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Statistical inference for large covariance and precision matrices is a novel and
interesting topic emerged in the last decade. The paper by Tony Cai, Zhao
Ren and Harry Zhou (further referred to as [CRZ]) summarizes the key recent
achievements in this rapidly developing area where the authors are among the
leading contributors. The focus is on fundamental decision theoretic aspects,
namely, on the following questions: (a) what are the best attainable rates of
convergence of estimators in a minimax sense on various classes of matrices,
and (b) how to construct data-driven adaptive procedures attaining these rates
without the knowledge of the parameters of the classes. When the dimension
of the covariance matrix is greater than the sample size, accurate estimation
is problematic unless some assumptions are imposed on the structure of the
matrix. A wealth of such structure assumptions is presented in the paper, most
of them having the form of sparsity or approximate sparsity constraints. Sparsity
here is understood either as a small number of non-zero entries or of non-zero
columns/rows of the matrix, or as a small �q-norm of columns/rows, or as a low
rank of the matrix, or as a combination of these properties.

The questions addressed in the paper have analogs in the classical Gaussian
mean (Gaussian sequence) model, which is now extensively studied, cf., e.g., [2].
A key problem there is to construct minimax optimal and adaptive estimators of
vectors on the �q-balls based on observation of the unknown vector in Gaussian
noise. A straightforward matrix extension of this classical problem is estimation
of a sparse matrix Σ ∈ R

p×p from the observation

Y = Σ+ εW (1)

where W is a random noise matrix with i.i.d. standard Gaussian entries and ε >
0 is the noise level that we can set as ε = 1/

√
n in order to explore similarities
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with the covariance matrix estimation model. Some work about the minimax
optimal estimation in model (1) under sparsity (in ordinary sense or in the sense
of low rank) is now available, regarding mainly the estimation in the Frobenius
norm (see, e.g., [3, 4, 8]). It would be interesting to see what are the differences
or similarities with the covariance matrix estimation problem, under the same
assumptions on Σ. Of course, for covariance matrix estimation, the model is
somewhat different. Then, observations of the form (1) are also available with
Y being the empirical covariance matrix but the noise matrix W is not Gaussian
and its entries are not i.i.d. Furthermore, as compared to the above papers, there
are more restrictions on matrix Σ since it s! hould be symmetric and positive
definite. These differences make the analysis of covariance matrix estimation
more involved, especially in what concerns the minimax lower bounds. However,
intuitively it seems that there should be no fundamental difference in the rates
between the two models. It would be interesting to clarify this point.

Consider one example, namely, the estimation of sparse spiked covariance
matrices treated in Theorem 4 of [CRZ]. This theorem is based on a result
in [1]. At first sight, it seems that the rate is different from what could be
expected for model (1) under the same assumptions on Σ. Indeed, as shown
in [4], the minimax rate of convergence under the spectral norm in model (1)
does not depend on the rank, while the rank r appears in the rate of Theorem 4.
However, Theorem 4, as well as its prototype in [1] are valid under the condition
r ≤ k where, r = rn,p and k = cn,p in the notation of [CRZ]. Thus, assuming
that λn,p is bounded by a fixed constant, we immediately deduce from Theorem
4 an upper bound of the order k log(ep/k)/n on the minimax risk. The lower
bound is also of the same order. Therefore, with a fixed bound on λn,p, there
is no dependency on the rank, which is in accordance with our initial guess
based on the knowledge about model (1). The same result is easy to obtain by
considering the estimator

Σ̂ = argmin
Σ∈H0(k)

‖Σemp − Σ‖(2k)

where
‖A‖(2k) = max

‖u‖2=1,‖u‖0≤2k
|uTAu|,

Σemp denotes the empirical covariance matrix, and H0(k) is the class of all co-
variance matrices of size p×p represented as Σ = I+B with a symmetric matrix
B having at most k non-zero rows and k non-zero columns. Here, ‖u‖2 is the
Euclidean norm of u ∈ R

p and ‖u‖0 is the number of its non-zero components.
Let Σ∗ ∈ H0(k) be the true covariance matrix. By definition of Σ̂ we have

‖Σemp − Σ̂‖(2k) ≤ ‖Σemp − Σ∗‖(2k),

so that
‖Σ̂− Σ∗‖(2k) ≤ 2‖Σemp − Σ∗‖(2k).

Since both Σ̂ and Σ∗ belong to H0(k) the difference Σ̂−Σ∗ has at most 2k non-
zero rows and at most 2k non-zero columns. Thus, ‖Σ̂ − Σ∗‖(2k) = ‖Σ̂ − Σ∗‖
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where ‖ · ‖ denotes the spectral norm. On the other hand, if the observations
Xi are i.i.d. N (0,Σ∗), and 2k ≤ n, we have

E‖Σemp − Σ∗‖2(2k) ≤ C‖Σ∗‖2 k log(ep/k)
n

≤ C(1 + λ)2
k log(ep/k)

n
, (2)

where λ is an upper bound on the spectral norm of B∗ in the representation
Σ∗ = I + B∗, and C > 0 is an absolute constant. The first inequality in (2)
follows from the results of [9, 5] and the union bound. In conclusion, we have

sup
Σ∗∈H(k,λ)

E‖Σ̂− Σ∗‖2 ≤ C(1 + λ)2
k log(ep/k)

n
,

where H(k, λ) = {Σ = I + B ∈ H(k) : ‖B‖ ≤ λ} is a larger class than the one
considered in Theorem 4 of [CRZ], and this bound on the risk holds for any
rank r ≤ p.

Another interesting point of comparison with model (1) arises in the context
of missing data. When the dimensions are very high, assuming that all entries
of the matrix are observed is often non-realistic. This motivated the theory of
matrix completion, which is now a very elaborate field regarding mainly model
(1). Much less is known about the behavior of estimators of covariance structures
with missing data. First papers in this direction devoted to sparse PCA and to
estimation of covariance matrices have appeared only very recently [6, 7]. The
main question here is what is the largest fraction of missing values such that
successful estimation of the matrix or of its caracteristics is still possible. The
focus in [6, 7] is on the low rank covariance structures. The same question can
be asked about various other covariance or precision matrix structures discussed
in [CRZ].
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