2l,2

)
.

A similar inequality holds for P (|Bn| ≥ y). Since Mn,l = An +Bn,

P (|Mn,l| ≥ 2y) ≤ 2cq
|a|qq
yq

τ
q/2−1
l δ̃ql,q + 4 exp

(
− cqy

2

nδ̃2l,2

)
. (2.15)

Let c = q/2 − 1 − αq; let λl = l−2/(π2/3) if 1 ≤ l ≤ L/2 and λl = (L + 1 −
l)−2/(π2/3) if L/2 < l ≤ L. Then

∑L
l=1 λl < 1. Noting that δ̃l,q ≤ Δ1+τl−1,q ≤

‖e·‖q,α(2 + τl−1)
−α and δ̃l,2 ≤ ‖e·‖2,α(2 + τl−1)

−α. Then (2.15) implies

P(|
L∑

l=1

Mn,l| ≥ x) ≤
L∑

l=1

P(|Mn,l| ≥ λlx)

≤ cq
|a|qq
xq

L∑
l=1

τ
q/2−1
l δ̃ql,q

λq
l

+ 2

L∑
l=1

exp

(
−cqx

2λ2
l

nδ̃2l,2

)

≤ C4

|a|qq‖e·‖qq,α
xq

L∑
l=1

τ cl
λq
l

+ C5

L∑
l=1

exp
(
−C6n

−1x2λ2
l τ

2α
l /‖e·‖22,α

)
. (2.16)

By the definitions of τl and λl, we have φ := minl≥1 λ
2
l τ

2α
l > 0. By elementary

manipulations, there exists a constant C7 > 1 such that for all u ≥ 1, we have

L∑
l=1

exp
(
−C6uλ

2
l τ

2α
l

)
≤ C7 exp(−C6uφ). (2.17)

We shall apply (2.17) with u = x2/(n‖e·‖22,α). Observe that, if c > 0, we have∑L
l=1 τ

c
l /λ

q
l ≤ C8τ

c
L = C8n

c. If c < 0, then
∑L

l=1 τ
c
l /λ

q
l ≤ C9. Hence, by (2.11),

(2.12), (2.13), (2.16) and (2.17), both cases with c < 0, c = 0 and c > 0 of
Theorem 2 follow.

Remark 1. In the stronger dependence case 0 < α < 1/2 − 1/q, when a1 =
. . . = an = 1, [23] obtained the following inequality

P(|Sn| ≥ x) ≤ C ′
1

nq/2−αq

xq
+ C ′

2 exp[−C ′
3x

2n(1+2αq−2q)/(1+q)], (2.18)
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where C ′
1, C

′
2, C

′
3 are constants that may depend on the dependence condition

Δm,q = O(m−α). Since α < 1/2− 1/q, (1 + 2αq − 2q)/(1 + q) < −1. Then the
neater and simpler bound exp(−C3x

2/(n‖e·‖22,α)) in Theorem 2(ii) is sharper
than the one in (2.18). Additionally our form (2.9) is easier to use since the
constants C1, C2, C3 therein only depend on α and q.

Remark 2. To appreciate the sharpness of inequality (2.9), we assume that all
ai > 0, ei are i.i.d. with mean 0, variance 1 and, for some constant h0 > 0,

P(ei ≥ x) =
h0

xq
(1 + o(1)) as x → ∞. (2.19)

By Theorem 2.1 in [32], we have for all x ≥ √
n that

P(Sn ≥ x) =
h0 + o(1)

xq

n∑
i=1

aqi + (1 + o(1))(1− Φ(x/
√
n)), (2.20)

where Φ is the standard normal cumulative distribution function. Let tn =
[n log(n−q/2|a|qq)]1/2. If x ≤ c1tn with c1 <

√
2, then the Gaussian part in

(2.20) dominates, while for large x with x ≥ c2tn with c2 >
√
2, the power

decaying term h0|a|qqx−q dominates. Note that (2.20) is asymptotically exact.
Hence inequality (2.9) provides a nearly optimal bound for both large and small
x.

2.3. Exponential tail bounds

If ei satisfies stronger moment condition than the existence of finite qth mo-
ment, we expect that a stronger form than (2.9) exists. Indeed, we have the
following Theorem 3, an exponential inequality, which is a generalization and
an improvement of Theorem 2 in [43] by allowing weights and by providing an
explicit close-form upper bound. Write Θq = Θ0,q. We shall assume stronger
moment condition by allowing Θq < ∞ for all q > 0, and we further assume
that Θq increases slower than Cqν for some ν ≥ 0 in the following sense:

‖e·‖ψν := sup
q≥2

q−νΘq < ∞. (2.21)

In view of its definition, we can interpret Θq as the predictive persistence of the
process (ei). In the very special case in which ei are i.i.d., we have Θq = ‖e0‖q
and ν = 1 (resp. ν = 1/2) if ei are sub-exponential (resp. sub-Gaussian). In this
case ‖e·‖ψν is the sub-Gaussian or sub-exponential norms of a random variable;
see for example Section 5.2.3 in [39]. Hence ‖e·‖ψν can be naturally interpreted
as dependence-adjusted sub-exponential or sub-Gaussian norm.

Theorem 3. Assume (2.21). Let Zn = Sn/
√
n and α = 2/(1 + 2ν). Then

m(t) := sup
n∈N

E[exp(t|Zn|α)] ≤ 1 + cα(1− t/t0)
−1/2t/t0 (2.22)
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holds for 0 ≤ t < t0 with t0 = (eαγα
0 )

−1, where γ0 = ‖e·‖ψν , cα is a constant
only depending on α. Consequently, letting t = t0/2, for u > 0, we have

P(Zn > u) ≤ exp(−tuα)m(t) ≤ (1 + cα/
√
2)e−(u/γ0)

α/(2eα). (2.23)

Proof of Theorem 3. Note that 1/2−1/α = −ν. We adopt the argument in [43].
Let Mn,l =

∑n
i=1 aiPi−lei, l ≥ 0. Then Mn,l is a martingale. By Burkholder’s

inequality, we have for all q ≥ 2 that

‖Mn,l‖2q ≤ (q − 1)

n∑
i=1

‖aiPi−lei‖2q = (q − 1)nθ2l,q. (2.24)

Hence ‖Zn‖q ≤ (q−1)1/2Θq in view of the decomposition Sn =
∑∞

l=0 Mn,l. Write
the negative binomial expansion (1 − s)−1/2 = 1 +

∑∞
k=1 aks

k, where |s| < 1
and ak = (2k)!/(22k(k!)2). By Stirling’s formula, as k → ∞, ak ∼ (kπ)−1/2.
Hence k! ∼

√
2(k/e)ka−1

k , and there exists absolute constants c1, c2 > 0 such
that c1(k/e)

ka−1
k ≤ k! ≤ c2(k/e)

ka−1
k holds for all k ≥ 1. By (2.21), if kα ≥ 2,

we have Θαk ≤ γ0(αk)
ν and hence by elementary manipulations

tk‖Zα
n‖kk

k!
≤ tk(αk − 1)αk/2Θαk

αk

c1(k/e)ka
−1
k

≤ akt
k

c1tk0

(αk − 1)αk/2

(αk)αk/2
≤ akt

k

c1tk0
√
e
. (2.25)

If kα < 2, then ‖Zn‖αk ≤ ‖Zn‖2 ≤ 2νγ0. Using ex =
∑∞

k=0 x
k/k!, we obtain

m(t) ≤ 1 +
∑

1≤k<2/α

tk(2νγ0)
αk

k!
+

∑
k≥2/α

ak
c1
√
e

tk

tk0

≤ 1 + c′α

∞∑
k=1

ak
tk

tk0
≤ 1 + cα

t/t0
(1− t/t0)1/2

,

where constants cα, c
′
α > 0 only depend on α. Clearly (2.23) follows from the

Markov inequality.

Remark 3. Note that condition (2.21) is equivalent to

γ := lim sup
q→∞

q−νΘq < ∞. (2.26)

Let t′0 = (eαγα)−1. By the argument in the proof of Theorem 3, we have m(t) <
∞ if 0 ≤ t < t′0 in view of

lim sup
k→∞

t‖Zα
n‖k

(k!)1/k
≤ lim sup

k→∞

t(αk − 1)α/2Θα
αk

k/e
≤ teαγα < 1. (2.27)

Since γ ≤ γ0, the range t < t′0 is wider than the one t < t0 in Theorem 3.

Remark 4. The exponential inequality in Theorem 3 is optimal for martin-
gale differences with finite exponential moment. Let Di, i ∈ Z, be a stationary
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martingale difference sequence with E(D2
i ) = 1 and finite exponential moment

E exp(|D0|) < ∞. Then E(|D0|k) = o(k!) as k → ∞. Note that PiD0 = 0 if
i ≥ 1. Then Θq = ‖D0‖q. Hence (2.21) holds with 1/2− 1/α = −1, or α = 2/3.
Let Sn =

∑n
i=1 Di. By (2.23), there exists c1, c2 > 0 such that for all x > 0,

P(|Sn| ≥ nx) ≤ c1 exp(−c2n
1/3x2/3), (2.28)

by letting u =
√
nx. In comparison with Theorem 3.2 in [21], (2.28) is op-

timal up to a constant. They also proved that the inequality P(|Sn| ≥ n) ≤
c1 exp(−c2n

1/3) is the best possible under the condition E exp(|D0|) < ∞. If Di

is bounded (say by b > 0), using Azuma’s inequality [1], one can have the bound
P(|Sn| ≥ nx) ≤ 2 exp(−nx2/(2b2)). Again in this case our inequality (2.23) is
sharp up to a multiplicative constant by letting α = 2 since Θq = ‖D0‖q ≤ b
for all q, so that (2.21) holds with γ = b.

3. Constrained �1 minimization estimator with random design

Using the constrained �1 minimization approach, one estimates β in (1.1) by

β̂ = argmin |β|1 subject to |X�Xβ −X�Y |∞ ≤ λ, (3.1)

where λ > 0 is a thresholding parameter. Recall here for β = (β1, . . . , βp)
�, the

1-norm |β|1 =
∑p

j=1 |βj |. Properties of the Dantzig estimator (3.1) has been
extensively studied in the literature; see [9]. In most of the previous papers it
is assumed that the error sequence (ei) is i.i.d. and/or sub-Gaussian. Following

[8], we call β̂ the Clime estimator.
In our random design setting we assume that in model (1.1) the covariate

process (xi, i = 1, ..., n) is high-dimensional stationary of the form

xi = h(Fi), Fi = (. . . , εi−1, εi), (3.2)

where (εi) are i.i.d. random vectors, and h(·) = (h1(·), . . . , hp(·))� is a measur-
able function in R

p. With xi defined in (3.2), letting εi be i.i.d. random vectors,
we can allow models with homogeneous or heteroscedastic errors; see Example
2. In the former homogeneous case, the covariance process (xi) and the error
process (ei) can be independent to each other. Similar to δi,q in (1.3), assume
that xi ∈ Lι, ι > 2, and we define the functional dependence measure

φi,ι = max
1≤j≤p

‖hj(Fi)− hj(F∗
i )‖ι, (3.3)

Similar to Δm,q, we can define and assume

Φm,ι :=

∞∑
i=m

φi,ι < ∞. (3.4)

Two important cases of vector autoregressive processes and linear stochastic
models are given in Examples 1 and 2 below and they are widely used in practice.
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Example 1 (Vector autoregressive model). Let Zi = (Zi1, . . . , Zip)
� be i.i.d.

mean 0 random vectors; let A1, . . . , Ad be p × p coefficient matrices such that
the vector AR(d) process Wi = (Wi1, . . . ,Wip)

� given by

Wi = A1Wi−1 + . . .+AdWi−d + Zi, (3.5)

has a stationary solution. Let Fi = (. . . , Zi−1, Zi) and xi = (W�
i−1, . . . ,W

�
i−d)

�

be a pd× 1 vector obtained by stacking lag vectors Wi−l, 1 ≤ l ≤ d. Then xi is
Fi−1-measurable. For each j ≤ p, consider the linear regression model

Wi,j = x�
i bj + Zi,j , (3.6)

which is of the form (1.1) with Zi,j and xi being independent. Here bj is a
pd × 1 parameter vector. Observe that constrained �1 minimization estimation
of the coefficient matrices A1, . . . , Ad of model (3.5) can be decomposed into the
p sub-problems of estimating bj , 1 ≤ j ≤ p, of (3.6), thus allowing for parallel
computation; see also [8, 16] for similar treatments.

Example 2 (Linear stochastic models with heteroscedastic errors). Let εi =
(ξi, ηi), where ηi, i ∈ Z, are i.i.d. with mean 0, variance 1, ξi, i ∈ Z, are also i.i.d.
random vectors and (ηi) and (ξi) are independent. Let

xi = h0(. . . , ξi−1, ξi) and ei = σ(. . . , ξi−1, ξi)ηi, (3.7)

where h0(·) and σ(·) are measurable functions such that xi and ei are properly
defined. It is clear that by choosing appropriate h(·) and g(·), xi and ei can be
written in the form of (3.2) and (1.2), respectively. If σ(·) ≡ a constant, then
xi and ei are independent. If σ(·) is not a constant function, then the errors ei
and xi are dependent and thus (1.1) is a model with heteroscedastic errors.

Assume that (xi) is centered with E(xi) = 0. Further assume that, to avoid
collinearity, the covariance matrix ΣX = E(xix

�
i ) is non-singular. Denote its

inverse by ΩX = Σ−1
X . Write x·j = (xl,j)l∈Z and e· = (el)l∈Z. For two nonnega-

tive sequences (an) and (bn), we write an � bn if there exists a constant C > 0
such that an ≤ Cbn holds for all large n. Theorem 4 imposes conditions on
dependence-adjusted norms of the processes x·j and e·.

Theorem 4. (i) Assume that maxj≤p ‖x·j‖ι,αX
= NX < ∞ and ‖e·‖p,αe =

Ne < ∞, where q > 2, ι > 4 and αX , αe > 0. Let χ = 1 if αX > 1/2 − 2/ι
and χ = ι/4 − αXι/2 if αX < 1/2 − 2/ι. Assume τ = qι/(q + ι) > 2 and
let α = min(αX , αe). Define π = 1 if α > 1/2 − 1/τ and π = τ/2 − ατ if
α < 1/2− 1/τ . Then for all a > 0 and b ≥ λ/n, the inequality

P[|ΣX(β̂ − β)|∞ ≥ 2(a|β|1 + b)] � pnπNτ
XNτ

e

(nb)τ
+ pe−C2nb

2/(N2
XN2

e )

+
p2nχN ι

X

(na)ι/2
+ p2e−C1na

2/N4
X (3.8)

holds, where C1, C2 and the constant in � only depend on q, ι, αX and αe. (ii)
If Xi ∈ Lq and ei ∈ Lq holds for all q > 2 and, for some ν, � ≥ 0,

Kν := sup
q≥2

q−νΔ0,q < ∞, L� := sup
q≥2

q−�Φ0,q < ∞, (3.9)
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then for all a > 0, b ≥ λ/n,

P[|ΣX(β̂ − β)|∞ ≥ 2(a|β|1 + b)] � pe−C2(
√
nb/(KνL�))

2/(1+2ν+2�)

+ p2e−C1(
√
na/L2

�)
2/(1+4�)

, (3.10)

where C1, C2 > 0 and the constant in � only depend on ν and �.

Before proving Theorem 4, we shall provide two examples of high-dimensional
time series for which one can bound NX = maxj≤p ‖x·j‖ι,αX

, a key step in
applying this theorem.

Example 3 (High-dimensional linear process). Let ζij , i, j ∈ Z, be i.i.d. random
variables with mean 0, variance 1 and having finite ιth moment, ι > 2; let
A0, A1, . . . , be p× p matrices with real entries such that

∑∞
j=0 tr(AjA

�
j ) < ∞.

Write εi = (ζi1, . . . , ζip)
�. Then by Kolmogorov’s three series theorem (see for

example Corollary 5.1.3 in [11]) the p-dimensional linear process

xi =

∞∑
l=0

Alεi−l (3.11)

is well-defined. The above process is a special case of (3.2) with a linear func-
tional h(·). Let Al,j be the jth row of Al. Then by Burkholder’s inequality,
‖Ai,jε0‖ι ≤ (ι − 1)1/2|Ai,j |2‖ζ00‖ι. If there exist θ > 1 and K > 0 such that
maxj≤p |Ai,j |2 ≤ K(i + 1)−θ hold for all i ≥ 0, then with α = θ − 1 we have
NX ≤ CK‖ζ00‖ι, where the constant c only depends on θ and ι.

Example 4 (High-dimensional ARCH process). Let ζij , i, j ∈ Z, be i.i.d. ran-
dom variables with mean 0, variance 1 and having finite ιth moment, ι > 2;
let

xij = ζij(b
2
j + x�

i−1Ajxi−1)
1/2 =: G(j)

εi (xi−1), j = 1, . . . , p, (3.12)

where A1, . . . , Ap are p× p nonnegative-definite matrices and b1, . . . , bp are real

numbers. Let Gεi(·) = (G
(1)
εi (·), . . . , G(p)

εi (·))� and we abbreviate (3.12) as xi =
Gεi(xi−1). Let λj be the spectral norm of Aj . Note that, for x,w ∈ R

p,

|(b2j + x�Ajx)
1/2 − (b2j +w�Ajw)1/2|2 ≤ (x−w)�Aj(x−w) ≤ λj |x−w|22.

Hence |Gεi(x)−Gεi(w)|2 ≤ |x−w|2(
∑p

j=1 λjζ
2
ij)

1/2. Assume that

‖L0‖q := [E(Lq
0)]

1/q < 1, where Li = (

p∑
j=1

λjζ
2
ij)

1/2, (3.13)

holds for some 0 < q ≤ ι. Let Ki = (
∑p

j=1 b
2
jζ

2
ij)

1/2 = |Gεi(0)|2. By the argu-
ments for Theorem 2 in [45], recursion (3.12) allows a stationary solution (xi)i
and its functional dependence measure

‖xi − x∗
i ‖q ≤ cq‖K0‖q‖L0‖iq/(1− ‖L0‖q), (3.14)
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where the constant cq only depends on q. Hence by (3.12) the functional depen-
dence measure for the jth component process (xij)i = x·j satisfies

‖xij − x∗
ij‖q ≤ cqλ

1/2
j ‖ζ00‖q‖K0‖q‖L0‖iq/(1− ‖L0‖q). (3.15)

Since ‖L0‖q < 1, the corresponding dependence adjusted norm ‖x·j‖ι,α < ∞
for all α ≥ 0.

Proof of Theorem 4. Write Σ̂ = (σ̂jk)1≤j,k≤p = n−1
∑n

i=1 xix
�
i , Σ = ΣX =

(σjk)1≤j,k≤p and define the event

A = {|Σ̂− Σ|∞ ≤ a} =

{
max
j,k≤p

|σ̂jk − σjk| ≤ a

}
(3.16)

Write xl = (xl1, . . . , xlp)
� and Tj,n =

∑n
l=1 xljel. We now compute the func-

tional dependence measure for the process (xljel)l∈Z for fixed j. Similarly as e∗i
in (1.3), we define the coupled process x∗

i . By Hölder’s inequality, we have for
m ≥ 0 that

∞∑
l=m

‖xljel − x∗
lje

∗
l ‖τ ≤

∞∑
l=m

[‖xlj(el − e∗l )‖τ + ‖(xlj − x∗
lj)e

∗
l ‖τ ]

=

∞∑
l=m

(‖xlj‖ι‖el − e∗l ‖q + ‖xlj − x∗
lj‖ι‖e∗l ‖q).

Since α = min(αX , αe), the dependence-adjusted norm

‖x·je·‖τ,α ≤ ‖x·j‖ι‖e·‖q,αe + ‖x·j‖ι,αX
‖e·‖q ≤ 2NeNX . (3.17)

For the process (xljxlk)l∈Z, since |xljxlk − x∗
ljx

∗
lk| ≤ |(xlj − x∗

lj)xlk|+ |x∗
lj(xlk −

x∗
lk)|, we similarly have

‖x·jx·k − σjk‖ι/2,αX/2 ≤ 2N2
X . (3.18)

Let event B = {n−1|X�e|∞ ≤ b}. On the event A ∩B, since b ≥ λ/n, we have

|Σ(β̂ − β)|∞ ≤ |(Σ− Σ̂)β̂|∞ + |Σ̂β̂ − Σβ|∞
≤ |Σ− Σ̂|∞|β̂|1 + λ/n+ |n−1X�Y − Σβ|∞
≤ a|β|1 + λ/n+ |Σ̂β − Σβ|∞ + n−1|X�e|∞
≤ 2a|β|1 + 2b. (3.19)

Hence, by (3.17) and (3.18), (3.8) follows by applying Theorem 2 to P(Ac) and
P(Bc), respectively, and the Bonferroni technique.

We now prove (ii). Let Zl = xljel, ι = τ(1 + �/ν) and q = τ(1 + ν/�). Let
μι = maxj≤p ‖xlj‖ι and κq = ‖el‖q. Then κq ≤ Δ0,q and μι ≤ Φ0,ι and

∞∑
l=0

‖xljel − x∗
lje

∗
l ‖τ ≤

∞∑
l=0

(‖xlj‖ι‖el − e∗l ‖q + ‖xlj − x∗
lj‖ι‖e∗l ‖q)



Linear models with correlated errors 367

≤ μιΔ0,q + κqΦ0,ι ≤ 2Δ0,qΦ0,ι. (3.20)

By (3.9) and the definition of q and ι, we have

sup
τ≥2

Δ0,qΦ0,ι

τν+�
≤ KνL� sup

τ≥2

qνι�

τν+�
= KνL�C3, (3.21)

where C3 = (1 + ν/�)�(1 + �/ν)ν . Then by Theorem 3,

P(B) ≤ C4p exp{−C5[
√
nb/(KνL�)]

2/(1+2ν+2�)}, (3.22)

where constants C4, C5 only depend on ν and �. Similarly, by (3.18), we have

sup
ι≥2

ι−2�
∞∑
l=0

‖xljxlk − x∗
ljx

∗
lk‖ι/2 ≤ 2 sup

ι≥2
ι−2�Φ2

0,ι = 2L2
�

which again by Theorem 3 implies P(A) ≤ C6p
2 exp{−C7(

√
na/L2

�)
2/(1+4ν)}.

Hence (3.10) follows in view of the arguments in (i).

Remark 5. The argument in the proof of Theorem 4 implies that, if λ = λn

is chosen such that (pnπ)1/τ = o(λn) and λn ≥ C(n log p)1/2 for a sufficiently
large constant C, then for the true parameter β, |X�Xβ−X�Y |∞ ≤ λn holds
with probability going to 1. Namely, for event B with b = λ/n, P(B) → 1.

Remark 6. If the two processes (el) and (xl) are independent of each other,
then we can let τ = min(q, ι). Additionally for the model (3.6) in Example
1, if Zi ∈ Lq with q > 2, then ι = q and we can let τ = q instead of q/2,
since elxlj ∈ Lq, and the functional dependence measure for (elxlj) decays
exponentially.

The bound (3.8) reveals two different decay behaviors: if a is small, let χ =

1, then the Gaussian-type bound e−C1na
2

dominates. On the other hand, if
it is large, then the dominating term is the polynomial tail p2n/(na)ι/2. A
similar claim can be made for the term involving b. The borderline of this
phase-transition phenomenon is at a = an and b = bn, where an (resp. bn) is

the solution to the equation n(na)−ι/2 = e−na2

(resp. n(nb)−τ = e−nb2).
Theorem 4 immediately leads to the following result on the rate of conver-

gence and support recovery.

Corollary 1. Let ΩX = Σ−1
X and tn = ‖|ΩX‖|1(an|β|1 + bn), where (i)

an = (n−1 log p)1/2 + p4/ιn2/ι−1 and bn = (n−1 log p)1/2 + p1/τn1/τ−1 (3.23)

under Theorem 4(i) with αX > 1/2− 2/ι and min(αX , αe) > 1/2− 1/τ , or (ii)

an =
(log p)1/2+2�

√
n

and bn =
(log p)1/2+�+ν

√
n

(3.24)

under Theorem 4(ii). Then we have the convergence rate

|β̂ − β|∞ = OP(tn). (3.25)
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In particular, if β is sparse such that tn = o(minj:βj �=0 |βj |), then the support of

β0 can be recovered by that of β̂ with probability going to 1.

Proof of Corollary 1. Since ΩXΣX = Id, we have

|β̂ − β|∞ ≤ ‖|ΩX‖|1|ΣX(β̂ − β)|∞.

Then (3.25) follows from Theorem 4.

The setting in our Theorem 4 and Corollary 1 is very general as it allows
dependent and/or non sub-Gaussian error processes and it also allows het-
eroscedasticity in that the error process and the covariance process can be
dependent. Han and Liu [16] considered the special case of the estimation of
A1, . . . , Ad of model (3.5) under the assumption that Zi are i.i.d. Gaussian.
Sims [34] mentioned several challenges in the inference of vector autoregressive
models: the possibility of fat tails in the innovations and the low degrees of free-
dom due to the estimation of possibly extremely many parameters. The latter
problem has been widely recognized in the analysis of vector autoregressive pro-
cesses; see for example [17, 20, 2] among others. Our setting allows both fat tails
and large number of parameters. Additionally, by checking non-zero entries in
the estimate β̂, we can infer economic relations between variables, a theory-free
principle that was advocated in [34].

4. LASSO estimators with deterministic design

Following [37], one can estimate the unknown parameter vector β by minimizing
the criterion function

1

n

n∑
i=1

(yi − x�
i β)

2 + λ

p∑
j=1

|βj | =
1

n
|y −Xβ|22 + λ|β|1, (4.1)

where λ > 0 is the regularization parameter. In this section we assume that xi is
deterministic and (ei) is of the form (1.2). For convenience, we scale the diagonal
entries of the Gram matrix Ψn = X�X/n to be 1. Then |X|2 = (np)1/2. Let

β̂ be the minimizer of (4.1). Consistency properties of β̂ are discussed in [4, 5],
where ei are i.i.d. and sub-Gaussian.

4.1. Convergence rate of the Lasso estimator

Equipped with the probability inequalities established in Section 2, we shall
study properties of the Lasso estimator β̂ in (4.1), in particular the rate of

convergence of β̂−β. Let X be the design matrix and write (1.1) as Y = Xβ+e.
We assume that the true parameter vector β has at most s non-zero entries.
We shall also assume that the restricted eigenvalue assumption RE(s, 3) in [4]
holds with constant κ = κ(s, 3), namely

κ(s, c0) := min
J⊆{1,...,p}, |J|≤s

min
u �=0, |uJc |1≤c0|uJ |1

|Xu|2√
n|uJ |2

> 0 (4.2)
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holds with c0 = 3, where uJ is defined as a modification of u by setting its
elements outside J to zero. This condition is weaker than the restricted isometry
property of [9]. See also [6, 28, 48, 49] for related conditions.

Theorem 5 shows how the rate of convergence of |β̂−β|1 and the prediction

error |X(β̂−β)|22 depend on q and α, which correspond to the moment condition
and the dependence condition respectively. Let the regularization parameter
λ = 2r.

Theorem 5. Assume (4.2). Assume that the error sequence (ei) has finite qth
moment, q > 2, and dependence-adjusted norm ‖e·‖q,α < ∞, α ≥ 0. (i) Assume
α > 1/2− 1/q. Let

r = max(A(n−1 log p)1/2‖e·‖2,α, B‖e·‖q,α|X|q/n). (4.3)

Then with probability at least 1− C1B
−q − C2p

1−C3A
2

, we have

|X(β̂ − β)|22/n ≤ 16sr2/κ2, (4.4)

and

|β̂ − β|1 ≤ 16sr/κ2. (4.5)

(ii) Assume α < 1/2− 1/q. Let

r = max(A(n−1 log p)1/2‖e·‖2,α, Bn−1/2−1/q−α|X|q‖e·‖q,α), (4.6)

then (4.4) and (4.5) hold with the same probability as in (i).

Proof. As in the proof of Lemma B.1 in [4], since β̂ minimizes (4.1), we have

2r|β̂|1 + |X(β̂ − β)|22/n ≤ 2r|β|1 + 2e�X(β̂ − β)/n. (4.7)

Let δ = β̂ − β. On the event

A =

p⋂
j=1

{2|Vj | ≤ r}, where Vj =
1

n

n∑
i=1

eixij , (4.8)

inequality (4.7) implies that

r|β̂ − β|1 + |X(β̂ − β)|22/n ≤ 4r|β̂J − βJ |1 ≤ 4r
√
s|β̂J − βJ |2. (4.9)

Hence |δJc |1 ≤ 3|δJ |1, which by (4.2) entails |X(β̂ − β)|22/n ≥ κ2|δJ |22. Then

P[|X(β̂ − β)|22/n ≤ 16sr2/κ2] + P[|β̂ − β|1 ≤ 16sr/κ2] ≤ P(Ac). (4.10)

So (4.4) and (4.5) follow if we can control the probability P(A). For (i), by
Inequality (2.9) of Theorem 2 with 
n = 1, we have

P(|Vj | ≥ r) ≤ C1‖e·‖qq,α
∑n

i=1 |xij |q
(nr)q

+ C2 exp(−C3nr
2/‖e·‖22,α). (4.11)
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Hence

P(Ac) ≤
p∑

j=1

C1‖e·‖qq,α
∑n

i=1 |xij |q
(nr)q

+ C2p exp(−C3nr
2/‖e·‖22,α)

= C1‖e·‖qq,α
|X|qq
(nr)q

+ C2p exp(−C3nr
2/‖e·‖22,α). (4.12)

Under our choice of r, we have

P(Ac) ≤ C1B
−q + C2p

1−C3A
2

. (4.13)

Following the argument in [4], with probability at least 1−C1B
−q−C2p

1−C3A
2

,
we have (4.4) and (4.5). Case (ii) can be similarly proved.

Theorem 5 indicates how the dimension breaks down if the moment condition
weakens or the dependence becomes stronger. Assume that |X|q � (np)1/q and
‖e·‖q,α < ∞, α > 1/2 − 1/q, then by (4.3), the requirement r → 0 implies
necessarily that (np)1/q/n → 0, or p = o(nq−1). In comparison, if ei are i.i.d. sub-
Gaussian, then the condition log p = o(n) suffices. In the stronger dependence
case (ii), the more restrictive condition p = o(nqα+q/2) is needed. The latter
range on p is substantially narrower.

It is interesting to compare the two terms in r. Assume that |X|q � (np)1/q.
In the relatively low dimensional case with p ≤ nq/2−1(logn)q/2, the Gaus-
sian part, which corresponds to (n−1 log p)1/2, is larger. On the other hand,
if the dimension p is large such that p > nq/2−1(logn)q/2, then the tail part
n−1|X|q � n1/q−1p1/q dominates and it is larger than the penalty of the form
A(n−1 log p)1/2 that is used in the Gaussian errors case.

For sub-Gaussian errors, we have the following theorem.

Theorem 6. Assume that the error sequence (ei) satisfies (2.21). Let

r = An−1/2(log p)1/α‖e·‖q,α. (4.14)

Then with probability at least 1− C1p
1−C2A

α

, we have bounds (4.4) and (4.5).

The proof of this theorem is similar to the corresponding result in [4], and is
omitted.

Example 5 (Nonparametric trend estimation). Consider the model

yi = μ(i/n) + ei, 1 ≤ i ≤ n, (4.15)

where μ(·) is a trend function, and ei are stationary noises. Let f1(·), f2(·), . . . be
basis functions on L[0, 1]. We approximate μ(·) by μβ(u) =

∑p
j=1 βjfj(u) and

the coefficients β1, . . . , βp are estimated by (4.1). With the estimated β̂1, . . . , β̂p,

let μβ̂(u) =
∑p

j=1 β̂jfj(u). Assume that ‖fj‖2n := n−1
∑n

i=1 f
2
j (i/n) = 1 for all

j ≤ p. Applying the arguments of Theorem 6.1 in [4] with ε = 4 therein, we have
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for probability at least 1 − C1B
−q − C2p

1−C3A
2

(resp. 1 − C1p
1−C2A

α

) under
settings in Theorem 5 (resp. Theorem 6) that

‖μβ̂ − μ‖2n ≤ inf
β∈Rp,|β|0≤s

[
5‖μβ − μ‖2n +

36|β|0r2
κ2(s, 4)

]
, (4.16)

where |β|0 = #{j ≤ p : βj �= 0}.

4.2. Model selection consistency

In this section we shall consider sign consistency for model selection based on
the Lasso. Zhao and Yu [46] introduced the concept of sign consistency; see also
[40, 27]. We write β = (β1, . . . , βs, β1+s, . . . , βp)

�, where βi �= 0 if i ≤ s and
βi = 0 if i > s. Correspondingly we write X = (X1, X2), where X1 is the n× s
sub-matrix that corresponds to the predictors with non-zero coefficients, and
X2 is the remaining n× (p− s) sub-matrix. We scale the diagonal entries of the
Gram matrix Ψn = X�X/n to be 1. We have the following Theorem 7 which
extends the result in [46] to models with dependent errors. Note that, even in the
independence case, our bound is sharper. We use the same conditions as those
in [46]. The quantity η ∈ (0, 1) in Theorem 7 is from the strong irrepresentable
condition in [46]. Namely

|X�
2 X1(X

�
1 X1)

−1sign(β1:s)|∞ ≤ 1− η, where β1:s = (β1, . . . , βs)
�.

Here the sign function sign(u) = 1 if u > 0, −1 if u < 0 and 0 if u = 0.

Theorem 7. Let M2 = 1/‖|n(X�
1 X1)

−1‖|2 and L = mini≤s |βi|. Assume that
λ ≤ nM2L/

√
s. (i) (Polynomial Tail Bound) Assume that (ei) satisfies ‖e·‖q,α <

∞, α > 1/2− 1/q. Then the sign consistency probability P(β̂ =s β) is at least

1−
[
C1|H1|qq‖e·‖qq,α

(
√
nL)q

+ C2s exp
(
−C3nL

2M2/‖e·‖22,α
)

+
C4|H2|qq‖e·‖qq,α

(ηλ/
√
n)q

+ C5p exp
(
−C6η

2λ2/(n‖e·‖22,α)
) ]

,

(4.17)

where the matrices H1 =
√
n(X�

1 X1)
−1X1 and H2 = n−1/2X�

2 [X1(X
�
1 X1)

−1×
X�

1 − In] and constants C1, . . . , C6 only depend on α and q. Assume that

|H1|q‖e·‖q,α +
‖e·‖2,α

√
log s√

M2

+
√
s
‖e·‖2,α

√
log p+ |H2|q‖e·‖q,α

M2η
= o(

√
nL)

(4.18)
and choose λ ≤ nM2L/

√
s such that ‖e·‖2,α

√
log p+ |H2|q‖e·‖q,α = o(λη/

√
n).

Then the quantity (4.17) converges to 1. (ii) Assume (2.21). Then

P(β̂ �=s β) ≤ C1s exp(−C2(

√
nL

√
M2

γ0
)α) + C3p exp(−C4(

ηλ√
nγ0

)α), (4.19)

where γ0 = ‖e·‖ψν , and constants C1, . . . , C4 > 0 only depend on α.
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Proof. (i) Write the matrices H1 = (aij)i≤s, j≤n and H2 = (bij)i≤p−s, j≤n.
Let (b1, . . . , bs)

� = n(X�
1 X1)

−1sign(β1:s), (Z1, . . . , Zs)
� = H1e and

(ζ1, . . . , ζp−s)
� = H2e. By Proposition 1 in [46], we have

P(β̂ �=s β) ≤ P(∪1≤i≤s{|Zi| ≥
√
n(|βi| − λ|bi|/(2n))})

+ P(∪1≤i≤p−s{|ζi| ≥ ηλ/(2
√
n)}). (4.20)

For i ≤ s, note that |bi| ≤
√
s/M2, by the condition λ

√
s ≤ nM2L, we have

|βi|−λ|bi|/(2n) ≥ |βi|/2 ≥ L/2. Then P(|Zi| ≥
√
n(|βi|−λ|bi|/(2n))) ≤ P(|Zi| ≥

L/2). Also note that
∑n

j=1 a
2
ij ≤ 1/M2 for all i ≤ s and

∑n
j=1 b

2
ij ≤ 1 for all

i ≤ p−s. Then (4.17) follows by applying the Nagaev inequality (2.9) of Theorem
2 to P(|Zi| ≥ z) and P(|ζi| ≥ z) via the sub-additivity of probability measures.

Under (4.18), we have ‖e·‖2,α
√
log p+ |H2|q‖e·‖q,α = o(

√
nM2Lη/

√
s). Hence

there exists λ such that λ ≤ nM2L/
√
s and ‖e·‖2,α

√
log p+ |H2|q‖e·‖q,α =

o(λη/
√
n). For such λ, it is easily seen that the quantity in (4.17) converges to

1 under (4.18).
(ii) By Theorem 3 and the arguments in (i), (4.19) follows from (4.20).

If |H1|qq � nsn−q/2 and |H2|qq � n(p − s)n−q/2, which hold if aij and bij are

typically of order n−1/2, M2 � 1 and η � 1, then (4.18) reduces to
√
s
√
log p+√

sn1/q−1/2p1/q = o(
√
nL). If additionally s = O(nc1) and L � n(c2−1)/2 for

some 0 ≤ c1 ≤ c2 ≤ 1, then by Theorem 7 the valid regularization parameter λ
has the range (pn)1/q � λ � n(c2−c1+1)/2. In other words, existence of such λ
requires the dimension p � nq(c2−c1+1)/2−1. In comparison, [46] has a narrower
range p � nq(c2−c1)/2 since q(c2 − c1 + 1)/2− 1 > q(c2 − c1)/2 as q > 2. Their
range is invalid if c1 = c2.

In the special case in which ei are i.i.d., a slightly improved version of The-
orem 7 can be obtained. Let μq = ‖ei‖q, Γ1 = (

∑n
j=1 maxi≤s |aij |q)1/q and

Γ2 = (
∑n

j=1 maxi≤p−s |bij |q)1/q. Note that Γ1 ≤ |H1|q and Γ2 ≤ |H2|q.

Theorem 8. Let M2 = 1/‖n(X�
1 X1)

−1‖2 and L = mini≤s |βi|. Assume that

√
nL ≥ K∗(M

−1/2
2 μ2

√
log s+ Γ1μq log s), (4.21)

ηλ/
√
n ≥ K∗(μ2

√
log p+ Γ2μq log p), (4.22)

where K∗ is an absolute constant, and that λ ≤ nM2L/
√
s. Then the sign con-

sistency probability P(β̂ =s β) is at least

1−
[
exp(−nL2K1M2/μ

2
2) +

KqΓ
q
1μ

q
q

(
√
nL)q

+ exp(−K2η
2λ2/(nμ2

2)) +
KqΓ

q
2μ

q
q

(ηλn−1/2)q

]
,

(4.23)

where K1,K2 are absolute constants and Kq is a constant only depending on q.
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Proof. By Lemma A.3 in [10], there exists an absolute constant K such that

E[max
i≤s

|Zi|] ≤ K[(max
i≤s

n∑
j=1

a2ij)
1/2μ2

√
log s+ ‖max

i≤s
max
j≤n

|aijej |‖2 log s]

≤ K(M
−1/2
2 μ2

√
log s+ Γ1μq log s). (4.24)

Choose K∗ in (4.21) to be 16(K+1). Then
√
nL/2 ≥ 2E[maxi≤s |Zi|]+

√
nL/4.

By Lemma A.2 in [10], there exists an absolute constant K1 > 0 and a constant
Kq only depending on q such that

P(∪1≤i≤s{|Zi| ≥
√
nL

2
}) ≤ exp(−n

L2K1M2

μ2
2

) +
Kq

∑n
j=1 ‖maxi≤s |aijej |‖qq

(
√
nL)q

= exp(−nL2K1M2/μ
2
2) +

Kq

(
√
nL)q

Γq
1μ

q
q. (4.25)

To deal with maxi≤p−s |ζi|, we have similarly the moment inequality

E[ max
i≤p−s

|ζi|] ≤ K[( max
i≤p−s

n∑
j=1

b2ij)
1/2μ2

√
log p+ ‖ max

i≤p−s
max
j≤n

|bijej |‖2 log p]

≤ K(μ2

√
log p+ Γ2μq log p). (4.26)

Thus a similar version of (4.25) holds for P(maxi≤p−s |ζi| ≥ ηλ/(2
√
n)), which

implies (4.23) by (4.20).

5. A simulation study

This section presents a simulation study to illustrate the effects of heavy tails
and dependencies of the error and/or the covariate processes on the performance
of the Clime and the Lasso estimators, with stochastic and deterministic designs,
respectively. For the former, we consider model (1.1) with the residual process

ei = (1− ρ2)1/2(1− 2/κ)1/2e◦i , e◦i = ρe◦i−1 + ηi, (5.1)

where ηi are i.i.d. Student tκ random variables with degrees of freedom κ > 2
and −1 < ρ < 1. Note that the parameters ρ and κ controls the dependence
and the heaviness of the tails of (ei), respectively. Observe that the ei has mean
0 and variance 1. For the regressor process xi, we let xi = Σ−1/2x◦

i ,

x◦
i = Ax◦

i−1 + εi = Ax◦
i−1 + (εi1, . . . , εip)

�, (5.2)

where εij are i.i.d. tν random variables with degrees of freedom ν, and Σ =
cov(x◦

i ). Then the covariance matrix of xi is identity. For the coefficient matrix
A, we let A = (ajk)j,k≤p/

√
4p, where ajk are i.i.d. N(0, 1) variables. We choose

a realization of A such that its spectral norm ‖A‖2 < 1, so that (5.2) has a
stationary solution. Once A is simulated, we keep it throughout the simulation.
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We choose n = 25, p = 100, β = (β1, . . . , βp)
� with βj = 1 if j ≤ 5 and

βj = 0 if j > 5. In our simulation we use the R flare package by [23] to
compute the Clime estimate. To study how the dependence and the heavy tails
affect the convergence speed, we consider the tail probability ratio function

R1(t) =
P(|β̂ − β|1 ≥ t)

P(|β̂† − β|1 ≥ t)
, (5.3)

where β̂
†
is the Clime estimator of β in model (1.1) with xi being i.i.d. Rp

standard normal random vectors, and ei are i.i.d. N(0, 1) random variables, and

β̂ is the Clime estimator with error process (5.1) and regressor process (5.2)
with different dependence and tail conditions. The denominator in (5.3) can
be viewed as benchmark probabilities. The flare program suggests that the
threshold value λ is around 0.6. Hence in our simulation we use λ = 0.6. In the
benchmark setting, based on 106 repetitions, the 99% and 99.9% quantiles of

the L1 distance |β̂† − β|1 are estimated as 11.781 and 12.495, respectively.
Table 1 presents the simulated values of the tail probability ratio function

R1(t) with t = 11.781 and t = 12.495, which correspond to the ratio between

P(|β̂ − β|1 ≥ t) under various dependence and moment conditions and the
benchmark tail probabilities 0.01 and 0.001, respectively. For each different com-
binations of (ρ, ν, κ), the tail probability P(|β̂ − β|1 ≥ t) is estimated by the

proportions of the 5000 values of |β̂ − β|1 that are larger than t. Table 1 sug-
gests the following phenomena, as expected from our theoretical results: (i)

heavier tails (smaller ν or κ) can lead to larger P(|β̂ − β|1 ≥ t), thus inflating

the tail probability ratio R1; (ii) the upper tail probability P(|β̂ − β|1 ≥ t)
with larger t is affected more than the one with smaller t. For example, with
(ρ, ν, κ) = (−.75, 3, 3), the latter probability can be R1(t) = 61.8 times larger
than the nominal level 0.001, as obtained based on i.i.d. standard normal dis-
tributions.

For Lasso estimation with fixed design, we shall also focus on the tail behavior
of the �1 error of the estimated parameters. We set p = 800, and n = 100, 200,
and 400. In each of the three (n, p) combinations, we generate the n× p design

Table 1

Simulated values of the tail probability ratio function R1(t). Left (resp. right) panel:

t = 11.781 (resp. t = 12.495) is the 99% (resp. 99.9%) quantile of |β̂† − β|1
ρ ν κ = 3 κ = 12

-.75 3 10.9 10.5
-.5 3 10.2 10.0
0 3 10.0 8.1
.5 3 9.1 8.3

.75 3 7.4 6.5
-.75 12 4.3 3.2
-.5 12 3.9 2.2
0 12 4.0 1.7
.5 12 2.8 1.3

.75 12 2.3 1.3

ρ ν κ = 3 κ = 12
-.75 3 61.8 49.4
-.5 3 57.6 40.8
0 3 49.2 33.2
.5 3 47.8 41.0

.75 3 40.6 28.0
-.75 12 22.6 9.4
-.5 12 21.6 5.2
0 12 21.6 2.6
.5 12 15.0 3.0

.75 12 13.2 3.2
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Fig 1. The 99% quantiles of the �1 error |β̂ − β|1 with i.i.d. errors.

Fig 2. The 99% quantiles of |β̂ − β|1 with errors from a non-linear autoregressive process.

matrix X whose entries xij are iid N(0, 1) random variables. We fix the design
matrix for all the 3,000 repetitions of the simulation study. For the true value
of the parameter vector β, we let the first s elements be non-zero, and the rest
of the elements be zero. We set s = 10. For the non-zero elements, with 1/2
probability, βj = b, and with 1/2 probability, βj = −b. We set b = 10. We fix
the marginal variance of ei at Var(ei) = 52. We use the R glmnet package for
the Lasso computation [14]. We adopt the option that the intercept is set to 0.

We first experiment with independent errors, where ei are i.i.d. student tν ,
which has a polynomial tail. Note that Var(ei) = ν/(ν − 2), which we use to
normalize the variance of ei. We examine the performance of the Lasso over
a range of values of the regularization parameter λ. For each value of λ, we
compute the 99% quantile of the �1 error |β̂− β|1. The quantiles are estimated
from 3,000 repetitions. Figure 1 shows the results for ν = 100, 3 and 2.5, for
different values of n (n = 100, 200, 400 respectively). t100 is close to normal. It
can be seen that the tail of the �1 error becomes heavier as ν decreases.

We then continue to study the behavior of the Lasso for dependent and heavy
tailed errors. We consider a non-linear autoregressive model. We first generate
a Gaussian autoregressive process ẽi = ρẽi−1 +

√
1− ρ2εi, where εi are i.i.d.

N(0, 1). So marginally ẽi ∼ N(0, 1). We then let ei = g(ẽi). The non-linear
transformation g(x) = F−1(Φ(z)) transforms ẽi into a random variable ei that
follows tν with ν = 2.5, where F is the cdf of tν , and Φ is the standard normal
cdf. We then normalize the marginal variance so that Var(ei) = 52. Figure 2
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shows the results for ρ = 0, .5, .9. As the autocorrelation becomes stronger or
the sample size n gets smaller, the tail of the �1 error becomes heavier.

Our simulation studies show that the performance of the Lasso deteriorates
if the errors have a heavy tail distribution and if there are dependencies among
the errors. This is qualitatively consistent with the theoretical results we have
obtained, although it is difficult for the simulation studies to capture the rate
of the tail decay quantitatively.
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