
Electronic Journal of Statistics
Vol. 10 (2016) 210–241
ISSN: 1935-7524
DOI: 10.1214/15-EJS1102

A comprehensive approach to mode

clustering

Yen-Chi Chen, Christopher R. Genovese and Larry Wasserman

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

e-mail: yenchic@andrew.cmu.edu; genovese@stat.cmu.edu; larry@stat.cmu.edu

Abstract: Mode clustering is a nonparametric method for clustering that
defines clusters using the basins of attraction of a density estimator’s modes.
We provide several enhancements to mode clustering: (i) a soft variant of
cluster assignment, (ii) a measure of connectivity between clusters, (iii) a
technique for choosing the bandwidth, (iv) a method for denoising small
clusters, and (v) an approach to visualizing the clusters. Combining all these
enhancements gives us a complete procedure for clustering in multivariate
problems. We also compare mode clustering to other clustering methods in
several examples.
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1. Introduction

Mode clustering is a nonparametric clustering method (Azzalini and Torelli,
2007; Cheng, 1995; Chazal et al., 2011; Comaniciu and Meer, 2002; Fukunaga
and Hostetler, 1975; Li et al., 2007; Chacón and Duong, 2013; Arias-Castro
et al., 2013; Chacon, 2014) with three steps: (i) estimate the density function,
(ii) find the modes of the estimator, and (iii) define clusters by the basins of
attraction of these modes.

There are several advantages to using mode clustering relative to other
commonly-used methods:

1. There is a clear population quantity being estimated.

2. Computation is simple: the density can be estimated with a kernel density
estimator, and the modes and basins of attraction can be found with the
mean-shift algorithm.

3. There is a single tuning parameter to choose, namely, the bandwidth of
the density estimator.

4. It has strong theoretical support since it depends only on density estima-
tion and mode estimation (Arias-Castro et al., 2013; Romano et al., 1988;
Romano, 1988).
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Fig 1. An example for visualizing multivariate mode clustering. This is the Olive Oil data,
which has dimension d = 8. Using the proposed methods in this paper, we identify 7 clusters
and the connections among clusters are represented by edges (width of edge shows the strength
of connection). More details can be found in section 8.2.

Despite these advantages, there is room for improvement. First, mode clus-
tering results is a hard assignment; there is no measure of uncertainty as to
how well-clustered a data point is. Second, it is not clear how to visualize the
clusters when the dimension is greater than two. Third, one needs to choose the
bandwidth of the kernel estimator. Fourth, in high dimensions, mode clustering
tends to produce tiny clusters which we call “clustering noise.” In this paper, we
propose solutions to all these issues which leads to a complete, comprehensive
approach to model clustering. Figure 1 shows an example of mode clustering for
a multivariate data with our visualization method (d = 8).

Related Work. Mode clustering is based on the mean-shift algorithm (Fuku-
naga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002) which is a
popular technique in image segmentation. Li et al. (2007); Azzalini and Torelli
(2007) formally introduced mode clustering to the statistics literature. The re-
lated idea of clustering based on high density regions was proposed in Hartigan
(1975). Chacón et al. (2011); Chacón and Duong (2013) propose several meth-
ods for selecting the bandwidth for estimating the derivatives of the density
estimator which can in turn be used as a bandwidth selection rule for mode
clustering. The idea of merging insignificant modes is related to the work in Li
et al. (2007); Fasy et al. (2014); Chazal et al. (2011); Chaudhuri and Dasgupta
(2010); Kpotufe and von Luxburg (2011).

Outline. In Section 2, we review the basic idea of mode clustering. In Section 3,
we discuss soft cluster assignment methods. In Section 4, we define a measure
of connectivity among clusters and propose an estimate of this measure. In Sec-
tion 5 we prove consistency of the method. In Section 5.1, we describe a rule for
bandwidth selection in mode clustering. Section 6 deals with the problems of tiny
clusters which occurs more frequently as the dimension grows. In Section 7, we
introduce a visualization technique for high-dimensional data based on multidi-
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Fig 2. The mode clustering. (a): the attraction basins for each mode given a smooth function.
(b): the mean shift algorithm to cluster data points. The red crosses are the local modes.

mensional scaling. We provide several examples in section 8. The R-code for our
approaches can be found in http://www.stat.cmu.edu/~yenchic/EMC.zip.

2. Review of mode clustering

Let p be the density function of a random vectorX ∈ R
d. Throughout the paper,

we assume p has compact support K ⊂ R
d. Assume that p has k local maxima

M = {m1, · · · ,mk} and is a Morse function (Morse, 1925, 1930; Banyaga, 2004),
meaning that the Hessian of p at each critical point is non-degenerate. We do
not assume that k is known. Given any x ∈ R

d, there is a unique gradient ascent
path starting at x that eventually arrives at one of the modes (except for a set
of x’s of measure 0). We define the clusters as the ‘basins of attraction’ of the
modes (Chacón, 2012), i.e., the sets of points whose ascent paths have the same
mode. Now we give more detail.

An integral curve through x is a path πx : R �→ R
d such that πx(0) = x and

π′
x(t) = ∇p(πx(t)). (1)

A standard result in Morse theory is that integral curves never intersect except
at critical points, so the curves partition the space (Morse, 1925, 1930; Banyaga,
2004). We define the destination for the integral curve starting at x by

dest(x) = lim
t→∞

πx(t). (2)

Then dest(x) = mj for some mode mj for all x except on a set E with Lebesgue
measure 0 (E contains points that are on the boundaries of clusters and whose
paths lead to saddle points). For each mode mj we define the basin of attraction
of mj by

Cj = {x : dest(x) = mj}, j = 1, · · · , k. (3)

http://www.stat.cmu.edu/~yenchic/EMC.zip
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Cj is also called the ascending manifold (Guest, 2001) or the stable manifold
(Morse, 1925, 1930; Banyaga, 2004). The partition C = {C1, . . . , Ck} is called
the Morse complex of p. These are the population clusters.

In practice, p(x) is unknown and we need to estimate it. A common way to
do this is via the kernel density estimator (KDE). Let X1, . . . , Xn be a ran-
dom sample from p, and let K be a smooth, symmetric kernel. The KDE with
bandwidth h > 0 is defined by

p̂h(x) =
1

nhd

∑
i

K

(
||x−Xi||

h

)
. (4)

The modes M̂ = {m̂1, . . . , m̂k̂} of p̂n and the integral-curve destinations under

p̂n of any point x, d̂est(x), are both easily found using the mean-shift algorithm
(Fukunaga and Hostetler, 1975; Cheng, 1995; Comaniciu and Meer, 2002). The
corresponding basins of attraction are

Ĉj = {x ∈ R
d : d̂est(x) = m̂j}, j = 1, · · · , k̂ (5)

Ĉ = {Ĉ1, . . . , Ĉk̂} (6)

and the sample clusters are defined by

Xj = {Xi : Xi ∈ Ĉj} = {Xi : d̂est(Xi) = m̂j}. (7)

3. Soft clustering

Mode clustering is a type of hard clustering, where each observation is assigned
to one and only one cluster. Soft clustering methods (McLachlan and Peel, 2004;
Lingras and West, 2002; Nock and Nielsen, 2006; Peters et al., 2013) attempt
to capture the uncertainty in this assignment. This is typically represented by
an assignment vector for each point that is a probability distribution over the
clusters. For example, whereas a hard-clustering method might assign a point
x to cluster 2, a soft clustering might give x an assignment vector a(x) =
(0.01, 0.8, 0.01, 0.08, 0.1), reflecting both the high confidence that x belongs to
cluster 2 the nontrivial possibility that it belongs to cluster 5.

Soft clustering can capture two types of cluster uncertainty: population level
(intrinsic difficulty) and sample level (variability). The population level uncer-
tainty originates from the fact that even if p is known, some points are more
strongly related to their modes than others. Specifically, for a point x near the
boundaries between two clusters, say C1, C2, the associated soft assignment vec-
tor a(x) should have a1(x) ≈ a2(x). The sample level uncertainty comes from
the fact that p has been estimated by p̂. The soft assignment vector a(x) is
designed to capture both types of uncertainty.

Remark. The most common soft-clustering method is to use a mixture model.
In this approach, we represent cluster membership by a latent variable and use
the estimated distribution of that latent variable as the assignment vector. In
the appendix we discuss mixture-based soft clustering.
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3.1. Soft mode clustering

One way to obtain soft mode clustering is to use a distance from a given point
x to all the local modes. The idea is simple: if x is close to a mode mj , the soft
assignment vector should have a higher aj(x). However, converting a distance
to a soft assignment vector involves choosing some tuning parameters.

Instead, we now present a more direct method based on a diffusion that
does not require any conversion of distance. Consider starting a diffusion at
x. We define the soft clustering as the probability that the diffusion starting
at x leads to a particular mode, before hitting any other mode. That is, let
aHP (x) = (aHP

1 (x), . . . , aHP
k (x)) where aHP

j (x) is the conditional probability
that mode j is the first mode reached by the diffusion, given that it reaches one
of the modes. In this case a(x) is a probability vector and so is easy to interpret.

In more detail, let

Kh(x, y) = K

(
‖x− y‖

h

)
.

Then

qh(y|x) =
Kh(x, y)p(y)∫
Kh(x, y)dP (y)

,

defines a Markov process with qh(y|x) being the probability of jumping to y
given that the process is at x. Fortunately, we do not actually have to run the
diffusion to estimate aHP (x).

An approximation to the above diffusion process restricted to x, y in
{m̂1, . . . , m̂k̂, X1, . . . , Xn} is as follows. We define a Markov chain that has k̂+n

states. The first k̂ states are the estimated local modes m̂1, . . . , m̂k̂ and are ab-

sorbing states. That is, the Markov process stops when it hits any of the first k̂
state. The other n states correspond to the data points X1, . . . , Xn. The tran-
sition probability from each Xi is given by

P(Xi → m̂l) =
Kh(Xi, m̂j)∑n

j=1 Kh(Xi, Xj) +
∑k̂

l=1 Kh(Xi, m̂l)

P(Xi → Xj) =
Kh(Xi, Xj)∑n

j=1 Kh(Xi, Xj) +
∑k̂

l=1 Kh(Xi, m̂l)

(8)

for i, j = 1, . . . , n and l = 1, . . . , k̂. Thus, the transition matrix P is

P =

[
I 0
S T

]
, (9)

where I is the identity matrix and S is an n × k̂ matrix with element Sij =
P(Xi → m̂j) and T is an n× n matrix with element Tij = P(Xi → Xj). Then
by Markov chain theory, the absorbing probability from Xi onto m̂j is given by

Âij where Âij is the (i, j)-th element of the matrix

Â = S(I− T )−1. (10)

We define the soft assignment vector by âHP
j (Xi) = Âij .
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4. Measuring cluster connectivity

In this section, we propose a technique that uses the soft-assignment vector
to measure the connectivity among clusters. Note that the clusters here are
generated by the usual (hard) mode clustering.

Let p be the density function and C1, . . . , Ck be the clusters corresponding to
the local modes m1, . . . ,mk. For a given soft assignment vector a(x) : Rd �→ R

k,
we define the connectivity of cluster i and cluster j by

Ωij =
1

2

(
E
(
ai(X)|X ∈ Cj

)
+ E

(
aj(X)|X ∈ Ci

))
=

1

2

∫
Ci

aj(x)p(x)dx∫
Ci

p(x)dx
+

1

2

∫
Cj

ai(x)p(x)dx∫
Cj

p(x)dx
.

(11)

Each Ωij is a population level quantity that depends only on how we determine
the soft assignment vector. Connectivity will be large when two clusters are close
and the boundary between them has high density. If we think of the (hard) clus-
ter assignments as class labels, connectivity is analogous to the mis-classification
rate between class i and class j.

An estimator of Ωij is

Ω̂ij =
1

2

( 1

Ni

n∑
l=1

âj(Xl)1(Xl ∈ Ĉi)+
1

Nj

n∑
l=1

âi(Xl)1(Xl ∈ Ĉj)
)
, i, j = 1, . . . , k̂,

(12)

where Ni =
∑n

l=1 1(Xl ∈ Ĉi) is the number of sample in cluster Ĉi. Note that
when n is sufficiently large, each estimated mode is a consistent estimator to
one population mode (Chazal et al., 2014) but the ordering might be different.
For instance, the first estimated mode m̂1 might be the estimator for the third
population mode m3. After relabeling, we can match the ordering of both pop-
ulation and estimated modes. Thus, after permutation of columns and rows of
Ω̂, Ω̂ will be a consistent estimator to Ω. The matrix Ω̂ is a summary statistics
for the connectivity between clusters. We call Ω̂ the matrix of connectivity or
the connectivity matrix.

The matrix Ω̂ is useful as a dimension-free, summary-statistic to describe
the degree of overlap/interaction among the clusters, which is hard to observe

directly when d > 2. Later we will use Ω̂ to describe the relations among clusters
while visualizing the data.

5. Consistency

Local modes play a key role in mode clustering. Here we discuss the consistency
of mode estimation. Despite the fact that the consistency for estimating a global
mode has been established (Romano, 1988; Romano et al., 1988; Pollard, 1985;
Arias-Castro et al., 2013; Chacon, 2014; Chazal et al., 2014; Chen et al., 2014a),
there is less work on estimating local modes.
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Here we adapt the result in Chen et al. (2014c) to describe the consistency
of estimating local modes in terms of the Hausdorff distance. For two sets A,B,
the Hausdorff distance is

Haus(A,B) = inf{r : A ⊂ B ⊕ r,B ⊂ A⊕ r}, (13)

where A⊕r = {y : minx∈A ‖x−y‖ ≤ r}. The Hausdorff distance is a generalized
L∞ metric for sets.

Let K(α) be the α-th derivative of K and BCr denotes the collection of func-
tions with bounded continuously derivatives up to the r-th order. We consider
the following two common assumptions on kernel function:

(K1) The kernel function K ∈ BC3 and is symmetric, non-negative and∫
x2K(α)(x)dx < ∞,

∫ (
K(α)(x)

)2

dx < ∞

for all α = 0, 1, 2, 3.
(K2) The kernel function satisfies conditionK1 of Gine and Guillou (2002). That

is, there exists some A, v > 0 such that for all 0 < ε < 1, supQ N(K, L2(Q),

CKε) ≤
(
A
ε

)v
, whereN(T, d, ε) is the ε−covering number for a semi-metric

space (T, d) and

K =

{
u �→ K(α)

(
x− u

h

)
: x ∈ R

d, h > 0, |α| = 0, 1, 2, 3

}
.

The assumption (K1) is a smoothness condition on the kernel function. (K2)
controls the complexity of the kernel function and is used in (Gine and Guillou,
2002; Einmahl and Mason, 2005; Genovese et al., 2012; Arias-Castro et al., 2013;
Chen et al., 2014b).

Theorem 1 (Consistency of Estimating Local Modes). Assume p ∈ BC3 and
the kernel function K satisfies (K1-2). Let C3 be the bound for the partial deriva-

tives of p up to the third order and M̂n ≡ M̂ be the collection of local modes of
the KDE p̂n and M be the local modes of p. Let K̂n be the number of estimated
local modes and K be the number of true local modes. Assume

(M1) There exists λ∗ > 0 such that

0 < λ∗ ≤ |λ1(mj)|, j = 1, · · · , k,

where λ1(x) ≤ · · · ≤ λd(x) are the eigenvalues of Hessian matrix of p(x).
(M2) There exists η1 > 0 such that

{x : ‖∇p(x)‖ ≤ η1, 0 > −λ∗/2 ≥ λ1(x)} ⊂ M⊕ λ∗
2dC3

,

where λ∗ is defined in (M1).

Then when h is sufficiently small and n is sufficiently large,
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1. (Modal consistency) there exists some constants A,C > 0 such that

P

(
k̂n �= k

)
≤ Ae−Cnhd+4

;

2. (Location convergence) the Hausdorff distance between local modes and
their estimators satisfies

Haus
(
M̂n,M

)
= O(h2) +OP

(√
1

nhd+2

)
.

The proof is in appendix. Actually, the assumption (M1) always hold when-
ever we assume p to be a Morse function. We make it an assumption just for
the convenience of the proof. The second condition (M2) is a regularity on p
which requires that points with similar behavior (near 0 gradient and negative
eigenvalues) to local modes must be close to local modes. Theorem 1 states two
results: consistency for estimating the number of local modes and consistency
for estimating the location of local modes. An intuitive explanation for the first
result is from the fact that as long as the gradient and Hessian matrix of KDE
p̂n are sufficiently closed to the true gradient and Hessian matrix, condition
(M1, M2) guarantee the number of local modes is the same as truth. Applying
Talagrand’s inequality (Talagrand, 1996) we obtain exponential concentration
which gives the desired result. The second result follows from applying a Taylor
expansion of the gradient around each local mode, the difference between local
modes and their estimators is proportional to the error in estimating the gradi-
ents. The Hausdorff distance can be decomposed into bias O(h2) and variance

OP

(√
1

nhd+2

)
.

5.1. Bandwidth selection

A key problem in mode clustering is the choice of the smoothing bandwidth
h. Because mode clustering is based on the gradient of the density function,
we choose a bandwidth targeted at gradient estimation. From standard non-
parametric density estimation theory, the estimated gradient and the true gra-
dient differ by

‖∇p̂n(x)−∇p(x)‖22 = O(h4) +OP

( 1

nhd+2

)
(14)

assuming p has two smooth derivatives, see Chacón et al. (2011); Arias-Castro
et al. (2013). In non-parametric literature, a common error measure is the mean
integrated square error (MISE). The MISE for the gradient is

MISE(∇p̂n) = E

(∫
‖∇p̂n(x)−∇p(x)‖22dx

)
= O

(
h4

)
+O

(
1

nhd+2

)
(15)

when we assume (K1); see Theorem 4 of (Chacón et al., 2011). Thus, it follows
that the asymptotically optimal bandwidth should be

h = Cn− 1
d+6 , (16)
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for some constant C. In practice, we do not know C, so we need a concrete
rule to select it. We recommend a normal reference rule (a slight modification
of Chacón et al. (2011)):

hNR = S̄n ×
( 4

d+ 4

) 1
d+6

n− 1
d+6 , S̄n =

1

d

d∑
j=1

Sn,j (17)

where Sn,j is the sample standard deviation along j-th coordinate. We use this
for two reasons. First, it is known that the normal reference rule tends to over-
smooth (Sheather, 2004), which is typically good for clustering. And second, the
normal reference rule is easy to compute even in high dimensions. Note that this
normal reference rule is optimizing asymptotic MISE for multivariate Gaussian
distirbution with covariance matrix σI. Corollary 4 of Chacón et al. (2011) pro-
vides a formula for the general covariance matrix case. In data analysis, it is very
common to normalize the data first and then perform mode clustering. If we

normalize the data, the reference rule (17) reduces to hNR =
(

4
d+4

) 1
d+6

n− 1
d+6 .

For a comprehensive survey on the bandwidth selection, we refer the readers to
Chacón and Duong (2013).

In addition to the MISE, another common metric for measuring the quality
of the estimator ∇p̂n is the L∞ norm, which is defined by

‖∇p̂n −∇p‖max,∞ = sup
x

‖∇p̂n(x)−∇p(x)‖max, (18)

where ‖v‖max is the maximal norm for a vector v.

The rate for L∞ is

‖∇p̂n −∇p‖max,∞ = O
(
h2

)
+OP

(√
logn

nhd+2

)
(19)

when we assume (K1–2) and p ∈ BC3 (Genovese et al., 2009, 2012; Arias-Castro
et al., 2013; Chen et al., 2014b). This suggests selecting the bandwidth by

h = C ′
(
logn

n

) 1
d+6

. (20)

However, no general rule has been proposed based on this norm. The main
difficulty is that no analytical form for the big O term has been found.

Remark. Comparing the assumptions in Theorem 1, equations (15) and 19
gives an interesting result: If we assume p ∈ BC3 and (K1), we obtain consis-
tency in terms of the MISE. If further we assume (K2), we get the consistency in
terms of the supremum-norm. Finally, if we have conditions (M1-2), we obtain
mode consistency.
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Fig 3. An example of cluster noise. These data are from a 4-Gaussian mixture in d = 8.
Panel (a) shows the first two coordinates and we add Gaussian noise to other 6 coordinates.
Panel (b) shows the ordered size of clusters from mode clustering using Silverman’s rule (17).
On the left side of gray line in panel (b) are the real clusters; on the right side of gray line
are the clusters we want to filter out.

6. Denoising small clusters

In high dimensions, mode clustering tends to produce many small clusters, that
is, clusters with few data points. We call these small clusters, clustering noise.
In high dimensions, the variance creates small bumps in the KDE which then
creates clustering noise. The emergence of clustering noise is consistent with
Theorem 1; the convergence rate is much slower when d is high.

Figure 3 gives an example on the small clusters from a 4-Gaussian mixture
and each mixture component contains 200 points. Note that this mixture is in
d = 8 and the first two coordinates are given in panel (a) of Figure 3. Panel (b)
shows the ordered size of clusters when the smoothing parameter h is chosen
by the Silverman’s rule (SR) given in (17). On the left side of the gray vertical
line, the four clusters are real signals while the clusters on the right hand side
of the gray line are small clusters that we want to filter out.

There are two approaches to deal with the clustering noise: increasing the
smoothing parameters and merging (or eliminating) small clusters. However,
increasing the bandwidth oversmooths which may wash out useful information.
See Figure 4 for an example. Thus, we focus on the method of merging small
clusters. Our goal is to have a quick, simple method.

A simple merging method is to enforce a threshold n0 on the cluster size (i.e.,
number of data points within) and merge points within the small clusters (size
less than n0) into some nearby clusters whose size is larger or equal to n0. We
will discuss how to merge tiny clusters latter. Clusters with size larger or equal
to n0 are called “significant” clusters and those with size less than n0 are called
“insignificant” clusters. We recommend setting

n0 =

(
n log(n)

20

) d
d+6

. (21)
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Fig 4. An example for showing the problem of oversmoothing. This is a n = 100 sample from
a simple two Gaussian mixture in d = 1. The black curve is the true density, the blue curve is
the estimated density based on the Silverman’s rule (denoted as SR; see (17)) and the orange
curve is h = 1.3× (17). If we oversmooth too much (orange curve), we only identify one
cluster (mode).

The intuition for the above rule is from the optimal L∞ error rate for esti-
mating the gradient (recall (19)). The constant 20 in the denominator is based
on our experience from simulations and later, we will see that this rule works
quiet well in practice.

Here we introduce the SC-plot (Size of Cluster plot) as a diagnostic for the
choice of n0. The SC-plot displays the ordered size of clusters. Ideally, there will
be a gap between the size of significant clusters and insignificant clusters which
in turns induces an elbow in the SC-plot. Figure 5 show the SC-plot for a 4-
Gaussian mixture in 8-dimension (the data used in Figure 3) and a 5-clusters in
10-dimension data (see section 8.1 for more details). Both data sets are simulated
so that we know the true number of clusters (we use the gray line to separate

Fig 5. The SC-plot for the 4-Gaussian example and the 5-clusters in 10-D example. Notice
that there is always a gap on the size of clusters near the gray line (boundary of real clusters
and clustering noise). This gap can be used to select the filtering threshold n0.
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clustering noise and real clusters). Our reference rule (21) successfully separates
the noise and signals in both cases. Note that SC-plot itself provides a summary
of the structure of clusters.

After identifying tiny clusters, we use the following procedure to merge points
within small clusters (suggested to us by Jose Chacon). We first remove points
in tiny clusters and then use the remaining data (we call this the “reduced
dataset”) to estimate the density and perform mode clustering. Since the re-
duced dataset does not include points within tiny clusters, in most cases, this
method outputs only stable clusters. If there are still tiny clusters after merg-
ing, we identify those points within tiny clusters and merge them again to other
large clusters. We repeat this process until there are no tiny clusters. By doing
so, we will cluster all data points into significant clusters.

Remark. In addition to the denoising method proposed above, we can remove
the clustering noise using persistent homology (Chazal et al., 2011). The thresh-
old level for persistence can be computed via the bootstrap (Fasy et al., 2014).
However, we found that this did not work well except in low dimensions. Also,
it is extremely computationally intensive.

7. Visualization

Here we present a method for visualizing the clusters that combines multidi-
mensional scaling (MDS) with our connectivity measure for clusters.

7.1. Review of multidimensional scaling

Given points X1, . . . , Xn ∈ R
d, classical MDS finds Z1, . . . , Zn ∈ R

k such that
they minimize∑

i,j

∣∣(Zi − Z̄n)
T (Zj − Z̄n)− (Xi − X̄n)

T (Xj − X̄n)
∣∣2 . (22)

Note Z̄n = 1
n

∑n
i=1 Zi. A nice feature for classical MDS is the existence of a

closed-form solution to Zi’s. Let S be a n× n matrix with element

Sij = (Xi − X̄n)
T (Xj − X̄n).

Let λ1 > λ2 > · · · > λn be the eigenvalues of S and v1, . . . , vn ∈ R
n be the asso-

ciated eigenvectors. We denote Vk = [v1, . . . , vk] and Dk = Diag(
√
λ1, . . . ,

√
λk)

be a k × k diagonal matrix. Then it is known that each Zi is the i-th row of
VkDk (Hastie et al., 2001). In our visualization, we constrain k = 2.

7.2. Two-stage multidimensional scaling

Our approach consists of two stages. At the first stage, we apply MDS on the
modes and plot the result in R

2. At the second stage, we apply MDS to points



222 Y.-C. Chen et al.

Fig 6. An example for the two stage MDS. Note that the bottom right small plot in (c) is
the plot in (b). At stage one, we run MDS for all modes and plot them as in (a). At stage
two, we apply MDS for each cluster including the local mode as in (b). Then we place cluster
points around local modes as in (c) and (d).

within each cluster along with the associated mode. Then we place the points
around the projected modes. We scale the MDS result at the first stage by a
factor ρ0 so that each cluster is separated from each other. Figure 6 gives an
example.

Recall that M̂ = {m̂1, . . . , m̂k̂} is the set of estimated local modes and Xj

is the set of data points belonging to mode m̂j . At the first stage, we perform

MDS on M̂ so that

{m̂1, . . . , m̂k̂}
MDS
=⇒ {m̂†

1, . . . , m̂
†
k̂
}, (23)

where m̂†
j ∈ R

2 for j = 1, . . . , k̂. We plot {m̂†
1, . . . , m̂

†
k̂
}.

At the second stage, we consider each cluster individually. Assume we are
working on the j-th cluster and m̂j ,Xj are the corresponding local mode and
cluster points. We denote Xj = {Xj1, . . . , XjNj}, where Nj is the sample size
for cluster j. Then we apply MDS to the collection of points {mj , Xj1, Xj2, . . . ,
XjNj}:

{mj , Xj1, Xj2, . . . , XjNj}
MDS
=⇒ {m∗

j , X
∗
j1, X

∗
j2, . . . , X

∗
jNj

}, (24)
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where m∗
j , X

∗
j1, X

∗
j2, . . . , X

∗
jNj

∈ R
2. Then we center the points at m̂†

j and

place X∗
j1, X

∗
j2, . . . , X

∗
jNj

around m̂†
j . That is, we make a translation to the

set {m∗
j , X

∗
j1, X

∗
j2, . . . , X

∗
jNj

} so that m∗
j matches the location of m̂†

j . Then we
plot the translated points X∗

j1, X
∗
j2, . . . , X

∗
jNj

. We repeat the above process for
each cluster to visualize the high dimensional clustering.

Note that in practice, the above process may cause unwanted overlap among
clusters. Thus, one can scale {m̂†

1, . . . , m̂
†
k̂
} by a factor ρ0 > 1 to remove the

overlap.
One can use other dimension reduction techniques as well. For instance, we

can use the landmark MDS (Silva and Tenenbaum, 2002; De Silva and Tenen-
baum, 2004) and treats each local mode as the landmark points. This provides
an alternative way to visualize the clusters.

7.3. Connectivity graph

We can improve the visualization of the previous subsection by accounting for
the connectivity of the clusters. We apply the connectivity measure introduced
in section 4. Let Ω̂ be the matrix for the connectivity measure defined in (12). We
connect two clusters, say i and j, by a straight line if the connectivity measure
Ω̂ij > ω0, a pre-specified threshold. Our experiments show that

ω0 =
1

2× number of clusters
(25)

is a good default choice. We can adjust the width of the connection line between
clusters to show the strength of connectivity. See Figure 10 panel (a) for an
example; the edge linking clusters (2,3) is much thicker than any other edge.

Algorithm 1 summarizes the process of visualizing high dimensional cluster-
ing. Note that the smoothing bandwidth h and the thresholding of cluster size

Algorithm 1 Visualization for Mode Clustering
Input: Data X = {Xi : i = 1, . . . , n}, bandwidth h, parameters n0, ρ0, ω0.

Phase 1: Mode clustering
1. Use the mean shift algorithm for clustering based on bandwidth h.
2. (Optional) Find clusters of size less than n0 and merge them with larger clusters.

Phase 2: Dimension reduction
Let {(mj ,Xj) : j = 1, . . . , k̂} be the pairs of local modes and the associated data points.
3. Perform MDS to each (m̂j ,Xj) to get (m̂∗

j ,X ∗
j ).

4. Perform MDS to modes only to get {m̂†
1, . . . , m̂

†
k̂
}.

5. Place each M̂†
j = ρ0 × m̂†

j on the reduced coordinate.

6. Place each (m̂j ,Xj) around M̂†
j by matching m̂j → M̂†

j .

Phase 3: Connectivity measure
7. Estimate Ωij by (12) and one of the above soft clustering methods.

8. Connect M̂†
i , M̂

†
j if Ω̂ij > ω0.
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Fig 7. A flowchart for the clustering analysis using proposed methods. This shows a procedure
to conduct a high-dimensional clustering using the proposed methods in the current papers.
We apply this procedure to the data in section 8.1 to 8.5.

n0 can be chosen by the methods proposed in section 5.1. The remaining two
parameters ρ0 and ω0 are visualization parameters; they are not involved in any
analysis so that one can change these parameters freely.

8. Experiments

We present several experiments in this section. The parameters were chosen as
follows: we choose h based on (17), ω0 based on (25). Figure 7 gives a flowchart
that summarizes clustering analysis using the approach presented in this paper.
Given the multivariate data, we first select the bandwidth and then conduct
(hard) mode clustering. Having identified clusters, we denoise small clusters by
merging them into significant clusters and apply soft-mode clustering to measure
the connectivity. Finally, we visualize the data using the two-step MDS approach
and connect clusters if the pairwise connectivity is high. This establishes a proce-
dure for multivariate clustering and we apply it to the data in Sections 8.1 to 8.5.

8.1. 5-clusters in 10-D

We implement our visualization technique in the following ‘5-cluster’ data. We
consider d = 10 and 5 Gaussian mixture centered at the following positions

C1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

C2 = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

C3 = (0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0)

C4 = (0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0)

C5 = (0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0).

(26)

For each Gaussian component, we generate 200 data points from σ1 = 0.01
and each Gaussian is isotropically distributed. Then we consider four “edges”
connecting pairs of centers. These edges are E12, E13, E14, E45, where Eij is the



Mode clustering 225

1 2 3 4 5
1 – 0.15 0.14 0.12 0.02
2 0.15 – 0.03 0.03 0.00
3 0.14 0.03 – 0.02 0.00
4 0.12 0.03 0.02 – 0.16
5 0.02 0.00 0.00 0.16 –

Fig 8. Visualization of clustering on the 10-dimensional 5-cluster data. This is a 5 cluster
data with ‘filament’ connecting them in d = 10. Panel (a) shows the first three coordinates
(which contains real structures; the rest 7 dimensions are Gaussian noise).

edge between Ci, Cj . We generate 100 points from an uniform distribution over
each edge and add an isotropic iid Gaussian noise to each edge with σ2 = 0.005.
Thus, the total sample size is 1, 400 and consist of 5 clusters centered at each
Ci and part of the clusters are connected by a ‘noisy path’ (also called filament
(Genovese et al., 2012; Chen et al., 2014b)). The density has structure only at the
first three coordinates; a visualization for the structure is given in Figure 8-(a).
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The goal is to identify the five clusters as well as their connectivity. We display
the visualization and the connectivity measures in Figure 8. All the parameters
used in this analysis is given as follows.

h = 0.0114, n0 = 49.05, ρ0 = 2, ω0 = 0.1.

Note that the filtering threshold n0 is picked by (21) and the SC-plot is given
in Figure 5 panel (b).

8.2. Olive Oil data

We apply our methods to the Olive Oil data introduced in Forina et al. (1983).
This data set consists of 8 chemical measurements (features) for each observation
and the total sample size is n = 572. Each observation is an olive oil produced
in one of 3 regions in Italy and these regions are further divided into 9 areas.
Some other analyses for this data can be found in Stuetzle (2003); Azzalini and
Torelli (2007). We hold out the information of the areas and regions and use
only the 8 chemical measurement to cluster all the data.

Since these measurements are in different units, we normalize and standard-
ize each measurement. We apply (17) for selecting h and thresholding the size of
clusters based on (21). Figure 9 shows the SC-plot and the gap occurs between
the seventh (size: 29) and eighth cluster (size: 6) and our threshold n0 = 19.54
is within this gap. We move the insignificant clusters into the nearest significant
clusters. After filtering, 7 clusters remain and we apply algorithm 1 for visualiz-
ing these clusters. To measure the connectivity, we apply the hitting probability
so that we do not have to choose the constant β0. To conclude, we use the
following parameters

h = 0.587, n0 = 19.54, ρ0 = 6, ω0 = 0.071.

Fig 9. The SC-plot for Olive Oil data. The threshold n0 = 19.54 is within the a gap (29 to
6) between size of seventh and eighth cluster.
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Fig 10. (a): Clustering result for the Olive oil data (d = 8). Note that we add edges to
those pairs of clusters with connectivity measure > 0.07 (colored by red in the matrix). The
connectivity matrix is in Figure 11. The width of the edge reflects the degree of connection.
(b): The corresponding map of Italy. We assign the cluster label to the dominating produce
area and connect the edge according to the connectivity matrix. Note that the Sicily is spread
out over cluster 1-3 so that we use dash lines to connect Sicily to Calabria, South-Apulia and
North-Apulia.

The visualization is given in Figure 10 and matrix of connectivity is given in
Figure 11. We color each point according to the produced area to see how our
methods capture the structure of data.

As can be seen, most clusters contain one dominating type of olive oil (type:
produce area). Even in cases where one cluster contains multiple types of olive
oil, the connectivity matrix captures this phenomena. For instance, cluster 2 and
3 both contain Calabria, Sicily and South-Apulia. We do observe a connection
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1 2 3 4 5 6 7
Calabria 0 51 5 0 0 0 0

Coast-Sardinia 0 0 0 33 0 0 0
East-Liguria 0 0 0 1 32 11 6

Inland-Sardinia 0 0 0 65 0 0 0
North-Apulia 23 2 0 0 0 0 0

Sicily 6 18 12 0 0 0 0
South-Apulia 0 0 206 0 0 0 0

Umbria 0 0 0 0 0 51 0
West-Liguria 0 0 0 0 0 0 50

(a) Produce area versus cluster.

1 2 3 4 5 6 7
1 – 0.08 0.05 0.00 0.01 0.02 0.00
2 0.08 – 0.30 0.01 0.01 0.00 0.00
3 0.05 0.30 – 0.02 0.01 0.00 0.00
4 0.00 0.01 0.02 – 0.09 0.02 0.01
5 0.01 0.01 0.01 0.09 – 0.19 0.04
6 0.02 0.00 0.00 0.02 0.19 – 0.09
7 0.00 0.00 0.00 0.01 0.04 0.09 –

(b) Matrix of connectivity

Fig 11. Confusion matrix (produce area versus cluster) and matrix of connectivity for the
Olive oil data (d = 8). We mark edges with connectivity measure > 0.07 by red color.

between cluster 2 and 3 in Figure 11 and a higher connectivity measure in the
matrix for connectivity measures. We display the map of Italy in panel (b) of
Figure 10. Mode clustering and connectivity measures reflect the relationship in
terms of geographic distance.

As can be seen in Figure 10, the clustering indeed captures the difference
in produce area. More importantly, the connectivity measurement captures the
hidden structures of the produce area in the following sense. When a group of
oil produced in the same area is separated into two clusters, we observe an edge
between these two clusters. This shows that the connectivity measure conveys
more information on the hidden interaction between clusters.

8.3. Banknote authentication data

We apply our methods to the banknote authentication data set given in the UCI
machine learning database repository (Asuncion and Newman, 2007). The data
are extracted from images that are taken from authentic and forged banknote-
like specimens and later are digitalized via an industrial camera for print in-
spection. Each image is a 400 × 400 pixels gray scale picture with a resolution
of about 660 dpi. A wavelet transform is applied to extract features from the
images. Each data point contains four attributes: ‘variance of Wavelet Trans-
formed image’, ‘skewness of Wavelet Transformed image’, ‘kurtosis of Wavelet
Transformed image’ and ‘entropy of image’.

We apply our methods to analyze this dataset. Note that all clusters are
larger than n0 = 11.97 (the smallest cluster has 37 points) so that we do not
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1 2 3 4 5
Authentic 629 70 62 1 0

Forge 4 0 390 179 37

(a) Authentic and Forged currency versus
cluster.

1 2 3 4 5
1 – 0.20 0.30 0.21 0.11
2 0.20 – 0.19 0.12 0.06
3 0.30 0.19 – 0.22 0.12
4 0.21 0.12 0.22 – 0.06
5 0.11 0.06 0.12 0.06 –

(b) Matrix of connectivity

Fig 12. Clustering result for the Bank Authentication data (d = 4). BlueViolet color is
authentic banknote and orange color is the forged banknote. The first two clusters are of the
genuine classes while the latter three clusters are the group of forged.

filter out any cluster. The following parameters are used:

h = 0.613, n0 = 11.97, ρ0 = 5, ω0 = 0.1.

The visualization, confusion matrix and matrix of connectivity are given in
Figure 12.

From Figure 12, cluster 1 and 2 are clusters for the real banknotes while
cluster 3, 4 and 5 are clusters of fake banknotes. By examining the confusion
matrix (panel (b)), the cluster 2 and 5 are clusters for purely genuine and forged
banknote. As can be seen from panel (c), their connectivity is relatively small
compared to the other pairs. This suggests that the authentic and fake banknotes
are really different in a sense.

8.4. Wine quality data

We apply our methods to the wine quality data set given in the UCI machine
learning database repository (Asuncion and Newman, 2007). This data set con-
sists of two variants (white and red) of the Portuguese Vinho Verde wine. The
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Fig 13. The SC-plot for wine quality data. Our choice of n0 = 62.06 which agrees with the
gap between fourth and fifth cluster (containing 109 and 55 points).

detailed information on this data set is given in Cortez et al. (2009). In particu-
lar, we focus on the red wine, which consists of n = 1599 observations. For each
wine sample, we have 11 physicochemical measurements: ‘fixed acidity’, ‘volatile
acidity’, ‘citric acid’, ‘residual sugar’, ‘chlorides’, ‘free sulfur dioxide’, ‘total sul-
fur dioxide’, ‘density’, ‘pH’, ‘sulphates’ and ‘alcohol’. Thus, the dimension to
this dataset is d = 11. In addition to the 11physicochemical attributes, we also
have one score for each wine sample. This score is evaluated by a minimum of
three sensory assessors (using blind tastes), which graded the wine in a scale
that ranges from 0 (very bad) to 10 (excellent). The final sensory score is given
by the median of these evaluations.

We apply our methods to this dataset using the same reference rules for
bandwidth selection and picking n0. The SC-plot is given by Figure 13; we notice
that the gap occurs at the fourth and fifth clusters and n0 = 62.06 successfully
separate these clusters. Note that the first cluster contains 783 points so that
it does not appear in the SC-plot. We measure the connectivity among clusters
via the hitting probability method and visualize the data in Figure 14. The
following parameters are used in this dataset:

h = 0.599, n0 = 62.06, ρ0 = 5, ω0 = 0.125.

The wine quality data is very noisy since it involves a human-rating scoring
procedure. However, mode clustering suggests that there is structure. From the
confusion matrix in Figure 14 panel (b), we find that each cluster can be in-
terpreted in terms of the score distribution. The first cluster is like a ‘normal’
group of wines. It is the largest cluster and the score is normally distributed
centering at around 5.5 (the score 5 and 6 are the majority in this cluster). The
second cluster is the ‘bad’ group of wines; most of the wines within this cluster
have only score 5. The third and fourth clusters are good clusters; the overall
quality within both clusters is high (especially the fourth clusters). Remark-
ably, the second cluster (bad cluster) does not connect to the third and fourth
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(a) Visualization

Quality 1 2 3 4
3 10 0 0 0
4 49 0 1 3
5 486 135 41 19
6 434 25 91 88
7 68 3 48 80
8 5 0 5 8

(b) Wine quality versus cluster.

1 2 3 4
1 – 0.33 0.23 0.23
2 0.33 – 0.12 0.12
3 0.23 0.12 – 0.19
4 0.23 0.12 0.19 –

(c) Matrix of connectivity

Fig 14. Clustering result for the Wine Quality data (d = 11). Color denotes different quality
score. The panel (b) shows the components for each cluster so that we can interpret each
cluster according to the score distributions. The first cluster is a normal cluster; the second
cluster is a cluster of best wines; the third cluster is a ‘better than normal’ cluster while the
last cluster is a low-score cluster.

cluster (good cluster). This shows that our connectivity measure captures some
structure.

8.5. Seed data

We apply our methods to the seed data from the UCI machine learning database
repository (Asuncion and Newman, 2007). The seed data is contributed by the
authors of Charytanowicz et al. (2010). Some preliminary analysis using mode
clustering (mean shift) and K-means clustering can be found in Charytanowicz
et al. (2010). Scientists examine the kernels from three different variety of wheat:
‘Kama’, ‘Rosa’ and ‘Canadian’; each type of wheat with a randomly selected 70
sample. For each sample, a soft X-ray technique is conducted to obtain an 13×18
cm image. According to the image, we have 7 attributes (d = 7): ‘area’, ‘perime-
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Fig 15. The SC-plot for Seeds data. We pick n0 = 8.75 which filters out the fourth small
cluster (compared to the three large clusters).

ter’, ‘compactness’, ‘length of kernel’, ‘width of kernel’, ‘asymmetry coefficient’
and ‘length of kernel groove’.

We first normalize each attribute and then perform mode clustering accord-
ing to the bandwidth selected by Silverman’s rule (17). We pick n0 = 8.75 which
is reasonable compared with the SC-plot (Figure 15). The visualization, confu-
sion matrix and the matrix of connectivity is given in Figure 16. The following
parameters are used in the seeds data

h = 0.613, n0 = 8.75, ρ0 = 5, ω0 = 0.167.

As can be seen from Figure 16, the three clusters successfully separate the
three classes of seeds with little error. The connectivity matrix in panel (c)
explains the errors in terms of overlapping of clusters. Some seeds of class ‘Kama’
(corresponding to the third cluster) are in the domain of first and second clusters
and we see a higher connectivity among cluster pair 1-2 and 1-3.

8.6. Comparisons

Finally, we compare mode clustering to k-means clustering, spectral cluster-
ing and hierarchical clustering for the four real datasets mentioned previously
(Olive Oil, Bank Authentication, Wine Quality and Seeds). For the other three
methods, we pick the number of clusters as the number of significant clusters
by mode clustering. We use a Gaussian kernel for spectral clustering and com-
plete linkage for hierarchical clustering. To compare the quality of clustering,
we use the adjusted Rand index (Rand, 1971; Hubert and Arabie, 1985; Vinh
et al., 2009). The result is given in Table 17. A higher adjusted rand index indi-
cates a better match clustering result. Note that the adjusted rand index may
be negative (e.g. wine quality dataset for spectral clustering and hierarchical
clustering). If a negative value occurs, this means that the clustering result is
worse than randomly partitioning the data. i.e. the clustering is no better than
random guessing.
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(a) Visualization

Class 1 2 3
Kama 58 3 9
Rosa 3 67 0

Canadian 3 0 67

(b) Seeds class versus cluster.

1 2 3
1 – 0.18 0.30
2 0.18 – 0.09
3 0.30 0.09 –

(c) Matrix of connectivity

Fig 16. Clustering result for the Seed data (d = 7). Color denotes different classes of seeds.
The three clusters represent three classes of seeds. The fact that the some seeds appear in the
wrong cluster is captured by the connectivity measure (the high connection between 1–2 and
1–3).

From Figure 17, we find that the mode clustering is the best method for the
olive oil data, bank authentication dataset, and the wine quality dataset. For
the case that mode clustering is suboptimal, the result is still not to far away
from the optimal method. On the contrary, k-means is a disaster for the bank
authentication dataset and is just a little bit better than mode clustering in the
seeds dataset. For the spectral clustering, overall its performance is very good
but it fails in the wine quality dataset. The wine quality dataset (Section 8.4)
is known to be extremely noisy; this might be the reason why every approach

Dataset/Method Mode clustering k-means Spectral clustering Hierarchical clustering
Olive Oil 0.826 0.793 0.627 0.621
Bank Authentication 0.559 0.212 0.468 0.062
Wine Quality 0.074 0.034 -0.002 -0.017
Seeds 0.765 0.773 0.732 0.686

Fig 17. Adjusted rand index for each method. Note that the spectral clustering outputs a
random result each time due to its implicitly uses of k-means clustering. Here we only display
one instance.
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does not give a good result. However, even the noise level is so huge, the mode
clustering still detect some hidden structures. See Section 8.4 for more involved
discussion.

9. Conclusion

In this paper, we present enhancements to mode clustering methods, including
soft mode clustering, a measure of cluster connectivity, a rule for selecting band-
width, a method for denoising small clusters, and new visualization methods for
high-dimensional data. We also establish a ‘standard procedure’ for mode clus-
tering analysis in Figure 7 that can be used to understand the structure of data
even in high dimensions. We apply the standard procedure to several examples.
The cluster connectivity and visualization methods apply to other clustering
methods as well.

Appendix A: Mixture-based soft clustering

The assignment vector a(x) derived from a mixture model need not be well
defined because a density p can have many different mixture representations
that can in turn result in distinct soft cluster assignments.

Consider a mixture density

p(x) =

k∑
j=1

πjφ(x;μj ,Σj) (27)

where each φ(x;μj ,Σj) is a Gaussian density function with mean μj and covari-
ance matrix Σj and 0 ≤ πj ≤ 1 is the mixture proportion for the j-th density
such that

∑
j πj = 1. Recall the latent variable representation of p. Let Z be a

discrete random variable such that

P (Z = j) = πj , j = 1, · · · , k (28)

and let X|Z ∼ φ(x;μZ ,ΣZ). Then, consistent with (27), the unconditional den-
sity for X is

p(x) =
∑
z

p(x|z)p(z) =
∑
j=1

πjφ(x;μj ,Σj) (29)

It follows that

P (Z = j|x) = πjp(x|Z = j)∑
s=1 πsp(x|z = s)

=
πjφ(x;μj ,Σj)∑
s=1 πsφ(x;μs,Σs)

, (30)

with soft cluster assignment a(x) = (a1(x), · · · , ak(x)) = (p(z = 1|x), · · · , p(z =
k|x)). Of course, a(x) can be estimated from the data by estimating the param-
eters of the mixture model.
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We claim that the a(x) is not well-defined. Consider the following example
in one dimension. Let

p(x) =
1

2
φ(x;−3, 1) +

1

2
φ(x; 3, 1). (31)

Then by definition

a1(x) = P (Z = 1|x) =
1
2φ(x;−3, 1)

1
2φ(x;−3, 1) + 1

2φ(x; 3, 1)
. (32)

However, we can introduce a different latent variable representation for p(x) as
follows. Let us define

p1(x) =
p(x)1(x ≤ 4)∫
p(x)1(x ≤ 4)dx

(33)

and

p2(x) =
p(x)1(x > 4)∫
p(x)1(x > 4)dx

(34)

and note that
p(x) = πp1(x) + (1− π)p2(x) (35)

where π =
∫
p(x)1(x ≤ 4)dx. Here, 1(E) is the indicator function for E. Let W

be a discrete random variable such that P (W = 1) = π and P (W = 2) = 1− π
and let X|W has density pW (x). Then we have p(x) =

∑
w p(x|w)P (W = w)

which is the same density as (31). This defined the soft clustering assignment
a(x) = (P (W = 1|x), · · · , P (W = k|x)) where

a1(x) = P (W = 1|x) = 1(x ≤ 4) (36)

which is completely different from (32). In fact, for any set A ⊂ R, there exists
a latent representation of p(x) such that a1(x) = I(x ∈ A). There are infinitely
many latent variable representations for any density, each leading to a different
soft clustering. The mixture-based soft clustering thus depends on the arbitrary,
chosen representation.

Appendix B: Proofs

Proofof Theorem 1.

For two vector-value functions f(x), g(x) ∈ R
d and two matrix-value func-

tions A(x), B(x) ∈ R
d1×d2 , we define the L∞ norms

‖f−g‖max,∞ = sup
x

‖f(x)−g(x)‖max, ‖A−B‖max,∞ = sup
x

‖A(x)−B(x)‖max,

(37)
where ‖f(x)− g(x)‖max, ‖A(x)−B(x)‖max are the elementwise maximal norm.
Similarly, for two scalar-value functions p(x), q(x), ‖p−q‖∞ = supx |p(x)−q(x)|
is the ordinary L∞ norm.
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Modal consistency: Our proof consists of three steps. First, we show that
when p, p̂n are sufficiently close, each local modes mj corresponds to a unique
m̂j . Second, we show that when ‖∇p −∇p̂n‖max,∞ and ‖∇∇p −∇∇p̂n‖max,∞
are small, all the estimated local mode must be near to some local modes. The
first two steps and (M2) construct a condition for an unique 1-1 correspondence

between elements ofM and M̂n. The last step is to apply Talagrand’s inequality
to get the exponential bound for the probability of the desire condition.

Step 1: WLOG, we consider a local mode mj . Now we consider the set

Sj = mj ⊕
λ∗

2dC3
.

Since the third derivative of p is bounded by C3,

sup
x∈Sj

‖∇∇p(mj)−∇∇p(x)‖max ≤ λ∗
2dC3

× C3 =
λ∗
2d

.

Thus, by Weyl’s theorem (Theorem 4.3.1 in Horn and Johnson (2013)) and
condition (M1), the first eigenvalue is bounded by

sup
x∈Sj

λ1(x) ≤ λ1(mj) + d× λ∗
2d

≤ −λ∗
2
. (38)

Note that eigenvalues at local modes are negative. Since ∇p(mj) = 0 and the
eigenvalues are bounded around mj , the density at the boundary of Sj must be
less than

sup
x∈∂Sj

p(x) ≤ p(mj)−
1

2

λ∗
2

(
λ∗

2dC3

)2

= p(mj)−
λ3
∗

16d2C2
3

,

where ∂Sj = {x : ‖x−mj‖ = λ∗
2dC3

} is the boundary of Sj . Thus, whenever

‖p̂n − p‖∞ <
λ3
∗

16d2C2
3

, (39)

there must be at least one estimated local mode m̂j within Sj = m⊕ λ∗
2dC3

. Note
that this can be generalized to each j = 1, · · · , k.

Step 2: It is straightforward to see that whenever

‖∇p̂n −∇p‖max,∞ ≤ η1,

‖∇∇p̂n −∇∇p‖max,∞ ≤ λ∗
4d

,
(40)

the estimated local modes

M̂n ⊂ M⊕ λ∗
2dC3

by using (M2), triangular inequality and again Weyl’s theorem for the eigenval-
ues.
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Step 3: By Step 1 and 2,

M̂n ⊂ M⊕ λ∗
2dC3

and for each mode mj there exists at least one estimated mode m̂j within
Sj = mj ⊕ λ∗

2dC3
. Now apply (38) and second inequality of (40) and triangular

inequality, we conclude

sup
x∈Sj

λ̂1(x) ≤ −λ∗
4
, (41)

where λ̂1(x) is the first eigenvalue of ∇∇p̂n(x). This shows that we cannot have
two estimated local modes within each Sj . Thus, each mj only corresponds to
one m̂j and vice versa by Step 2. We conclude that a sufficient condition for the
number of modes being the same is the inequality required in (39) and (40) i.e.
we need

‖p̂n − p‖∞ <
λ3
∗

16d2C2
3

,

‖∇p̂n −∇p‖max,∞ ≤ η1,

‖∇∇p̂n −∇∇p‖max,∞ ≤ λ∗
4d

.

(42)

Let ph = E(p̂n) be the smoothed version of the KDE. It is well-known in
nonparametric theory that (see e.g. page 132 in Scott (2009))

‖ph − p‖∞ = O(h2),

‖∇ph −∇p‖max,∞ = O(h2),

‖∇∇ph −∇∇p‖max,∞ = O(h2).

(43)

Thus, as h is sufficiently small, we have

‖ph−p‖∞ <
λ3
∗

32d2C2
3

, ‖∇ph−∇p‖max,∞ ≤ η1/2, ‖∇∇ph−∇∇p‖max,∞ ≤ λ∗
8d

.

(44)
Thus, (42) holds whenever

‖p̂n − ph‖∞ <
λ3
∗

32d2C2
3

,

‖∇p̂n −∇ph‖max,∞ ≤ η1/2,

‖∇∇p̂n −∇∇ph‖max,∞ ≤ λ∗
8d

(45)

and h is sufficiently small.
Now applying Talagrand’s inequality (Talagrand, 1996; Gine and Guillou,

2002) (see also equation (90) in Lemma 13 in Chen et al. (2014b) for a sim-
ilar result), there exists constants A0, A1, A2 and B0, B1, B2 such that for n
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sufficiently large,

P (‖p̂n − ph‖∞ ≥ ε) ≤ B0e
−A0εnh

d

,

P (‖∇p̂n −∇ph‖max,∞ ≥ ε) ≤ B1e
−A1εnh

d+2

,

P (‖∇∇p̂n −∇∇ph‖max,∞ ≥ ε) ≤ B2e
−A2εnh

d+4

.

(46)

Thus, combining (45) and (46), we conclude that there exists some constants
A3, B3 such that

P((42) holds) ≥ 1−B3e
−A3nh

d+4

(47)

when h is sufficiently small. Since (42) holds implies k̂n = k, we conclude

P(k̂n �= k) ≤ B3e
−A3nh

d+4

(48)

for some constants B3, A3 as h is sufficiently small. This proves modal consis-
tency.

Location convergence: For the location convergence, we assume (42) holds

so that k̂n = k and each local mode is approximating by an unique estimated
local mode. We focus on one local mode mj and derive the rate of convergence
for ‖m̂j −mj‖ and then generalized this rate to all the local modes.

By definition,
∇p(mj) = ∇p̂n(m̂j) = 0.

Thus, by Taylor expansion and the fact that the third derivative of p̂n is uni-
formly bounded,

∇p̂n(mj) = ∇p̂n(m̂j)−∇p̂n(mj)

= ∇∇p̂n(mj)(m̂j −mj) + o(‖m̂j −mj‖).
(49)

Since we assume (42), this implies all eigenvalues of ∇∇p̂n(mj) are bounded
away from 0 so that ∇∇p̂n(mj) is invertible. Moreover,

∇p̂n(mj) = ∇p̂n(mj)−∇p(mj)

= O(h2) +OP

(√
1

nhd+2

)
(50)

by the rate of pointwise convergence in nonparametric theory (see e.g. page 154
in Scott (2009)). Thus, we conclude

‖m̂j −mj‖ = O(h2) +OP

(√
1

nhd+2

)
. (51)

Now applying this rate of convergence to each local mode and use the fact that

Haus
(
M̂n,M

)
= max

j=1,··· ,k
‖m̂j −mj‖,

we conclude the rate of convergence for estimating the location. �
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