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Abstract: We introduce a new copula-based correction for generalized
linear mixed models (GLMMs) within the integrated nested Laplace ap-
proximation (INLA) approach for approximate Bayesian inference for la-
tent Gaussian models. While INLA is usually very accurate, some (rather
extreme) cases of GLMMs with e.g. binomial or Poisson data have been
seen to be problematic. Inaccuracies can occur when there is a very low
degree of smoothing or “borrowing strength” within the model, and we
have therefore developed a correction aiming to push the boundaries of the
applicability of INLA. Our new correction has been implemented as part of
the R-INLA package, and adds only negligible computational cost. Empir-
ical evaluations on both real and simulated data indicate that the method
works well.
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1. Introduction

Integrated Nested Laplace Approximations (INLA) were introduced by Rue,
Martino and Chopin (2009) as a tool to do approximate Bayesian inference
in latent Gaussian models (LGMs). The class of LGMs covers a large part of
models used today, and the INLA approach has been shown to be very accurate
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Fig 1. Minimal example defined in Equation (1). The histograms show posterior distributions
from a long MCMC run (ten chains of one million iterations each), the black curves show
the posteriors from INLA, while the red curves show the posteriors using our new correction
to INLA.

and extremely fast in most cases. Software is provided through the R-INLA
package, see http://www.r-inla.org.

An important subclass of LGMs is the rich family of generalized linear mixed
models (GLMMs) with Gaussian priors on fixed and random effects (Breslow
and Clayton, 1993; McCulloch, Searle and Neuhaus, 2008). The use of INLA for
Bayesian inference for GLMMs was investigated by Fong, Rue and Wakefield
(2010), who reanalyzed all of the examples from Breslow and Clayton (1993).
Fong, Rue and Wakefield (2010) found that INLA works very well in most
cases, but one of their examples shows some inaccuracy for binary data with
few or no replications. In this paper, we introduce a new correction term for
INLA, significantly improving accuracy while adding negligibly to the overall
computational cost.

To set the scene, we consider a minimal simulated example illustrating the
problem (postponing more thorough empirical evaluations until Section 3). Con-
sider the following model: For i = 1, 2, . . . , n, let Prob(yi = 0) = 1 − pi,
Prob(yi = 1) = pi, and

logit(pi) = β + ui, (1)

where ui ∼ N(0, σ2), iid. Let the precision σ−2 have a Gamma(1, 1) prior, while
the prior for β is N(0, 1). We simulated data from this model, setting n = 100,
σ2 = 1 and β = 2. Figure 1 shows the resulting posterior distributions for
the intercept β and for the log precision, log(σ−2), where the histograms show
results from long MCMC runs using JAGS (Plummer, 2013), the black curves
show posteriors from INLA without any correction, and the red curves show
results using the new correction defined in Section 2. While some of our later
examples show more dramatic differences between INLA and long MCMC runs,
these results exemplify quite well our general experience with using INLA for
“difficult” binary response GLMMs: Variances of both random and fixed effects
tends to be underestimated, while the means of the fixed effects are reasonably
well estimated.

http://www.r-inla.org
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Fig 2. Log-likelihood (top panel) and derivative of log-likelihood (bottom panel) for a single
Bernoulli observation as a function of the linear predictor in a logistic model.

One part of the problem is that the usual assumptions ensuring asymptotic
validity of the Laplace approximation do not hold here (for details on asymp-
totic results, see the discussion in Section 4 of Rue, Martino and Chopin (2009)).
The independence of the random effects make the effective number of param-
eters (Spiegelhalter et al., 2002) on the order of the number of data points. In
more complex models, there is often some amount of smoothing or replication
that alleviates the problem, but it may still occur. Except in the case of spline
smoothing models (Kauermann, Krivobokova and Fahrmeir, 2009), there is a
lack of strong asymptotic results for random effects models with a large effec-
tive number of parameters. In the simulation from model (1), the data provide
little information about the parameters, with the shape of the likelihood function
adding to the problem. Figure 2 illustrates the general problem. Here, the top
panel shows the log-likelihood of a single Bernoulli observation Y as a function
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of the linear predictor η, i.e. log(Prob(Y = 1)) = log(p) where logit(p) = η. The
bottom panel shows the corresponding derivative. We see that the log-likelihood
gets very flat (and the derivative near zero) for high values of η, so inference
will get difficult.

Bayesian and frequentist estimation for GLMMs with binary outcomes has
been given some attention in the recent literature (Capanu, Gönen and Begg,
2013; Grilli, Metelli and Rampichini, 2014; Sauter and Held, 2015), but a com-
putationally efficient Bayesian solution appropriate for the INLA approach has
been lacking. An alternative to our new approach would be to consider higher-
order Laplace approximations (Shun and McCullagh, 1995; Raudenbush, Yang
and Yosef, 2000; Evangelou, Zhu and Smith, 2011), other modifications to the
Laplace approximation (Ruli, Sartori and Ventura, 2015; Ogden, 2015), or ex-
pectation propagation-type solutions (Cseke and Heskes, 2010), but we view
them as too costly to be applicable for general use in INLA. The motivation
for using INLA is speed, so we see it as a design requirement for any correction
that it should add minimally to the running time of the algorithm.

We proceed as follows. In Section 2, we present a derivation of our new cor-
rection method. Section 3 presents empirical studies, both on real and simulated
data, showing that the method works well in practice. Finally Section 4 gives a
brief discussion and some concluding remarks.

2. Methodology

Consider a latent Gaussian model (Rue, Martino and Chopin, 2009), with hy-
perparameters θ = (θ1, . . . , θp)

′, latent field x = (x1, . . . , xn)
′ and observed data

y = {yi : i ∈ I} (for I ⊆ {1, . . . , n}), where the joint distribution may be
written as

π(x, θ, y) = π(θ)π(x|θ)
∏
i∈I

π(yi|xi, θ)

where π(x|θ) is a multivariate Gaussian density. We want to approximate the
posterior marginals π(xi|y) and π(θj |y). The Laplace approximation of π̃(θ|y)
is

π̃(θ|y) ∝ π(x, θ, y)

π̃G(x|θ, y)

∣∣∣∣
x=μ(θ)

(2)

where π̃G(x|θ, y) is a Gaussian approximation found by matching the mode and
the curvature at the mode of π(x|θ, y), and μ(θ) is the mean of the Gaussian
approximation.

Given π̃(θ|y) and some approximation π̃(xi|θ, y) (see below), the posterior
marginals of interest are calculated using numerical integration:

π̃(θj |y) =

∫
π̃(θ|y)dθ−j ,

π̃(xi|y) =

∫
π̃(xi|θ, y)π̃(θ|y)dθ. (3)
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In the current implementation of INLA, the π̃(xi|θ, y) used in (3) are approx-
imated using skew normal densities π̃SN(xi|θ, y) (Azzalini and Capitanio, 1999),
based on a second Laplace approximation; see Section 3.2.3 of Rue, Martino
and Chopin (2009) for details. Notice that, in Equation (2) we use a Gaussian
approximation π̃G(x|θ, y), with marginals π̃G(xi|θ, y), i = 1, . . . , n. Thus, both
πSN(xi|θ, y) and π̃G(x|θ, y) are approximations to the marginals π(xi|θ, y), but
the πSN(xi|θ, y) are more accurate since they are based on a second Laplace ap-
proximation. In (2) we need to approximate the full joint distribution π(x|θ, y).
Our basic idea is to use the improved approximations π̃SN (xi|θ, y) in order
to construct a better approximation to the joint distribution π(x|θ, y). We
aim for an approximation of π(x|θ, y) that retains the dependence structure
of the Gaussian approximation π̃G(x|θ, y), while having the improved marginals
π̃SN (xi|θ, y). This can be achieved by using a Gaussian copula.

Before we describe the copula construction, we need to define some notation.
First, for i = 1, . . . , n, let μ̃i(θ) and σ̃2

i (θ) denote the mean and variance of
each marginal π̃SN (xi|θ, y), and let Fi be the cumulative distribution function
corresponding to π̃SN (xi|θ, y). Second, let x̃i ∼ Fi and assume that F̃i is the
distribution of z̃i = (x̃i− μ̃i(θ))/σi(θ). As usual, Φ denotes the cumulative stan-
dard Gaussian distribution function. Furthermore, let μi(θ) and σ2

i (θ) denote
the marginal means and variances of the Gaussian approximation π̃G(x|θ, y),
let Q(θ) be the precision matrix of π̃G(x|θ, y), and let x = (x1, . . . , xn) where
x ∼ π̃G(x|θ, y), and define zi = (xi − μi(θ))/σi(θ), i = 1, . . . , n. Note that we
have σ̃2

i (θ) ≡ σ2
i (θ) from the definition of π̃SN (xi|θ, y) (the construction of the

skew normal changes the mean and adds skewness, but keeps the variance un-
changed; again, see Section 3.2.3 of Rue, Martino and Chopin (2009) for detailed
explanations), so from here on we denote both simply by σ2

i (θ).

We will now show how to construct a joint distribution having marginals
Fi and the dependence structure from π̃G(x|θ, y), using a Gaussian copula (see
e.g. Nelsen (2007) for a general introduction). First, note that Φ(zi) ∼ U[0, 1]
by the probability integral transform (PIT). Let z̃i = F̃−1

i (Φ(zi)). Applying
the inverse of the PIT then yields that z̃i ∼ F̃i, from which it follows that
x̃i = σi(θ)z̃i+ μ̃i(θ) is distributed as x̃i ∼ Fi, which is the marginal distribution
we want. Since we have only done marginal transformations, the dependence
structure of the original x = (x1, . . . xn)

′ is still intact. Thus, to construct the
new approximation to the joint distribution π̃(x|θ, y), we define the transformed
value x̃i as follows:

x̃i = σi(θ)F̃
−1
i

[
Φ

(
xi − μi(θ)

σi(θ)

)]
+ μ̃i(θ). (4)

We may simplify the construction above by replacing the F̃i in (4) by Φ.
This means that we do not correct for skewness, but we take advantage of
the improved mean μ̃i(θ) from π̃SN (xi|θ, y). We denote this as the “mean only”
correction. (We will later discuss the possibility of retaining F̃i as a skew normal;
this we denote as the “mean and skewness” correction.) In the simple “mean
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only” case, the transformation reduces to a shift in mean:

x̃i = xi − μi(θ) + μ̃i(θ),

the Jacobian is equal to one, and the transformed joint density function is a
multivariate normal with mean μ̃ and precision matrix Q, i.e.

log π̃(x̃|θ, y) = 1

2
log |Q(θ)| − 1

2
(x̃− μ̃(θ))′Q(θ)(x̃− μ̃(θ)) + constant (5)

In the Laplace approximation defined in Equation (2), both the numerator and
the denominator should be evaluated in the point x̃ = μ(θ), where μ(θ) =
(μ1(θ), . . . , μn(θ))

′ is the mean of the Gaussian approximation π̃G(x|θ, y). Thus,
the density functions above should be evaluated in x̃ = μ(θ). From Equation (2),
the original (uncorrected) log posterior is

log π̃(θ|y) = log π(x, θ, y)− log π̃G(x|θ, y) + constant (6)

evaluated at x = μ(θ), where

log π̃G(x|θ, y)|x=μ(θ) =
1

2
log |Q(θ)|+ constant, (7)

Comparing equations (5), (6), and (7), we see that the copula approximation can
be implemented by adding the term C(θ) to the already calculated log posterior
evaluated at μ(θ), where

C(θ) =
1

2
(μ(θ)− μ̃(θ))′Q(θ)(μ(θ)− μ̃(θ)).

The addition of the term C(θ) does not add significantly to the computational
cost of INLA — this simple operation is essentially free.

For the INLA implementation of the copula correction, we have found that
it is sufficient to only include fixed effects (including any random effects of
length one) in the calculation of C(θ). The effect of the correction is strongest
and most consistent for the fixed effects, while the (often very numerous) ran-
dom effects contribute very small individual effects to the correction, mainly
adding extraneous noise to the estimation. For these reasons, including only
fixed effects gives better numerical stability and also seems to provide a more
accurate approximation, while reducing computational costs. Conceptually, in-
cluding only the fixed effects involves finding Σ(θ) = Q(θ)−1, and then again
finding QJ (θ) = ΣJ (θ)−1 (where J is the index set of the fixed effects), which
might seem computationally costly. However, it can be done cheaply by using
the linear combination feature described in Section 4.4 of Martins et al. (2013): If
nf is the number of fixed effects, only the (parallel) solution of a nf -dimensional
linear system is needed.

Additionally, to guard against over-correction, we perform a soft thresholding
on C(θ), as follows: First we define a sigmoidal function f(t):

f(t) =
2

1 + exp(−2t)
− 1,
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which is increasing, has derivative equal to one at the point t = 0, and where
f(t) → 1 as t → ∞. Then we replace C(θ) by Ct(θ), where

Ct(θ) = uf(C(θ)/u),

for u = nfξ and with the “correction factor” parameter ξ > 0 determining the
degree of shrinkage (more shrinkage for smaller values of ξ). Since the function
f(t) is approximately linear with unit slope around zero, Ct(θ) will be close to
C(θ) for small and moderate values of C(θ), while larger values will be increas-
ingly shrunk toward zero. Note that since f(t) < 1 for all t, Ct(θ) < u. The
value of ξ does not have a large impact on the results unless a too small value
is chosen. Its main purpose is as a safeguard to avoid too large corrections in
very difficult cases. In our experience ξ = 1 gives too strong shrinkage, while for
example ξ = 100 corresponds to no shrinkage, so it seems clear that ξ should
be somewhere in between these extremes. We have found that ξ = 10 is a good
choice, letting the correction do its job while guarding against too large changes,
and we have used this value for all of the examples. Results appear to be very
robust to the exact value chosen for ξ. Note also that since the correction effect
u is scaled with the number nf of fixed effects, it is less surprising that a single
value for ξ could work well in a wide variety of circumstances.

As mentioned, we have also investigated a more general case of the copula
construction, where we retain Fi as a skew normal distribution, i.e. the CDF
of π̃SN (xi|θ, y). This results in a more complicated correction term Cskew(θ),
derived in Appendix A. We have not found any appreciable differences in the
accuracy compared to the simpler case without skewness, so we have concluded
that the non-skew version is preferable due to its simplicity. We will show both
the skew and the non-skew correction for the toenail data discussed in Sec-
tion 3.2, but otherwise we show only results from the simpler non-skew version.
We have tried both corrections on many (both real and simulated) data sets,
and never seen a significant difference in the results.

3. Empirical results

3.1. Have we solved the problems detected by Fong et al. (2010)?

As mentioned in the Introduction, Fong, Rue and Wakefield (2010) studied the
use of INLA for binary valued GLMMs, and they showed that the approxima-
tions were inaccurate in some cases. We have redone the simulation experiment
described on pages 10–14 of the Supplementary Material of Fong, Rue and
Wakefield (2010), both for INLA without any correction, and INLA with the
“mean only” correction described in Section 2.

In the original simulation study by Fong, Rue and Wakefield (2010), Yij are
iid Binomial(m, pij), with i = 1, . . . , 100 clusters, j = 1, . . . , 7 observations per
cluster, and m ∈ {1, 2, 4, 8}. Given xi = 0 for i ≤ 50 and xi = 1 otherwise,
and sampling times t = (t1, . . . , t7)

′ = (−3,−2,−1, 0, 1, 2, 3)′, the following two
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Table 1

Results from simulation study from model (8)

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

True values 1.000 1.000 0.000 -2.500 1.000 -1.000 -0.500
Uncorrected INLA 0.705 0.722 1.133 -2.494 0.998 -1.052 -0.486
Corrected INLA 0.952 0.850 0.775 -2.562 1.024 -1.080 -0.504
MCMC 0.946 0.849 0.773 -2.537 1.017 -1.081 -0.482

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.382 -0.403 0.390 0.120 -0.127 0.052 -0.016
Corrected INLA -0.003 0.000 0.002 -0.073 0.046 -0.002 -0.101

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.585 0.812 1.174 0.822 0.834 0.882 0.889
Corrected INLA 0.933 0.956 0.998 0.904 0.871 0.943 0.908

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 90.3% 90.0% 90.8% 92.6% 92.7% 93.5% 93.5%
Corrected INLA 94.2% 93.9% 94.4% 93.5% 93.1% 94.3% 93.7%

models were considered:

logit pij = β0 + β1tj + β2xi + β3tjxi + b0i (8)

logit pij = β0 + β1tj + β2xi + β3tjxi + b0i + b1itj , (9)

which corresponds to models (0.7) and (0.8) on page 11 of the Supplementary
Material of Fong, Rue and Wakefield (2010).

We first consider model (8). We only show the results for m = 1 (i.e. binary
data), as this is the most difficult case with the largest errors in the approx-
imation. The correction also works well for m > 1, but this case is easier to
deal with for INLA. This is seen empirically, and is also as expected based on
considering the asymptotic properties of the Laplace approximation: for m > 1
there is more “borrowing of strength”/replication, so the original approxima-
tion should work better. We use the same settings as Fong, Rue and Wake-
field (2010): b0i ∼iid N(0, σ2

0) where σ2
0 = 1, the prior Gamma(0.5, 0.0164)

for σ−2
0 and N(0, 1000) priors for the βi. The true values of the fixed effects

are β = (β0, β1, β2, β3)
′ = (−2.5, 1.0,−1.0,−0.5)′. We made 1,000 simulated

data sets, running INLA both with and without the new correction, as well as
very long MCMC chains using JAGS (each of the 1,000 datasets were run with
1,000,000 MCMC samples after a burn-in of 100,000, using every 100th sample).

Results from the simulation study are shown in Table 1. Note that the aim
here is to be as close as possible to the MCMC results, not the true values. The
upper part of the table shows averages of the posterior means over the 1,000
simulations. We see that INLA gets much closer to the MCMC results for all
parameters except β3, which is in any case reasonably close to the MCMC value.
The improvement is particularly large for the variance parameter. This is also
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Table 2

Summary statistics for computation times in seconds for each data set

Min. 1st Qu. Median Mean 3rd Qu. Max.
Uncorrected INLA 1.70 2.25 2.39 2.43 2.56 3.41
Corrected INLA 1.77 2.58 2.69 2.74 2.86 3.89

seen in the second panel, which shows (E(θINLA|y)−E(θMCMC|y))/sd(θMCMC|y)
for each parameter θ (averaged over the 1,000 simulations), i.e. the difference in
INLA and MCMC estimates scaled by the MCMC standard deviation. Here, the
random effects variance and the fixed effects except β3 are also more accurately
estimated. The third lower panel shows the ratios Var(θINLA|y)/Var(θMCMC|y);
here the correction improves the estimation of the variance for all parameters.
For σ2

0 , σ0 and log σ−2
0 we get very close to a ratio of one, and there are also

major improvements for the fixed effects variances. Finally, the bottom panel
shows average coverage of 95% (i.e., (q0.025, q0.975)) credible intervals from INLA
over the MCMC samples for each simulated data set. Clearly, coverage is im-
proved considerably by the correction. Table 2 reports summary statistics for the
computation times in seconds over the 1,000 data sets. Note that in this case
computational times are abnormally high due to somewhat extreme parame-
ter settings – INLA will usually be much faster. However, ratios of computing
times for the corrected vs the uncorrected versions should stay approximately
the same.

Appendix B contains additional simulation studies: Results from simulations
for model (9) for different values of the covariance matrix of (b0i, b1i)

′ are shown
in Appendix B.1. Furthermore, in Appendix B.2 we consider the effect of hav-
ing extremely few observations per cluster, while we in Appendix B.3 study
a misspecified model, simulating from model (9) while estimating model (8).
The correction appears to work well for all the different cases considered in
Appendix B.

3.2. What happens when the random effects variance increases?

We start by discussing the toenail data, which is a classical data set with a
binary response and repeated measures (De Backer et al., 1998; Lesaffre and
Spiessens, 2001). The data are from a clinical trial comparing two competing
treatments for toenail infection (dermatophyte onychomycosis). The 294 pa-
tients were randomized to receive either itraconazole or terbinafine, and the
outcome (either “not severe” infection, coded as 0, or “severe” infection, coded
as 1) was recorded at seven follow-up visits. Not all patients attended all the
follow-up visits, and the patients did not always appear at the scheduled time.
The exact time of the visits (in months since baseline) was recorded. For indi-
vidual i, visit j, with outcome yij , treatment Trti and time Timeij our model
is then

yij ∼ Bernoulli(pij)

logit pij = α0 + αTrtTrti + αTimeTimeij + αTTTrtiTimeij + bi

bi ∼ N(0, σ2).
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Fig 3. The top panel shows the posterior density of the hyperparameter (log precision) for
the toenail data. The histogram is from one million MCMC samples from JAGS, the blue
curve is from uncorrected INLA, the red curve from INLA with the “mean only” correction,
and the green curve from INLA with the “mean and skewness” correction. The bottom panel
shows the additive corrections to the log posterior for the toenail data for the “mean only”
and the “mean and skewness” correction.

Notice that this is the same model as model (8), except that the time variable
here varies over individuals. Normal priors with mean zero and variance 104

were used for α0, αTrt, αTime, and αTT . INLA underestimates σ2 quite severely.
The top panel of Figure 3 shows the different estimates of the posterior dis-
tribution of the log precision, log σ−2. The histogram shows the results from a
long MCMC run using JAGS, the black curve shows the posterior from INLA
without the correction, the red curve shows the simple (non-skew) version of the
INLA correction, while the green curve shows the INLA correction accounting
for skewness (as discussed in Appendix A). The bottom panel of Figure 3 shows
the additive correction to the log posterior density, as a function of the hyper-
parameter (log precision). We see that there is very little difference between the
two corrections.
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Fig 4. Posteriors densities of log precision from the toenail simulation experiment for dif-
ferent values of the random effects standard deviation σ (the value of σ is shown above each
histogram). The histograms are from long MCMC runs, uncorrected INLA are shown as black
curves, while the red curves shows INLA with the correction. Since the goal here is to study
the difference between MCMC and INLA, we omit axes – the relevant scale is given by the
MCMC variances, which are evident from the histograms.

For the toenail data, the estimated random effects standard deviation is ap-
proximately σ = 4, which is very high. To investigate how the copula correction
works as σ increases, we studied simulated data sets from the model above,
where we set σ to different values, and where the α parameters were fixed to
the values from a long MCMC run using the real toenail data (i.e., we simulate
only the outcome, keeping the covariates unchanged). Results are shown in Fig-
ure 4 for different values of σ ranging from σ = 1 to σ = 16. We clearly get very
accurate corrected posteriors for σ < 4. For σ ≥ 4, we gradually get a tendency
of under-correction.

3.3. Simulated example with Poisson likelihood

We shall now study the case where the data are Poisson distributed. We con-
sider a simple simulated (extreme) example in order to investigate how well
the correction works in the Poisson case. For i = 1, . . . , n we generated iid
yi ∼ Poisson(μi) where

log(μi) = β + ui,
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Fig 5. Posteriors densities of log precision from the Poisson simulation experiment for differ-
ent values of the intercept β (the value of β is shown above each histogram). The histograms
are from long MCMC runs, uncorrected INLA posteriors are shown as black curves, while
the red curves shows INLA posteriors with the correction.

with ui ∼ N(0, σ2). We chose n = 300 and σ2 = 1, a Gamma(1, 1) prior
for the precision σ−1, and a N(0, 1) prior for β. Figure 5 shows the results
for different values of the intercept β. Each histogram is based on ten parallell
MCMC runs using JAGS, each with 200,000 iterations after a burn-in of 100,000.
Here, reduction of β implies that estimation is more difficult, since negative β
with large absolute value will imply that the counts yi are very low, with many
zeroes, and the data are uninformative. We see that uncorrected INLA tends to
get less accurate as β moves towards more extreme values, while the correction
seems to work well.

3.4. What if the latent structures are more complicated?

Until now, we have considered fairly simple latent structures, where the ran-
dom effects have been iid (multivariate) normally distributed. The reader may
perhaps wonder if the generality implied by having “latent Gaussian models”
in the title is really justified – what if latent structures are more complicated,
with for example temporal or spatial structure?
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In fact, the complexity of the latent field is not particularly relevant for
the accuracy problems we study here. This can be seen by considering the basic
formulation of the latent Gaussian model together with the main building blocks
of the INLA machinery: Essentially, the latent structure is contained within
the Gaussian part, for which the computations are exact (and fast, since the
precision matrix of the Gaussian part will usually be sparse). In a sense, the
LGM approach separates the estimation in an “easy” (Gaussian) part and a
“difficult” part. It is perhaps somewhat counterintuitive at first sight that the
dynamic/time-series/spatial model constitutes the “easy” part! In this paper we
have in fact considered the “difficult” part, aiming to choose examples at the
boundary of what we considered to be feasible. Thus, we argue that our general
title is indeed justified.

We illustrate this with a simple simulated example where the latent structure
is auto-regressive of order one (AR1), using a similar setup as in the “minimal”
example presented in the Introduction. For i = 1, 2, . . . , n, let Prob(yi = 0) =
1− pi, Prob(yi = 1) = pi, and

logit(pi) = β + ui, (10)

where the ui are now given an AR1 model, as follows: u1 ∼ N(0, κ−1), ui =
ρui−1 + εi (where εi ∼ N(0, τ−1)) for i = 2, 3, . . . , n, where κ = τ(1− ρ2) is the
marginal precision. Define

θ1 = log(κ)

and

θ2 = log

(
1 + ρ

1− ρ

)

which is the parameterization used internally in INLA. We use a Gamma(1, 1)
prior for κ, and N(0, 1) priors for both β and θ2. Data was simulated from
model (10), using ρ = 0.5, τ = 1 and β = 2 as the true values. As in the
example in the Introduction, we made long MCMC runs and compared the
results to INLA both with and without the correction. The results are shown in
Figure 6. Again, it is clear that the overall accuracy of INLA is improved using
the correction.

4. Discussion

The binary (and, more generally, binomial) GLMMs discussed in Sections 3.1
and 3.2 are are important in many applications, particularly for biomedical
data. Poisson GLMMs are also of great interest, and among the difficult cases
here are point processes such as log-Gaussian Cox processes (Illian, Sørbye and
Rue, 2012; Simpson et al., 2013), where data are typically extremely sparse:
essentially there are ones at the observed points, and zeroes everywhere else.
Our example in Section 3.3 shows a stylized, extreme case of this type. Studying
the correction for the full log-Gaussian Cox process case could be a topic for
future work. Even though the point process case may be difficult, there will often
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Fig 6. AR1 example defined in Equation (10). The top panel displays results for the intercept
parameter β, the middle panel shows results for θ1 = log(κ), and the bottom panel show results

for θ2 = log
(

1+ρ
1−ρ

)
, the “internal ρ” of INLA. The histograms show posterior distributions

from a long MCMC run (ten chains of one million iterations each), the black curves show
the posterior from INLA, while the red curve shows the posteriors using our new correction
to INLA.
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be some degree of smoothing and/or replication making inference easier, so real
data sets should be less extreme than the simulated example in Section 3.3.

From the results in this paper, it appears that the copula correction is robust
and works well. There is no general theory guaranteeing that the method will
always work under all circumstances, but we feel that the intuition underlying
the method is quite strong. Since INLA for LGMs is quite accurate in most
cases, the correction is not needed in general, only for problematic cases such
as those discussed in this paper. Using the copula correction method, we can
stretch the limits of applicability of INLA, while maintaining its computational
speed.

Appendix A: Copula correction accounting for skewness

Let F̃i denote the “standardized” skew normal CDF corresponding to
π̃SN (xi|θ, y). We start by finding the Jacobian of the transformation defined
in Equation (4). Note first that, immediately from (4)

F̃i

(
x̃i − μ̃i(θ)

σi(θ)

)
= Φ

(
xi − μi(θ)

σi(θ)

)
.

Letting f̃i and φ denote the density functions corresponding to F̃i and Φ, dif-
ferentiating with respect to x̃i then gives

f̃i

(
x̃i − μ̃i(θ)

σi(θ)

)
1

σi(θ)
= φ

(
xi − μi(θ)

σi(θ)

)
∂xi

∂x̃i

1

σi(θ)

so

∂xi

∂x̃i
=

f̃i

(
x̃i−μ̃i(θ)

σi(θ)

)

φ
(

xi−μi(θ)
σi(θ)

) =
f̃i

(
x̃i−μ̃i(θ)

σi(θ)

)

φ
(
Φ−1

[
F̃i

(
x̃i−μ̃i(θ)

σi(θ)

)])

and the Jacobian of the transformation is
∏n

i=1
∂xi

∂x̃i
since ∂xi

∂x̃j
= 0 for i �= j and

∂xi

∂x̃i
≥ 0 for all i.

Note that (x − μ(θ))′Q(θ)(x − μ(θ)) =
∑n

i=1

∑n
j=1 Qij(θ)(xi − μi(θ))(xj −

μj(θ)) where Q(θ) = (Qij(θ)). Collecting the different terms and again substi-
tuting

xi − μi(θ)

σi(θ)
= Φ−1

[
F̃i

(
x̃i − μ̃i(θ)

σi(θ)

)]
,

the transformed joint log density π̃(x̃|θ, y) is therefore

log π̃(x̃|θ, y) = 1

2
log |Q(θ)|

−1

2

n∑
i=1

n∑
j=1

Qij(θ)σi(θ)σjΦ
−1

[
F̃i

(
x̃i − μ̃i(θ)

σi(θ)

)]
Φ−1

[
F̃j

(
x̃j − μ̃j(θ)

σj(θ)

)]

+
n∑

i=1

log f̃i

(
x̃i − μ̃i(θ)

σi(θ)

)
−

n∑
i=1

log φ

(
Φ−1

[
F̃i

(
x̃i − μ̃i(θ)

σi(θ)

)])
+ constant
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The original (uncorrected) log posterior is

log π̃(θ|y) = log π(x, θ, y)− log π̃F (x|θ, y) + constant,

evaluated at x = μ(θ) where log π̃F (x|θ, y)|x=μ(θ) = 1
2 log |Q(θ)| + constant.

Therefore, the version of the copula correction accounting for skewness amounts
to adding a term Cskew(θ) to the original log joint posterior, where

Cskew(θ) =

1

2

n∑
i=1

n∑
j=1

Qij(θ)σi(θ)σj(θ)Φ
−1

[
F̃i

(
μi(θ)− μ̃i(θ)

σi(θ)

)]
Φ−1

[
F̃j

(
μj(θ)− μ̃j(θ)

σj(θ)

)]

+

n∑
i=1

log f̃i

(
μi(θ)− μ̃i(θ)

σi(θ)

)
−

n∑
i=1

log φ

(
Φ−1

[
F̃i

(
μi(θ)− μ̃i(θ)

σi(θ)

)])
.

Calculations of F̃i and f̃i were done using the functions psn and dsn in the
R package sn (Azzalini, 2015).

Appendix B: Additional simulation results

B.1. Model with two dependent random effects

Here we study model (0.8) from page 11 of the Supplementary Material of Fong,
Rue and Wakefield (2010), where the observations Yij are iid Binomial(pij ,m),
with i = 1, . . . , 100 clusters, j = 1, . . . , 7 observations per cluster, xi = 0
for i ≤ 50 and xi = 1 otherwise, and sampling times t = (t1, . . . , t7)

′ =
(−3,−2,−1, 0, 1, 2, 3)′. The model is

logit pij = β0 + β1tj + β2xi + β3tjxi + b0i + b1itj , (11)

where the (b0i, b1i)
′ are iid bivariate normally distributed with mean (0, 0). Fol-

lowing Fong, Rue and Wakefield (2010), the prior for the precision matrix of
(b0i, b1i)

′ is a Wishart distribution with three degrees of freedom and diagonal
scale parameter with diagonal elements 0.17 and 0.025. The fixed effects are
given N(0, 1000) priors.

As in Fong, Rue and Wakefield (2010), we shall consider the case when b0i
and b1i are uncorrelated, but we shall here also consider the correlated case
with correlation ρ = 0.5 and ρ = 0.9, respectively. Additionally, we consider two
different settings of the marginal variances of b0i and b1i:

1. Var(b0i) = 0.5, Var(b1i) = 0.25 (as in Fong, Rue and Wakefield (2010)),
2. Var(b0i) = 3.0, Var(b1i) = 0.5.

For each of the two settings of the marginal variances above, we ran the
simulation experiment for the three settings of ρ (0, 0.5 and 0.9 correlation),
giving six simulation settings in total. For each simulation setting, we made 200
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simulated data sets, and ran two MCMC chains of 200,000 iterations each (after
discarding the first 100,000 iterations) for each simulated data set.

We have yet to specify the number of trials m in the binomial distribution.
It turns out that this model is nearly unidentifiable for m = 1, with very slow
MCMC convergence and with numerical instability when running INLA (both
with and without the correction). Therefore, we will here consider m > 1, and
show the results for m = 2. Results (not shown) are similar also for m > 2. As
expected, the estimation becomes more accurate as m grows, and for large m
(say, m ≥ 10) there is no need for the INLA correction anymore.

Results are shown in Tables 3–8 below, where we use the parameterization
(θ1, θ2, θ3) used internally by INLA, where θ1 = log(σ−2

0 ), θ2 = log(σ−2
1 ) and

θ3 = log
(

1+ρ
1−ρ

)
(note that θ1, θ2 and θ3 are defined on the whole real line). It

seems like the correction is working quite well, giving an overall improvement.

The coverage probabilities are improved in all cases expect for the log
(

1+ρ
1−ρ

)
with ρ ≤ 0.5, so we see an improvement for 38 of the 6 ∗ 7 = 42 combinations of
parameters and simulation settings. The variance ratio Var(INLA)/Var(MCMC)
is also improved for nearly all the cases, while the other performance measures
show an overall (though not uniform) improvement. The method does not seem
to deteriorate for higher values of the marginal variances and correlation.

Table 3

Results from simulation study (11) with Var(b0i) = 0.5, Var(b1i) = 0.25 and ρ = 0

Averages of posterior means:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

True values 0.693 1.386 0.000 -2.500 1.000 -1.000 -0.500

Uncorrected INLA 1.527 2.130 1.566 -2.664 1.021 -0.692 -0.428

Corrected INLA 1.380 2.016 1.313 -2.703 1.038 -0.704 -0.429

MCMC 1.449 2.022 1.707 -2.694 1.032 -0.707 -0.421

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.113 0.167 -0.124 0.125 -0.086 0.042 -0.038

Corrected INLA -0.086 -0.028 -0.329 -0.028 0.045 0.007 -0.047

Ratio of variances, Var(INLA)/Var(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.882 0.986 0.927 0.905 0.907 0.937 0.948

Corrected INLA 0.943 0.974 0.996 0.994 0.982 0.977 0.987

Average coverage of 95% intervals from INLA over MCMC samples:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 92.4% 93.3% 92.8% 93.7% 93.7% 94.2% 94.3%

Corrected INLA 92.9% 93.7% 90.0% 93.7% 93.8% 94.6% 94.7%
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Table 4

Results from simulation study (11) with Var(b0i) = 0.5, Var(b1i) = 0.25 and ρ = 0.5

Averages of posterior means:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

True values 0.693 1.386 1.099 -2.500 1.000 -1.000 -0.500

Uncorrected INLA 1.444 1.866 2.051 -2.623 1.139 -0.721 -0.590

Corrected INLA 1.366 1.786 1.900 -2.642 1.148 -0.730 -0.594

MCMC 1.363 1.790 2.176 -2.649 1.148 -0.731 -0.582

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.126 0.134 -0.118 0.111 -0.073 0.027 -0.041

Corrected INLA 0.013 -0.031 -0.252 0.035 -0.005 0.002 -0.066

Ratio of variances, Var(INLA)/Var(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.891 0.998 0.930 0.904 0.912 0.934 0.953

Corrected INLA 0.948 1.001 1.043 0.942 0.953 0.952 0.979

Average coverage of 95% intervals from INLA over MCMC samples:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 92.8% 94.1% 93.1% 93.8% 93.9% 94.2% 94.4%

Corrected INLA 93.7% 94.8% 92.8% 93.9% 94.1% 94.4% 94.6%

Table 5

Results from simulation study (11) with Var(b0i) = 0.5, Var(b1i) = 0.25 and ρ = 0.9

Averages of posterior means:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

True values 0.693 1.386 2.944 -2.500 1.000 -1.000 -0.500

Uncorrected INLA 0.700 1.530 3.133 -2.543 1.027 -0.947 -0.460

Corrected INLA 0.662 1.471 3.062 -2.553 1.031 -0.954 -0.465

MCMC 0.605 1.466 3.224 -2.569 1.037 -0.959 -0.448

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.195 0.130 -0.107 0.110 -0.080 0.034 -0.059

Corrected INLA 0.113 -0.007 -0.183 0.066 -0.049 0.013 -0.087

Ratio of variances, Var(INLA)/Var(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.958 1.023 0.943 0.905 0.921 0.920 0.950

Corrected INLA 0.989 1.050 1.087 0.925 0.951 0.932 0.973

Average coverage of 95% intervals from INLA over MCMC samples:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 93.4% 94.7% 93.7% 93.9% 94.1% 94.0% 94.3%

Corrected INLA 94.4% 95.4% 94.6% 94.1% 94.4% 94.2% 94.5%



2724 E. Ferkingstad and H. Rue

Table 6

Results from simulation study (11) with Var(b0i) = 3, Var(b1i) = 0.5 and ρ = 0

Averages of posterior means:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

True values -1.099 0.693 0.000 -2.500 1.000 -1.000 -0.500

Uncorrected INLA -0.749 0.962 -0.243 -2.274 0.956 -0.661 -0.584

Corrected INLA -0.809 0.850 -0.294 -2.318 0.978 -0.672 -0.592

MCMC -0.844 0.867 -0.250 -2.306 0.971 -0.652 -0.593

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.335 0.317 0.017 0.101 -0.106 -0.021 0.049

Corrected INLA 0.126 -0.058 -0.106 -0.039 0.047 -0.050 0.003

Ratio of variances, Var(INLA)/Var(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.953 0.986 0.984 0.902 0.908 0.886 0.903

Corrected INLA 0.951 0.969 0.950 0.950 0.978 0.933 0.976

Average coverage of 95% intervals from INLA over MCMC samples:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 92.9% 93.2% 94.8% 93.9% 93.9% 93.6% 93.8%

Corrected INLA 94.2% 94.7% 94.3% 94.3% 94.6% 94.2% 94.7%

Table 7

Results from simulation study (11) with Var(b0i) = 3, Var(b1i) = 0.5 and ρ = 0.5

Averages of posterior means:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

True values -1.099 0.693 1.099 -2.500 1.000 -1.000 -0.500

Uncorrected INLA -0.714 1.289 1.778 -2.151 1.039 -1.013 -0.559

Corrected INLA -0.816 1.106 1.348 -2.229 1.080 -1.041 -0.570

MCMC -0.816 1.172 1.643 -2.166 1.048 -1.003 -0.557

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.336 0.273 0.141 0.045 -0.061 -0.022 -0.010

Corrected INLA 0.002 -0.170 -0.306 -0.203 0.226 -0.091 -0.068

Ratio of variances, Var(INLA)/Var(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.954 1.030 0.977 0.892 0.905 0.901 0.934

Corrected INLA 0.934 0.964 0.761 0.984 1.031 0.976 1.041

Average coverage of 95% intervals from INLA over MCMC samples:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 92.8% 93.5% 93.7% 93.5% 93.6% 93.7% 94.2%

Corrected INLA 93.3% 94.2% 90.5% 93.7% 94.2% 94.6% 95.3%
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Table 8

Results from simulation study (11) with Var(b0i) = 3, Var(b1i) = 0.5 and ρ = 0.9

Averages of posterior means:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

True values -1.099 0.693 2.944 -2.500 1.000 -1.000 -0.500

Uncorrected INLA -1.087 1.025 4.483 -2.672 1.015 -0.876 -0.590

Corrected INLA -1.160 0.940 4.466 -2.699 1.018 -0.902 -0.606

MCMC -1.169 0.941 4.537 -2.703 1.039 -0.845 -0.572

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.288 0.192 -0.063 0.083 -0.150 -0.061 -0.079

Corrected INLA 0.032 -0.008 -0.075 0.011 -0.130 -0.111 -0.149

Ratio of variances, Var(INLA)/Var(MCMC):

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 0.938 0.961 0.883 0.883 0.897 0.887 0.932

Corrected INLA 0.978 1.019 1.060 0.933 0.943 0.937 0.986

Average coverage of 95% intervals from INLA over MCMC samples:

log(σ−2
0 ) log(σ−2

1 ) log
(

1+ρ
1−ρ

)
β0 β1 β2 β3

Uncorrected INLA 92.1% 92.6% 91.4% 93.5% 93.5% 93.5% 93.9%

Corrected INLA 93.5% 93.9% 93.3% 94.1% 94.1% 94.0% 94.3%

B.2. Model with very small number of observations per cluster

In the simulation study described in Section 3.1 we followed Fong, Rue and
Wakefield (2010) and used ni = 7 observations per cluster. As suggested by
a reviewer, we here consider the effect of having an even smaller value of ni.
We only show the results for the most extreme possible case, which is ni = 2.
Using the close to non-informative prior settings of model (8) in Section 3.1
(N(0, 1000) priors for the βi and a Gamma(0.5, 0.0164) prior for σ−2), the case
with ni = 7 is already quite difficult. Using the settings described in Section 3.1,
the simulated data are relatively low-informative, making stable and reliable
inference non-trivial.

In order to study the even more extreme case of ni = 2, more informative pri-
ors are needed, otherwise both MCMC and INLA will fail. For non-informative
(or very weakly informative) priors the model is just too close to being singular.
Therefore, to study the case of ni = 2, we use the following priors: N(0, 1) for
the βi, and also a N(0, 1) prior for the log precision, log(σ−2). We used sampling
times t = (t1, t2)

′ = (−3, 3)′, and 200 simulated data sets. One million MCMC
samples (after a burn-in of 100,000) were used for each data set.

The results are shown in Table 9. The correction seems to work well, giving
improved estimates in nearly all cases. Note in particular that the 95% coverage
is uniformly improved, and that all the coverage values are between 93.7% and
96.2% when using the correction.
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Table 9

Results from simulation study with ni = 2 observations per cluster

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

True values 1.000 1.000 0.000 -2.500 1.000 -1.000 -0.500

Uncorrected INLA 0.667 0.762 0.689 -1.990 0.837 -1.178 -0.423

Corrected INLA 1.104 0.933 0.358 -2.032 0.860 -1.219 -0.442

MCMC 0.956 0.899 0.392 -2.114 0.891 -1.230 -0.427

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.337 -0.362 0.355 0.250 -0.295 0.079 0.020

Corrected INLA 0.149 0.085 -0.041 0.163 -0.168 0.013 -0.059

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.393 0.592 0.841 0.876 0.823 0.902 0.873

Corrected INLA 2.030 1.360 1.127 0.920 0.896 0.933 0.907

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 89.2% 89.2% 89.5% 93.5% 92.6% 93.7% 93.3%

Corrected INLA 96.2% 95.9% 96.0% 94.2% 93.8% 94.1% 93.7%

B.3. Simulations with misspecified model

As suggested by a reviewer, we here study the effect of the case of estimation
from a misspecified model: We simulate data from the model (9) and estimate us-
ing model (8) (with prior settings as in Section 3.1). As before, we use extremely
long MCMC chains (one million iterations after discarding 100,000 iterations)
as the “gold standard”. We simulated 200 data sets from each of the six con-
figurations described in Appendix B.1. The results are shown in Tables 10–15.
Again, the correction improves the results in nearly all cases, so it does not seem
like using a misspecified model presents any particular problems for the INLA
correction.
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Table 10

Results from simulation study with incorrectly specified model; configuration with
Var(b0i) = 0.5, Var(b1i) = 0.25 and ρ = 0

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.424 0.536 1.778 -2.482 1.068 -0.833 -0.561

Corrected INLA 0.591 0.640 1.440 -2.541 1.093 -0.847 -0.579

MCMC 0.623 0.660 1.374 -2.533 1.091 -0.855 -0.562

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.378 -0.394 0.361 0.150 -0.147 0.042 0.007

Corrected INLA -0.069 -0.067 0.058 -0.019 0.011 0.012 -0.079

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.492 0.714 1.044 0.834 0.845 0.900 0.898

Corrected INLA 0.888 0.923 1.002 0.905 0.881 0.948 0.916

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 87.6% 87.3% 88.4% 92.8% 92.9% 93.7% 93.6%

Corrected INLA 93.9% 93.4% 93.9% 93.6% 93.3% 94.4% 93.8%

Table 11

Results from simulation study with incorrectly specified model; configuration with
Var(b0i) = 0.5, Var(b1i) = 0.25 and ρ = 0.5

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.983 0.890 0.585 -2.667 0.973 -1.060 -0.220

Corrected INLA 1.255 1.018 0.282 -2.737 0.996 -1.088 -0.230

MCMC 1.362 1.066 0.172 -2.746 1.004 -1.111 -0.214

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.498 -0.541 0.544 0.202 -0.202 0.084 -0.024

Corrected INLA -0.147 -0.150 0.140 0.017 -0.050 0.038 -0.069

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.592 0.854 1.318 0.780 0.812 0.850 0.869

Corrected INLA 0.851 0.943 1.059 0.851 0.842 0.905 0.888

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 89.3% 89.1% 89.6% 91.8% 92.2% 93.0% 93.3%

Corrected INLA 94.0% 93.8% 94.1% 93.1% 92.9% 93.8% 93.6%
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Table 12

Results from simulation study with incorrectly specified model; configuration with
Var(b0i) = 0.5, Var(b1i) = 0.25 and ρ = 0.9

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 1.071 0.937 0.451 -2.621 1.097 -1.243 -0.478

Corrected INLA 1.447 1.104 0.073 -2.713 1.133 -1.287 -0.501

MCMC 1.471 1.118 0.037 -2.698 1.132 -1.295 -0.478

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.496 -0.538 0.542 0.192 -0.208 0.081 0.004

Corrected INLA -0.039 -0.042 0.041 -0.046 0.015 0.008 -0.099

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.596 0.854 1.308 0.775 0.783 0.842 0.855

Corrected INLA 0.959 0.989 1.027 0.871 0.830 0.918 0.881

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 89.5% 89.4% 89.8% 91.7% 91.6% 92.9% 93.0%

Corrected INLA 95.0% 94.8% 95.0% 93.2% 92.6% 94.0% 93.4%

Table 13

Results from simulation study with incorrectly specified model; configuration with
Var(b0i) = 3, Var(b1i) = 0.5 and ρ = 0

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 2.644 1.587 -0.873 -2.461 0.960 -0.626 -0.486

Corrected INLA 2.938 1.671 -0.976 -2.508 0.977 -0.637 -0.497

MCMC 3.161 1.736 -1.053 -2.546 0.998 -0.623 -0.505

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.471 -0.500 0.523 0.215 -0.271 -0.005 0.103

Corrected INLA -0.211 -0.219 0.225 0.096 -0.153 -0.026 0.043

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.683 0.828 1.021 0.788 0.786 0.826 0.838

Corrected INLA 0.848 0.921 1.018 0.843 0.811 0.880 0.858

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 91.1% 91.1% 91.4% 91.8% 91.5% 92.6% 92.6%

Corrected INLA 94.2% 94.2% 94.4% 93.0% 92.4% 93.4% 93.1%
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Table 14

Results from simulation study with incorrectly specified model; configuration with
Var(b0i) = 3, Var(b1i) = 0.5 and ρ = 0.5

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 3.246 1.749 -1.056 -3.025 0.936 -0.642 -0.182

Corrected INLA 3.821 1.888 -1.203 -3.117 0.957 -0.676 -0.186

MCMC 3.990 1.938 -1.261 -3.144 0.978 -0.663 -0.183

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.506 -0.541 0.570 0.251 -0.277 0.032 0.009

Corrected INLA -0.144 -0.154 0.161 0.063 -0.139 -0.017 -0.012

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.643 0.802 1.020 0.761 0.793 0.806 0.830

Corrected INLA 0.922 0.973 1.050 0.846 0.826 0.885 0.860

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 90.4% 90.4% 90.7% 91.2% 91.6% 92.3% 92.6%

Corrected INLA 94.8% 94.8% 95.0% 93.0% 92.7% 93.5% 93.1%

Table 15

Results from simulation study with incorrectly specified model; configuration with
Var(b0i) = 3, Var(b1i) = 0.5 and ρ = 0.9

Averages of posterior means:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 3.622 1.854 -1.180 -3.170 1.160 -0.564 -0.213

Corrected INLA 4.118 1.973 -1.302 -3.253 1.185 -0.582 -0.220

MCMC 4.468 2.058 -1.389 -3.312 1.218 -0.576 -0.222

Comparison between INLA and MCMC, (E(INLA)-E(MCMC))/sd(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA -0.526 -0.564 0.595 0.276 -0.326 0.017 0.037

Corrected INLA -0.229 -0.240 0.248 0.117 -0.186 -0.008 0.007

Ratio of variances, Var(INLA)/Var(MCMC):

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 0.641 0.802 1.021 0.751 0.755 0.797 0.804

Corrected INLA 0.844 0.925 1.033 0.817 0.788 0.860 0.832

Average coverage of 95% intervals from INLA over MCMC samples:

σ2
0 σ0 log σ−2

0 β0 β1 β2 β3

Uncorrected INLA 90.1% 90.1% 90.4% 90.9% 90.6% 92.1% 92.1%

Corrected INLA 94.3% 94.2% 94.5% 92.6% 91.9% 93.1% 92.7%
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