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LaMME – Laboratoire de Mathématiques et Modélisation d’Evry, UMR CNRS 8071
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Abstract: Ordinary Differential Equations are widespread tools to model
chemical, physical, biological process but they usually rely on parameters
which are of critical importance in terms of dynamic and need to be es-
timated directly from the data. Classical statistical approaches (nonlinear
least squares, maximum likelihood estimator) can give unsatisfactory re-
sults because of computational difficulties and ill-posed statistical problem.
New estimation methods that use some nonparametric devices have been
proposed to circumvent these issues. We present a new estimator that shares
properties with Two-Step estimators and Generalized Smoothing (intro-
duced by Ramsay et al. [37]). Our estimation method relies on a relaxation
and penalization scheme to regularize the inverse problem. We introduce
a perturbed model and we use optimal control theory for constructing a
criterion that aims at minimizing the discrepancy between data and the
original model. Here, we focus on the case of linear Ordinary Differential
Equations as our criterion has a closed-form expression that permits a de-
tailed analysis. Our approach avoids the use of a nonparametric estimator
of the derivative, which is one of the main causes of inaccuracy in Two-Step
estimators. Regarding the theoretical asymptotic behavior of our estimator,
we show its consistency and that we reach the parametric

√
n-rate when

regression splines are used in the first step. We consider the estimation of
two models possessing sloppy parameters, which usually makes the estima-
tion of ODE models an ill-posed problem in applications [20, 41] and shows
the efficiency of the Tracking estimator. Quite interestingly, our relaxation
scheme makes the estimator robust to some kind of model misspecification,
as shown in simulations.
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1. Introduction

We consider a dynamical process defined by an Ordinary Differential Equation
(ODE) with a known and fixed initial value{

ẋ = f(t, x, θ)
x(0) = x0

(1.1)

Such a model is called an Initial Value Problem (IVP). The state x is in Rd

and θ is an unknown parameter, that belongs to a subset Θ of Rp. f is a time-
dependent vector field from [0, T ] × Rd × Θ to Rd. This class of dynamical
models are commonly used in physics, engineering, ecology,. . . [14, 34, 13, 18].
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Let t �→ Xθ∗(t) = X∗(t) be the solution to the IVP (1.1) on [0, T ], for the true
parameter set θ∗.

We want to estimate θ∗ from noisy observations Yi, i = 1, . . . , n of the trajec-
tory X∗, made at time ti. Estimation can be done by classical estimators such
as Nonlinear Least Squares (NLS), Maximum Likelihood Estimator (MLE) [30]
or Bayesian approaches ([25, 15, 7, 17] and [16] for example). Nevertheless, the
statistical estimation of an ODE model by NLS leads to a difficult nonlinear
estimation problem. These difficulties were pointed out by Ramsay et. al [37].
There is a computational complexity coming from repeated ODE integrations
and from the computation of the gradient that are required by the optimiza-
tion algorithm. Moreover, the usual criterion for NLS exhibits multiple local
minima due to the strong non-linearity of θ �−→ Xθ and to structural identifia-
bility issues [1, 32]. It is then hard to start the optimization process or to assess
the quality of the minima retained. These situations are often aggravated by
“practical” identifiability issue that we detail below.

If H(Xθ) =
∑n

i=1 ‖yi −Xθ(ti)‖2 is the usual sum of squared residuals, the

computation of the NLS estimator θ̂NLS is usually obtained by a Gauss-Newton
algorithm or a variant such as the Levenberg-Marquardt algorithm. The sen-

sitivity matrix S(tk, θ) =
(

∂Xθ(tk)
∂θj

)
j=1,...,p

plays a critical role in finding the

optimum, as its bad conditioning can make the local inverse problem ill-posed.
The statistical importance of the sensitivity matrix is emphasized by the Fisher
Information Matrix that depends on the matrix S(t, θ)S(t, θ)�. A low-rank sen-
sitivity matrix gives rise to high correlations between parameters even with big
sample size. Unfortunately, this situation arises frequently with models used in
chemichal engineering and biology: the implicit influence of the states Xθ in the
parameter θ, with sparse sampling, are conditions that favor the appearance
of such degeneracy. The matrix S(t, θ̂NLS)S(t, θ̂NLS)� is often nearly singular
with dramatic differences in the order of magnitudes of its eigenvalues λ1, . . . , λp

that makes the parameter not identifiable in practice and gives rise to sloppy
parameters [20, 41]. Hence, parameter estimation is often an ill-posed inverse
problem [11] where regularization and approximation technics can help.

We are interested by specific estimators developed for the estimation of diffen-
tial equation models based on nonparametric devices such as Gradient Matching
estimators [5, 6, 31, 19] or Generalized Smoothing [37, 36, 10, 8].

Gradient Matching is a two stage procedure that uses a preliminary non-
parametric curve estimator X̂ from the data (ti, Yi)1≤i≤n. A minimum distance

estimator [28] is obtained by minimizing the weighted L2 distance
∫ T

0
‖ ˙̂
X(t) −

f(t, X̂(t), θ)‖2w(t)dt with respect to θ. This simple estimator initiated by [44]
(see variants [5, 19]) has a good computational efficiency while being consistent
with a parametric rate of convergence. Nevertheless this method is not efficient,
and the variance of Gradient Matching estimators are in general higher, in par-
ticular because of the use of nonparametric estimates of the derivative.

In the case of Generalized Smoothing [37], the solution X∗ is approximated
by a basis expansion that solves approximately the ODE model; hence, the
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parameter inference is performed by dealing with an imperfect model, as the
collocation approximation of the ODE solution can be seen as relaxation on the
ODE model constraint, needed for taking into account some uncertainty about
the model. Based on Generalized Smoothing, Hooker [22] proposed a criteria
that estimates the lack-of-fit through the estimation of a “forcing function”
t �→ u(t) in the ODE ẋ − f(t, x, θ̃) = u(t), where θ̃ is a previous estimate
obtained by Generalized Profiling.

Generalized Smoothing and Gradient Matching shares the fact they deal with
a function X̃(·, θ̃) that solves approximately the original ODE model (1.1) with
estimate θ̃, while being close to the data. In these methods, we do not know
a priori the differential equation solved by the approximate solution X̃(·, θ̃)
and the perturbed model is known only a posteriori, by introducing the forcing
function.

A critical point is to understand and control the influence of the model ap-
proximation on the parameter estimates. For Generalized Smoothing, this the-
oretical and practical issue is adressed via the selection of an hyperparameter
λ, whereas for Gradient Matching, it is adressed by using consistent estimators
close to the solution (and its derivative).

We propose to invert the usual point of view and to define a Two-Step proce-
dure that mimicks Generalized Smoothing. We do this by introducing a forced
model and using optimal control theory, in order

• to avoid the use of a nonparametric estimate of the derivative Ẋ,
• to control explicitely the model discrepancy of the “approximate solutions”

X̃(·, θ).
Our method provides a consistent parametric estimator when the model is cor-
rect, that shares similarities with Nonlinear Least Squares and Generalized
Smoothing estimators. We show that it is root-n consistent and asymptoti-
cally normal. At the same time, we obtain a discrepancy measure between the
model and the data having the form of a forcing function u, similar to the one
introduced in [22].

An originality of that work is to use infinite dimensional optimization tools in
a statistical framework, that is unusual even in the context of ODE estimation
(except when dealing with Design of Experiments). Thanks to that, we do not
use a finite dimensional approximation for X̃(·, θ), and we avoid the approxima-
tion error usually encountered in that framework. Remarkably, the consistency
of our method does not depend critically on the asymptotics of hyperparameters.
We obtain a lower variance for our estimation procedure in practice, in partic-
ular thanks to a simple and easy to implement procedure for hyperparameter
selection.

In the next section, we introduce the notations and we motivate our approach
by discussing the Generalized Smoothing approach, and the link with Optimal
Control Theory. In section 3, we show that the estimator is consistent under
some regularity assumptions about the model. Then in section 4, we show that
we reach the root−n rate using regression splines for X̂. Finally, we compare
our method with Nonlinear Least Squares and Generalized Smoothing on two
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realistic testbed models that have sloppy parameters, and we discuss the main
differences between our approach and Generalized Smoothing.

We also consider the case of model misspecification in order to illustrate the
ability of our approach to deal with this essential problem in practice. Finally,
our experiments are completed by a real data analysis, obtained from the liter-
ature for ease of comparison and reproductibility.

2. Model and methodology

We introduce the statistical model, and we recall the mechanics of the Gener-
alized Smoothing estimator in the particular context of a linear ODE.

2.1. The statistical model and Generalized Smoothing

We observe a “true” trajectory X∗ at n random times 0 = t1 < t2 · · · < tn = T ,
such that we have n observations (Y1, . . . , Yn) defined as

Yi = X∗(ti) + εi

where εi is the (random) observation error. We assume that there is a true
parameter θ∗ belonging to a subset Θ of Rp, such that X∗ is the unique solution
of the linear ODE

ẋ(t) = Aθ(t)x(t) + rθ(t) (2.1)

with initial condition X∗(0) = x∗
0; where t �→ Aθ(t) ∈ Rd×d and t �→ rθ(t) ∈ Rd.

More generally, we denote Xθ the solution of (2.1) for a given θ, and initial
condition x∗

0. We assume that the initial condition x∗
0 is exactly known, and we

want to infer θ∗ from (Y1, . . . , Yn).
In Generalized Smoothing (GS), parameter estimation is regularized by using

an approximate solution of the ODE (2.1), as GS takes advantage of the double
interpretation of splines for smoothing data, and for numerical solving of ODE
by collocation. A basis expansion X̂λ(t, θ) = β̂λ(θ)

T p(t) is computed for each θ,

where β̂λ(θ) is obtained by minimizing in β the criterion

Jn(β|θ, λ) =
n∑

i=1

∥∥yi − βT p(ti)
∥∥2
2
+ λ

∫ T

0

∥∥βT ṗ(t)−
(
Aθ(t)β

T p(t) + rθ(t)
)∥∥2

2
dt

(2.2)
This first step (inner optimization) is profiling along the nuisance parameter β,
whereas the estimation of the parameter of interest is obtained in the middle
optimization by minimizing the sum of squared errors of the proxy X̂λ(t, θ)

θ̂GS
λ = argmin

θ

n∑
i=1

∥∥∥yi − X̂λ(ti, θ)
∥∥∥2 (2.3)

The estimator depends on the hyperparameter λ, that needs to be selected dur-
ing the outer optimization: the objective can be to minimize the sum of squared
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errors while controlling the discrepancy between the exact solution Xθ̂GS
λ

and

its approximation X̂λ(·, θ̂GS
λ ) [37], to detect stability in the parameter estimates

θ̂GS
λ [36], or to minimize the prediction error of X̂λ(·, θ̂GS

λ ) [26].

The essential difference with NLS is the replacement of the exact solution
Xθ by an approximation X̂λ(·, θ) (that depends also on the data). This means
that GS deals with 2 sources of errors: in addition to the classical statistical
error (variance due to noisy data), there is an approximation error as X̂(·, θ)
is a spline that does not solve exactly the ODE model (2.1). Indeed, colloca-
tion algorithms compute the coefficients of a B-spline expansion based on the

relationships between X̂ and its derivative
˙̂
X evaluated on an appropriate grid

of time points 0 = s1 < s2 < · · · < sp = T , [3]. This gives a nonlinear system
that is usually solved with a Newton algorithm, whose roots are the unknown
coefficients of the basis expansion. The collocation schemes are essentially use-
ful for solving Boundary Value Problems (instead of the classical Initial Value
Problem).

For parameter estimation, the basis expansion is defined in a somehow arbi-
trary manner (basis functions or size of the basis) and the ODE constraint is not
used as an equality constraint as it should be the case in a “normal” collocation
scheme. Instead, the ODE is transformed into an inequality constraint defined
on the interval [0, T ] and the model constraint is never set to 0 because of the

trade-off with the data-fitting term H
(
X̂λ(·, θ)

)
=
∑n

i=1

∥∥∥yi − X̂λ(ti, θ)
∥∥∥2
2
. For

this reason, the ODE model (2.1) is not solved and it is useful to introduce

the discrepancy term ûθ,λ(t) =
˙̂
Xλ(t, θ) −

(
Aθ(t)X̂λ(t, θ) + rθ(t)

)
that corre-

sponds to a model error. In fact, the proxy X̂λ(·, θ) satisfies the perturbed ODE
ẋ = Aθx+rθ+ ûθ,λ. This forcing function ûθ,λ is an outcome of the optimization
process and can be relatively hard to analyze, as it depends on the basis expan-
sion used and on the data via the minimization of Jn(β|θ, λ). Nonetheless, the
forcing function can be used for model selection: Hooker et al. have proposed
goodness-of-fit tests based on this so-called “empirical forcing function” ûθ,λ, as
ûθ,λ is the residual at the derivative scale, but not at the state scale [24, 23].

We now detail our estimation method that relies on a classical relaxation
and penalization scheme for regularizing the inverse problem. Based on the GS
approach, we relax the ODE constraint (2.1) by introducing a perturbed version
of the equation:

ẋ(t) = Aθ(t)x(t) + rθ(t) + u(t) (2.4)

where the function t �→ u(t) can be any function in L2. The function u is the
residual of the regression of the derivative Ẋ on the exact model AθX + rθ
and contains potentially several sources of error: model uncertainty, parameter
uncertainty and random measurement errors. As in a classical regression, the
objective is to minimize the norm of the residuals ‖u‖2L2 while being close to the
data; the novelty of our approach is to deal with the residuals at the derivative
level, instead of the state level as it is classically done.
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Our analysis relies on solutions to the corresponding Initial Value Problem{
ẋ(t) = Aθ(t)x(t) + rθ(t) + u(t)
x(0) = x∗

0

that exist as soon as Aθ is locally bounded on [0, T ] (see appendix C in [40]).
We denote these functions Xθ,u. Instead of using the spline proxy X̂λ(·, θ) for
approximating X∗, we use the trajectories Xθ,u of the ODE (2.4) controlled by
the function u.

2.2. The Tracking estimator

Following the Generalized Smoothing approach, we look for a candidate Xθ,u

that can minimize at the same time the data misfit, and the model misfit rep-
resented by u = Ẋθ,u − (AθXθ,u + rθ). Instead of using the classical Sum of
Squared Errors H(Xθ,u), we use a smooth version based on a nonparamet-

ric proxy X̂:
∫ T

0

∥∥∥X̂(t)−Xθ,u(t)
∥∥∥2
2
dt. Hence, we consider the subsequent cost

function

C
(
X̂;u, θ, λ

)
=

∫ T

0

∥∥∥X̂(t)−Xθ,u(t)
∥∥∥2
2
dt+ λ

∫ T

0

‖u(t)‖22 dt (2.5)

for a given λ > 0. Moreover, for each θ in Θ, we introduce the infimum function

S
(
X̂; θ, λ

)
= inf

u∈L2
C
(
X̂;u, θ, λ

)
(2.6)

obtained by “profiling” on the function u. Finally, our estimator is defined by
minimizing the same function S i.e

θ̂Tλ = argmin
θ∈Θ

S
(
X̂; θ, λ

)
(2.7)

The criterion C
(
X̂;u, θ, λ

)
is (almost) the same as the criterion Jn(β|θ, λ), with

the hyperparameter λ making the balance between data and model fidelity. The
optimization step (2.6) is the same as the optimization Jn(β|θ, λ), and it gives
rise to a similar state approximate solutionXθ,ūλ

that depends both on the data,
the model and λ. Nevertheless, our estimator possesses two essential differences
with Generalized Smoothing:

1. If we consider that
∑n

i=1 ‖yi −X(ti)‖2 �
∫ T

0
‖X̂(t) −X(t)‖2dt, then the

first step of GS and Tracking solve the same problem. The difference be-
tween these two approaches comes from the way the optimization problem
is effectively solved. Whereas the optimization problem has to be solved
in H1 = {X ∈ L2|Ẋ ∈ L2} (see [4] for the definition and properties of
Sobolev spaces), the Tracking approach uses the fact that any function
X in H1 is a solution of the perturbed ODE. The perturbation u is by
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definition equal to Ẋ − (AθX + rθ), so the optimization is effectively per-
formed on H1. In the case of Generalized Smoothing, the optimization is
performed by using a B-splines expansion, which may induce some approx-
imation error as the problem is constrained to a finite dimensional vector
space instead of H1. The use of a perturbed model enables to explore a
bigger space during optimization. In particular, the GS solution X̂λ(·, θ)
can be re-written as Xθ,ûθ,λ

, which means that the profiling step (2.6)
encompasses at the same time the GS and the NLS candidates. When the
ODE model is well-specified, the Tracking approach does not suffer from
the bias caused by model approximation whereas it is a known limitation
of GS (see Olhede’s comment of [37] about the influence and choice of the
basis).

2. During the middle optimization, the Tracking estimator minimizes ap-

proximately the penalized least squares H(Xθ,ūθ,λ
) + λ

∫ T

0
‖ūθ,λ(t)‖22 dt,

whereas GS minimizes the usual least squares criterion H
(
Xθ,ûθ,λ

)
with-

out taking into account the model discrepancy ‖ûθ,λ‖2L2 . Consequently,
Xθ̂GS

λ ,ûθ,λ
can be far from the true ODE solution Xθ̂GS

λ
, which changes

the influence of λ on the parameter estimator. In particular, there is a

risk of overfitting with GS (i.e. a “big” ûθ,λ with a small H
(
Xθ̂GS

λ ,ûθ,λ

)
)

that can induce a high bias and variance. The presence of a “big” ûθ,λ

can be detected with a careful selection of λ (by comparing for instance
X̂ and ODE solutions). We show briefly in section 5.3.3 how the functions

λ �→ θ̂GS
λ , θ̂Tλ differ.

These two remarks put emphasis on the need to control simultaneously λ and
K as n tends to infinity for generalized smoothing. In order to ensure the con-
sistency and root-n rate of the GS estimator, Qi and Zaho [36] need to assume
that K = K(n) and λ = λ(n), see theorems 3.2 and 3.3. In this work, the Track-
ing estimator is proven to be root-n consistent in section 3 and 4 for any λ, as
soon as λ is positive. This means that there is no need to consider the case of a
data-dependent hyperparameter λ = λn for the asymptotic analysis (moreover,
there no other hyperparameter to select in Tracking).

Before going deeper into the interpretation and analysis of our estimator,

we need to show that the criterion S
(
X̂; θ, λ

)
is properly defined and that

we can obtain a tractable expression for computations and for the theoretical
analysis of (2.7). The existence of S is a direct consequence of the so-called
Linear-Quadratic Theory (LQ Theory), which belongs to the broader field of
Optimal Control Theory [29, 40, 33, 9]. In our case, we consider the control of
a linear ODE with a quadratic cost function that enables to have quite general
and simple results. This is possible because we have replaced the discrete sum
of squared errors by an integral criterion where the original data have been
replaced by a nonparametric proxy X̂. Thanks to that, we can use directly
calculus of variations and optimal control [27, 9]. For completeness, we recall
briefly in the appendix A the main results of LQ Theory.
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Theorem 2.1 (Theorem and Definition of S (ζ; θ, λ)). Let t �→ ζ(t) be a func-
tion belonging to the Sobolev space H1([0, T ] ,Rd) and Xθ,u be the solution to
the controlled ODE (2.4).
For any θ,λ, there exists an unique optimal control ūθ,λ that minimizes the cost
function

C (ζ;u, θ, λ) =

∫ T

0

{
‖ζ(t)−Xθ,u(t)‖22 + λ ‖u(t)‖22

}
dt (2.8)

The control ūθ,λ can be computed in a “closed-loop” form as

uθ,λ(t) =
E(t)

λ

(
Xθ,uθ,λ

(t)− ζ(t)
)
+

h(t)

λ
(2.9)

where E and h are solutions of the Final Value Problems{
Ė(t) = Id −Aθ(t)

TE(t)− E(t)Aθ(t)− E(t)2

λ

ḣ(t) = −Aθ(t)
Th(t)− E(t)

(
Aθ(t)ζ(t) + rθ(t)− ζ̇(t)

)
− E(t)h(t)

λ

(2.10)

and E(T ) = 0, h(T ) = 0. For all t ∈ [0, T ], the matrix E(t) is symetric, and the
ODE defining the matrix-valued function t �→ E(t) is called the Matrix Riccati
Differential Equation of the ODE (2.4).

Finally, the Profiled Cost S has the closed form

S(ζ; θ, λ) = −
∫ T

0

{
2
(
Aθ(t)ζ(t) + rθ(t)− ζ̇(t)

)�
h(t) + ‖h(t)‖2

λ

}
dt (2.11)

The cost (2.8) is usually used for solving the so-called “Tracking Problem”
that consists in finding the optimal control u to apply to the ODE (2.4) in or-
der to reach a target trajectory t �→ ζ(t), see [40] for an excellent introduction.
The estimation problem is then to determine the parameter θ so that the corre-
sponding ODE needs the smallest control u (in L2 norm) in order to reach the
noisy trajectory t �→ X̂(t).

Remark 2.1. We insist on the fact that t �→ E(t), h(t) depends also on θ, λ
and ζ because of their definition via equation (2.10). Nevertheless, we do not
write it systematically for notational brievety. As mentioned in the theorem,
it is possible to compute Xθ,uθ,λ

in a “closed-loop” form as we can solve in a
preliminary stage the 2 equations (2.10) that gives the functions E and h for all
t ∈ [0, T ]. Then, we just need to solve the ODE{

ẋ(t) = Aθ(t)x(t) + rθ(t) +
E(t)
λ (x(t)− ζ(t)) + h(t)

λ
x(0) = x∗

0

Remark 2.2. From equation (2.11), we see that S depends smoothly in θ and
λ, as in ζ. This was not easy to see from the infimum definition (2.6), but as
the minimum is reached, and attained for a known function, we can have even
more information than in the Generalized Smoothing approach based on splines.
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Remark 2.3. The pertubed ODE framework permits to consider naturally the
problem of model misspecification, when the true model is

ẋ(t) = Aθ(t)x(t) + rθ(t) + v(t)

with v ∈ L2([0, T ] ,Rd) is an unknown function. We do not provide any theoret-
ical analysis for this kind of model misspecification, but we perform simulations
in order to get some insight. We will see in a simple example that our estimator
gives a more accurate estimate than NLS.

The next section is dedicated to the derivation of the regularity properties
of S. Thanks to the use of a functional formulation and the associated LQ
theory, we can show the smoothness in ζ and θ, and compute directly the needed
derivatives.

3. Consistency of the Tracking estimator

Under reasonable and practical assumptions, we can assert that the tracking
estimator (2.7) is a consistent estimator of θ∗ when the ODE model (2.1) is

well-specified, and when we use a consistent nonparametric estimator X̂. In
practice, it is quite common to use a smoothing spline or a kernel smoother
in order to smooth the data and estimates roughly the trajectory X∗. As the
tracking estimator is an M-estimator, we can employ the classical approaches
for consistency that relies on the regularity and convergence of the stochastic
criterion S(X̂; θ, λ) to the asymptotic criterion S(X∗; θ, λ). Hence, we need to
show some regularity in ζ, uniformly in θ. Similarly, in order to compute the
rate of convergence and the variance of the estimator, we will need to check the
smoothness w.r.t θ.

3.1. Regularity properties of S(ζ; θ, λ)

We introduce some necessary assumptions about the ODE model in order to
derive the needed regularity as well as the identifiability property. The conditions
are

C1: θ∗ ∈ Θ a compact subset of Rp.
C2: The model is identifiable at θ = θ∗ i.e ∀θ ∈ Θ ; Xθ = Xθ∗ =⇒ θ = θ∗.
C3: ∀ (t, θ) ∈ [0 , T ]×Θ, (t, θ) �−→ Aθ(t) and (t, θ) �−→ rθ(t) are continuous.

C4: ∀ (t, θ) ∈ [0, T ]×Θ, (t, θ) �−→ ∂Aθ(t)
∂θ and (t, θ) �−→ ∂rθ(t)

∂θ are continuous.

According to the context, ‖·‖2 denotes the Euclidean norm in Rd (‖X‖2 =√∑d
i=1 X

2
i ) or the Frobenius matrix norm (‖A‖2 =

√∑
i,j |ai,j |

2
). We use also

the functional norm in L2
(
[0T ] ,Rd

)
defined by ‖f‖L2 =

√∫ T

0
‖f(t)‖22 dt. Con-

tinuity and differentiability have to be understood w.r.t these previous norms.
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For the computation of S
(
X̂; θ, λ

)
(and S (X∗; θ, λ)), we need some addi-

tional notations. In particular, we recall that the Riccati equation

Ė = Id −Aθ(t)
�E − EAθ(t)−

E2

λ

depends on the model (2.1), but it does not depend on the data X̂, whereas it is

the case for h, as we have ḣ(t) = −Aθ(t)
Th(t)−E(t)

(
Aθ(t)ζ(t) + rθ(t)− ζ̇(t)

)
−

E(t)h(t)
λ . For this reason, we introduce the functions α and β defined by⎧⎨⎩ αθ(t) =

(
Aθ(t)

T + Eθ(t)
λ

)
βθ(t, ζ) = Eθ(t)

(
Aθ(t)ζ + rθ(t)− ζ̇

)
We denote then ĥθ the solution to the Final Value Problem{

ḣ = −αθ(t)h− βθ(t, X̂)

h(T ) = 0

and h∗ the solution corresponding to the case ζ = X∗. More generally, we denote
t �→ hθ(t, ζ) for any target trajectory ζ.

We introduce also the matrix-valued function (t, s) �→ Rθ(t, s) defined for all
t, s in [0, T ], as the solution of the Initial Value Problem{

Ṙθ(t, s) = αθ(T − t)R(t, s)
Rθ(s, s) = Id

(3.1)

and where the time has been reversed in the function αθ. We show in the next
proposition that ∀ζ ∈ H1([0, T ]), θ �→ S(ζ; θ, λ) is well defined, i.e finite on Θ.

Proposition 3.1. Under conditions 1 and 3 we have:

X = supθ∈Θ ‖Xθ‖L2 < +∞
Ē = supθ∈Θ ‖Eθ‖L2 < +∞

and
∀ζ ∈ H1([0, T ]), h̄ζ = sup

θ∈Θ
‖hθ(., ζ)‖L2 < +∞

Hence, for all ζ in H1([0, T ]), the map θ �−→ S(ζ; θ, λ) is well defined on Θ (i.e
supθ∈Θ ‖S(ζ; θ, λ)‖ < +∞).

Proof. supθ ‖Aθ‖L2 = Ā < +∞ exists as (t, θ) �→ Aθ(t) is a continuous function
on [0, T ]×Θ compactness. The existence and extension theorem for IVP solution
of linear ODE ensures that ∀θ ∈ Θ, ‖Xθ‖L2 < +∞. Moreover, solutions are
continuous in (t, θ) if the vector field is continuous in (t, θ). By analogy with
theorem A.1, we know that

Eg
θ :=

(
Eθ hθ(., ζ)

T

hθ(., ζ) αθ(., ζ)

)
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with

αθ(t, ζ) =

∫ T

t

(
2
(
Aθ(s)ζ(s)− ζ̇(s) + rθ(s)

)T
hθ(s, ζ) +

1

λ
hθ(s, ζ)

Thθ(s, ζ)

)
ds

is the ODE solution of the extended Riccati ODE{
Ėg

θ (t) = W 1 −A1
θ(t)

tEg
θ (t)− Eg

θ (t)A
1
θ(t)− 1

λE
g
θ (t)

2

Eg
θ (T ) = 0d+1,d+1

where W1 =

(
Id 0
0 0

)
, A1

θ(t) =

(
Aθ(t) r1θ(t)
0 0

)
and r1θ(t) = Aθ(t)X(t) +

rθ(t)− Ẋ(t).
Because for all θ ∈ Θ, Aθ ∈ L2

(
[0, T ] ,Rd×d

)
and (AθX − Ẋ + rθ) ∈

L2
(
[0, T ] ,Rd

)
thanks to Lemma B.1 in appendix, Eg

θ is bounded and con-
tinuous in (t, θ). Hence hθ, Eθ are bounded on [0, T ] × Θ. Hence, the function
θ �→ S(ζ; θ, λ) is bounded on Θ thanks to norm inequality.

We complete our analysis by showing that S is C1 on Θ.

Proposition 3.2. Under conditions C1-C3

∀X ∈ H1([0, T ]), θ �−→ S(X; θ, λ)

is continuous on Θ. Under conditions C1-C4, S is C1 on Θ.

Proof. Since

S(X; θ, λ) = −
∫ T

0

(
2
(
Aθ(t)X(t) + rθ(t)− Ẋ(t)

)T
hθ(t,X) +

1

λ
‖hθ(t,X)‖2

)
dt

Condition 3, jointly with proposition 1 and 4 in the supplementary materials
give the continuity of θ �−→ (t �−→ Aθ(t)) and (θ,X) �−→ (t �−→ hθ(t,X)) on Θ
and Θ × L2

(
[0, T ] ,Rd

)
respectively. This is enough to show the continuity of

θ �−→ S(X; θ, λ) on Θ. Moreover, the gradient w.r.t θ of S(X; θ, λ) is equal to:

∇θS(X; θ, λ) = −2
∫ T

0
∂(Aθ(t).X+rθ(t))

∂θ

T
hθ(t,X)dt

+2
∫ T

0
∂hθ(t,X)

∂θ

T (
Aθ(t).X + rθ(t)− Ẋ + 1

λhθ(t,X)
)
dt

In addition to the previous proposition, condition 4 and proposition 7 in sup-

plementary material gives the continuity of (θ,X) �−→
(
t �−→ ∂(hθ(t,X))

∂θ

)
on

Θ × L2
(
[0, T ] ,Rd

)
. This is enough to show the continuous differentiability of

S(X; θ, λ) on Θ.

The last regularities properties justifies the use of classical optimization
method to retrieve the minimum of S.

In the next proposition, we show that the criteria S(X; θ, λ) can be expressed
without using the derivative Ẋ (thanks to the knowledge of the initial condition).
As a consequence, our estimator is less sensible to the nonparametric noise than
classical Two-Step estimators.
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Proposition 3.3. Under conditions 1 and 2, ∀X ∈ H1([0, T ]) with X(0) = x∗
0,

S(X; θ, λ) does not depend on Ẋ, i.e it is a continuous nonlinear integral of
t �→ X(t).

Proof. We show S(X; θ, λ) can be written using only X and not Ẋ. First of all

we use Lemma B.3 to get rid of Ẋ in
∫ T

0
Ẋ(t)Thθ(t,X)dt, it gives:∫ T

0
Ẋ(t)Thθ(t,X)dt = F1,θ(X) + F2,θ(X) + F3,θ(X)

− x∗T
0

∫ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

− 1
2x

∗T
0 Eθ(0)x

∗
0

(3.2)

with ⎧⎪⎨⎪⎩
F1,θ(X) = −XT

0

∫ T

0
Rθ(T, T − s)X(s)ds

F2,θ(X) =
∫ T

0
X(t)T (αθ(t)hθ(t,X)dt+ (Aθ(t)X(t) + rθ(t))) dt

F3,θ(X) = 1
2

∫ T

0
X(t)T ˙Eθ(t)X(t)dt

And so we can write S(X; θ, λ) under the form

S(X; θ, λ) = −
∫ T

0

(
2 (Aθ(t)X(t) + rθ(t))

T
hθ(t,X) + 1

λhθ(t,X)Thθ(t,X)
)
dt

+ F1,θ(X) + F2,θ(X) + F3,θ(X)

− x∗T
0

∫ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

− 1
2x

∗T
0 Eθ(0)x

∗
0

since from Lemma B.2 we have the affine dependence of hθ(t,X) w.r.tX through
the formula:

hθ(t,X) =

∫ T

t

Rθ(T−t, T−s)X(s)ds+Eθ(t)X(t)+

∫ T

t

Rθ(T−t, T−s)Eθ(s)rθ(s)ds

we see S(X; θ, λ) does not depend on Ẋ.

3.2. Consistency

As we have seen previously, conditions 1 and 3 ensure the existence of S(X̂; θ, λ)

and S(X∗; θ, λ) for all θ ∈ Θ. We derive the consistency of θ̂T by showing the

uniform convergence of the criterion S
(
X̂; θ, λ

)
, and by insuring that θ∗ is a

unique and isolated global minima of S (X∗; θ, λ). Condition 2 is then sufficient
to show that S (X∗; θ, λ) characterizes well θ∗, as a global unique minimum.
Hence, identifiability and convergence in supremum norm are sufficient to imply
consistency (theorem 5.7 in [43]).

Proposition 3.4. For all X in H1([0, T ]), S(X; θ, λ) ≥ 0 and under conditions
C1 and C2 we have

S(X∗; θ, λ) = 0 ⇐⇒ θ = θ∗
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Proof. If θ = θ∗, then u ≡ 0 is the cost which minimizes

C (X∗;u, θ∗, λ) =

∫ T

0

‖X∗(t)−Xθ∗,u(t)‖22 dt+ λ

∫ T

0

‖u(t)‖22 dt

and in that case S(X∗; θ∗, λ) = infu∈L2 C (X∗;u, θ∗, λ) = 0.
Conversely, let θ0 be such that S(X∗; θ0, λ) = 0. By definition, this means

that
∫ T

0

∥∥X∗(t)−Xθ0,u(t)
∥∥2
2
dt + λ

∫ T

0
‖u(t)‖22 dt = 0. A consequence is that

u = 0 a.e and Xθ∗u=0(t) = Xθ0,u=0(t) a.e; by the identifiability condition we get
that θ0 = θ∗.

Theorem 3.1. Under conditions 1, 2, 3 and if X̂ is consistent in probability
(in L2−norm sense), and all λ > 0, we have

θ̂Tλ
P→ θ∗

Proof. Using proposition B.1, we have

|S(X; θ, λ)− S(X∗; θ, λ)|
≤ 2
(
Āh̄+K1 +K2

∥∥∥ĥθ

∥∥∥
L2

+K3

∥∥∥X̂∥∥∥
L2

)∥∥∥X∗ − X̂
∥∥∥
L2

+
(
Ā
∥∥∥X̂∥∥∥

L2
+K4 +

1
λ

(∥∥∥ĥθ

∥∥∥
L2

+ h̄
))∥∥∥h∗

θ − ĥθ

∥∥∥
L2

with
K1 =

√
d ‖x∗

0‖2 R̄+
√
dĀX̄ +

√
d ¯̇EX

K2 =
√
d
(
Ā+ Ē

λ

)
K3 =

√
dĀ+

√
d ¯̇E

K4 =
√
d
(
Ā+ Ē

λ

)
X̄

and
R̄ = supθ∈Θ ‖Rθ(T, T − .)‖L2

¯̇E = supθ∈Θ

∥∥∥Ėθ

∥∥∥
L2

by using the same notation as in proposition 3.1. Proposition B.2 allows us to

bound
∥∥∥h∗

θ − ĥθ

∥∥∥
L2

with
∥∥∥X̂ −X∗

∥∥∥
L2

as∥∥∥ĥθ − h∗
θ

∥∥∥
L2

≤ K5

∥∥∥X̂ −X∗
∥∥∥
L2

with K5 =
√
d

(
Tde

√
d
(
A+E

λ

)
T
+ E

)
We obtain

|S(X; θ, λ)− S(X∗; θ, λ)|
≤
((

2K2 +
K5

λ

) ∥∥∥ĥθ

∥∥∥
L2

+
(
2K3 +K5Ā

) ∥∥∥X̂∥∥∥
L2

+K7

)∥∥∥X∗ − X̂
∥∥∥
L2

with K7 = 2
(
Āh̄+K1

)
+K5

(
K4 +

h̄
λ

)
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We can control
∥∥∥X̂∥∥∥

L2
≤
∥∥∥X̂ −X∗

∥∥∥
L2

+ ‖X∗‖L2 , which proves that if X̂ is

consistent, then

sup
θ∈Θ

|S(X; θ, λ)− S(X∗; θ, λ)| = oP (1).

Application of the proposition 3.4 gives us the identifiability criteria. Hence we
conclude by using the theorem 5.7 in [43].

Remark 3.1. The initial condition x∗
0 is assumed to be known. In practice,

we can estimate it with the initial value of the non-parametric estimator X̂(0).
The criterion to use is then the same; because of the smooth dependence in the
initial condition, we observe in practice that the tracking estimator θ̂Tλ remains
consistent.

Remark 3.2. For ensuring the consistency of θ̂Tλ , the smoothing parameter λ
is only required to be nonnegative and we have no condition on its asymptotic
behavior, whereas GS needs that the hyperparameter λ tends to infinity for re-
moving the bias as it is usually done in smoothing. This low sensitivity in λ is
a direct consequence of avoiding a finite basis decomposition approach for relax-
ing the constraint imposed by the ODE (2.1). Obvisously, the hyperparameter

λ does influence the bias and variance of the θ̂Tλ (see the next section on the
asymptotics), but obtaining the precise influence of λ is beyond the scope of the
paper.

Remark 3.3. In GS, the size of the basis expansion KGS is critical for en-
suring the identifiability of θ∗. Indeed, we need to be sure that the identity∫ T

0

∣∣∣X∗(t)− X̂λ(t, θ)
∣∣∣2 dt = 0 implies that θ = θ∗ when X̂λ(·, θ) is a finite

basis decomposition. This property is stronger than the structural identifiability
of the model. The theoretical analysis of GS performed in [36] shows that it is
needed to control a specific distance between Xθ and X̂λ(·, θ), that can be done
in practice by knots selection. The tracking approach avoids these difficulty, and
rely only on the structural identifiability of the model, as S(X∗; θ, λ) = 0 if and
only if θ = θ∗, thanks to proposition 3.4.

4. Asymptotics of θ̂T

Our objective is to derive the proper rate of convergence of the Tracking Esti-
mator, as well as its asymptotic distribution. The properties of the estimator
depends on the behavior of the nonparametric estimate X̂ used for the ap-
proximation of X∗. In order to fix ideas, we consider a regression spline, with a
B-Spline decomposition of dimension K (increasing with n). That is we consider

that X̂ is defined as

X̂(t) =

K∑
k=1

βkKpkK(t) = βT
KpK(t)
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where βK is computed by least-squares. It is likely that we could derive the same
kind of results for different estimates, such as Local Polynomial or Smoothing
Splines, as they behave similarly asymptotically, and that we show that the
Tracking estimate can be approximated by a plug-in estimate of a specific linear
functional of X̂. We introduce additional regularity conditions needed for the
asymptotics:

C5: The Hessian ∂2S(X∗;θ,λ)
∂θT ∂θ

is nonsingular at θ = θ∗.
C6: The observations (ti, Yi) are i.i.d with V ar(Yi | ti) = σId with σ < +∞
C7: Observations time ti are uniformely distributed on [0 , T ]
C8: There exists s ≥ 1 such that t �−→ Aθ∗(t), t �−→ rθ∗(t) are Cs−1

(
[0 , T ] ,Rd

)
and

√
nK−s −→ 0 and Ks

n −→ 0

Under these additional conditions, we show that θ̂Tλ reaches the parametric
convergence rate, and that it is asymptotic normal. Our strategy consists in two
stages:

Stage 1 (Prop 4.1) We show that θ̂Tλ − θ∗ behaves asymptotically as the differ-

ence Γ(X̂)− Γ(X∗) where Γ is a continuous linear functional,

Stage 2 (Prop 4.2) We prove that Γ
(
X̂ −X∗

)
is asymptotically normal for

regression splines, based on the properties of plug-in estimators
computed with series estimators and derived in [35].

Remark 4.1. Condition C5 is a classic feature for M−estimator to ensure
local identifiability, here:

∂2S(X∗;θ∗,λ)
∂θT ∂θ

= 2
∫ T

0
∂(Aθ∗ (t)X

∗+rθ∗ (t))
∂θ

T ∂h∗
θ∗ (t)
∂θ +

∂h∗
θ∗ (t)
∂θ

T ∂(Aθ∗ (t)X
∗+rθ∗ (t))

∂θ dt

+ 2
λ

∫ T

0

∂h∗
θ∗ (t)
∂θ

T ∂h∗
θ∗ (t)
∂θ dt

that is why we only require ∀ (t, θ) ∈ [0 , T ] × Θ, (t, θ) �−→ Aθ(t) and (t, θ) �−→
rθ(t) to be C1 and not C2

Remark 4.2. Condition C8 is a classic feature for non-parametric estimator
to ensure optimal convergence rate of X̂ using bias-variance tradeoff.

Proposition 4.1. Under conditions 1-5, we have:

θ̂Tλ − θ∗ = 2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
+ oP (1)

where Γ : C
(
[0 , T ] ,Rd

)
→ Rp is a linear functional defined by

Γ(X) =

∫ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T
(∫ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt.

(4.1)
Rθ∗ is defined by (3.1).
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Proposition 4.2. Under conditions 1-8 and by defining Γ as in proposition
4.1 we have that Γ(X̂)− Γ(X∗) is asymptotically normal and Γ(X̂)− Γ(X∗) =
OP (n

−1/2).

The root-n rate and asymptotic normality is obtained by combining the two
previous propositions. Quite remarkably, we do not need to have λ −→ ∞ but
only λ > 0 to claim

Theorem 4.1. If X̂ is a regression spline and conditions C1-C8 are satisfied,
then θ̂Tλ − θ∗ is asymptotically normal and

θ̂Tλ − θ∗ = OP (n
−1/2).

Remark 4.3. The asymptotic linear representation given by proposition 4.1
gives a closed form expression for the asymptotic variance (D.1) given in ap-
pendix D. The expression obtained depends on λ, but it remains difficult to
analyze it. Nevertheless, we can derive a plug-in estimate of the variance as it
is needed for the computation of confidence intervals.

5. Experiments

We evaluate the practical efficiency and illustrate our results by comparing the
Tracking estimator θ̂Tλ , with NLS θ̂NLS and Generalized Smoothing θ̂GS on two
(relatively) small real models used in chemical engineering: the methanation
reaction model and the isomerization of α-Pinene. We test several sample sizes
and variance errors, and we are interested in comparing the respective bias and
variance of the estimators, and also in evaluating the influence of the tracking es-
timator with respect to the nonparametric smoother X̂ and the hyperparameter
λ.

5.1. Experimental design

For a given sample size n and noise level σ, we estimate the Mean Square Error
(bias and variance) and the mean Absolute Relative Error (ARE)

Eθ*

⎡⎣
∣∣∣θ∗ − θ̂

∣∣∣
|θ∗|

⎤⎦
by Monte Carlo, based on NMC = 100 runs. For each run, the observations are
obtained by computing the ODE solution with a Runge-Kutta algorithm (ode45
in Matlab), then by adding a centered Gaussian noise (with variance σ2) .

The nonparametric estimate needed for the Tracking estimator is a regression
spline built with B-splines on a uniform knot sequence ξk, k = 1, . . . ,K. For
each run and each state variable, the number of knots is selected by minimizing
GCV [39]. Tracking and Generalized Smoothing requires automated methods
for selecting adaptively the hyperparameter λ: this is introduced and discussed
in the next section.
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5.2. Hyperparameter selection

For GS, we use the selection method for λ presented in [10, 36]: the value of λ is

increased until the approximate solution X̂λ(·, θ̂GS
λ ) starts to differ significantly

from the exact solution X
θ̂λ
, i.e the difference starts to increase. This procedure

permits to control the approximation error due to the use of B-splines, although
the number of knots KGS used remains high. In our experiments, KGS is equal
to the number of observations available, and it is fixed. The selected GS esti-
mator is then denoted simply θ̂GS .

In sections 3 and 4, we did not discuss the selection of λ for the tracking
estimator, as it does not have the same theoretical importance as for smoothing.
In practice, θ̂λ is significantly affected by λ as it balances model and data fidelity.
When λ → 0, any u can be selected and we do overfitting and Xθ,u interpolates

the nonparametric estimate X̂. At the opposite, when λ → ∞, we have uθ,λ −→
0 and the criterion S(X̂; θ, λ) is similar to the NLS.

We propose then a simple procedure for selecting λ based on the sum of
squared errors. We know that the perturbed solution Xθ̂T

λ ,ūθ,λ
has a tendency

to do overfitting w.r.t Xθ̂T
λ

because of the presence of the control ūθ,λ (when

the model is well-specified). Hence, we use

λ̂ = argmin
λ>0

H
(
Xθ̂T

λ

)
(5.1)

and the adaptive Tracking estimator used in practice is defined as θ̂T = θ̂T
λ̂
.

This outer optimization procedure bridges the gap with the NLS estimator
that considers directly the minimization of H (Xθ). Alternatively, we can see
equation (5.1) as selecting the hyperparameter that minimizes the prediction
error of the estimated exact model. It is well-known that cross-validation, boot-
strap,... give much better estimation of the prediction error, and that we could
take advantage of these resampling methods. Nevertheless, the computational
cost of the optimization of S can be high, and we prefer considering the direct
use ofH. Despite its simplicity and the above critics, we show in subsection 5.3.3
that our choice is sensible. Moreover, our experiments show that the procedure
equation (5.1) gives competitive estimates, even if they might be suboptimal.

5.3. Optimization algorithms & gradient computation for S

As mentionned in the introduction or in the previous section, the optimization
is computationally demanding, and some care has to be taken because of the
nonlinearity of the criterion.

The NLS problem is solved with a Levenberg-Marquardt algorithm (function
’nlinfit’ in Matlab), while GS is solved by the Gauss-Newton algorithm derived
in [37] (Matlab code available on Giles Hooker’s webpage1). The Tracking es-
timator is found with a trust-region algorithm (function ‘fminunc’ in Matlab),

1http://faculty.bscb.cornell.edu/~hooker/profile_webpages/

http://faculty.bscb.cornell.edu/~hooker/profile_webpages/
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that uses the gradient ∇θS(X; θ, λ). For this, we need to compute both ∂ĥθ

∂θ

and ∂Eθ

∂θ . We discuss briefly an efficient way to compute these derivatives that
avoids the use of the sensitivity equations. Indeed, the sensitivity equations re-
quires solving an ODE system of size (d2 + d)× p, that grows quickly with the
dimension of the original ODE.

We use instead an adjoint method for the computation of the gradients. This
is a classical approach in data assimilation (see [2] for example) that reduces
the size of the differential equation to solve. Indeed, we take advantage of the

fact that we need only to compute the integrals or L2 inner products of ∂ĥθ

∂θ

and ∂Eθ

∂θ (and not pointwise). If we introduce Qθ =
(
ĥθ

T
, (Er

θ )
T
)T

, the Riccati

ODE is written row-wise as {
Q̇θ = F (Qθ, θ, t)
Qθ(T ) = 0

where F is the row formulation of the Riccati ODE vector field. The gradient
∇θS(X; θ, λ) is such that

∇θS(X; θ, λ) =
∫ T

0
∂g(Qθ(t),θ,t)

∂Q − P (t).∂F∂θ (Qθ(t), θ, t)dt

with

g(Qθ, θ, t) = −2
(
Aθ(t)X̂(t)− ˙̂

X(t) + rθ(t)
)T

ĥθ −
1

λ
ĥθ

T
ĥθ.

The function P is of dimension
(
d2 + d

)
, and is called the adjoint vector. It is

solution of the ODE:{
Ṗ (t) = ∂g(Qθ(t),θ,t)

∂Q − P (t). ∂F∂Q (Qθ, θ, t)

P (0) = 0

The computational details for ∂g
∂θ ,

∂g
∂Q , ∂F

∂θ ,
∂F
∂Q are left in appendix B. Here P is

obtained by solving a d2 + d size ODE system, that is much smaller than the
initial sensitivity equations, as it does not depend on the number of parameters.

5.3.1. The model and comparison of estimators

The “Methanation reaction” model is a linear autonomous ODE in R4, that is
nonlinear w.r.t parameters. We have

Aθ =

⎛⎜⎜⎜⎜⎝
− V+V ′+FC0

0 /W
βCC0/W+CCOl 0 0 0

V+V ′

βCH20/W
− V+V ′+v5

βCH20/W
0 v5

βCH20/W
V ′

βCCO2/W
0 − V ′+v6

βCCO2/W
v6

βCCO2/W

0 v5
COs

v6
COs

−v5+v6
COs

⎞⎟⎟⎟⎟⎠
and

rθ =

(
FC0
i zCO

i

βCC0/W + CCOl
, 0, 0, 0

)�
.
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Table 1

Known parameters in Methanation Reaction Model

FCO
i /FCO

0 zCO
i V/V ′ Cj W β

1.31 0.132 12.4 0.02/0.01/0.01 0.744 206.1

Fig 1. Methanation Model: True solution X∗ and simulated sample (n, σ) = (100, 0.004).

This model has been introduced in [21] for describing the dynamics of carbon
monoxide and hydrogen methanation over a supported nickel catalyst by tran-
sient isotopic tracer in a gradientless circulating reactor. The state X is defined

as X� =
(
XCO, XH2O, XCO2 , XOs

)
, and represents the quantity of the chemical

species involved in the reaction. A constant inlet CO flow rate with constant
and known fraction of isotope 18O is introduced within the reactor; the fraction
of 18O present in oxygen atoms for each component is measured at different
timeframe using a mass spectrometer. In the model, Xj(t) represents the mea-
sured fraction of 18O present in oxygen atoms of the chemical species j at time
t. Some parameters are already known (see table table 1), and we have to esti-
mate only the parameters θ =

(
CCOl, COs, v5, v6

)
. For the simulations, the true

parameter θ∗ is the estimate provided in [21], i.e θ∗ = (0.1, 11.1, 0.35, 0.008).
The initial condition is known and equals to x∗

0 = (0, 0, 0, 0). The true solution
X∗ and simulated observations are plotted in figure 1.

For this parameter value and for n = 100, the matrix S(θ∗)TS(θ∗) has eigen-
vectors:

U(θ∗) =

⎛⎜⎜⎝
0.18 0.98 0.02 0
−0.98 0.18 −0.02 −0.01
−0.02 −0.02 0.99 0.02
0.02 0 −0.02 0.99

⎞⎟⎟⎠
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Table 2

Methanation Model: Comparison of the precision of Tracking, NLS, GS estimators

(n, σ) Bias(θ̂) ×10−2 Tr
(
V (θ̂)

)
×10−2 MSE×10−2 ARE ×10−2

(100, 0.002)
θ̂T 1.37 10.04 10.05 68.19

θ̂NLS 1.03 11.46 11.47 63.26

θ̂GS 6.76 38.92 39.35 77.98

(50, 0.002)
θ̂T 2.41 20.39 20.42 104.15

θ̂NLS 2.82 20.59 20.66 83.74

θ̂GS 12.85 37.80 39.17 95.08

(100, 0.004)
θ̂T 13.11 36.62 37.73 119.58

θ̂NLS 8.10 44.91 45.32 119.33

θ̂GS 7.40 197.32 97.63 144.84

(50, 0.004)
θ̂T 6.97 62.15 62.39 172.17

θ̂NLS 9.15 67.74 68.19 184.41

θ̂GS 4.74 222.30 222.41 208.84

with eigenvalues σ(θ∗) =
(
0.03 0.2 2.59 39.5

)
. Each eigenvector is essen-

tially associated to a single parameter (U1 for COs, U2 for CCOl, U3 for v5, U4

for v6). The ratio λ4

λ1
is of order 103, which indicates a bad-conditionning of the

estimation problem due to an important instability and sensibility with respect
to noise. As a consequence, we have a high variance for statistical estimation
(for NLS). Moreover, we can detect a correlation between CCOl, COs whereas
(v5, v6) can be estimated well (almost independently). We consider that we are
in presence of sloppy parameters when the eigenvalue ratio is about 104; this
means that the estimation problem is moderately “ill-posed”.

We have conducted 4 Monte Carlo experiments two sample sizes n = 100 and
n = 50 (observations are uniformely sampled the time interval [0, 40]), with 2
noise levels σ = 0.002 and 0.004, that are presented in table 2.

For the lowest level of noise (σ = 0.002), θ̂T and θ̂NLS show similar results in
terms of bias, variance and MSE, but NLS has a smaller ARE. For σ = 0.004,
θ̂T has a smaller variance than θ̂NLS , but the bias is not systematically higher.
Nevertheless, the Tracking estimator gives the best estimates in terms of MSE
and ARE. In every cases, the GS estimator has a higher variance, MSE and
ARE.

If we look at the bias of the 3 estimators, it is hard to identify a trend, as
it depends on the nonlinearity of the problem, and of the approximation used.
The bias can be either bigger or smaller, depending of the circumstances, but
in particular, we see that the NLS remains biased (even when n = 100).

The lowest variance is always reached by Tracking, showing that we can
improve on NLS by an appropriate regularization. Hence, despite the similar
construction of GS and Tracking, the Tracking estimator seems to behave more
like the NLS. We investigate in the next subsection the differences between
θ̂T = θ̂T

λ̂
and θ̂GS = θ̂GS

λ̂
, that explain such different performances.
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5.3.2. Influence of the hyperparameter λ: comparison of GS and Tracking

We compare the behavior of λ �→ θ̂Tλ and λ �→ θ̂GS
λ in the case of the methanation

model, when the sample size is n = 20 and the noise level is σ = 0.002. We are
mainly interested in the case of low sample size, because the different estimators
are all consistent and asymptotically normal, and their characteristic features
become less distinguishable when n is high. Moreover, the adaptive selection
of λ is particularly critical for small n, and it is informative to understand the
rationale of the selection method proposed in 5.3.3. Hence, we are interested in
how λ maintains the trade-off for Generalized Smoothing and Tracking:

1. Model fidelity (norm of the forcing function): λ �−→
∥∥ûθ̂GS

λ ,λ

∥∥2
L2 and λ �−→∥∥ūθ̂T

λ ,λ

∥∥2
L2

2. State fidelity (Observation fidelity): λ �−→
∥∥X∗ − X̂λ

(
·, θ̂GS

λ

)∥∥2
L2 and λ �−→∥∥X∗ −Xθ̂T

λ ,ūλ

∥∥2
L2

3. Parameter fidelity (Estimator accuracy): λ �→
∥∥θ∗ − θ̂GS

λ

∥∥2and λ �→
∥∥θ∗ − θ̂Tλ

∥∥2
Based on NMC = 100 runs, we plot the mean curves evaluated at λ in {10k,
5× 10k}k∈�4,9� in figure 2. We can see that the Tracking approach has a higher
fidelity to the model, state and parameter for any value of λ. Concerning model
fidelity, there is a fast decrease in the model misfit (in particular for GS) and it
stays constant for log λ ≥ 6. Whereas the model error vanishes for Tracking, the
model error stays positive for Generalized Smoothing. This remaining error is a
consequence of the splines approximation which is not good enough. During the

middle optimization, Tracking minimizes
∥∥X̂ − Xθ̂T

λ ,ūλ

∥∥2
L2 + λ

∥∥ūθ̂T
λ ,λ

∥∥2
L2 , and

tends to find a parameter which induces a low model misfit (that vanishes if λ
is too big). The state fidelity for Tracking is flat and very small: it starts with a
reasonable nonparametric estimate, and the graph indicates that Tracking can
always find a function X = Xθ,u close to the true function X∗, and such that u
is not big. This comes from the fact the optimization is done on the space H1;
at the contrary, despite good approximation properties of B-splines, it always
remains an error X̂λ

(
·, θ̂GS

λ

)
that gives rise to a plateau. This graph justifies

the need of increasing the B-splines basis with λ as assumed by Qi and Zhao
[36]. Finally, the state error due to the use of approximate solutions generates
a bias for parameter estimation: this bias remains constant for Tracking and
lower than Generalized Smoothing (figure 2 (c)). For GS, the bias drops quite
fast thanks to the drop in model misfit and then it remains constant.

The classical fitting procedure with GS consists in a sequential identification
of the parameters called the parameter cascade: made of an inner optimization
(β), a middle optimization (θ) and an outer optimization (λ). In GS, the outer
optimization is done for selecting the parameter that predicts correctly the ob-
servations, but also for controlling the model error. In the case of Tracking, the
control of the model error is done during themiddle optimization because it min-
imizes the penalized least-squares. Then the objective of the outer optimization
in Tracking is only to fit the exact model.
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Model Fidelity ‖uλ‖2

State fidelity
∥∥X∗ − X̃θ

∥∥2
L2

Parameter fidelity
∥∥θ∗ − θ̂λ

∥∥2
Fig 2. Methanation Reaction Model: Influence of λ for Model fidelity, State fidelity and
Parameter fidelity. (◦): Generalized Smoothing; (�) is Tracking.
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5.3.3. Adaptive selection for hyperparameter and influence of the
nonparametric estimate for Tracking

We complete the analysis made in the previous subsection by justifying empir-
ically the selection rule (outer optimization) introduced in section 5.2. Figure 3

shows that minimizing H
(
X

θ̂λ
T

)
enables to locate the minimum of the MSE

function λ �→
∥∥∥θ∗ − θ̂Tλ

∥∥∥2. The two functions present parallel evolutions, that is

a decrease followed by a stabilization around a constant value and presenting
some minor ripples. Our selection criteria for λ is a relevant way for selecting
an estimator corresponding to a low MSE value.

Sum of Squared Errors λ �→ H(Xθ̂T
λ
)

Parameter fidelity λ �→ ‖θ∗ − θ̂Tλ ‖2

Fig 3. Methanation model: Joint influence of λ on Sum of Squared Errors H and Parameter
Estimation (Squared Distance) for the Tracking estimator θ̂Tλ .
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Fig 4. Influence of nonparametric proxy X̂ (number of knots K): K �−→ ‖Bias(θ̂T )‖2 (green),

K �−→ ‖V ar(θ̂T )‖2 (blue), K �−→ MSE(θ̂T ) (red).

The tracking estimator might be also influenced - indirectly - by the hyper-
parameter selection involved in the nonparametric proxy X̂. In particular, the
selection of the number of knots or their location can be influential. It is well-
known that Gradient Matching estimators and other two-step estimators de-
pends strongly of the choice of these hyperparameters. Similarly, Chervoneva et
al. [26] showed that the perfomances of Generalized Smoothing can be improved
by selecting adaptively the knots placement and numbers, i.e. by minimizing the
approximation error. Tracking is also influenced by the quality of approximation
of X̂ but this relation is easy to handle.

We have evaluated by Monte Carlo the influence of the number of knots when
X̂ is a regression spline (NMC = 100 runs with the sample size n = 20 and noise
level σ = 0.002). For each run, we have estimated θ∗ for several choice of knots

number K for X̂ (from 4 to 18, uniformely sampled on [0, 40]). The figure 4
represents the estimated MSE obtained after the NMC runs for different number
of knots.

One can observe a dramatic decrease of the MSE as long as K increases (ex-
cept for K = 10, indicating that the knot location is important), that can nearly
vanish when K is big enough. When K is big, we do undersmoothing that en-
ables to catch the main patterns of the data, i.e of the state. A major drawback
of undersmoothing is the presence of spurious oscillations and high variance,
in particular for the estimation of the derivative. As stated in proposition 3.3,
the Tracking approach does not depend on an estimator of the derivative, as it
should be the case for Gradient-Matching. Moreover, in the middle optimization,
we penalize H with ‖ūθ,λ‖2L2 i.e with the norm of the derivative of the approx-
imate solution Xθ,u: as a consequence we remove the additional oscillations of
the data.
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The results in 4 shows that X̂ can influence the parameter estimates, but the
estimation does not need to be efficient and is less sensitive to the bias vari-
ance trade-off as Gradient Matching (the best estimate is obtained for K = 18,
whereas n = 20). Hence we can select the nonparametric smoother X̂ by min-
imizing GCV (or other approximate optimal methods that might do under-
smoothing) and obtaining good estimates.

5.4. α−Pinene model

This linear model is introduced in [38] as a benchmark for nonlinear optimiza-
tion, and it is used for modeling the isomerization of α−Pinene. The model is
autonomous and homogeneous (rθ = 0) with

Aθ =

⎛⎜⎜⎜⎜⎝
−(θ1 + θ2) 0 0 0 0

θ1 0 0 0 0
θ2 0 −(θ3 + θ4) 0 θ5
0 0 θ3 0 0
0 0 θ4 0 −θ5

⎞⎟⎟⎟⎟⎠ (5.2)

The initial condition is known and equal to x∗
0 = (100, 0, 0, 0, 0) and the true

parameter value is θ∗ = (5.93, 2.96, 2.05, 27.5, 4)× 10−4. The estimation of θ∗

is still considered as cumbersome and many estimation methods fail to converge
or converge to bad local solutions because of difficulty to accurately estimate θ4
and θ5. This can be explained by the high correlation between the parameters
[38]. This issue can be analyzed with the sensitivity matrix and the Fisher
Information matrix S(θ∗)TS(θ∗). When n = 100, the 5 eigenvectors are given
by

U∗ =

⎛⎜⎜⎜⎜⎝
0.00 0.01 0.13 0.87 −0.46
0.00 0.03 0.18 0.43 0.88
0.01 −0.4 0.89 −0.18 −0.08
0.98 −0.14 −0.07 0.02 0.01
0.16 0.90 0.38 −0.09 −0.06

⎞⎟⎟⎟⎟⎠
and the corresponding spectrum is σ(θ∗) � 107×

(
0.003 0.033 0.418 0.487 4.575

)
.

The ratio λ5

λ1
� 1.5× 104 indicates that we have again sloppy parameters, that

makes the parameter estimation an ill-posed inverse problem. In particular, the
parameters (θ4, θ5) are associated to the directions with the lowest eigenval-
ues.

We performMonte Carlo simulations when the observed time range is [0, 100].
Because of different orders of magnitude for the state variables, we rescale the
standard deviation of the measurement error componentwise. Here for a given
reference σ value for the noise, the standard deviation of the noise for variable

Xi is equal to σ
100 × 1

T

∫ T

0
Xi(t)dt (see figure 5). For computing the Tracking

estimator, we select λ among
{
10k, 5× 10k

}
1≤k≤3

.
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Fig 5. Well-specified α-pinene Model: True solution X∗ and noisy observations yi with n =
50, σ = 8.

5.4.1. Well-specified model

Despite the difficulty of the estimation, the estimators θ̂NLS , θ̂GS and θ̂T still
provide consistent estimates, see the bias, variance and ARE in table 3. As
one can expect, the approximate approaches (θ̂GS and θ̂T ) give more biased

estimation than θ̂NLS , but θ̂GS and θ̂T have smaller variance and Mean Square
Error than θ̂NLS .

This “efficiency” of Generalized Smoothing and Tracking can be explained
by the fact that the biased estimators can bypass the theoretical limitations
defined by the Fisher Information Matrix. Hence, the negative effect of sloppy

Table 3

Well-specified α−pinene: Parameter estimation accuracy for Tracking, Generalized
Smoothing and Nonlinear Least Squares

(n, σ) Bias(θ̂) ×10−2 Tr
(
V (θ̂)

)
×10−4 MSE×10−4 ARE ×10−2

(100, 4)
θ̂T 0.05 0.3 0.31 4.80

θ̂NLS 0.03 0.85 0.86 7.82

θ̂GS 0.05 0.38 0.38 8.52

(100, 8)
θ̂T 0.46 1.15 1.28 11

θ̂NLS 0.08 2.12 2.13 13

θ̂GS 0.21 1.93 1.95 21

(50, 4)
θ̂T 0.45 0.59 0.74 7.86

θ̂NLS 0.05 1.44 1.44 10.25

θ̂GS 0.26 1.01 1.03 17.73

(50, 8)
θ̂T 0.28 3.02 3.05 17

θ̂NLS 0.04 6.96 6.96 23

θ̂GS 0.41 3.54 3.61 36



2930 N. J. B. Brunel and Q. Clairon

parameters can be reduced thanks to the biased approach. Comparing θ̂GS and
θ̂T only, we remark that Tracking gives the smallest MSE and ARE. From the
experiments it is hard to say what approach is less biased, but the Tracking has
a systematically a lower variance than GS. Moreover, the ARE indicates that
for Tracking the relative accuracy is enhanced for each parameter (in particular
for θ4 that is bigger than the other parameters).

5.4.2. Misspecified model

Model misspecification is a classical but important limitation during parameter
estimation. Ordinary Differential Equations are mechanistic models, and the
bias induced by some misspecification can be particularly misleading in the role
of each variable. Although it is hard to anticipate the effect of model error
during the estimation process, several paper starts to grasp this difficulty, by
showing that integrating a possible error can ameliorate significantly the quality
of estimation, see [12, 42].

The Generalized Smoothing and the Tracking procedures are prone to cope
with model misspecification, because they consider approximate solutions to
exact model, or conversely, exact solutions to approximate model. In order to
support this idea, we consider that the true α-pinene model is pertubed with a
forcing function v, i.e X∗ is such that

Ẋ∗(t) = Aθ∗X∗(t) + v(t) (5.3)

with v(t) = 0.1 sin( π
50 t) × (1 1 1 1 1)

�
. Based on the same framework as section

5.4.1, we have used NLS, GS and Tracking for estimating θ∗, based on the
assumption that Ẋ∗(t) = Aθ∗X∗(t) is the right model.

The quality of the estimators estimated by Monte Carlo are gathered on table
4 and support the claims of [12]: the NLS estimator gives the worst estimator,

Table 4

Misspecified α−pinene: Parameter estimation accuracy for Tracking, Generalized Smoothing
and Nonlinear Least Squares

(n, σ) Bias(θ̂) ×10−2 Tr
(
V (θ̂)

)
×10−4 MSE×10−4 ARE ×10−2

(100, 4)
θ̂T 0.73 0.38 0.63 0.24

θ̂NLS 4.40 1.03 7.16 1.06

θ̂GS 1.53 3.44 4.01 0.62

(100, 8)
θ̂T 0.81 1.02 1.28 0.27

θ̂NLS 4.45 3.13 9.40 1.08

θ̂GS 1.48 7.86 8.42 0.66

(50, 4)
θ̂T 0.75 1.32 1.55 0.26

θ̂NLS 4.83 3.22 11.00 1.08

θ̂GS 1.44 3.09 3.83 0.68

(50, 8)
θ̂T 0.75 2.97 3.22 0.31

θ̂NLS 4.74 10.00 18.00 1.13

θ̂GS 1.11 4.83 5.17 0.50
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with the biggest bias, MSE and ARE. The estimator θ̂T and θ̂GS have always
a smaller and nearly constant bias accross the different experiments. The bias
remains smaller for Tracking, as X̃θ is not limited to be a spline; the variance
is also smaller, because we avoid overfitting by minimizing the penalized least
squares instead of the function H only for GS. This analysis shows that the
use of approximate models can robustify the statistical estimation while being
consistent in the case of well-specified models. There are then the method of
choice for dealing with real data.

5.4.3. Real data analysis

We finish our analysis of α-pinene by fitting the model on a real data set retrieved
from [14], see table (5). The state variables are all observed at eight times steps,
and the initial conditions are known and equal to x∗

0.
As a benchmark, we use the estimate provided by [38] which corresponds to

the parameter value θ∗ used in the previous simulations. This solution Xθ∗ fits
well the data and we are interested in computing the estimate θ̂T , and analyzing
the forcing functions uT . For computational efficiency, we have reparametrized
the time in order to divide the observation time by 1000: this does not change
anything as the system is autonomous and it avoids the difficulties generated
by long-term integration.

Because the data are sparse, the nonparametric estimator X̂ is selected “by
hand” in order to catch the mean feature of the data. We take a spline with nodes
only at the boundaries and we use the constraint X̂(0) = x∗

0 during estimation.
Finally, the hyperparameter λ is selected by the rule (5.1) among the candidates

λ = 10k, k = 1, 2 · · · , 11 and λ = 5× 10k, k = 1, 2, 3, 4. We obtain λ̂ = 100 but
the tracking estimator θ̂Tλ reaches a plateau for λ ≥ 5000 (and the estimates

are quite stable along the regularization path). We see θ̂1
T
, θ̂2

T
, θ̂3

T
are close

to the estimation of [38], but the sloppy parameters
(
θ̂T4 , θ̂

T
5

)
differs from the

estimates (θ∗4 , θ
∗
5); anyway, the tracking estimates provides a good fit to the data

(see the sum of squared errors in table 6 and figure 6).
We can also compare the model discrepancy for the two different estimates by

comparing the corresponding forcing functions. We compute a forcing function

Table 5

α−pinene: experimental data set from Fuguitt & Hawkins

Times (min) X1 X2 X3 X4 X5

1230 88.35 7.3 2.3 0.4 1.75
3060 76.4 15.6 4.5 0.7 2.8
4920 65.1 23.1 5.3 1.1 5.8
7800 50.4 32.9 6 1.5 9.3
10680 37.5 42.7 6 1.9 12
15030 25.9 49.1 5.9 2.2 17
22620 14 57.4 5.1 2.6 21
36420 4.5 63.1 3.8 2.9 25.7
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Table 6

α-pinene: Estimates in the real cata case

10−4 θ1 θ2 θ3 θ4 θ5 H (Xθ)
θ∗ 0.593 0.296 0.205 2.75 0.4 19.89
θ̂T
λ̂

0.589 0.290 0.193 2.301 0.234 23.88

θ̂T5000 0.583 0.295 0.207 2.259 0.238 25.29

Fig 6. α-pinene: real data and estimated curves with Nonlinear Least Squares and Tracking.
(◦): NLS solution; (×): Tracking (exact) solution.

ū∗ associated to the NLS estimate θ∗ by the closed looped formula (2.9) with

θ = θ∗ and λ = λ̂ = 100. The controls are represented in figure 7, where the
forcing function ū∗ is ploted with ×, and ūT is ploted with ◦. The controls are
vector functions in R5, and each entry ui correspond to one state variable Xi.
The function ploted in yellow corresponds to X1, the one in black correspond
to X2, the one in green correspond to X3, the one in blue correspond to X4 and
the one in red to X5.

We obtain that
∥∥ūT

∥∥2
L2 ≤ ‖ū∗‖2L2 , but there is no significant differences be-

tween the two forcing functions for the component 1 to 4. The only important
difference is for X5 (red curve on on the figure 7), which is the state variable
exclusively linked to parameters θ4 and θ5 (the most difficult parameters to es-
timate according to [38] because of high correlation). According to our analysis,
this indicates that the NLS estimate needs a bigger model correction with a
forcing function, in order to compensate a bigger estimation error for θ4 and θ5.
This suggests that our model estimate might be more reliable than the NLS.

6. Discussion

We have introduced an estimator that have a smaller variance than NLS and
Generalized Smoothing, and better MSE and ARE in almost all the cases con-
sidered. The Tracking estimator does improve on NLS (and GS), when the model
is particularly ill-posed. This is because we can bypass the Fisher Information
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Fig 7. α-pinene: Forcing functions for Nonlinear Least Squares and Tracking in the real data
case. (◦): NLS Forcing function ū∗; (×): Tracking forcing function ūθ̂.

matrix limit; moreover, we reduce the overfitting that one can have with Gen-
eralized Smoothing in the middle step, as we do a better control of the model
discrepancy (with the optimization of S instead of H). Moreover the selection
of λ makes the Tracking estimator close to NLS, and avoid the use of complex
selection procedure that increases the variance.

We insist on the fact that estimation problems for ODE appear even for
small models (quite low dimensional, and with a small number of parameters),
and we think that the Tracking approach can be helpful for any model (as
some simulations on simple systems without sloppy parameter has given similar
performances to NLS) - but at a higher computational cost. Nevertheless, the
practical performances of NLS here can be misleading as all the estimates has
been computed by starting the optimization algorithms with the true parameter
θ∗. This information is very valuable for NLS and we clearly overestimate the
practical performances of NLS whereas Generalized Smoothing still provides
good estimate with poor starting values (or NLS need to rely on elaborated
optimization procedures). The Tracking estimator can also cope with relatively
bad initial guesses.

An advance provided by the Tracking and Generalized Smoothing is the
ability to deal properly with model misspecification and to provide guidance and
tools for analyzing model misfit with the forcing functions. Our brief analysis in
the real data case indicates that we can assess the influence of parameters, and
discuss the relevancy of the model. In order to pursue that task, we need to derive
more elaborate results on the behavior u in the case of model misspecification,
and developping testing tools and methodology.

Our theoretical results suffer from practical limitations, as we consider fully
observed models, which are linear, with known initial conditions. Nevertheless,
the same analysis with other optimal control tools remains possible with adapted
criterion to optimize and characterization of optimal solutions (e.g. Pontryagin
Maximum Principle).
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Parameter estimation and optimal control: Appendix

Appendix A: Fundamental Results of Optimal Control:
Linear-Quadratic Theory

The previous theorem is a particular case of a more general theorem which
ensure existence and uniqueness of optimal control for cost under the form:

C (t0, u, λ) = zu(T )
TQzu(T ) +

∫ T

t0

zu(t)
TW (t)zu(t) + u(t)TU(t)u(t)dt

Theorem A.1. Let A ∈ L2([0, T ] ,Rd×d) and B ∈ L2([0, T ] ,Rd×d). We con-
sider zu the solution of the following ODE:

żu(t) = A(t)zu(t) +B(t)u(t), z(t0) = z0

And we want to minimize the cost:

C (t0, u, λ) = zu(T )
TQzu(T ) +

∫ T

t0

zu(t)
TW (t)zu(t) + u(t)TU(t)u(t)dt

defined on L2([0, T ] ,Rd) with Q positive, W ∈ L∞([0, T ] ,Rd×d) positive matrix
for all t ∈ [0, T ] and U(t) definite positive matrix for all t ∈ [0, T ] respecting
the coercivity condition:

∃α > 0 s.t ∀u ∈ L2([0, T ] ,Rd) :

∫ T

0

u(t)TU(t)u(t)dt ≥ α

∫ T

0

‖u(t)‖22 dt

It exists a unique optimal trajectory zū associated to the unique optimal con-
trol ū and ū is under the closed-feedback loop form u(t) = U−1(t)E(t)B(t)zu(t)
where E is the matrix solution of the Riccati ODE:

Ė(t) = W (t)−A(t)tE(t)− E(t)A(t)− E(t)B(t)U(t)−1B(t)TE(t)
E(T ) = −Q

and the minimal cost is equal to: C (t0, u, λ) = −zT0 E(t0)z0.

Appendix B: Proof & Intermediary results

B.1. θ �−→ S(X̂; θ, λ) and θ �−→ S(X∗; θ, λ) properties

Lemma B.1. Let us define E the solution of

Ė(t) = W (t)−A(t)tE(t)− E(t)A(t)− 1
λE(t)2

E(T ) = −Q
(B.1)

with A(t) ∈ L2([0, T ] ,Rd×d), Q bounded,W ∈ L∞([0, T ] ,Rd×d).
Then E is bounded on [0 , T ].
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Proof. (This proof is presented in Sontag’s book “Mathematical Control The-
ory” [40] chapter 7 theorem 30)

By using theorem A.1 and if we define the quadratic cost:

C(t0, u, λ) = xu(T )
TQxu(T ) +

∫ T

t0

xu(t)
TW (t)xu(t) + λ ‖u(t)‖22 dt

with xu the ODE solution of

ẋu(t) = A(t)xu(t) + u(t)
xu(t0) = x0

We know we have:
min
u

C(t0, u, λ) = −xT
0 E(t0)x0

Let us reason by contradiction, at the contrary we assumed that ∃te ∈ [0 , T ]
s.t lim t→te+ ‖E(t)‖2 = +∞. It implies:

∀α > 0 ∃t0 ∈ ]te , T ] , x0 ∈ Rd with ‖x0‖2 = 1 s.t
∣∣xT

0 E(t0)x0

∣∣ ≥ α (B.2)

We also know it exists a unique optimal trajectory for the LQ problem on
[t0, T ] with x(t0) = x0 and the associated optimal cost is −xT

0 Eθ(t0)x0. But by
minimality of this cost it has to be majored by the cost C(t0, 0, λ) i.e the cost
associated to the control u = 0. We can see it exists a constant D > 0 such
C(t0, 0, λ) is majored by D ‖x0‖22 and so:∣∣xT

0 Eθ(t0)x0

∣∣ ≤ D

which contradict (B.2) and finish the proof.

Lemma B.2. ∀(t, θ) hθ(t, .) is an affine function of X and can be written under
the form:

hθ(t,X) = Nθ(t).X

With:

Nθ(t).X :=

∫ T

t

Rθ(T − t, T − s)X(s)ds+ Eθ(t)X(t)

+

∫ T

t

Rθ(T − t, T − s)Eθ(s)rθ(s)ds

with Rθ defined by (3.1).

Proof. Considering the backward ODE:{
˙hθ,i(t,X) = αθ(T − t)hθ,i(t,X) + βθ(T − t,X)

hθ,i(0, X) = 0

We know thanks to Duhamel formula:

hθ,i(t,X) =

∫ t

0

Rθ(t, s)β(T − s,X)ds
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hence:

hθ(t,X) = hi(T − t,X) =
∫ T−t

0
Rθ(T − t, s)β(T − s,X)ds

=
∫ T

t
Rθ(T − t, T − s)βθ(s,X)ds

Taking the value of β and using integration by part we have:

hθ(t,X) =
∫ T

t

(
Rθ(T − t, T − s)Eθ(s)Aθ(s) +

d(Rθ(T−t,T−s)Eθ(s))
ds

)
X(s)ds

+ Eθ(t)X(t) +
∫ T

t
Rθ(T − t, T − s)Eθ(s)rθ(s)ds

and using resolvant property we finally obtain:

d (Rθ(T − t, T − s)Eθ(s))

ds
= Rθ(T − t, T − s) (Ip − Eθ(s)Aθ(s))

so:

hθ(t,X) =

∫ T

t

Rθ(T − t, T − s)X(s)ds+ Eθ(t)X(t)

+

∫ T

t

Rθ(T − t, T − s)Eθ(s)rθ(s)ds (B.3)

Lemma B.3. Under conditions 1 and 2, ∀X ∈ H1([0, T ] ,Rd) with X(0) = x∗
0

we have ∫ T

0
Ẋ(t)Thθ(t,X)dt = F1,θ(X) + F2,θ(X) + F3,θ(X)

− x∗T
0

∫ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

− 1
2x

∗T
0 Eθ(0)x

∗
0

with:

⎧⎪⎨⎪⎩
F1,θ(X) = −x∗T

0

∫ T

0
Rθ(T, T − s)X(s)ds

F2,θ(X) =
∫ T

0
X(t)T (αθ(t)hθ(t,X) +Aθ(t)X + rθ(t)) dt

F3,θ(X) = 1
2

∫ T

0
X(t)T ˙Eθ(t)X(t)dt

Proof. Integration by part give us:∫ T

0
Ẋ(t)Thθ(t,X)dt

=
[
X(t)Thθ(t,X)

]T
0
+
∫ T

0
X(t)T (αθ(t)hθ(t,X) + βθ(t,X)) dt

= −x∗T
0 hθ(0, X) +

∫ T

0
X(t)T (αθ(t)hθ(t,X) + Eθ(t) (Aθ(t)X + rθ(t))) dt

−
∫ T

0
X(t)TEθ(t)Ẋ(t)dt

and ∫ T

0
X(t)TEθ(t)Ẋ(t)dt = −1

2

(
x∗T
0 Eθ(0)x

∗
0 +
∫ T

0
X(t)T ˙Eθ(t)X(t)dt

)
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Moreover using affine nature of h w.r.t X and using the same notation as in
B.2:

x∗T
0 hθ(0, X) = x∗T

0

∫ T

0
Rθ(T, T − s)X(s)ds+ x∗T

0 Eθ(0)x
∗
0

+ x∗T
0

∫ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

Finally, we obtain:∫ T

0
Ẋ(t)Thθ(t,X)dt = −x∗T

0

∫ T

0
Rθ(T, T − s)X(s)ds− 1

2x
∗T
0 Eθ(0)x

∗
0

+
∫ T

0
X(t)T (αθ(t)hθ(t,X)dt+ (Aθ(t)X + rθ(t))) dt

+ 1
2

∫ T

0
X(t)T ˙Eθ(t)X(t)dt

− x∗T
0

∫ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

B.2. Consistency Proof

In the following proposition B.1 we show
∣∣∣S(X̂; θ, λ)− S(X∗; θ, λ)

∣∣∣ is controlled
by the distance between X̂ and X∗ and between ĥ and h∗. In proposition B.2 we

show
∥∥∥ĥθ − h∗

θ

∥∥∥
L2

is uniquely controlled by
∥∥∥X̂ −X∗

∥∥∥
L2

the same will follow

for |Sλ(θ)− S∗
λ(θ)|

Proposition B.1. Under conditions 1 and 3, ∀θ ∈ Θ we have:∣∣∣S(X̂; θ, λ)− S(X∗; θ, λ)
∣∣∣

≤ 2
(
Āh̄+K1 +K2

∥∥∥ĥθ

∥∥∥
L2

+K3

∥∥∥X̂∥∥∥
L2

)∥∥∥X∗ − X̂
∥∥∥
L2

+
(
Ā
∥∥∥X̂∥∥∥

L2
+K4 +

1
λ

(∥∥∥ĥθ

∥∥∥
L2

+ h̄
))∥∥∥h∗

θ − ĥθ

∥∥∥
L2

With :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 =

√
d ‖x∗

0‖2 R̄+ dĒĀX̄ +
√
d ¯̇EX

K2 =
√
d
(
Ā+ Ē

λ

)
K3 = dĒĀ+

√
d ¯̇E

K4 =
√
d
(
Ā+ Ē

λ

)
X̄

and:
R̄ = supθ∈Θ ‖Rθ(T, T − .)‖L2

¯̇E = supθ∈Θ

∥∥∥Ėθ

∥∥∥
L2

Proof. By triangular inequality we have:∣∣∣S(X̂; θ, λ)− S(X∗; θ, λ)
∣∣∣

≤ 2
∣∣∣∫ T

0

(
h∗
θ(t)

TAθ(t)X
∗(t)− ĥθ(t)

TAθ(t)X̂(t)
)
dt
∣∣∣

+2
∣∣∣∫ T

0

(
˙̂
X(t)T ĥθ(t)− Ẋ∗(t)Th∗

θ(t)
)
dt
∣∣∣

+ 1
λ

∣∣∣∫ T

0

(
h∗
θ(t)

Th∗
θ(t)− ĥθ(t)

T ĥθ(t)
)
dt
∣∣∣
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Now we separatly bound each of the three previous terms.
The first one:∣∣∣∫ T

0

(
h∗
θ(t)

TAθ(t)X
∗(t)− ĥθ(t)

TAθ(t)X̂(t)
)
dt
∣∣∣

≤
∣∣∣∫ T

0
h∗
θ(t)

TAθ(t)
(
X∗(t)− X̂(t)

)
dt
∣∣∣+ ∣∣∣∣∫ T

0

(
h∗
θ(t)− ĥθ(t)

)T
Aθ(t)X̂(t)dt

∣∣∣∣
≤
∥∥h∗T

θ Aθ

∥∥
L2

∥∥∥X∗ − X̂
∥∥∥
L2

+
∥∥∥AθX̂

∥∥∥
L2

∥∥∥h∗
θ − ĥθ

∥∥∥
L2

The last inequality has been obtained thanks to Cauchy-Schwarz inequality.
The second one inequality is a bit cumbersome in terms of computation. For

the sake of clarity we left some computational details in B.3 and we obtain with
the same notation:∫ T

0

˙̂
X(t)T ĥθ(t)dt = F1,θ(X̂) + F2,θ(X̂) + F3,θ(X̂)

− x∗T
0 Eθ(0)x

∗
0

and: ∫ T

0
Ẋ(t)∗Th∗

θ(t)dt = F1,θ(X
∗) + F2,θ(X

∗) + F3,θ(X
∗)

− x∗T
0 Eθ(0)x

∗
0

Hence we can formulate S(X̂; θ, λ) without the derivative form expression and

the last decomposition allows us to bound
∣∣∣∫ T

0

(
˙̂
X(t)T ĥθ(t)− Ẋ∗(t)Th∗

θ(t)
)
dt
∣∣∣

only with
∥∥∥X̂ −X∗

∥∥∥
L2

and
∥∥∥ĥθ − h∗

θ

∥∥∥
L2

By use of norm inequalities we obtain the following bounds:∣∣∣F1,θ(X̂)− F1,θ(X
∗)
∣∣∣ ≤ √

d ‖x∗
0‖2 R̄

∥∥∥X̂ −X∗
∥∥∥
L2∣∣∣F2,θ(X̂)− F2,θ(X

∗)
∣∣∣ ≤ √

d

(
Ā+

Ē

λ

)(∥∥∥X̂ −X∗
∥∥∥
L2

∥∥∥ĥθ

∥∥∥
L2

+ X̄
∥∥∥ĥθ − h∗

θ

∥∥∥
L2

)
+
√
dĀ
(∥∥∥X̂∥∥∥

L2
+ X̄

)∥∥∥X̂ −X∗
∥∥∥
L2∣∣∣F3,θ(X̂)− F3,θ(X

∗)
∣∣∣ ≤ √

d
∥∥∥X̂ −X∗

∥∥∥
L2

¯̇E
(∥∥∥X̂∥∥∥

L2
+X

)
and we obtain for the second part:∣∣∣∣∣

∫ T

0

(
˙̂
X(t)T ĥθ(t)− Ẋ(t)∗Th∗

θ(t)
)
dt

∣∣∣∣∣
≤
(
K1 +K2

∥∥∥ĥθ

∥∥∥
L2

+K3

∥∥∥X̂∥∥∥
L2

)∥∥∥X̂ −X∗
∥∥∥
L2

+K4

∥∥∥ĥθ − h∗
θ

∥∥∥
L2

with:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 =

√
d ‖x∗

0‖2 R̄+
√
dĀX̄ +

√
d ¯̇EX

K2 =
√
d
(
Ā+ Ē

λ

)
K3 =

√
dĀ+

√
d ¯̇E

K4 =
√
d
(
Ā+ Ē

λ

)
X̄
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For the third one we have:∣∣∣∫ T

0

(
h∗
θ(t)

Th∗
θ(t)− ĥθ(t)

T ĥθ(t)
)
dt
∣∣∣

=
∣∣∣∫ T

0

(
h∗
θ(t)

T
(
h∗
θ(t)− ĥθ(t)

)
− ĥθ(t)

T
(
ĥθ(t)− h∗

θ(t)
))

dt
∣∣∣

≤
(∥∥∥ĥθ

∥∥∥
L2

+ ‖h∗
θ‖L2

)
‖h∗

θ − hθ‖L2

Hence by summing we finish the proof.

Proposition B.2. Under conditions 1 and 3 ∀θ ∈ Θ we have:∥∥∥ĥθ − h∗
θ

∥∥∥
L2

≤ K5

∥∥∥X̂ −X∗
∥∥∥
L2

with : K5 =
√
d

(
Tde

√
d
(
A+E

λ

)
T
+ E

)
Proof. Thanks lemma B.2 we have the following affine dependance of h w.r.t
X:

ĥθ(t)−h∗
θ(t) =

∫ T

t

Rθ(T − t, T − s)
(
X̂(s)−X∗(s)

)
ds+Eθ(t)

(
X̂(t)−X∗(t)

)
Taking the norm gives us:∥∥∥ĥθ(t)− h∗

θ(t)
∥∥∥
2

≤
∥∥∥∥∥
∫ T

t

Rθ(T − t, T − s)
(
X̂(s)−X∗(s)

)
ds

∥∥∥∥∥
2

+
∥∥∥Eθ(t)

(
X̂(t)−X∗(t)

)∥∥∥
2

≤
√
d

(√
Tde

√
d
(
A+E

λ

)
T
∥∥∥X̂ −X∗

∥∥∥
L2

+ ‖Eθ(t)‖2
∥∥∥X̂(t)−X∗(t)

∥∥∥
2

)
Using condition C1 and C3 and the upper bound ‖Rθ(T − t, T − s)‖2 ≤
de

√
d
(
A+E

λ

)
T

thanks to proposition 3 in supplementary material. Finally we
obtain: ∥∥∥ĥθ − h∗

θ

∥∥∥
L2

≤
√
d

(
Tde

√
d
(
A+E

λ

)
T
+ ‖Eθ‖L2

)∥∥∥X̂ −X∗
∥∥∥
L2

B.3. Asymptotic normality proof

The demonstration of continuity of some functionals useful for proposition 4.1
are left in the supplementary materials, as they require cumbersome compu-
tations and they does not provide particular insights in the mechanics of the
proofs.
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Proposition B.3. Under conditions 1-5, we have:

θ̂T − θ∗ = 2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
+ oP (1)

where Γ : C
(
[0 , T ] ,Rd

)
→ Rp is a linear functional defined by

Γ(X) =

∫ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T
(∫ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt.

(B.4)

Rθ∗ is defined by (3.1).

Proof. For the sake of notational simplicity here θ̂T is simply denoted θ̂.
The first order optimal condition is

∇θS(X̂; θ̂, λ) = 0

Equivalently, we have

∫ T

0

∂
(
Aθ̂(t).X̂ + rθ̂(t)

)
∂θ

T

hθ̂(t, X̂) +
∂hθ̂(t, X̂)

∂θ

T (
Aθ̂(t).X̂ + rθ̂(t)−

˙̂
X
)

+
1

λ

∂hθ̂(t, X̂)

∂θ

T

hθ̂(t, X̂) = 0 (B.5)

We use the following decomposition for Aθ̂(t).X̂ − ˙̂
X and hθ̂(t, X̂):

Aθ̂(t).X̂ + rθ̂(t)−
˙̂
X = Aθ̂(t)

(
X̂ −X∗

)
+

∂
(
Aθ̃(t).X

∗ + rθ̃(t)
)

∂θ

(
θ̂ − θ∗

)
+
(
Ẋ∗ − ˙̂

X
)

hθ̂(t, X̂) =
∂
(
hθ̃(t, X̂)

)
∂θ

(
θ̂ − θ∗

)
+Nθ∗(t).

(
X̂ −X∗

)
with θ̃ being a random point between θ∗ and θ̂ and N defined as in B.2. By
replacing in (B.5), we obtain:

∫ T

0

H1(t, θ̂, X̂)dt
(
θ̂ − θ∗

)
=

∫ T

0

H2(t, θ̂, X̂)
(
X̂ −X∗

)

−
∂
(
hθ̂(t, X̂)

)
∂θ

T (
Ẋ∗ − ˙̂

X
)
dt (B.6)

with

H1(t, θ̂, X̂) =
∂(Aθ̂

(t).X̂+r
θ̂
(t))

∂θ

T
∂h

θ̃
(t,X̂)

∂θ +
∂(hθ̂

(t,X̂))
T

∂θ

∂(Aθ̃
(t).X∗+r

θ̃
(t))

∂θ

+ 1
λ

∂(hθ̂
(t,X̂))
∂θ

T
∂h

θ̃
(t,X̂)

∂θ

H2(t, θ̂, X̂) =
∂(Aθ̂

(t).X̂+r
θ̂
(t))

∂θ

T

Nθ∗(t) +
∂(hθ̂

(t,X̂))
T

∂θ Aθ̂(t) +
1
λ

∂(hθ̂
(t,X̂))
∂θ

T

Nθ∗(t)
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Thanks to propositions in supplementary material, the following functionals⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D1 : θ �−→ (t �−→ Aθ(t))

D2 : (θ,X) �−→
(
t �−→ ∂(Aθ(t).X)

∂θ

)
D3 : (θ,X) �−→ (t �−→ hθ(t,X))

D4 : (θ,X) �−→
(
t �−→ ∂(hθ(t,X))

∂θ

)
are continuous on Θ × L2

(
[0 , T ] ,Rd

)
, and the continuous mapping theorem

implies that t �−→ H1(t, θ̂, X̂) and t �−→ H2(t, θ̂, X̂) converge in probability
in the L2 sense to the function t �−→ H1(t, θ

∗, X∗) and t �−→ H2(t, θ
∗, X∗).

So
∥∥∥H1(., θ̂, X̂)

∥∥∥
L2

converges in probability to ‖H1(., θ
∗, X∗)‖L2 and so it is

bounded. Finally, we have the convergence in probability of each entry of∫ T

0
H1(t, θ̂, X̂)dt to the corresponding entry to

∫ T

0
H1(t, θ

∗, X∗)dt. Moreover,
condition C5 assumes that the Hessian∫ T

0

H1(t, θ
∗, X∗)dt =

1

2

∂2S(X∗; θ∗, λ)

∂θT∂θ

is nonsingular at θ = θ∗. Finally, we have∫ T

0

H1(t, θ̂, X̂)dt
P−→ 1

2

∂2S(X∗; θ∗, λ)

∂θT∂θ

By an analogous reasoning, the asymptotic behavior of θ̂ − θ∗ is given by

2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1
(∫ T

0

H2(t, θ
∗, X∗)

(
X̂ −X∗

)
dt− ∂ (hθ∗(t,X∗))

∂θ

T(
Ẋ∗ − ˙̂

X
)
dt

)

and Integration By Part gives

∫ T

0
∂hθ∗ (t,X

∗)
∂θ

T (
Ẋ∗ − ˙̂

X
)
dt =

[
∂hθ∗ (t,X

∗)
∂θ

T (
X∗ − X̂

)]T
0

−
∫ T

0
d
dt

(
∂hθ∗ (t,X

∗)
∂θ

T
)(

X∗ − X̂
)
dt

But, as ∂h(T,θ∗,X∗)
∂θ = 0 and X̂(0) = x∗

0 we have:

∫ T

0

(
H2(t, θ

∗, X∗) + d
dt

(
∂hθ∗ (t,X

∗)
∂θ

T
))

.X(t)dt

=
∫ T

0

(
∂(Aθ∗(t).X

∗+rθ∗ (t))
∂θ + 1

λ
∂hθ∗ (t,X

∗)
∂θ

)T
(hθ∗(t,X)− Eθ∗(t).X(t)) dt

Hence we can write

θ̂ − θ∗ = 2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
+ oP (1)
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with

Γ(X) =

∫ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T
(∫ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt

where Rθ∗ is defined by (3.1).

Proposition B.4. Under conditions 1-8 and by defining Γ as in proposition
B.3 we have that Γ(X̂)− Γ(X∗) is asymptotically normal and Γ(X̂)− Γ(X∗) =
OP (n

−1/2)

Proof. This proposition is a direct consequence of Theorem 9 in [35]. The con-
ditions to be satisfied are

1. (Yi, ti) are i.i.d with V ar(Y | t) bounded.
2. E((Y −X∗(t))4 | t) is bounded, and V ar(Y | t) is bounded away from 0.
3. The support of t is a compact interval on which t has a probability density

function bounded away from 0.
4. There is v(t) such that E(v(t)v(t)T ) is finite and non-singular such that:

D(Γ)(X∗)(X∗) = E(v(t)X∗(t)) and D(Γ)(X∗)(pkK) = E(v(t)pkK(t)) for

all k and K and there is βK with E(‖v(t)− βKpK(t)‖22) → 0
5. X∗(t) = E(Y | t) is derivable of order s on the support of t.

Requirements 1,2,3 are direct consequences of conditions C6 and C7 (and the
solution is always defined on [0, T ]).

For the fourth requirement we consider the monodimensional case d = 1.
We know that Γ is linear and continuous on L2

(
[0, T ] ,Rd

)
thanks to con-

ditions C1 and C3-4 and hence differentiable with: D(Γ)(X∗)(X) = Γ(X) .
By the Riesz-Frechet representation theorem we have: v ∈ L2([0 , T ] ,R) s.t

Γ(X) =
∫ T

0
v(t)X(t)dt which verify the three conditions of the forth require-

ment. Starting from the mono-dimensional case, multi-dimensional case can be
made componentwise.

Requirement 5 is a simple consequence of the condition C8.

Appendix C: Gradient Computation : Adjoint Method &
Sensitivity equation

C.1. Notation and partial derivative computation

For optimization purpose we need to compute the gradient of S(X̂; θ, λ). For
this we present two methods: a direct approach using sensitivity equation and
a second one using adjoint method.

C.1.1. Row vector notation for the vector field of the general Riccati equation

We define the solution of the general Riccati equation in row formulation, we
introduce

Qθ(t) =
(
ĥθ

T
, (Er

θ )
T
)T

(t)
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with Er
θ :=

(
ET

θ,1, · · · , ET
θ,d

)T
the row formulation of Eθ, Eθ,i beeing the i− th

column of Eθ. It is a D := d2 + d sized function respecting the ODE :

Q̇θ = F (Qθ, θ, t)
Qθ(T ) = 0

by introducing the general vector field F :

F (Qθ, θ, t) =

(
G(Qθ, θ, t)
H(Qθ, θ)

)
with G and H defined by:

G(Qθ, θ, t) := −
(
Aθ(t)

T + Eθ

λ

)
ĥθ − Eθ

(
Aθ(t)X̂(t)− ˙̂

X(t) + rθ(t)
)

H(j−1)d+i(Qθ, θ) := δi,j − (AT
θ,iEj +AT

θ,jEθ,i +
1
λE

T
θ,iEθ,j)

and Aθ,i beeing the i− th column of Aθ.
We also introduce:

g(Qθ, θ, t) = −2
(
Aθ(t)X̂(t)− ˙̂

X(t) + rθ(t)
)T

ĥθ −
1

λ
ĥθ

T
ĥθ

in order to write our system under the row form:

S(X̂; θ, λ) :=
∫ T

0
g(Qθ(t), θ, t)dt{

Q̇θ = F (Qθ, θ, t)
Qθ(T ) = 0

(C.1)

For the next subsections we drop dependence in θ for Aθ, rθ, Eθ, ĥθ.

C.1.2. Partial derivative of Riccati vector field

In order to compute sensitivity equation or adjoint model we need to compute
∂g
∂θ (Qθ, θ, t),

∂g
∂Q (Qθ, θ, t),

∂F
∂θ (Qθ, θ, t) and

∂F
∂Q (Qθ, θ, t)

The computation for ∂g
∂θ (Qθ, θ, t),

∂g
∂Q (Qθ, θ, t) is straightforward

∂g

∂θ
(Qθ, θ, t) = −2ĥT

⎛⎝∂
(
A(t)X̂(t)

)
∂θ

+
∂r

∂θ
(t)

⎞⎠
∂g

∂Q
(Qθ, θ, t) =

⎛⎝−2

(
A(t)X̂(t)− ˙̂

X(t) + r(t) +
ĥ

λ

)T

, 01,d2

⎞⎠
For ∂F

∂θ (h,E
r, θ, t) and ∂F

∂Q (Rθ, θ, t) we obtain

∂F
∂θ (Qθ, θ, t) =

(
∂G
∂θ (Qθ, θ, t)
∂H
∂θ (Qθ, θ)

)
∂F
∂Q (Qθ, θ, t) =

(
−
(
A(t)T + E

λ

)
∂Gi

∂Er
j
(Qθ, θ, t)

0d2,d
∂H(Qθ,θ)

∂Er

)
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with:

∂Gi

∂Er
(k−1)d+h

(Qθ, θ, t) = −δi,h

(
ĥ
λ +A(t)X̂(t)− ˙̂

X(t) + r(t)
)
k

∂G
∂θ (Qθ, θ, t) = −

(
hT ∂Ai(t)

∂θ

)
1≤i≤d

− E

(
∂(A(t)X̂(t))

∂θ + ∂r(t)
∂θ

)
We also need to compute H(Qθ, θ) partial derivative w.r.t Er and θ. We have:(

∂H(Qθ, θ)

∂Er

)
(j−1)d+i

= −
(
0 At

j 0 At
i 0

)
− 1

λ

(
0 Et

j 0 Et
i 0

)
Because:

• ∂
∂Er

(
At

jEi +At
iEj

)
=
(
0 At

j 0 At
i 0

)
where At

j is in i−th position
and At

i is in j − th position.
• 1

λ
∂
∂E

(
Et

jEi

)
=
(
0 1

λE
t
j 0 0 0

)
+
(
0 0 1

λE
t
i 0 0

)
where Et

j

is in i− th position and Et
i is in j − th position.

And: (
∂H(Qθ, θ)

∂θ

)
(j−1)d+i

= −Et
i

∂Aj

∂θ
− Et

j

∂Ai

∂θ

• Because ∂
∂θ

(
At

jEi +At
iEj

)
= Et

i
∂Aj

∂θ +Et
j
∂Ai

∂θ where ∂Ai

∂θ =
(

∂Ai

∂θ1
· · · ∂Ai

∂θp

)
a d× p matrix

C.2. Gradient computation by sensitivity equation

By Gradient definition we have

∇θS(X̂; θ, λ) =

∫ T

0

∂g(Qθ(t), θ, t)

∂Q

∂Qθ(t)

∂θ
+

∂g(Qθ(t), θ, t)

∂θ
dt

With ∂Qθ(t)
∂θ solution of the sensitivity equation:

d

dt
(
∂Qθ(t)

∂θ
) =

∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
+

∂F

∂θ
(Qθ(t), θ, t)

And we know that Qθ(T ) = 0 so ∂Qθ(T )
∂θ = 0, hence we can obtain ∂Qθ(t)

∂θ by
solving the Cauchy problem:

d
dt (

∂Qθ(t)
∂θ ) = ∂F

∂Q (Qθ(t), θ, t)
∂Qθ(t)

∂θ + ∂F
∂θ (Qθ(t), θ, t)

∂Qθ(T )
∂θ = 0



Tracking for parameter estimation in linear ODEs 2945

C.3. Gradient computation by adjoint Method

Once again we have

∇θS(X̂; θ, λ) =

∫ T

0

∂g(Qθ(t), θ, t)

∂Q

∂Qθ(t)

∂θ
+

∂g(Qθ(t), θ, t)

∂θ
dt

with ∂Qθ(t)
∂θ solution of the sensitivity equation:

d

dt
(
∂Qθ(t)

∂θ
) =

∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
+

∂F

∂θ
(Qθ(t), θ, t)

If we premultiply the right and left term of the previous ODE by the D−sized
adjoint vector P (t) and then integrate we obtain∫ T

0

P (t).
d

dt
(
∂Qθ(t)

∂θ
)dt =

∫ T

0

P (t).
∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
dt

+

∫ T

0

P (t).
∂F

∂θ
(Qθ(t), θ, t)dt

Integration by part gives us∫ T

0

P (t).
d

dt
(
∂Qθ(t)

∂θ
)dt = P (T ).

∂Qθ(T )

∂θ
− P (0).

∂Qθ(0)

∂θ
−
∫ T

0

Ṗ (t).
∂Qθ(t)

∂θ
dt

We already know that ∂Qθ(T )
∂θ = 0 and if we take P (0) = 0 we obtain the

variational relation:

∫ T

0

(
Ṗ (t) + P (t).

∂F

∂Q
(Qθ(t), θ, t)

)
∂Qθ(t)

∂θ
dt+

∫ T

0

P (t).
∂F

∂θ
(Qθ(t), θ, t)dt = 0

and by imposing:

Ṗ (t) + P (t).
∂F

∂Q
(Qθ, θ, t) =

∂g(Qθ(t), θ, t)

∂Q

we deduce that∫ T

0

∂g(Qθ(t), θ, t)

∂Q

∂Qθ(t)

∂θ
dt = −

∫ T

0

P (t).
∂Q

∂θ
(Qθ(t), θ, t)dt

and so

∇θS(X̂; θ, λ) =

∫ T

0

∂g(Qθ(t), θ, t)

∂θ
− P (t).

∂F

∂θ
(Qθ(t), θ, t)dt

We propose here an alternative for gradient computation, we compute ∇θS(X̂;
θ, λ) by considering:

∇θS(X̂; θ, λ) =
∫ T

0
∂g(Qθ(t),θ,t)

∂θ − P (t).∂F∂θ (Qθ(t), θ, t)dt

Ṗ (t) = ∂g(Qθ(t),θ,t)
∂Q − P (t). ∂F∂Q (Qθ(t), θ, t)

P (0) = 0
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The interest here is computational, computing gradient by solving sensitivity
equation drives us to solve aD×p ODE system. Here the adjoint system defining
P is only of size D.

Appendix D: Asymptotic variance expression

We know asymptotically θ̂T − θ∗ behaves as:

2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
with:

1

2

∂2S(X∗; θ∗, λ)

∂θT∂θ
=

∂ (Aθ∗(t).X∗)

∂θ

T
∂hθ∗(t,X∗)

∂θ

+
∂ (hθ∗(t,X∗))T

∂θ

∂ (Aθ∗(t).X∗)

∂θ

+
1

λ

∂ (hθ∗(t,X∗))

∂θ

T
∂hθ∗(t,X∗)

∂θ

the hessian of the asymptotic criteria at θ = θ∗ and:

Γ(X)=

∫ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T
(∫ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt

a linear functional w.r.t to X so asymptotically:

V ar(θ̂T ) = 4
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

V ar(Γ(X̂))
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

If X̂ is a b-Splines basis decomposition estimator under the form
X̂ =

∑K
i=1 β̂iKpiK(t) we can formulate Γ as a linear function w.r.t coefficients

β̂iK :
Γ(X̂) := P (θ∗, X∗)β̂K

with:

Pi(θ,X) =

∫ T

0

(
∂ (Aθ(t).X)

∂θ
+

1

λ

∂hθ(t,X)

∂θ

)T
(∫ T

t

Rθ(T − t, T − s)piK(s)ds

)
dt

the i−th columns
Finally the asymptotic variance of θ̂T is equal to:

V ar(θ̂T ) = 4
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

P (θ∗, X∗)V ar(β̂K)P (θ∗, X∗)T
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

(D.1)
and we can use the consistent estimator:

̂
V ar(θ̂T ) = 4

∂2S(X̂; θ̂T , λ)

∂θT∂θ

−1

P (θ̂T , , X̂)
̂

V ar(β̂K)P (θ̂T , , X̂)T
∂2S(X̂; θ̂T , λ)

∂θT∂θ

−1
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