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Abstract: In this manuscript, we study the statistical properties of convex
clustering. We establish that convex clustering is closely related to single
linkage hierarchical clustering and k-means clustering. In addition, we de-
rive the range of the tuning parameter for convex clustering that yields
a non-trivial solution. We also provide an unbiased estimator of the de-
grees of freedom, and provide a finite sample bound for the prediction error
for convex clustering. We compare convex clustering to some traditional
clustering methods in simulation studies.
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1. Introduction

Let X ∈ R
n×p be a data matrix with n observations and p features. We as-

sume for convenience that the rows of X are unique. The goal of clustering is to
partition the n observations into K clusters, D1, . . . , DK , based on some sim-
ilarity measure. Traditional clustering methods such as hierarchical clustering,
k-means clustering, and spectral clustering take a greedy approach (see, e.g.,
Hastie, Tibshirani and Friedman, 2009).

In recent years, several authors have proposed formulations for convex clus-
tering (Pelckmans et al., 2005; Hocking et al., 2011; Lindsten, Ohlsson and
Ljung, 2011; Chi and Lange, 2014a). Chi and Lange (2014a) proposed efficient
algorithms for convex clustering. In addition, Radchenko and Mukherjee (2014)
studied the theoretical properties of a closely related problem to convex clus-
tering, and Zhu et al. (2014) studied the condition needed for convex clustering
to recover the correct clusters.

2324

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1074
mailto:keanming@uw.edu
mailto:dwitten@uw.edu


Convex clustering 2325

Convex clustering of the rows, X1., . . . ,Xn., of a data matrix X involves
solving the convex optimization problem

minimize
U∈Rn×p

1

2

n∑
i=1

‖Xi. −Ui.‖22 + λQq(U), (1)

where Qq(U) =
∑

i<i′ ‖Ui. − Ui′.‖q for q ∈ {1, 2,∞}. The penalty Qq(U)
generalizes the fused lasso penalty proposed in Tibshirani et al. (2005), and

encourages the rows of Û, the solution to (1), to take on a small number of

unique values. On the basis of Û, we define the estimated clusters as follows.

Definition 1. The ith and i′th observations are estimated by convex clustering
to belong to the same cluster if and only if Ûi. = Ûi′..

The tuning parameter λ controls the number of unique rows of Û, i.e., the
number of estimated clusters. When λ = 0, Û = X, and so each observation
belongs to its own cluster. As λ increases, the number of unique rows of Û
will decrease. For sufficiently large λ, all rows of Û will be identical, and so all
observations will be estimated to belong to a single cluster. Note that (1) is

strictly convex, and therefore the solution Û is unique.
To simplify our analysis of convex clustering, we rewrite (1). Let x = vec(X) ∈

R
np and let u = vec(U) ∈ R

np, where the vec(·) operator is such that x(i−1)p+j =

Xij and u(i−1)p+j = Uij . Construct D ∈ R
[p·(n2)]×np, and define the index set

C(i, i′) such that the p × np submatrix DC(i,i′) satisfies DC(i,i′)u = Ui. −Ui′..

Furthermore, for a vector b ∈ R
p·(n2), we define

Pq(b) =
∑
i<i′

‖bC(i,i′)‖q. (2)

Thus, we have Pq(Du) =
∑

i<i′ ‖DC(i,i′)u‖q =
∑

i<i′ ‖Ui. − Ui′.‖q = Qq(U).
Problem (1) can be rewritten as

minimize
u∈Rnp

1

2
‖x− u‖22 + λPq(Du). (3)

When q = 1, (3) is an instance of the generalized lasso problem studied in
Tibshirani and Taylor (2011). Let û be the solution to (3). By Definition 1, the
ith and i′th observations belong to the same cluster if and only if DC(i,i′)û = 0.
In what follows, we work with (3) instead of (1) for convenience.

Let D† ∈ R
np×[p·(n2)] be the Moore-Penrose pseudo-inverse of D. We state

some properties of D and D† that will prove useful in later sections.

Lemma 1. The matrices D and D† have the following properties.

(i) rank(D) = p(n− 1).
(ii) D† = 1

nD
T .

(iii) (DTD)†DT = D† and (DDT )†D = (DT )†.
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(iv) D(DTD)†DT = 1
nDDT is a projection matrix onto the column space of

D.
(v) Define Λmin(D) and Λmax(D) as the minimum non-zero singular value and

maximum singular value of the matrix D, respectively. Then, Λmin(D) =
Λmax(D) =

√
n.

In this manuscript, we study the statistical properties of convex clustering. In
Section 2, we study the dual problem of (3) and use it to establish that convex
clustering is closely related to single linkage hierarchical clustering. In addition,
we establish a connection between k-means clustering and convex clustering. In
Section 3, we present some properties of convex clustering. More specifically,
we characterize the range of the tuning parameter λ in (3) such that convex
clustering yields a non-trivial solution. We also provide a finite sample bound
for the prediction error, and an unbiased estimator of the degrees of freedom for
convex clustering. In Section 4, we conduct numerical studies to evaluate the
empirical performance of convex clustering relative to some existing proposals.
We close with a discussion in Section 5.

2. Convex clustering, single linkage hierarchical clustering, and
k-means clustering

In Section 2.1, we study the dual problem of convex clustering (3). Through
its dual problem, we establish a connection between convex clustering and sin-
gle linkage hierarchical clustering in Section 2.2. We then show that convex
clustering is closely related to k-means clustering in Section 2.3.

2.1. Dual problem of convex clustering

We analyze convex clustering (3) by studying its dual problem. Let s, q ∈
{1, 2,∞} satisfy 1

s + 1
q = 1. For a vector b ∈ R

p·(n2), let P∗
q(b) denote the

dual norm of Pq(b), which takes the form

P∗
q(b) = max

i<i′
‖bC(i,i′)‖s. (4)

We refer the reader to Chapter 6 in Boyd and Vandenberghe (2004) for an
overview of the concept of duality.

Lemma 2. The dual problem of convex clustering (3) is

minimize
ν∈R

[p·(n2)]

1

2
‖x−DTν‖22 subject to P∗

q(ν) ≤ λ, (5)

where ν ∈ R
[p·(n2)] is the dual variable. Furthermore, let û and ν̂ be the solutions

to (3) and (5), respectively. Then,

Dû = Dx−DDT ν̂. (6)
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While (3) is strictly convex, its dual problem (5) is not strictly convex, sinceD
is not of full rank by Lemma 1(i). Therefore, the solution ν̂ to (5) is not unique.
Lemma 1(iv) indicates that 1

nDDT is a projection matrix onto the column space
of D. Thus, the solution Dû in (6) can be interpreted as the difference between
Dx, the pairwise difference between rows of X, and the projection of a dual
variable onto the column space of D.

We now consider a modification to the convex clustering problem (3). Recall
from Definition 1 that the ith and i’th observations are in the same estimated
cluster if DC(i,i′)û = 0. This motivates us to estimate γ = Du directly by
solving

minimize
γ∈R

[p·(n2)]

1

2
‖Dx− γ‖22 + λPq(γ). (7)

We establish a connection between (3) and (7) by studying the dual problem
of (7).

Lemma 3. The dual problem of (7) is

minimize
ν′∈R

[p·(n2)]

1

2
‖Dx− ν′‖22 subject to P∗

q(ν
′) ≤ λ, (8)

where ν ′ ∈ R
[p·(n2)] is the dual variable. Furthermore, let γ̂ and ν̂ ′ be the solu-

tions to (7) and (8), respectively. Then,

γ̂ = Dx− ν̂′. (9)

Comparing (6) and (9), we see that the solutions to convex clustering (3) and
the modified problem (7) are closely related. In particular, both Dû in (6) and
γ̂ in (9) involve taking the difference between Dx and some function of a dual
variable that has P∗

q(·) norm less than or equal to λ. The main difference is that
in (6), the dual variable is projected into the column space of D.

Problem (7) is quite simple, and in fact it amounts to a thresholding operation
on Dx when q = 1 or q = 2, i.e., the solution γ̂ is obtained by performing
soft thresholding on Dx, or group soft thresholding on DC(i,i′)x for all i <
i′, respectively (Bach et al., 2011). When q = ∞, an efficient algorithm was
proposed by Duchi and Singer (2009).

2.2. Convex clustering and single linkage hierarchical clustering

In this section, we establish a connection between convex clustering and single
linkage hierarchical clustering. Let γ̂q be the solution to (7) with Pq(·) norm
and let s, q ∈ {1, 2,∞} satisfy 1

s +
1
q = 1. Since (7) is separable in γC(i,i′) for all

i < i′, by Lemma 2.1 in Haris, Witten and Simon (2015), it can be verified that

γ̂q
C(i,i′) = 0 if and only if ‖Xi. −Xi′.‖s ≤ λ. (10)
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It might be tempting to conclude that a pair of observations (i, i′) belong to the
same cluster if γ̂q

C(i,i′) = 0. However, by inspection of (10), it could happen that

γ̂q
C(i,i′) = 0 and γ̂q

C(i′,i′′) = 0, but γ̂q
C(i,i′′) �= 0.

To overcome this problem, we define the n× n adjacency matrix Aq(λ) as

[Aq(λ)]ii′ =

⎧⎪⎨
⎪⎩
1 if i = i′,

1 if γ̂q
C(i,i′) = 0,

0 if γ̂q
C(i,i′) �= 0.

(11)

Subject to a rearrangement of the rows and columns, Aq(λ) is a block-diagonal
matrix with some number of blocks, denoted as R. On the basis of Aq(λ), we
define R estimated clusters: the indices of the observations in the rth cluster
are the same as the indices of the observations in the rth block of Aq(λ).

We now present a lemma on the equivalence between single linkage hierarchi-
cal clustering and the clusters identified by (7) using (11). The lemma follows
directly from the definition of single linkage clustering (see, for instance, Chapter
3.2 of Jain and Dubes, 1988).

Lemma 4. Let Ê1, . . . , ÊR index the blocks within the adjacency matrix Aq(λ).

Let s satisfy 1
s +

1
q = 1. Let D̂1, . . . , D̂K denote the clusters that result from per-

forming single linkage hierarchical clustering on the dissimilarity matrix defined
by the pairwise distance between the observations ‖Xi. −Xi′‖s, and cutting the
dendrogram at the height of λ > 0. Then K = R, and there exists a permutation
π : {1, . . . ,K} → {1, . . . ,K} such that Dk = Eπ(k) for k = 1, . . . ,K.

In other words, Lemma 4 implies that single linkage hierarchical clustering and
(7) yield the same estimated clusters. Recalling the connection between (3) and
(7) established in Section 2.1, this implies a close connection between convex
clustering and single linkage hierarchical clustering.

2.3. Convex clustering and k-means clustering

We now establish a connection between convex clustering and k-means cluster-
ing. k-means clustering seeks to partition the n observations into K clusters by
minimizing the within cluster sum of squares. That is, the clusters are given by
the partition D̂1, . . . , D̂K of {1, . . . , n} that solves the optimization problem

minimize
μ1,...,μK∈Rp,D1,...,DK

K∑
k=1

∑
i∈Dk

‖Xi. − μk‖22. (12)

We consider convex clustering (1) with q = 0,

minimize
U∈Rn×p

1

2

n∑
i=1

‖Xi. −Ui.‖22 + λ
∑
i<i′

I(Ui. �= Ui′.), (13)
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where I(Ui. �= Ui′.) is an indicator function that equals one if Ui. �= Ui′.. Note
that (13) is no longer a convex optimization problem.

We now establish a connection between (12) and (13). For a given value of
λ, (13) is equivalent to

minimize
U∈Rn×p,K,μ1,...,μK∈Rp,E1,...,EK

1

2

K∑
k=1

∑
i∈Ek

‖Xi.−μk‖22+λ
∑
i<i′

K∑
k=1

I(i∈Ek, i
′ /∈ Ek),

(14)
subject to the constraint that {μ1, . . . ,μK} are the unique rows of U and Ek =
{i : Ui. = μk}. Note that I(i ∈ Ek, i

′ /∈ Ek) is an indicator function that equals
to one if i ∈ Ek and i′ /∈ Ek. Thus, we see from (12) and (14) that k-means
clustering is equivalent to convex clustering with q = 0, up to a penalty term
λ
∑

i<i′
∑K

k=1 I(i ∈ Ek, i
′ /∈ Ek).

To interpret the penalty term, we consider the case when there are two clus-
ters E1 and E2. The penalty term reduces to λ|E1| · (n − |E1|), where |E1| is
the cardinality of the set E1. The term λ|E1| · (n − |E1|) is minimized when
|E1| is either 1 or n − 1, encouraging one cluster taking only one observation.
Thus, compared to k-means clustering, convex clustering with q = 0 has the
undesirable behavior of producing clusters whose sizes are highly unbalanced.

3. Properties of convex clustering

We now study the properties of convex clustering (3) with q ∈ {1, 2}. In Sec-
tion 3.1, we establish the range of the tuning parameter λ in (3) such that
convex clustering yields a non-trivial solution with more than one cluster. We
provide finite sample bounds for the prediction error of convex clustering in
Section 3.2. Finally, we provide unbiased estimates of the degrees of freedom for
convex clustering in Section 3.3.

3.1. Range of λ that yields non-trivial solution

In this section, we establish the range of the tuning parameter λ such that
convex clustering (3) yields a solution with more than one cluster.

Lemma 5. Let

λupper :=

⎧⎪⎨
⎪⎩
min
ω

∥∥ 1
nDx+

(
I− 1

nDDT
)
ω
∥∥
∞ for q = 1,

min
ω

{
max
i<i′

{∥∥∥( 1
nDx+

(
I− 1

nDDT
)
ω
)
C(i,i′)

∥∥∥
2

}}
for q = 2.

(15)
Convex clustering (3) with q = 1 or q = 2 yields a non-trivial solution of more
than one cluster if and only if λ < λupper.

By Lemma 5, we see that calculating λupper boils down to solving a convex
optimization problem. This can be solved using a standard solver such as CVX in



2330 K.M. Tan and D. Witten

MATLAB. In the absence of such a solver, a loose upper bound on λupper is given
by ‖ 1

nDx‖∞ for q = 1, or max
i<i′

‖ 1
nDC(i,i′)x‖2 for q = 2.

Therefore, to obtain the entire solution path of convex clustering, we need
only consider values of λ that satisfy λ ≤ λupper.

3.2. Bounds on prediction error

In this section, we assume the model x = u + ε, where ε ∈ R
np is a vector of

independent sub-Gaussian noise terms with mean zero and variance σ2, and u
is an arbitrary np-dimensional mean vector. We refer the reader to pages 24-25
in Boucheron, Lugosi and Massart (2013) for the properties of sub-Gaussian
random variables. We now provide finite sample bounds for the prediction error
of convex clustering (3). Let λ be the tuning parameter in (3) and let λ′ = λ

np .

Lemma 6. Suppose that x = u + ε, where ε ∈ R
np and the elements of ε are

independent sub-Gaussian random variables with mean zero and variance σ2.

Let û be the estimate obtained from (3) with q = 1. If λ′ ≥ 4σ

√
log(p·(n2))

n3p2 , then

1

2np
‖û− u‖22 ≤ 3λ′

2
‖Du‖1 + σ2

[
1

n
+

√
log(np)

n2p

]

holds with probability at least 1− 2

p·(n2)
−exp

{
−min

(
c1 log(np), c2

√
p log(np)

)}
,

where c1 and c2 are positive constants appearing in Lemma 10.

We see from Lemma 6 that the average prediction error is bounded by the oracle
quantity ‖Du‖1 and a second term that decays to zero as n, p → ∞. Convex
clustering with q = 1 is prediction consistent only if λ′‖Du‖1 = o (1). We now
provide a scenario for which λ′‖Du‖1 = o (1) holds.

Suppose that we are in the high-dimensional setting in which p > n and the
true underlying clusters differ only with respect to a fixed number of features
(Witten and Tibshirani, 2010). Also, suppose that each element of Du — that
is, Uij−Ui′j — is of order O(1). Therefore, ‖Du‖1 = O(n2), since by assumption
only a fixed number of features have different means across clusters. Assume that√

n log(p·(n2))
p2 = o(1). Under these assumptions, convex clustering with q = 1 is

prediction consistent.
Next, we present a finite sample bound on the prediction error for convex

clustering with q = 2.

Lemma 7. Suppose that x = u + ε, where ε ∈ R
np and the elements of ε are

independent sub-Gaussian random variables with mean zero and variance σ2.

Let û be the estimate obtained from (3) with q = 2. If λ′ ≥ 4σ

√
log(p·(n2))

n3p , then

1

2np
‖û− u‖22 ≤ 3λ′

2

∑
i<i′

‖DC(i,i′)u‖2 + σ2

[
1

n
+

√
log(np)

n2p

]
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holds with probability at least 1− 2

p·(n2)
−exp

{
−min

(
c1 log(np), c2

√
p log(np)

)}
,

where c1 and c2 are positive constants appearing in Lemma 10.

Under the scenario described above, ‖DC(i,i′)u‖2 = O(1), and therefore∑
i<i′ ‖DC(i,i′)u‖2 = O(n2). Convex clustering with q = 2 is prediction con-

sistent if

√
n log(p·(n2))

p = o(1).

3.3. Degrees of freedom

Convex clustering recasts the clustering problem as a penalized regression prob-
lem, for which the notion of degrees of freedom is established (Efron, 1986).
Under this framework, we provide an unbiased estimator of the degrees of free-
dom for clustering. Recall that û is the solution to convex clustering (3). Suppose
that Var(x) = σ2I. Then, the degrees of freedom for convex clustering is de-
fined as 1

σ2

∑np
j=1 Cov(ûj , xj) (see, e.g., Efron, 1986). An unbiased estimator of

the degrees of freedom for convex clustering with q = 1 follows directly from
Theorem 3 in Tibshirani and Taylor (2012).

Lemma 8. Assume that x ∼ MVN(u, σ2I), and let û be the solution to (3)
with q = 1. Furthermore, let B̂1 = {j : (Dû)j �= 0}. We define the matrix D−B̂1

by removing the rows of D that correspond to B̂1. Then

d̂f1 = tr
(
I−DT

−B̂1
(D−B̂1

DT
−B̂1

)†D−B̂1

)
(16)

is an unbiased estimator of the degrees of freedom of convex clustering with
q = 1.

The following corollary follows directly from Corollary 1 in Tibshirani and Tay-
lor (2011).

Corollary 1. Assume that x ∼ MVN(u, σ2I), and let û be the solution to (3)
with q = 1. The fit û has degrees of freedom

df1(û) = E [number of unique elements in û] .

There is an interesting interpretation of the degrees of freedom estimator for
convex clustering with q = 1. Suppose that there are K estimated clusters, and
all elements of the estimated means corresponding to the K estimated clusters
are unique. Then the degrees of freedom is Kp, the product of the number of
estimated clusters and the number of features.

Next, we provide an unbiased estimator of the degrees of freedom for convex
clustering with q = 2.

Lemma 9. Assume that x ∼ MVN(u, σ2I), and let û be the solution to (3) with
q = 2. Furthermore, let B̂2 = {(i, i′) : ‖DC(i,i′)û‖2 �= 0}. We define the matrix

D−B̂2
by removing rows of D that correspond to B̂2. Let P =
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I−DT

−B̂2
(D−B̂2

DT
−B̂2

)†D−B̂2

)
be the projection matrix onto the complement

of the space spanned by the rows of D−B̂2
. Then

d̂f2 = tr

⎛
⎝[

I+ λP
∑

(i,i′)∈B̂2

(
DT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖2

−
DT

C(i,i′)DC(i,i′)ûû
TDT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖32

)]−1

P

⎞
⎠ (17)

is an unbiased estimator of the degrees of freedom of convex clustering with
q = 2.

When λ = 0, ‖DC(i,i′)û‖2 �= 0 for all i < i′. Therefore, P = I ∈ R
np×np and

the degrees of freedom estimate is equal to tr(I) = np. When λ is sufficiently
large that B̂2 is an empty set, one can verify that P = I − DT (DDT )†D is
a projection matrix of rank p, using the fact that rank(D) = p(n − 1) from

Lemma 1(i). Therefore d̂f2 = tr(P) = p.
We now assess the accuracy of the proposed unbiased estimators of the de-

grees of freedom. We simulate Gaussian clusters with K = 2 as described in
Section 4.1 with n = p = 20 and σ = 0.5. We perform convex clustering with
q = 1 and q = 2 across a fine grid of tuning parameters λ. For each λ, we
compare the quantities (16) and (17) to

1

σ2

np∑
j=1

(ûj − uj)(xj − uj), (18)

which is an unbiased estimator of the true degrees of freedom,
1
σ2

∑np
j=1 Cov(ûj , xj), averaged over 500 data sets. In addition, we plot the point-

wise intervals of the estimated degrees of freedom (mean ± 2 × standard devia-
tion). Note that (18) cannot be computed in practice, since it requires knowledge
of the unknown quantity u. Results are displayed in Figure 1. We see that the
estimated degrees of freedom are quite close to the true degrees of freedom.

4. Simulation studies

We compare convex clustering with q = 1 and q = 2 to the following proposals:

1. Single linkage hierarchical clustering with the dissimilarity matrix defined
by the Euclidean distance between two observations.

2. The k-means clustering algorithm (Lloyd, 1982).
3. Average linkage hierarchical clustering with the dissimilarity matrix de-

fined by the Euclidean distance between two observations.

We apply convex clustering (3) with q = {1, 2} using the R package cvxclustr
(Chi and Lange, 2014b). In order to obtain the entire solution path for convex



Convex clustering 2333

Fig 1. We compare the true degrees of freedom of convex clustering (x-axis), given in (18),
to the proposed unbiased estimators of the degrees of freedom (y-axis), given in Lemmas 8
and 9. Panels (a) and (b) contain the results for convex clustering with q = 1 and q = 2,
respectively. The red line is the mean of the estimated degrees of freedom for convex clustering
over 500 data sets, obtained by varying the tuning parameter λ. The shaded bands indicate
the point-wise intervals of the estimated degrees of freedom (mean ± 2 × standard deviation),
over 500 data sets. The black line indicates y = x.

clustering, we use a fine grid of λ values for (3), in a range guided by Lemma 5.
We apply the other methods by allowing the number of clusters to vary over
a range from 1 to n clusters. To evaluate and quantify the performance of the
different clustering methods, we use the Rand index (Rand, 1971). A high value
of the Rand index indicates good agreement between the true and estimated
clusters.

We consider two different types of clusters in our simulation studies: Gaussian
clusters and non-convex clusters.

4.1. Gaussian clusters

We generate Gaussian clusters with K = 2 and K = 3 by randomly assigning
each observation to a cluster with equal probability. For K = 2, we create the
mean vectors μ1 = 1p and μ2 = −1p. For K = 3, we create the mean vectors
μ1 = −3 ·1p, μ2 = 0p, and μ3 = 3 ·1p. We then generate the n× p data matrix
X according to Xi. ∼ MVN(μk, σ

2I) for i ∈ Dk. We consider n = p = 30 and
σ = {1, 2}. The Rand indices for K = 2 and K = 3, averaged over 200 data
sets, are summarized in Figures 2 and 3, respectively.

Recall from Section 2.2 that there is a connection between convex clustering
and single linkage clustering. However, we note that the two clustering methods
are not equivalent. From Figure 2(a), we see that single linkage hierarchical
clustering performs very similarly to convex clustering with q = 2 when the
signal-to-noise ratio is high. However, from Figure 2(b), we see that single linkage
hierarchical clustering outperforms convex clustering with q = 2 when the signal-
to-noise ratio is low.
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Fig 2. Simulation results for Gaussian clusters with K = 2, n = p = 30, averaged over
200 data sets, for two noise levels σ = {1, 2}. Colored lines correspond to single linkage
hierarchical -clustering ( ), average linkage hierarchical clustering ( ), k-means
clustering (1074i03), convex clustering with q = 1 ( ), and convex clustering with q = 2
( ).

Fig 3. Simulation results for Gaussian clusters with K = 3, n = p = 30, averaged over 200
data sets, for two noise levels σ = {1, 2}. Line types are as described in Figure 2.

We also established a connection between convex clustering and k-means
clustering in Section 2.3. From Figure 2(a), we see that k-means clustering and
convex clustering with q = 2 perform similarly when two clusters are estimated
and the signal-to-noise ratio is high. In this case, the first term in (14) can
be made extremely small if the clusters are correctly estimated, and so both
k-means and convex clustering yield the same (correct) cluster estimates. In
contrast, when the signal-to-noise ratio is low, the first term in (14) is relatively
large regardless of whether or not the clusters are correctly estimated, and so
convex clustering focuses on minimizing the penalty term in (14). Therefore,
when convex clustering with q = 2 estimates two clusters, one cluster is of
size one and the other is of size n − 1, as discussed in Section 2.3. Figure 2(b)
illustrates this phenomenon when both methods estimate two clusters: convex
clustering with q = 2 has a Rand index of approximately 0.5 while k-means
clustering has a Rand index of one.

All methods outperform convex clustering with q = 1. Moreover, k-means
clustering and average linkage hierarchical clustering outperform single linkage
hierarchical clustering and convex clustering when the signal-to-noise ratio is
low. This suggests that the minimum signal needed for convex clustering to
identify the correct clusters may be larger than that of average linkage hier-
archical clustering and k-means clustering. We see similar results for the case
when K = 3 in Figure 3.
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Fig 4. Illustrations of two circles clusters and two half-moons clusters with n = 100.

Fig 5. Simulation results for the two circles and two half-moons clusters with n = 100,
averaged over 200 data sets. Line types are as described in Figure 2.

4.2. Non-convex clusters

We consider two types of non-convex clusters: two circles clusters (Ng, Jordan
and Weiss, 2002) and two half-moon clusters (Hocking et al., 2011; Chi and
Lange, 2014a). For two circles clusters, we generate 50 data points from each of
the two circles that are centered at (0, 0) with radiuses two and 10, respectively.
We then add Gaussian random noise with mean zero and standard deviation 0.1
to each data point. For two half-moon clusters, we generate 50 data points from
each of the two half-circles that are centered at (0, 0) and (30, 3) with radius 30,
respectively. We then add Gaussian random noise with mean zero and standard
deviation one to each data point. Illustrations of both types of clusters are given
in Figure 4. The Rand indices for both types of clusters, averaged over 200 data
sets, are summarized in Figure 5.

We see from Figure 5 that convex clustering with q = 2 and single linkage
hierarchical clustering have similar performance, and that they outperform all of
the other methods. Single linkage hierarchical clustering is able to identify non-
convex clusters since it is an agglomerative algorithm that merges the closest
pair of observations not yet belonging to the same cluster into one cluster.
In contrast, average linkage hierarchical clustering and k-means clustering are
known to perform poorly on identifying non-convex clusters (Ng, Jordan and
Weiss, 2002; Hocking et al., 2011). Again, convex clustering with q = 1 has the
worst performance.
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Table 1

Simulation study to evaluate the performance of the extended BIC for tuning parameter
selection for convex clustering with q = 2. Results are reported over 100 simulated data sets.

We report the proportion of data sets for which the correct number of clusters was
identified, and the average Rand index.

eBIC2,γ Correct number of clusters Rand index
Gaussian clusters, K = 2 γ = 0 0.94 0.9896

γ = 0.5 0.98 0.9991
γ = 0.75 0.99 0.9995
γ = 1 0.99 0.9995

Gaussian clusters, K = 3 γ = 0 0.06 0.7616
γ = 0.5 0.59 0.9681
γ = 0.75 0.70 0.9768
γ = 1 0.84 0.9873

4.3. Selection of the tuning parameter λ

Convex clustering (3) involves a tuning parameter λ, which determines the es-
timated number of clusters. Some authors have suggested a hold-out validation
approach to select tuning parameters for clustering problems (see, for instance,
Tan and Witten, 2014; Chi, Allen and Baraniuk, 2014). In this section, we
present an alternative approach for selecting λ using the unbiased estimators of
the degrees of freedom derived in Section 3.3.

The Bayesian Information Criterion (BIC) developed in Schwarz (1978) has
been used extensively for model selection. However, it is known that the BIC
does not perform well unless the number of observations is far larger than the
number of parameters (Chen and Chen, 2008, 2012). For convex clustering (3),
the number of observations is equal to the number of parameters. Thus, we
consider the extended BIC (Chen and Chen, 2008, 2012), defined as

eBICq,γ = np · log
(
RSSq
np

)
+ d̂fq · log(np) + 2γ · d̂fq · log(np), (19)

where RSSq = ‖x− ûq‖22, ûq is the convex clustering estimate for a given value

of q and λ, γ ∈ [0, 1], and d̂fq is given in Section 3.3. Note that we suppress the

dependence of ûq and d̂fq on λ for notational convenience. We see that when
γ = 0, the extended BIC reduces to the classical BIC.

To evaluate the performance of the extended BIC in selecting the number of
clusters, we generate Gaussian clusters with K = 2 and K = 3 as described in
Section 4.1, with n = p = 20, and σ = 0.5. We perform convex clustering with
q = 2 over a fine grid of λ, and select the value of λ for which the quantity
eBICq,γ is minimized. We consider γ ∈ {0, 0.5, 0.75, 1}. Table 1 reports the
proportion of datasets for which the correct number of clusters was identified,
as well as the average Rand index.

From Table 1, we see that the extended BIC is able to select the true number
of clusters accurately for K = 2. When K = 3, the classical BIC (γ = 0) fails
to select the true number of clusters. In contrast, the extended BIC with γ = 1
has the best performance.
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5. Discussion

Convex clustering recasts the clustering problem into a penalized regression
problem. By studying its dual problem, we show that there is a connection
between convex clustering and single linkage hierarchical clustering. In addition,
we establish a connection between convex clustering and k-means clustering. We
also establish several statistical properties of convex clustering. Through some
numerical studies, we illustrate that the performance of convex clustering may
not be appealing relative to traditional clustering methods, especially when the
signal-to-noise ratio is low.

Many authors have proposed a modification to the convex clustering prob-
lem (1),

minimize
U∈Rn×p

1

2

n∑
i=1

‖Xi. −Ui.‖22 + λQq(W,U), (20)

where W is an n × n symmetric matrix of positive weights, and Qq(W,U) =∑
i<i′ Wii′‖Ui.−Ui′.‖q (Pelckmans et al., 2005; Hocking et al., 2011; Lindsten,

Ohlsson and Ljung, 2011; Chi and Lange, 2014a). For instance, the weights
can be defined as Wii′ = exp

(
−φ‖Xi. −Xi′.‖22

)
for some constant φ > 0. This

yields better empirical performance than (1) (Hocking et al., 2011; Chi and
Lange, 2014a). We leave an investigation of the properties of (20) to future
work.

Appendix A: Proof of Lemmas 2–3

Proof of Lemma 2. We rewrite problem (3) as

minimize
u∈Rnp,η1∈R

[p·(n2)]

1

2
‖x− u‖22 + λPq(η1) subject to η1 = Du,

with the Lagrangian function

L(u,η1,ν) =
1

2
‖x− u‖22 + λPq(η1) + νT (Du− η1), (A-1)

where ν ∈ R
[p·(n2)] is the Lagrangian dual variable. In order to derive the dual

problem, we need to minimize the Lagrangian function over the primal variables
u and η1. Recall from (4) that P∗

q(·) is the dual norm of Pq(·). It can be shown
that

inf
η1∈R

[p·(n2)]
L(u,η1,ν) =

{
1
2‖x− u‖22 + νTDu if P∗

q(ν) ≤ λ,

−∞ otherwise,

and

inf
η1∈R

[p·(n2)],u∈Rnp

L(u,η1,ν) =

{
−1

2‖x−DTν‖22 + 1
2‖x‖22 if P∗

q(ν) ≤ λ.

−∞ otherwise.
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Therefore, the dual problem for (3) is

minimize
ν∈R

[p·(n2)]

1

2
‖x−DTν‖22 subject to P∗

q(ν) ≤ λ. (A-2)

We now establish an explicit relationship between the solution to convex
clustering and its dual problem. Differentiating the Lagrangian function (A-1)
with respect to u and setting it equal to zero, we obtain

û = x−DT ν̂,

where ν̂ is the solution to the dual problem, which satisfies P∗
q(ν̂) ≤ λ by (A-2).

Multiplying both sides by D, we obtain the relationship (6).

Proof of Lemma 3. We rewrite (7) as

minimize
γ∈R

[p·(n2)],η2∈R
[p·(n2)]

1

2
‖Dx− γ‖22 + λPq(η2) subject to η2 = γ,

with the Lagrangian function

L(γ,η2,ν
′) =

1

2
‖Dx− γ‖22 + λPq(η2) + (ν′)T (γ − η2), (A-3)

where ν′ ∈ R
[p·(n2)] is the Lagrangian dual variable. In order to derive the dual

problem, we minimize the Lagrangian function over the primal variables γ and
η2. It can be shown that

inf
η2∈R

[p·(n2)]
L(γ,η2,ν

′) =

{
1
2‖Dx− γ‖22 + (ν ′)Tγ if P∗

q(ν
′) ≤ λ,

−∞ otherwise,

and

inf
η2∈R

[p·(n2)],γ∈R
[p·(n2)]

L(γ,η2,ν
′) =

{
−1

2‖Dx− ν′‖22 + 1
2‖Dx‖22 if P∗

q(ν
′) ≤ λ.

−∞ otherwise.

Therefore, the dual problem for (7) is

minimize
ν′∈R

[p·(n2)]

1

2
‖Dx− ν ′‖22 subject to P∗

q(ν
′) ≤ λ. (A-4)

We now establish an explicit relationship between the solution to (7) and its
dual problem. Differentiating the Lagrangian function (A-3) with respect to γ
and setting it equal to zero, we obtain

γ̂ = Dx− ν̂ ′,

where ν̂′ is the solution to the dual problem, which we know from (A-4) satisfies
P∗
q(ν̂

′) ≤ λ.
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Appendix B: Proof of Lemma 5

Proof of Lemma 5. Since D is not of full rank by Lemma 1(i), the solution to
(5) in the absence of constraint is not unique, and takes the form

ν̂ = (DDT )†Dx+ (I−D(DTD)†DT )ω

= (DT )†x+ (I−DD†)ω

=
1

n
Dx+ (I− 1

n
DDT )ω,

(B-1)

for ω ∈ R
[p·(n2)]. The second equality follows from Lemma 1(iii) and the last

equality follows from Lemma 1(ii).
Let û be the solution to (3). Substituting ν̂ given in (B-1) into (6), we obtain

Dû = Dx−DDT ν̂

= Dx− 1

n
DDTDx−DDTω +

1

n
DDTDDTω

= Dx−Dx−DDTω +DDTω

= 0.

Recall from Definition 1 that all observations are estimated to belong to the
same cluster if Dû = 0. For any ν̂ in (B-1), picking λ = P∗

q(ν̂) guarantees that
the constraint on the dual problem (5) is inactive, and therefore that convex
clustering has a trivial solution of Dû = 0.

Since ν̂ is not unique, P∗
q(ν̂) is not unique. In order to obtain the smallest

tuning parameter λ such that Dû = 0, we take

λupper := min
ω∈R

[p·(n2)]
P∗
q

(
1

n
Dx+

(
I− 1

n
DDT

)
ω

)
.

Any tuning parameter λ ≥ λupper results in an estimate for which all observa-
tions belong to a single cluster. The proof is completed by recalling the definition
of the dual norm P∗

q(·) in (4).

Appendix C: Proof of Lemmas 6–7

To prove Lemmas 6 and 7, we need a lemma on the tail bound for quadratic
forms of independent sub-Gaussian random variables.

Lemma 10. (Hanson and Wright, 1971) Let z be a vector of independent sub-
Gaussian random variables with mean zero and variance σ2. Let M be a sym-
metric matrix. Then, there exists some constants c1, c2 > 0 such that for any
t > 0,

Pr
(
zTMz ≥ t+ σ2tr(M)

)
≤ exp

{
−min

(
c1t

2

σ4‖M‖F
,

c2t

σ2‖M‖sp

)}
,

where ‖ · ‖F and ‖ · ‖sp are the Frobenius norm and spectral norm, respectively.
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In order to simplify our analysis, we start by reformulating (3) as in Liu,
Yuan and Ye (2013). Let D = AΛVT

β be the singular value decomposition of

D, where A ∈ R
[p·(n2)]×p(n−1), Λ ∈ R

p(n−1)×p(n−1), and Vβ ∈ R
np×p(n−1).

Construct Vα ∈ R
np×p such that V = [Vα,Vβ ] ∈ R

np×np is an orthogonal

matrix, that is, VTV = VVT = I. Note that VT
αVβ = 0.

Let β = VT
β u ∈ R

p(n−1) and α = VT
αu ∈ R

p. Also, let λ′ = λ
np . Optimization

problem (3) then becomes

minimize
α∈Rp,β∈Rp(n−1)

1

2np
‖x−Vαα−Vββ‖2 + λ′Pq(Zβ), (C-1)

where Z = AΛ ∈ R
[p·(n2)]×p(n−1). Note that rank(Z) = p(n − 1) and therefore,

there exists a pseudo-inverse Z† ∈ R
p(n−1)×[p·(n2)] such that Z†Z = I. Recall

from Section 1 that the set C(i, i′) contains the row indices of D such that

DC(i,i′)u = Ui. −Ui′.. Let the submatrices ZC(i,i′) and Z†
C(i,i′) denote the rows

of Z and the columns of Z†, respectively, corresponding to the indices in the set
C(i, i′). By Lemma 1(v),

Λmin(Z) = Λmin(D) =
1

Λmax(Z†)
=

√
n

Λmax(Z) = Λmax(D) =
1

Λmin(Z†)
=

√
n.

(C-2)

Let α̂ and β̂ denote the solution to (C-1).

Proof of Lemma 6. We establish a finite sample bound for the prediction error
of convex clustering with q = 1 by analyzing (C-1). First, note that û = Vαα̂+

Vββ̂ and u = Vαα+Vββ. Thus,
1

2np‖û−u‖2 = 1
2np‖Vα(α̂−α)+Vβ(β̂−β)‖2.

Recall from (2) that P1(Zβ) = ‖Zβ‖1. By the definition of α̂ and β̂, we have

1

2np
‖x− (Vαα̂+Vββ̂)‖2 + λ′‖Zβ̂‖1 ≤ 1

2np
‖x− (Vαα+Vββ)‖2 + λ′‖Zβ‖1,

implying

1

2np
‖Vα(α̂−α) +Vβ(β̂ − β)‖2 + λ′‖Zβ̂‖1 ≤ 1

np
G(α̂, β̂) + λ′‖Zβ‖1, (C-3)

where G(α̂, β̂) = εT
[
Vα(α̂−α) +Vβ(β̂ − β)

]
. Recall that VT

αVα = I and

VT
αVβ = 0. By the optimality condition of (C-1),

α̂ = VT
α (x−Vββ̂)

= VT
α

(
Vαα+Vββ + ε−Vββ̂

)
= α+VT

αε.
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Therefore, substituting α̂−α = VT
αε into G(α̂, β̂), we obtain

1

np

∣∣∣G(α̂, β̂)
∣∣∣ = 1

np

∣∣∣εT [
Vα(α̂−α) +Vβ(β̂ − β)

]∣∣∣
=

1

np

∣∣∣εTVαV
T
αε+ εTVβ(β̂ − β)

∣∣∣
≤ 1

np
εTVαV

T
αε+

1

np

∣∣∣εTVβ(β̂ − β)
∣∣∣

=
1

np
εTVαV

T
αε+

1

np

∣∣∣εTVβZ
†Z(β̂ − β)

∣∣∣
≤ 1

np
εTVαV

T
αε+

1

np
‖εTVβZ

†‖∞‖Z(β̂ − β)‖1.

We now establish bounds for 1
npε

TVαV
T
αε and 1

np‖εTVβZ
†‖∞ that hold with

high probability.

Bound for 1
npε

TVαV
T
αε:

First, note that VαV
T
α is a projection matrix of rank p, and therefore

‖VαV
T
α‖sp = 1 and ‖VαV

T
α‖F = p. By Lemma 10 and taking z = ε and

M = VαV
T
α , we have that

Pr
(
εTVαV

T
αε ≥ t+ σ2p

)
≤ exp

{
−min

(
c1t

2

σ4p
,
c2t

σ2

)}
,

where c1 and c2 are constants in Lemma 10. Picking t = σ2
√
p log(np), we have

Pr

(
1

np
εTVαV

T
αε ≥ σ2

[
1

n
+

√
log(np)

n2p

])

≤ exp
{
−min

(
c1 log(np), c2

√
p log(np)

)}
. (C-4)

Bound for 1
np‖εTVβZ

†‖∞:

Let ej be a vector of length p·
(
n
2

)
with a one in the jth entry and zeroes in the

remaining entries. Let vj = eTj (Z
†)TVT

β ε. Using the fact that Λmax(Vβ) = 1 and

Λmax(Z
†) = 1√

n
(C-2), we know that each vj is a sub-Gaussian random variable

with zero mean and variance at most σ2

n . Therefore, by the union bound,

Pr

(
max

j
|vj | ≥ z

)
≤ p ·

(
n

2

)
· Pr (|vj | ≥ z) ≤ 2p ·

(
n

2

)
exp

(
−nz2

2σ2

)
.

Picking z = 2σ

√
log(p·(n2))

n , we obtain

Pr

⎛
⎝‖εTVβZ

†‖∞ ≥ 2σ

√
log(p ·

(
n
2

)
)

n

⎞
⎠ ≤ 2

p ·
(
n
2

) . (C-5)
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Combining the two upper bounds: Setting λ′ > 4σ

√
log(p·(n2))

n3p2 and com-

bining the results from (C-4) and (C-5), we obtain

1

np
G(α̂, β̂) ≤ σ2

[
1

n
+

√
log(np)

n2p

]
+

λ′

2
‖Z(β̂ − β)‖1 (C-6)

with probability at least 1 − 2

p·(n2)
− exp

{
−min

(
c1 log(np), c2

√
p log(np)

)}
.

Substituting (C-6) into (C-3), we obtain

1

2np
‖Vα(α̂− α) +Vβ(β̂ − β)‖2 + λ′‖Zβ̂‖1

≤ σ2

[
1

n
+

√
log(np)

n2p

]
+

λ′

2
‖Z(β̂ − β)‖1 + λ′‖Zβ‖1.

We get Lemma 6 by an application of the triangle inequality and by rearranging
the terms.

Proof of Lemma 7. We establish a finite sample bound for the prediction error of
convex clustering with q = 2 by analyzing (C-1). Recall from (2) that P2(Zβ) =∑

i<i′ ‖ZC(i,i′)β‖2. By the definition of α̂ and β̂, we have

1

2np
‖x− (Vαα̂+Vββ̂)‖2 + λ′

∑
i<i′

‖ZC(i,i′)β̂‖2

≤ 1

2np
‖x− (Vαα+Vββ)‖2 + λ′

∑
i<i′

‖ZC(i,i′)β‖2,

implying

1

2np
‖Vα(α̂−α) +Vβ(β̂ − β)‖2 + λ′

∑
i<i′

‖ZC(i,i′)β̂‖2

≤ 1

np
G(α̂, β̂) + λ′

∑
i<i′

‖ZC(i,i′)β‖2, (C-7)

where G(α̂, β̂) = εT
[
Vα(α̂−α) +Vβ(β̂ − β)

]
. Again, by the optimality con-

dition of (C-1), we have that α̂ − α = VT
αε. Substituting this into 1

npG(α̂, β̂),
we obtain

1

np

∣∣∣G(α̂, β̂)
∣∣∣ = 1

np

∣∣∣εT [
Vα(α̂−α) +Vβ(β̂ − β)

]∣∣∣
=

1

np

∣∣∣εTVαV
T
αε+ εTVβ(β̂ − β)

∣∣∣
≤ 1

np
εTVαV

T
αε+

1

np

∣∣∣εTVβ(β̂ − β)
∣∣∣
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=
1

np
εTVαV

T
αε+

1

np

∣∣∣εTVβZ
†Z(β̂ − β)

∣∣∣
=

1

np
εTVαV

T
αε+

1

np

∣∣∣∣∣
∑
i<i′

(εTVβZ
†
C(i,i′))(ZC(i,i′)(β̂ − β))

∣∣∣∣∣
≤ 1

np
εTVαV

T
αε+

1

np

∑
i<i′

∣∣∣(εTVβZ
†
C(i,i′))(ZC(i,i′)(β̂ − β))

∣∣∣
≤ 1

np
εTVαV

T
αε+

1

np

∑
i<i′

‖εTVβZ
†
C(i,i′)‖2‖ZC(i,i′)(β̂ − β)‖2

≤ 1

np
εTVαV

T
αε+

1

np
·max
i<i′

‖εTVβZ
†
C(i,i′)‖2

∑
i<i′

‖ZC(i,i′)(β̂−β)‖2,

where the second inequality follows from an application of the triangle inequality
and the third inequality from an application of the Cauchy-Schwarz inequality.
We now establish bounds for 1

npε
TVαV

T
αε and 1

np · max
i<i′

‖εTVβZ
†
C(i,i′)‖2 that

hold with large probability.

Bound for 1
npε

TVαV
T
αε:

This is established in the proof of Lemma 6 in (C-4), i.e.,

Pr

(
1

np
εTVαV

T
αε ≥ σ2

[
1

n
+

√
log(np)

n2p

])
≤ 1

np
.

Bound for 1
np ·max

i<i′
‖εTVβZ

†
C(i,i′)‖2:

First, note that there are p indices in each set C(i, i′). Therefore,

‖εTVβZ
†
C(i,i′)‖2 ≤ √

p · ‖εTVβZ
†
C(i,i′)‖∞.

Note that

1

np
·max
i<i′

‖εTVβZ
†
C(i,i′)‖2 ≤

√
1

n2p
·max
i<i′

‖εTVβZ
†
C(i,i′)‖∞ =

√
1

n2p
·‖εTVβZ

†‖∞.

(C-8)
Therefore, using (C-8),

Pr

⎛
⎝ 1

np
·max
i<i′

‖εTVβZ
†
C(i,i′)‖2 ≥ 2σ

√
log

(
p ·

(
n
2

))
n3p

⎞
⎠

≤ Pr

⎛
⎝‖εTVβZ

†‖∞ ≥ 2σ

√
log

(
p ·

(
n
2

))
n

⎞
⎠

≤ 2

p ·
(
n
2

) ,

(C-9)

where the last inequality follows from (C-5) in the proof of Lemma 6.
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Therefore, for λ′ > 4σ

√
log(p·(n2))

n3p , we have λ′

2 < 1
np · max

i<i′
‖εTVβZ

†
C(i,i′)‖2

with probability at most 2

p·(n2)
. Combining the results from (C-4) and (C-9), we

have that

1

np
G(α̂, β̂) ≤ σ2

[
1

n
+

√
log(np)

n2p

]
+

λ′

2

∑
i<i′

‖ZC(i,i′)(β̂ − β)‖2 (C-10)

with probability at least 1 − 2

p·(n2)
− exp

{
−min

(
c1 log(np), c2

√
p log(np)

)}
.

Substituting (C-10) into (C-7), we obtain

1

2np
‖Vα(α̂− α) +Vβ(β̂ − β)‖2 + λ′ ∑

i<i′

‖ZC(i,i′)β̂‖2

≤ σ2

[
1

n
+

√
log(np)

n2p

]
+

λ′

2

∑
i<i′

‖ZC(i,i′)(β̂ − β)‖2 + λ′ ∑
i<i′

‖ZC(i,i′)β‖2.

We get Lemma 7 by an application of the triangle inequality and by rearranging
the terms.

Appendix D: Proof of Lemma 9

Proof of Lemma 9. Directly from the dual problem (5), DT ν̂ is the projection
of x onto the convex set K =

{
DTν : P∗

2(ν) ≤ λ
}
. Using the primal-dual rela-

tionship û = x−DT ν̂, we see that û is the residual from projecting x onto the
convex set K. By Lemma 1 of Tibshirani and Taylor (2012), û is continuous
and almost differentiable with respect to x. Therefore, by Stein’s formula, the
degrees of freedom can be characterized as E

[
tr

(
∂û
∂x

)]
.

Recall that DC(i,i′) denotes the rows of D corresponding to the indices in the

set C(i, i′). Let B̂2 = {(i, i′) : ‖DC(i,i′)û‖2 �= 0}. By the optimality condition of
(3) with q = 2, we obtain

(x− û) = λ
∑
i<i′

DT
C(i,i′)gC(i,i′), (D-1)

where

gC(i,i′) =

{
DC(i,i′)û

‖DC(i,i′)û‖2
if (i, i′) ∈ B̂2.

∈ {Γ : ‖Γ‖2 ≤ 1} if (i, i′) /∈ B̂2.

We define the matrix D−B̂2
by removing the rows of D that correspond to ele-

ments in B̂2. Let P =
(
I−DT

−B̂2
(D−B̂2

DT
−B̂2

)†D−B̂2

)
be the projection matrix

onto the complement of the space spanned by the rows of D−B̂2
.



Convex clustering 2345

By the definition of D−B̂2
, we obtain D−B̂2

û = 0. Therefore, Pû = û. Mul-
tiplying P onto both sides of (D-1), we obtain

Px− û = λP
∑
i<i′

DT
C(i,i′)gC(i,i′)

= λP
∑

(i,i′)∈B̂2

DT
C(i,i′)DC(i,i′)û

‖DC(i,i′)û‖2
,

(D-2)

where the second equality follows from the fact that PDT
C(i,i′) = 0 for any

(i, i′) /∈ B̂2.
Vaiter et al. (2014) showed that there exists a neighborhood around almost

every x such that the set B̂2 is locally constant with respect to x. Therefore,
the derivative of (D-2) with respect to x is

P− ∂û

∂x
= λP

∑
(i,i′)∈B̂2

(
DT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖2
−

DT
C(i,i′)DC(i,i′)ûû

TDT
C(i,i′)DC(i,i′)

‖DC(i,i′)û‖32

)
∂û

∂x
,

(D-3)

using the fact that for any matrix A with ‖Av‖2 �= 0, ∂
∂v

ATAv
‖Av‖2

= ATA
‖Av‖2

−
ATAvvTATA

‖Av‖3
2

.

Solving (D-3) for ∂û
∂x , we have

∂û

∂x
=

[
I+ λP

∑
(i,i′)∈B̂2

(
DT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖2

−
DT

C(i,i′)DC(i,i′)ûû
TDT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖32

)]−1

P. (D-4)

Therefore, an unbiased estimator of the degrees of freedom is of the form

tr

(
∂û

∂x

)
= tr

([
I+ λP

∑
(i,i′)∈B̂2

(
DT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖2

−
DT

C(i,i′)DC(i,i′)ûû
TDT

C(i,i′)DC(i,i′)

‖DC(i,i′)û‖32

)]−1

P

)
.
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