
Electronic Journal of Statistics
Vol. 9 (2015) 2293–2323
ISSN: 1935-7524
DOI: 10.1214/15-EJS1072

Approximately exact calculations for

linear mixed models
Michael Lavine

Department of Mathematics and Statistics
UMass Amherst

Amherst, MA 01003
USA

e-mail: lavine@math.umass.edu

Andrew Bray

Reed College
3203 Southeast Woodstock Boulevard

Portland, Oregon 97202-8199
USA

e-mail: abray@reed.edu

and

Jim Hodges

Division of Biostatistics
School of Public Health
University of Minnesota

2221 University Ave SE, Suite 200
Minneapolis, MN 55414

USA
e-mail: hodge003@umn.edu

Abstract: This paper is about computations for linear mixed models hav-
ing two variances, σ2

e for residuals and σ2
s for random effects, though the

ideas can be extended to some linear mixed models having more variances.
Researchers are often interested in either the restricted (residual) likeli-
hood RL(σ2

e , σ
2
s) or the joint posterior π(σ2

e , σ
2
s | y) or their logarithms.

Both logRL and log π can be multimodal and computations often rely on
either a general purpose optimization algorithm or MCMC, both of which
can fail to find regions where the target function is high. This paper presents
an alternative. Letting f stand for either RL or π, we show how to find a
box B in the (σ2

e , σ
2
s) plane such that

1. all local and global maxima of log f lie within B;
2. sup(σ2

e ,σ
2
s)∈Bc log f(σ2

e , σ
2
s) ≤ sup(σ2

e ,σ
2
s)∈B log f(σ2

e , σ
2
s) − M for a

prespecified M > 0; and
3. log f can be estimated to within a prespecified tolerance ε everywhere

in B with no danger of missing regions where log f is large.

Taken together these conditions imply that the (σ2
e , σ

2
s) plane can be di-

vided into two parts: B, where we know log f as accurately as we wish, and
Bc, where log f is small enough to be safely ignored. We provide algorithms
to find B and to evaluate log f as accurately as desired everywhere in B.

MSC 2010 subject classifications: Primary 62J05; secondary 62F99.

Received January 2015.

2293

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1072
mailto:lavine@math.umass.edu
mailto:abray@reed.edu
mailto:hodge003@umn.edu

2294 M. Lavine et al.

Contents

1 Introduction . 2294
2 Satisfying the desiderata . 2298

2.1 Partial derivatives determine lines 2298
2.2 Lines determine a bounding box 2299
2.3 Lines determine bounds within boxes 2303

3 An algorithm . 2304
4 Examples . 2305

4.1 HMO premiums . 2305
4.1.1 Introduction to the data 2305
4.1.2 A log RL analysis . 2306
4.1.3 A Bayesian analysis . 2308

4.2 Global mean surface temperature 2309
5 Discussion . 2311
A Derivation of {aj} and {v̂j} in (3), (4), and (5) 2313
B Details of the algorithm . 2314
References . 2322

1. Introduction

Linear mixed models are an important class of statistical models. Books are
written about them (e.g. Bryk and Raudenbush 2, Verbeke and Molenberghs
14, Hodges 6, West et al. 17), courses are taught about them, and they have
many applications. Typical notation, which we adopt, is

y = Xβ + Zu+ ε (1)

where y is a vector of n observations,X is a known n×pmatrix, β is a vector of p
unknown coefficients called fixed effects, Z is a known n×q matrix, u is a vector
of q unknown coefficients called random effects, and ε is a vector of n errors.
The term “mixed” is used when we treat u as a vector of random variables, thus
mixing fixed and random effects in the same model. For linear mixed models
where u and ε are modelled as Normal, researchers are often interested in the
restricted likelihood function

RL(θ) = K|V (θ)|−1/2|XtV −1(θ)X|−1/2

× exp

{
−1

2

(
ytV −1(θ)y − β̃t(θ)XtV −1(θ)Xβ̃(θ)

)}
(2)

where K is an unimportant constant, θ is a vector of unknown parameters in
the covariance matrices of u and ε, V (θ) is the marginal covariance matrix of
y implied by the covariance matrices of u and ε, and β̃(θ) is the generalized
least-squares estimate of β, given V (θ). This manuscript deals with the special
case in which we adopt the model

ε ∼ N(0, σ2
eΣe) u ∼ N(0, σ2

sΣs)

Approximately exact calculations 2295

where Σe and Σs are known matrices, often the identity, of the appropriate sizes
and θ ≡ (σ2

e , σ
2
s), two unknown variance parameters. The key for this manuscript

is that θ contains only those two unknown variances and no others. Examples
include random intercept models (including balanced and unbalanced one-way
random effect models), additive models with one penalized spline, spatial models
with one intrinsic conditional autoregression (ICAR) random effect, dynamic
linear models with one system-level variance, and some multiple membership
models (e.g. Browne et al. 1, McCaffrey et al. 9). [6] examines these and other
examples and explains the importance of this special case.

[6] also unifies and generalizes [11] and [16] to show that in our special case,
and a few others, log RL(σ2

e , σ
2
s) can be expressed as

logRL(σ2
e , σ

2
s) = B − ne

2
log(σ2

e)−
ytΓcΓ

t
cy

2σ2
e

− 1

2

sz∑
j=1

[
log(ajσ

2
s + σ2

e) +
v̂2j

ajσ2
s + σ2

e

]
(3)

where

(1) B is an unimportant known constant;
(2) ne is n minus the dimension of the space spanned by the columns of [X|Z];
(3) Γc is n × ne and spans the space orthogonal to [X|Z] (so ytΓcΓ

t
cy is the

residual sum of squares);
(4) sz is the dimension of the space spanned by the columns of Z not already

in the span of the columns of X; and
(5) the {aj} and {v̂j} are known constants whose derivation is in the Ap-

pendix. All aj > 0.

Thus the only unknowns are (σ2
s , σ

2
e) and logRL(σ2

e , σ
2
s) is a function of just

those two arguments.
As [6] further observes, if β is given an improper flat prior and σ2

e and σ2
s are

given conjugate priors — say σ2
e ∼ InvGam(αe, βe) and σ2

s ∼ InvGam(αs, βs)
— then

−(αe + 1) log σ2
e − βe/σ

2
e − (αs + 1) log σ2

s − βs/σ
2
s

is added to (3) to yield the log posterior

log π(σ2
e , σ

2
s | y) = B − ne + 2αe + 2

2
log(σ2

e)−
ytΓcΓ

t
cy + 2βe

2σ2
e

− 2αs + 2

2
log(σ2

s)−
2βs

2σ2
s

− 1

2

sz∑
j=1

[
log(ajσ

2
s + σ2

e) +
v̂2j

ajσ2
s + σ2

e

]
. (4)

Equations (3) and (4) can both be written as a sum of multiples of logs and
inverses of linear combinations ajσ

2
s +bjσ

2
e , as in (5), where the summands with

j = sz+1 and j = sz+2 are for the terms involving only σ2
e and σ2

s , respectively,

2296 M. Lavine et al.

and where we have dropped the irrelevant constant B. I.e.,

log f(σ2
e , σ

2
s) = −1

2

sz+2∑
j=1

[
cj log(ajσ

2
s + bjσ

2
e) +

dj
ajσ2

s + bjσ2
e

]
(5)

where

— for j = 1, . . . , sz,

aj > 0 and is derived in the Appendix

bj = 1

cj = 1

dj = v̂2j is a known function of y derived in the Appendix

— for j = sz + 1,

aj = 0

bj = 1

cj =

{
ne for log RL in (3)

ne + 2αe + 2 for the log posterior in (4)

dj =

{
ytΓcΓ

t
cy for log RL in (3)

ytΓcΓ
t
cy + 2βe for the log posterior in (4)

— for j = sz + 2,

aj = 1

bj = 0

cj =

{
0 for logRL in (3)

2αs + 2 for the log posterior in (4)

dj =

{
0 for logRL in (3)

2βs for the log posterior in (4).

Our derivation proceeds from (5). We use f to denote the target function gener-
ically, either RL(σ2

e , σ
2
s) or π(σ

2
e , σ

2
s | y). When the target function is RL(σ2

e , σ
2
s),

csz+2 = dsz+2 = 0 and the upper limit of the sum in (5) is effectively sz + 1.
It is known (e.g. Henn and Hodges 3) that log f(σ2

e , σ
2
s) can have multiple

maxima, though the incidence of multiple maxima is unknown. Multi-modal
posterior distributions arise readily from conflict between the likelihood and
prior; [8] explores an important such conflict in detail and [15] gives a naturally-
occurring example explored further in [3]. Multiple maxima in restricted likeli-
hoods have received far less attention and any statement about their incidence
would be speculation. To our knowledge, two naturally-occurring cases have

Approximately exact calculations 2297

been reported, in [16] and [12]; [3] report an artificial case and give a recipe for
manufacturing examples.

As for numerical optimizers, it is known that existing general purpose al-
gorithms for linear mixed models may fail to find all of the local maxima of
log f(σ2

e , σ
2
s), as shown by examples in [6], [3], and elsewhere. [10] examines 18

optimization functions available in R, tests them on 48 objective functions (ad-
mittedly more complicated than log f(σ2

e , σ
2
s)) and finds that even the best of

them fail in over 10% of the cases. [3] examine conditions under which multiple
maxima occur in posterior densities and conclude “. . . second maxima in poste-
rior distributions therefore may be more common than reports in the literature
would suggest.” Thus, failure to find local and global maxima may be com-
mon, though with available tools it is extremely laborious to determine whether
multiple maxima are present and where they are.

Our view is that it is important to find regions where f or log f is large
relative to its maximum regardless of whether those regions contain local max-
ima. Points with large log f(σ2

e , σ
2
s) are those that describe the data, or possibly

prior information, well, at least compared to points with low log f(σ2
e , σ

2
s). If

f or log f is relatively flat and large over a region, it matters little whether
the region contains small bumps that are, technically, local maxima. A good
analysis should strive to find all points with large log f . Therefore, the pur-
pose of this paper is to introduce an algorithm that will, in finite time, divide
the (σ2

e , σ
2
s) plane into two parts: one where we know log f is small relative

to its maximum and another where we know log f to within a pre-specified ε
(hence the term “approximately exact”). The algorithm can also be used to find
(σ̂2

e , σ̂
2
s) ≡ argsupσ2

e ,σ
2
s
log f(σ2

e , σ
2
s) (typically either the maximum restricted

log likelihood estimate or the maximum a posteriori estimate), to within a pre-
specified tolerance without fear of missing regions of high f or log f .

The technique relies on the partial derivatives of log f(σ2
e , σ

2
s). Analysis of

the partial derivatives allows us to satisfy two desiderata.

D1 For any prespecified constant M > 0 we can find a box B, a rectangle in
the first quadrant of the (σ2

s , σ
2
e) plane whose sides are parallel to the axes,

such that

all local maxima are in B and sup
(σ2

e ,σ
2
s)∈Bc

log f(σ2
e , σ

2
s) ≤ log f(σ̂2

e , σ̂
2
s)−M.

(6)
In practice we will take M large enough to interpret (6) as meaning
that we can restrict attention to B because values of (σ2

e , σ
2
s) ∈ Bc have

log f(σ2
e , σ

2
s) too low to be of further interest.

D2 For any box b with sides parallel to the axes we can quickly compute lower
and upper bounds (Lb, U b) satisfying

Lb ≤ inf
(σ2

e ,σ
2
s)∈b

log f(σ2
e , σ

2
s) and U b ≥ sup

(σ2
e ,σ

2
s)∈b

log f(σ2
e , σ

2
s)

and such that U b−Lb → 0 as b shrinks. Therefore, partitioning the box B
from D1 allows us to know log f(σ2

e , σ
2
s) everywhere in B to within a pre-

2298 M. Lavine et al.

specified tolerance and also to locate argsup log f to within a pre-specified
tolerance without fear of missing regions of high log f .

D1 and D2 allow us to divide the (σ2
e , σ

2
s) plane into two parts: one where log f

is at least M below its maximum and another where we know log f to within a
pre-specified ε. The next section shows how the partial derivatives are used to
satisfy D1 and D2: the partial derivatives determine lines in the (σ2

e , σ
2
s) plane;

those lines determine a box B1 containing all local maxima and a larger box
B ⊃ B1 satisfying D1; and those lines also determine upper and lower bounds
on log f within any box b.

2. Satisfying the desiderata

2.1. Partial derivatives determine lines

The partial derivatives of log f(σ2
e , σ

2
s) can be calculated from (5):

∂ log f(σ2
e , σ

2
s)

∂σ2
s

= −1

2

sz+2∑
j=1

[
ajcj

ajσ2
s + bjσ2

e

− ajdj
(ajσ2

s + bjσ2
e)

2

]

= −1

2

sz+2∑
j=1

aj
(
ajcjσ

2
s + bjcjσ

2
e − dj

)
(ajσ2

s + bjσ2
e)

2
(7a)

and

∂ log f(σ2
e , σ

2
s)

∂σ2
e

= −1

2

sz+2∑
j=1

[
bjcj

ajσ2
s + bjσ2

e

− bjdj
(ajσ2

s + bjσ2
e)

2

]

= −1

2

sz+2∑
j=1

bj
(
ajcjσ

2
s + bjcjσ

2
e − dj

)
(ajσ2

s + bjσ2
e)

2
. (7b)

We work with one term in (7)’s summations at a time; that is, one j at a
time. For j = 1, . . . , sz, the j’th terms in (7) differ by a multiplicative constant
aj/bj = aj ; they have the same sign as each other and the same sign as (ajcjσ

2
s+

bjcjσ
2
e − dj) = (ajσ

2
s + σ2

e − dj), which determines a line σ2
s = dj/aj − σ2

e/aj —
call it the j’th line — in the first quadrant of the (σ2

s , σ
2
e) plane. The j’th line

has positive intercept dj/aj and negative slope −1/aj . For j = sz + 1, aj = 0,
so (7a) = 0 and (7) determines a vertical line at σ2

e = σ2∗
e ≡ dsz+1/csz+1. For

j = sz + 2, bj = 0, so (7b) = 0 and, if the target function is (4), (7) determines
a horizontal line at σ2

s = σ2∗
s ≡ dsz+2/csz+2, while if the target function is (3),

csz+2 = dsz+2 = 0; the term for j = sz + 2 effectively vanishes and there is no
horizontal line.

For all j, both partial derivatives of the j’th term are nonnegative below or
to the left of the j’th line, 0 on the line, and nonpositive above or to the right
of the line, as indicated in Figure 1. The j’th term is constant on the j’th line
and attains its maximum there.

Approximately exact calculations 2299

Fig 1. For a single summand, i.e., a fixed j, in (5), the partial derivatives (7a) and (7b) are
0 on the line and nonnegative and nonpositive where indicated by “+” and “-”.

2.2. Lines determine a bounding box

Let σ2
e
M and σ2

s
M be the largest intercepts of the sz +2 lines on the σ2

e and σ2
s

axes, respectively. I.e.,

σ2
e
M = max

{
d1
c1

, · · · , dsz+1

csz+1

}

σ2
s
M =

⎧⎨⎩max
{

d1

a1
, · · · , dsz

asz

}
if log f is (3)

max
{

d1

a1
, · · · , dsz

asz
,
dsz+2

csz+2

}
if log f is (4).

Let B1 be the box whose lower-left and upper-right corners are (0, 0) and
(σ2

e
M , σ2

s
M), respectively. Figure 2a shows B1 and five lines — realistic data

sets may have more — labelled j = 1, 2, 3, sz + 1, sz + 2.

Claim. All local maxima of log f lie within B1.

Proof. Let p1 = (σ2
e1, σ

2
s1) be a point such that σ2

s1 > σ2
s
M and let p̃1 =

(σ2
e1, σ

2
s
M), as illustrated in Figure 2a. For j = 1, . . . , sz, sz + 2, the partial

derivatives (7b) are negative everywhere between p1 and p̃1; for j = sz + 1,
the partial derivative is zero. Therefore, log f(p̃1) ≥ log f(p1) and there can be
no local maxima of log f above the line σ2

s = σ2
s
M . Let p2 = (σ2

e2, σ
2
s2) be a

point such that σ2
e2 > σ2

e
M and let p̃2 = (σ2

e
M , σ2

s2). For j = 1, . . . , sz, sz+1, the
partial derivatives (7a) are negative everywhere between p2 and p̃2; for j = sz+2,
the partial derivative is zero. Therefore, log f(p̃2) ≥ log f(p2) and there can be
no local maxima of log f to the right of the line σ2

e = σ2
e
M .

By the claim, argsup log f must lie on or inside B1, soB1 could be passed to an
optimizer such as R’s optim or nlminb with potentially better results than using

2300 M. Lavine et al.

Fig 2. all local and global maxima lie in the regions bounded by the solid dark line.

those functions without bounds. However, even with known bounds, general
purpose optimizers may still miss argsup log f and they emphasize single points
of highest local log f while possibly ignoring large regions where log f is nearly
as high [4, 6, Section 18.1.1].

We will next find a box B ⊃ B1 satisfying desideratum D1. First, though,
we pause to note that the region outlined in bold in Figure 2b is a subset of
B1 that must also contain argsup log f by the same reasoning used to prove the
previous claim. But it is not rectangular, hence less convenient than B1, so we
don’t pursue it further.

Claim. For any positive number M , there exist positive numbers σ̃2
e > σ2

e
M

and σ̃2
s > σ2

s
M that determine a box B ⊃ B1 whose lower-left and upper-right

corners are (0, 0) and (σ̃2
e , σ̃

2
s), respectively, such that

sup
Bc

log f(σ2
e , σ

2
s) ≤ log f(σ̂2

e , σ̂
2
s)−M.

I.e., D1 is satisfied.

Approximately exact calculations 2301

Fig 3. Box B satisfies (6).

Proof. Let p be an arbitrary point inside B1, as illustrated in Figure 3, and define

L ≡ log f(p); we use L as a lower bound on log f(σ̂2
e , σ̂

2
s). Let q̃1 = (0, σ̃2

s),

the intercept of B and the σ2
s axis; let q̃2 = (σ2∗

e , σ̃2
s); let q̃3 = (σ̃2

e , σ
2∗
s); let

q̃4 = (σ̃2
e , 0), the intercept of B and the σ2

e axis; and let log fj denote the j’th
term of (5). The proof considers in turn four regions Q1, Q2, Q3, and Q4 whose

union is Bc. Implicitly, B and Bc are functions of σ̃2
e and σ̃2

s . The proof shows

that σ̃2
e and σ̃2

s can be chosen large enough so that D1 is satisfied on each region.

• Q1 : σ2
e ≤ σ2

e
∗ and σ2

s ≥ σ̃2
s , as illustrated by q1 in Figure 3. In Q1, by

inspection of (5) and (7),

– for j 	= sz + 1,

∂ log fj
∂σ2

e

≤ 0 and
∂ log fj
∂σ2

s

≤ 0

so for any q ∈ Q1,
log fj(q) ≤ log fj(q̃1);

– for j = sz + 1,

∂ log fj
∂σ2

e

> 0 and
∂ log fj
∂σ2

s

= 0

so for any q ∈ Q1,
log fj(q) ≤ log fj(q̃2).

Therefore,

log f(σ̂2
e , σ̂

2
s)− log f(q) ≥ L−

sz+2∑
j=1

j �=sz+1

log fj(q̃1)− log fsz+1(q̃2). (8)

2302 M. Lavine et al.

The r.h.s. is larger than M if

sz+2∑
j=1

j �=sz+1

log fj(q̃1) < L−M − log fsz+1(q̃2)

= L−M +
1

2

[
csz+1 log σ

2∗
e +

dsz+1

σ2∗
e

]
. (9)

Examination of (5) shows that for any fixed σ2
e , in particular for σ2

e = 0,
and for j 	= sz + 1,

limσ2
s→∞ log fj(σ

2
e , σ

2
s) = −∞. Thus σ̃2

s can be chosen large enough so
that the summation on the l.h.s. of (9) is less than the r.h.s. of (9), and
D1 is satisfied.

• Q2 : σ2
e ≥ σ2

e
∗ and σ2

s ≥ σ̃2
s , as illustrated by q2 and q3 in Figure 3. In Q2,

for all j,
∂ log fj
∂σ2

e

≤ 0 and
∂ log fj
∂σ2

s

≤ 0

so for any q ∈ Q2,

log fj(q) ≤ log fj(q̃2).

Therefore, log f(σ̂2
e , σ̂

2
s)− log f(q) ≥ L− log f(q̃2). The latter expression is

greater than M iff log f(q̃2) < L−M . But (5) shows that for any fixed σ2
e ,

limσ2
s→∞ log f(σ2

e , σ
2
s) = −∞ and therefore σ̃2

s can be chosen large enough
so that D1 is satisfied.

• Q3 : σ2
e ≥ σ̃2

e and σ2
s ≥ σ2

s
∗, as illustrated by q3. In Q3, for all j,

∂ log fj
∂σ2

e

≤ 0 and
∂ log fj
∂σ2

s

≤ 0

so for any q ∈ Q3,

log fj(q) ≤ log fj(q̃3).

Therefore, log f(σ̂2
e , σ̂

2
s) − log f(q) ≥ L − log f(q̃3). The latter expres-

sion is greater than M iff log f(q̃3) < L − M . But for any fixed σ2
s ,

limσ2
e→∞ log f(σ2

e , σ
2
s) = −∞ and therefore σ̃2

e can be chosen large enough
so that D1 is satisfied.

• Q4 : σ2
e ≥ σ̃2

e and σ2
s ≤ σ2

s
∗, as illustrated by q4. In Q4,

– for j 	= sz + 2,

∂ log fj
∂σ2

e

< 0 and
∂ log fj
∂σ2

s

≤ 0

so for any q ∈ Q4,

log fj(q) ≤ log fj(q̃4);

Approximately exact calculations 2303

– for j = sz + 2,

∂ log fj
∂σ2

e

= 0 and
∂ log fj
∂σ2

s

≥ 0

so for any q ∈ Q4,
log fj(q) ≤ log fj(q̃3).

Therefore,

log f(σ̂2
e , σ̂

2
s)− log f(q) ≥ L−

sz+1∑
j=1

log fj(q̃4)− log fsz+2(q̃3)

which is larger than M if

sz+1∑
j=1

log fj(q̃4) < L−M − log fsz+2(q̃3)

= L−M +
1

2

[
csz+2 log σ

2∗
s +

dsz+2

σ2∗
s

]
. (10)

For any fixed σ2
s , in particular for σ2

s = 0, and for j 	= sz + 2,

limσ2
e→∞ log fj(σ

2
e , σ

2
s) = −∞. Thus σ̃2

e can be chosen large enough so
that the summation on the l.h.s. of (10) is less than the r.h.s. of (10), and
D1 is satisfied.

2.3. Lines determine bounds within boxes

Next we consider the relationship between the log fj ’s and boxes as depicted in
Figure 4, which shows a small box b and three lines. For lines such as j = 2 that

Fig 4. For a box b, the minimum and maximum within b of log fj occur at either the lower
left corner, the upper right corner, or on the line.

2304 M. Lavine et al.

lie below or to the left of b, the partial derivatives (7a, 7b) are nonpositive, so
the maximum and minimum of log fj within b are attained at the lower left and
upper right corners respectively. The situation is reversed for lines like j = 3
that lie above or to the right of b: the partial derivatives are nonnegative so the
maximum and minimum are attained at the upper right and lower left corners
respectively. For lines like j = 1 that pass through b, the minimum is attained
at either the upper right or lower left corner while the maximum is attained on
the line.

For any box b let Lb
j = infp∈b log fj(p) and U b

j = supp∈b log fj(p). We have

just shown that Lb
j and U b

j are easily computable by evaluating log fj at either
two points (two corners for lines like j = 2, 3) or three points (two corners and
one on the line for lines like j = 1). Armed with the Lb

j ’s and U b
j ’s we can

compute bounds on log f(σ2
e , σ

2
s) within b:

Lb ≡
sz+2∑
j=1

Lb ≤ inf
(σ2

s ,σ
2
e)∈b

log f(σ2
e , σ

2
s)

≤ sup
(σ2

s ,σ
2
e)∈b

log f(σ2
e , σ

2
s) ≤

sz+2∑
j=1

U b
j ≡ U b. (11)

Because log f is continuous, U b − Lb → 0 as b shrinks in both directions, thus
satisfying desideratum D2.

3. An algorithm

Section 2.2 shows how to determine a box B1 containing all local maxima of
log f(σ2

e , σ
2
s) and that we can find a bigger box B ⊇ B1 satisfying D1. We are

about to present an algorithm that uses Section 2.3 to show that any bounded
box B0 can be partitioned into finitely many smaller boxes B0

1 , . . . B
0
p such that,

for each B0
i in the partition, we know for pre-specified constants M, ε > 0, either

(a) supB0
i
log f < supB0 log f − M or (b) supB0

i
log f − infB0

i
log f < ε. If B0

satisfies D1 and B0 ⊇ B1 then we have accomplished our goal of dividing the
plane into one region where we know log f to be low and another where we know
log f to within ε. One strategy would be to find B as outlined in Section 2.2 and
set B0 ≡ B. However, we have found that B1 satisfies D1 in all the examples we
have tried and we therefore follow a different strategy. We set B0 ≡ B1 and run
the following algorithm, during which we learn whether B1 satisfies D1. If it
does, we’re done. If it doesn’t, then we would expand B1 by a factor of 2 in both
dimensions; set B0 to be the expanded box; rerun the algorithm; and continue
to expand and rerun until we find a B0 that does satisfy D1. Section 2.2 shows
that such a bounded B0 exists, and thus we are sure to find it in finite time.

Algorithm 1 sketches the basic procedure; details are in an appendix. Before
giving examples, we mention some considerations in setting the tuning constants
M and ε, which have to do with the interpretation of likelihood ratios. We

Approximately exact calculations 2305

imagine a reference experiment in which a coin is chosen, either fair or two-
headed, and tossed. If the coin is tossed twice and lands Heads both times, it
produces a likelihood ratio of 4 in favor of the two-headed coin. That’s only weak
evidence, so we don’t see the need to resolve likelihood functions much beyond
a factor of four, or loglikelihood functions much beyond a factor of log(4) ≈ 1.4.
In practice, we use ε = 1 as a convenient default. If the coin were tossed 10 times
and yielded 10 Heads, the likelihood ratio would be 210 = 1024. That’s strong
evidence, so we don’t see the need to resolve log f where it is less than .001
times its maximum. log(1000) ≈ 7, so we use M = 7 as a convenient default.

Algorithm 1 Learn areas in B where log f is high to within ε
1: function findf(B, ε,M)
2: active ← list containing only B
3: inactive ← empty list
4: L ← −∞
5: while length of active > 0 do
6: for each element b in active do
7: Lb, Ub ← get bounds on log f in b � see Section 2.3
8: end for
9: tmp ← max(Lb)
10: L ← max(L, tmp)
11: for each element b in active do
12: if Ub − Lb < ε or Ub < L−M then
13: move b from active to inactive
14: else
15: b1, b2, b3, b4 ← split b into 4 smaller boxes
16: remove b from active
17: add b1, b2, b3, b4 to active
18: end if
19: end for
20: end while
21: return inactive
22: end function

4. Examples

Section 4’s examples use ε = 1 and M = 7. Computations were performed on
an iMac that was new in 2011, having a 2.7 GHz Intel Core i5 processor and
4GB of memory.

4.1. HMO premiums

4.1.1. Introduction to the data

Our first example is a traditional linear mixed model previously analyzed in
[5], [15], [6], and [3]. [15] reported a bimodal log posterior density for (σ2

e , σ
2
s).

Quoting from [3],

. . . the HMO data set describes 341 HMOs [Health Maintenance Organizations]
located in 45 states or similar political jurisdictions. Each jurisdiction had be-
tween 1 and 31 plans with a median of 5 plans. The data set originally was

2306 M. Lavine et al.

analysed to assess the cost of moving military retirees and dependents from a
Department of Defense health plan to plans serving the US civil service.
Specifically, the model is

yij = αi + εij

αi = �0 + �1x1i + �2x2i + ζi,

where the fixed effects in αi include an intercept, jurisdiction-average hospital
expenses per admission (x1i) and an indicator for plans in New England states
(x2i).

I.e., X is a 341× 3 matrix with columns for the intercept and two fixed effects
and Z is a 341× 45 matrix whose columns are indicators of the 45 jurisdictions.
The data are available at http://www.biostat.umn.edu/~hodges/RPLMBook/
Datasets/09_HMO_premiums/Ex9.html. Because the span of Z’s columns con-
tains the span of X’s, sz = 42.

4.1.2. A log RL analysis

For a log RL(σ2
e , σ

2
s) analysis there are 43 lines, as shown in Figure 5. Running

the algorithm on the box B1 determined by the lines’ maximum intercepts on
the σ2

e and σ2
s axes results in the the output displayed in Table 1, which shows

the state of the algorithm after iterations 1 through 15: the numbers of active
and inactive boxes and the current value of the lower bound L on max log f . The
run finished in less than 10 seconds. We see that boxes are steadily transferred
from the active to the inactive list and that L increases monotonically. After 15
iterations there is a total of 9490 boxes, which are displayed in Figure 6.

Figure 6a shows the outlines of the 9490 boxes. The algorithm did not need
to divide the boxes with large σ2

e or σ2
s as finely as those with small σ2

e and σ2
s

because they more readily satisfy either U b < L−M or U b−Lb < ε, so become
inactive. Figure 6b shows the same boxes on a logarithmic scale, shaded by Lb

in each box. The red dot is the lower left corner of the box that maximizes

Fig 5. The 43 lines, j = 1, 2, . . . , 43, for the logRL analysis of the HMO data. The line for
j = sz + 1 = 43 is dashed.

http://www.biostat.umn.edu/~hodges/RPLMBook/Datasets/09_HMO_premiums/Ex9.html
http://www.biostat.umn.edu/~hodges/RPLMBook/Datasets/09_HMO_premiums/Ex9.html

Approximately exact calculations 2307

Table 1

The state of the algorithm after each of 15 iterations for the HMO data

Iteration n active boxes n inactive boxes L
1 4 0 −∞
2 16 0 -1618.84
3 40 6 -1509.24
4 72 28 -1408.12
5 144 64 -1325.99
6 68 191 -1265.01
7 116 230 -1256.35
8 144 310 -1243.51
9 340 369 -1240.05
10 920 479 -1237.87
11 2540 764 -1236.79
12 4380 2209 -1236.20
13 3524 5708 -1235.90
14 344 9146 -1235.90
15 0 9490 -1235.90

Lb. Boxes with U b ≥ L ≡ maxLb are outlined in blue; (σ̂2
e , σ̂

2
s) must lie within

the blue region. For comparison, the standard REML analysis using R’s lme
function yields σ̂2

e , σ̂
2
s ≈ (495, 99) with 95% confidence intervals of (421, 582)

and (39, 248).

Figure 6b depicts the same logRL as [3]’s Figures 2a (MCMC draws) and 2b
(log RL contours), but their Figure 2a was produced by MCMC whereas our
Figure 6b was produced by direct calculation. Their Figure 2a shows that the
MCMC sampler did not sample any values of σ2

s less than about 10, whereas
our Figure 6b and their Figure 2b show a region of high logRL extending down

Fig 6. The 9490 boxes produced in the logRL analysis of the HMO data. maxit = ∞; ε =
1; δe = δs = 0; and M = 7.

2308 M. Lavine et al.

to σ2
s = 0. In fact, log RL(500, 0) ≈ −1241.5, only about 6 log units below

logRL(σ̂2
e , σ̂

2
s) ≈ −1235.7. Further, about their Figure 2a, [3] say, “No change

in contour shape indicative of a local maximum could be found in the . . . region
of (500, 600) × (10−3, 1), regardless of contour resolution.” I.e., they cannot
be sure there are no undiscovered points with large logRL. In contrast, our
algorithm guarantees there are no undiscovered points where logRL is more
than ε above L.

4.1.3. A Bayesian analysis

[5], [15], [6], and [3] report Bayesian analyses of the HMO data. Here we repro-
duce the analysis from [5] which used inverse Gamma priors for (σ2

e , σ
2
s) with

αe = 1; βe = 0; αs = 1.1; and βs = 0.1. (We don’t defend the prior; we use it
so we can compare to [5].)

For a Bayesian analysis there are 44 lines, as shown in Figure 7. Figure 7
differs from Figure 5 in that it includes a horizontal line for j = sz + 2 and the
position of the vertical line for j = sz + 1 is slightly shifted.

Because the logRL analysis in Figure 6b shows low values for σ2
e , σ

2
s > 1000,

we run the Bayesian analysis on the box B0 = (0, 1000) × (0, 1000). The algo-
rithm finished in 22 iterations and took a little under 3 hours. Table 2 shows the
output and Figure 8 shows the boxes. The Bayesian analysis in Figure 8 can
be compared to the logRL analysis in Figure 6. The peak of the log posterior
is near (600, .05), very far from the peak of the logRL around (500, 100). The
posterior peak is due to the InvGam(1.1, 0.1) prior for σ2

s , which has a mean of
1, an infinite variance, and a peak at 0.048. The region near (500, 100), though
having a lower posterior density, is part of a nearly flat plateau covering a large
area. The MCMC draws depicted in [3] Figure 2c show that the plateau has
significant posterior mass.

Fig 7. The 44 lines, j = 1, 2, . . . , 44, for the Bayesian analysis of the HMO data. Lines 43
and 44 are dashed.

Approximately exact calculations 2309

Table 2

The state of the algorithm after each of 22 iterations for the Bayesian analysis of the HMO
data

Iteration n active boxes n inactive boxes L
1 4 0 −∞
2 16 0 -1313.42
3 52 3 -1285.05
4 132 22 -1270.76
5 264 88 -1263.98
6 628 195 -1260.47
7 1780 378 -1258.71
8 4188 1111 -1257.70
9 5676 3880 -1256.88
10 5136 8272 -1255.56
11 5528 12026 -1254.20
12 8236 15495 -1252.84
13 12488 20609 -1251.50
14 23852 27134 -1250.26
15 22740 45301 -1249.22
16 43228 57234 -1248.77
17 160208 60410 -1248.77
18 331900 137643 -1248.77
19 575196 325744 -1248.77
20 942860 665225 -1248.77
21 722412 1427482 -1248.77
22 0 2149894 -1248.77

Fig 8. The 2,149,894 boxes in the Bayesian analysis of the HMO data.

4.2. Global mean surface temperature

We reanalyze a data set in [6], global mean surface temperatures (GMST) from
1881 through 2005, depicted in Figure 9. As shown in [13], many splines can

2310 M. Lavine et al.

Fig 9. Global mean surface temperature annually from 1881. The y-axis shows deviations
from the overall mean in units of .01 degrees C.

be written as linear mixed models. [6] fit a piecewise quadratic spline to the
GMST data, though a piecewise cubic spline would look similar. Both splines
can be formulated as linear mixed models. We follow [6]’s lead in fitting a
quadratic spline with knots at 1880, 1884, 1888, . . . , 2004. X has three columns:
1, year, year2. Z is 125 × 30: one row for each year; one column for each knot.
Because we fit a quadratic spline, the entries in Z are squares. Σe and Σs are
identity matrices of the appropriate dimension; see [6] for details. Following [6],
we center and scale the year column of X, then compute the year2 column of X
and all the columns of Z from the transformed year, so Z becomes

Z =

⎡⎢⎢⎢⎣
0 0 . . . 0
...

...
...

...
10.97143 10.2521 . . . 0.01219048
11.15505 10.42971 . . . 0.01904762

⎤⎥⎥⎥⎦
Centering and scaling changes only the scale on which σ2

s is measured; we do it
to more easily compare our result to [6]’s.

The column space of Z shares no dimensions with the column space of X
so sz = 30 and, for our logRL analysis, there are 31 lines in all, as shown
in Figure 10. As usual, we use B0 = B1, the box determined by the largest
intercepts of the 31 lines on the σ2

e and σ2
s axes. After 25 iterations and about

35 minutes of computing time, all boxes became inactive. Output is in Table 3;
boxes are displayed in Figure 11.

The figure shows that the algorithm needed to divide boxes near the axes
more finely than boxes away from the axes and that high logRL is found near
(200, 1000). The figure agrees with Figure 15.3 in [6].

Approximately exact calculations 2311

Fig 10. The 31 lines for the logRL analysis of global mean surface temperatures.

Table 3

The state of the algorithm after each of 25 iterations for the GMST data

Iteration n active boxes n inactive boxes L
1 4 0 −∞
2 16 0 -560.82
3 48 4 -519.98
4 84 31 -480.58
5 152 77 -446.67
6 184 183 -419.47
7 176 323 -406.31
8 164 458 -395.36
9 284 551 -390.24
10 496 711 -385.84
11 984 961 -382.45
12 1792 1497 -379.65
13 2880 2569 -377.36
14 4668 4282 -375.37
15 7312 7122 -373.66
16 10336 11850 -372.29
17 10108 19659 -371.21
18 18596 25118 -370.82
19 62488 28092 -370.82
20 124240 59520 -370.70
21 287596 111861 -370.70
22 494292 275884 -370.70
23 646808 608474 -370.70
24 291944 1182296 -370.70
25 0 1474240 -370.70

5. Discussion

This paper explains and illustrates an algorithm that facilitates computation for
linear mixed models with two variances. The algorithm finds all regions where
either the restricted likelihood function or the joint posterior density of the

2312 M. Lavine et al.

Fig 11. The 1,474,240 boxes from the analysis of global mean surface temperature.

variances is high and can evaluate the function there to arbitrary accuracy. A
natural question to ask is What about linear mixed models with more than two
variances? A partial answer is given by [6] who shows that some models with
more than two variances can be re-expressed similarly to (3) but others can’t.
More complex models that can be re-expressed this way include, but are prob-
ably not limited to, models displaying general balance that are also orthogonal
designs [all balanced ANOVAs plus other models; 7], models that are separable
in a specific sense [6, Section 17.1.5], and miscellaneous other models [6, Sec-
tion 17.1.5], e.g., a spatial model including random effects for heterogeneity and
spatial clustering (an improper conditional autoregressive effect). We have not
explored whether the re-expressible models can be analyzed by our algorithm;
that’s one direction for future work.

Another is to see whether the algorithm can be used to advantage even in non-
re-expressible models. If a model has, say, three variances and is now analyzed
by, say, MCMC, we can create an MCMC chain that alternates between draws
of (σ2

e , σ
2
s) and draws of the other variance. With the aid of our algorithm we

may be able to draw more accurately from [σ2
e , σ

2
s |σ2

other]. More generally, the
conditional distribution of (σ2

e , σ
2
s) given other parameters can now be analyzed

more accurately than in the past. We have yet to explore how to exploit that
accuracy. A third direction is the posterior π(σ2

e , σ
2
s | y). We can identify a region

Bc where the posterior density is low relative to its maximum and it would be
of at least mild interest to find an upper bound for the posterior mass of Bc.

As written, our algorithm moves a box b to the inactive list if (a) U b < L−M
or (b) U b−Lb < ε. But one could construct more elaborate rules. One appealing
example is to apply criterion (a) if U b ≤ L − ε2 and apply criterion (b) if

Approximately exact calculations 2313

U b > L− ε2. Other rules are possible, too. We don’t elaborate here in order to
concentrate on the main ideas.

More generally, our algorithm differs from typical optimization algorithms in
that it has a different goal: learning log f to specified accuracy wherever log f
is high. The algorithm works by exploiting a re-expression of log f as a sum of
simpler, easily analyzed functions. But there may be many other statistically
interesting functions that can be so re-expressed. For example, many likelihood
functions are products of terms from conditionally independent parts of the
data. Posterior densities have the same terms, plus a term from the prior. We
have not yet explored whether our algorithm, and more generally the idea of
learning log f to specified accuracy, is useful outside the family of linear mixed
models; that’s another direction for future work.

In this paper we have taken the point of view that it is important to find
all regions where log f is large without necessarily identifying all local max-
ima or even the global maximum, even though that point of view is at odds
with common statistical estimators that maximize the likelihood, the restricted
likelihood, or the posterior density. If two local maxima are close in height it
hardly matters which is slightly higher than the other. And, as we said earlier,
if there is a high plateau it hardly matters whether there are little bumps on
that plateau.

Appendix A: Derivation of {aj} and {v̂j} in (3), (4), and (5)

Our derivation follows [6], which contains more details. There are three steps.

1. Make the covariance matrices proportional to the identity. If Σe

is not the identity matrix, transform the data to Σ−.5
e y. The transformed

data, which we shall still call y, has covariance proportional to the identity.
Similarly, if Σs is not the identity matrix, re-parameterize the random
effects to Σ−.5

s u. The re-parameterized random effects, which we shall still
call u, have covariance proportional to the identity.

2. If the column spaces of X and Z have a non-trivial intersection,
transform them. Let sX = rank(X) and sZ = rank(X|Z) − sX . Let
ΓX be an n× sX matrix whose columns are an orthonormal basis for the
column space of X. Let ΓZ be an n× sZ matrix such that the columns of
[ΓX |ΓZ] are an orthonormal basis for the column space of [X|Z]. Let Γc

be an n× (n− sX − sZ) matrix such that the columns of [ΓX |ΓZ |Γc] are
an orthonormal basis for Rn. Define the matrix

M =

[
MXX MXZ

0 MZZ

]
by [X|Z] = [ΓX |ΓZ]M where MXX is sX × p and MXZ is sZ × q. ΓX

and ΓZ are transformed versions of X and Z that have non-overlapping
column spaces.

2314 M. Lavine et al.

3. Re-parameterize and diagonalize. Let MZZ have the singular value
decomposition PA.5Lt. Now the linear mixed model (1) can be written as

y =
[
X|Z

] [β
u

]
+ ε

=
[
ΓX |ΓZ

]
M

[
β
u

]
+ ε

=
[
ΓX |ΓZP

] [β∗

v

]
+ ε

where β∗ = MXXβ +MXZu and v = A.5Ltu. β∗ contains the re-parame-
trized fixed effects while v contains the re-parametrized random effects.
The corresponding design matrices ΓX and ΓZP are orthogonal to each
other.

Finally, the {aj} in (3) are the diagonal elements of A, all of which are strictly
positive, and the {v̂j} in (3) are given by v̂ = (v̂1, . . . , v̂sZ)

t = P tΓt
Zy.

Appendix B: Details of the algorithm

With D1 and D2 the R function findf, sketched below, will evaluate, within a
box B0, log f to arbitrary accuracy everywhere log f is large by performing the
following tasks: (a) accept as input {aj , bj , cj , dj}, B0 and some tuning constants;
(b) create a list of active boxes, initially consisting of just B0; (c) create a list of
inactive boxes, initially empty; and (d) for each active box Bj , find (LBj , UBj)
and determine whether Bj needs to be subdivided. These notes explain some
parts of the function in more detail.

1. A dataframe lines is an input to findf. lines contains the {aj , bj , cj , dj} from
Section 2.1. Details for computing them from y, X, Z, Σe, and Σs are in
the Appendix.

2. startbox, or B0, is an input to findf. As explained at the beginning of
Section 3, startbox could be B1, B, or any other box the user chooses.

3. Constants maxit, M , ε, δe, and δs are inputs to findf.

(a) Though not mentioned in the main text, maxit is the maximum num-
ber (could be ∞) of iterations of findf’s loop.

(b) We will not further analyze regions of the plane where log f(σ2
e , σ

2
s) <

log f(σ̂2
e , σ̂

2
s)−M . (M could be ∞.)

(c) We will evaluate log f to within an accuracy of ε (could be 0) inside
B0 unless evaluation is stopped by one of the other criteria.

(d) Though not mentioned in the main text, the algorithm can be told
not to distinguish values of σ2

e separated by less than δe (could be 0)
nor values of σ2

s separated by less than δs (could be 0). Separation
may be specified in either absolute or relative terms. (I.e. we look at
either the difference in σ2

e or log σ2
e (or σ2

s or log σ2
s) from one side of

the box to the other.)

Approximately exact calculations 2315

Setting maxit = ∞ and δe = δs = 0, as we have done in the examples,
implies that B0 will be partitioned so that either log f < log f(σ̂2

e , σ̂
2
s)−M

or log f is known to within ε, for every B0
i in the partition.

4. A box b is a list consisting of

• upper and lower limits on σ2
e ,

• upper and lower limits on σ2
s ,

• upper and lower bounds on log f , U b and Lb from (11),

• indicators for whether this box lies above (or to the right of), below
(or to the left of), or straddles each of the sz + 2 lines.

5. killfunc is a function, defined within findf, that determines whether a box
b should be divided more finely.

6. makebox is a function that takes limits on σ2
e , σ

2
s and returns a box struc-

ture.
7. splitbox is a function that takes a box b = [σ2

e low, σ
2
ehigh] × [σ2

s low, σ
2
shigh]

as input and returns the four boxes created by dividing each side of b at
its midpoint.

8. getstatus is a function that calculates whether a box is above, below, or
straddles each line.

9. getbounds is a function that computes {Lb
j , U

b
j }.

10. findlines is a function that finds the lines for j = 1, . . . , sz+1 corresponding
to log RL.

11. addprior is a function that adjusts the sz + 1 line and adds the sz + 2 line
to account for a conjugate prior.

The R code used in this manuscript is shown below. It can be obtained from
github by issuing the following commands in R.

install.packages("devtools")
library(devtools)
install_github("andrewpbray/lmmoptim")
library(lmmoptim)

findf: The main function

#’ Learn RLL or Log-posterior for two variance MM.
#’
#’ Learns the shape of the objective function within epsilon.
#’
#’ This is the primary function that implements the branch-bound-kill
#’ algorithm described in "Approximately Exact Calculations for Linear
#’ Mixed Models" by Lavine & Hodges (2015). This an interative algorithm
#’ that can require substantial computation time. It is recommended that
#’ the user start with a conservative \code{maxit} and do additional
#’ computations as necessary.
#’
#’ The arguments of this function include five settings to control when
#’ to stop branching (subdividing) a box:
#’ \enumerate{
#’ \item when the upper and lower bounds are within \code{eps} of one another.
#’ \item when the width of \eqn{\sigma^2_e} is less than \code{delE}.
#’ \item when the width of \eqn{\sigma^2_s} is less than \code{delS}.
#’ \item when the upper bound is more than \code{M} below the highest global
#’ lower bound.
#’ \item when the number of iterations reaches \code{maxit}.

2316 M. Lavine et al.

#’ }
#’
#’ @param lines a dataframe that contains the constants that define the
#’ line represented by each term in the sum. Created as output from
#’ \code{\link{findlines}}.
#’ @param startbox a list of boxes and their bounds, possibly the output
#’ from a previous call to \code{findf}. If left empty, will create
#’ a new startbox from a call to \code{makebox}.
#’ @param eps a non-negative numeric indicating the tolerance within which you
#’ would like to learn the function. Default is 0.
#’ @param delE a non-negative numeric indicating the width of \eqn{\sigma^2_e}
#’ beyond which the algorithm will stop branching boxes. Default is 0.
#’ @param delS a non-negative numeric indicating the width of \eqn{\sigma^2_s}
#’ beyond which the algorithm will stop branching boxes. Default is 0.
#’ @param M a non-negative numeric indicating the size of the buffer between
#’ the highest global lower bound and the upper bound of a given box past
#’ that box will now be branched further. Default is \code{Inf}.
#’ @param maxit a positive integer indicating the maximum number of iterations
#’ of the algorithm. Default is 10.
#’ @param ratio a logical indicating if \code{delE} and \code{delS} are specified as
#’ ZZQ. Default is \code{FALSE}.
#’ @param lognote a string to append to the "log.out" log file to annotate
#’ the purpose of each run of the algorithm. For use in benchmarking computation
#’ time. Default is \code{"summary"}.
#’
#’ @return A list of boxes including their limits in \eqn{\sigma^2_e} and
#’ \eqn{\sigma^2_e} as well as their bounds. Running this function also results
#’ in the creation of a log file called "log.out" containing box counts at every
#’ iteration.

findf <- function(lines, startbox, eps = 0, delE = 0, delS = 0, M = Inf, maxit = 10,
ratio = FALSE, lognote = "summary") {

start_time <- Sys.time()

if (missing(lines)) {
print("please supply lines")
return

}
if (missing(startbox)) {

startbox <- makebox(lines = lines,
lims.sigsqs = c(0, max(lines$int.sigsqs[is.finite(lines$int.sigsqs)])),
lims.sigsqe = c(0, max(lines$int.sigsqe[is.finite(lines$int.sigsqe)])),
status = rep("straddle", nrow(lines)))

}
inactive <- list()
ninact <- 0
check whether startbox is a box or a list of boxes
active <- ifelse(length(startbox) == 4 &&

identical(names(startbox), c("lims.sigsqe", "lims.sigsqs", "status", "bounds")),
list(startbox), startbox)

nact <- length(active)

lowbound <- -Inf
iter <- 0

conditions under which a box becomes inactive
killfunc <- function(box, lb, M, eps, delE, delS, ratio) {

lb is a lower bound on max f; it changes at each iteration. M, eps,
delE, delS stay constant throughout the iterations.
cond.low <- box$bounds[2] < lb - M
cond.eps <- diff(box$bounds) < eps
cond.E <- ifelse(ratio, diff(log(box$lims.sigsqe)) < delE,

diff(box$lims.sigsqe) < delE)
cond.S <- ifelse(ratio, diff(log(box$lims.sigsqs)) < delS,

diff(box$lims.sigsqs) < delS)
return(cond.low || cond.eps || cond.E || cond.S)

}

Approximately exact calculations 2317

while (nact > 0 && iter < maxit) {
Find the lower bound of each box and the maximum of the lower bounds.
For each active box, either make it inactive or divide it.
low.act <- max(vapply(X = active, FUN = function(box) {

box$bounds[1]
}, FUN.VALUE = 0.1))

lowbound <- max(lowbound, low.act)
kill <- vapply(X = active, FUN = killfunc, FUN.VALUE = TRUE, lb = lowbound,

M = M, eps = eps, delE - delE, delS = delS, ratio = ratio)
nkill <- sum(kill)
if (nkill > 0) {

inactive[(ninact + 1):(ninact + nkill)] <- active[kill]
}
ninact <- length(inactive)
kids <- list()
nkids <- 0
for (i in which(!kill)) {

kids[(nkids + 1):(nkids + 4)] <-
splitbox(active[[i]], lines) # boxes are split into 4 parts

nkids <- nkids + 4
}
active <- kids
nact <- length(active)

iter <- iter + 1
write(c("iteration", iter, "nact", nact, "ninact", ninact, "lowbound",

lowbound), file = "log.out", ncolumns = 8, append = TRUE)
}

tmp <- t(vapply(X = c(active, inactive), FUN = function(box) {
c(box$lims.sigsqs, box$lims.sigsqe, box$bounds)

}, FUN.VALUE = c(sigsqs.lo = 0.1, sigsqs.hi = 0.1, sigsqe.lo = 0.1,
sigsqe.hi = 0.1, rll.lower = 0.1, rll.upper = 0.1)))

end_time <- Sys.time()
write(paste(lognote, "runtime: ",

round(end_time - start_time, digits = 3)),
file = "log.out", ncolumns = 1, append = TRUE)

return(data.frame(tmp))
}

makebox: make a box

#’ Make a box with bounds
#’
#’ Given the limits of the box, calculate its status relative to each line and
#’ calculate the bounds on the objective function within that box.
#’
#’ @param lims.sigsqe numeric vector of length 2 of the form \code{c(lower, upper)}
#’ containing the x-limits of the box.
#’ @param lims.sigsqs numeric vector of length 2 of the form \code{c(lower, upper)}.
#’ containing the y-limits of the box.
#’ @param status factor of length of \code{lines} denoting the location of the box
#’ relative to each line. If the box has a parent, these correspond to the status
#’ of that parent. The levels are \{above, below, straddle\}.
#’ @param lines dataframe containing the constants that define the shape of each
#’ term in the sum. Output from \code{\link{findlines}}.
#’
#’ @return A list containing:
#’ \itemize{
#’ \item limits of the box in \eqn{\sigma^2_e} (numeric vector of length 2)
#’ \item limits of the box in \eqn{\sigma^2_s} (numeric vector of length 2)
#’ \item the status of the box relative to each line (factor of length of the
#’ number of terms in the sum)
#’ \item the bounds on the objective function (numeric vector of length 2 of
#’ the form \code{c(lower, upper)})
#’ }

2318 M. Lavine et al.

makebox <- function(lims.sigsqe = NA, lims.sigsqs = NA, status = NA, lines) {

sanity checks
if (missing(lims.sigsqs) || missing(lims.sigsqe))

print("please supply lims.sigsqs and lims.sigsqe")
if (missing(status))

print("please supply status")
if (missing(lines))

print("please supply lines")

If the box has a parent then it inherits the parent’s status. But if the
parent straddles a line, we must check whether the child also straddles the
line.
strad <- which(status == "straddle")
status[strad] <- getstatus(lims.sigsqe = lims.sigsqe, lims.sigsqs = lims.sigsqs,

lines = lines[strad,])

we could get some of the bounds from the parent, but it’s just as easy to
recalculate them
bounds <- getbounds(lims.sigsqe = lims.sigsqe, lims.sigsqs = lims.sigsqs,

status = status, lines = lines)

return(list(lims.sigsqe = lims.sigsqe, lims.sigsqs = lims.sigsqs, status = status,
bounds = colSums(bounds)))

}

splitbox: split a box into 4 children

#’ Split a parent box into 4 children.
#’
#’ Split a parent box into four equally sized boxes as part of the branching part
#’ of the algorithm.
#’
#’ @param box list containing the properties of a parent box. Created as output
#’ from \code{\link{makebox}}.
#’ @param lines dataframe containing the constants that define the shape of each
#’ term in the sum. Output from \code{\link{findlines}}.
#’
#’ @return a list of the four child boxes.

splitbox <- function(box, lines) {
split a box into four children
NW <- with(box, makebox(lims.sigsqe = c(lims.sigsqe[1], mean(lims.sigsqe)),

lims.sigsqs = c(mean(lims.sigsqs), lims.sigsqs[2]), status = status,
lines = lines))

NE <- with(box, makebox(lims.sigsqe = c(mean(lims.sigsqe), lims.sigsqe[2]),
lims.sigsqs = c(mean(lims.sigsqs), lims.sigsqs[2]), status = status,
lines = lines))

SW <- with(box, makebox(lims.sigsqe = c(lims.sigsqe[1], mean(lims.sigsqe)),
lims.sigsqs = c(lims.sigsqs[1], mean(lims.sigsqs)), status = status,
lines = lines))

SE <- with(box, makebox(lims.sigsqe = c(mean(lims.sigsqe), lims.sigsqe[2]),
lims.sigsqs = c(lims.sigsqs[1], mean(lims.sigsqs)), status = status,
lines = lines))

return(list(NW, NE, SW, SE))
}

getstatus: determine where a box is, relative to the lines

#’ Get the location of a box relative to lines.
#’
#’ Computes the location of a box with given limits relative to each of
#’ the lines.
#’
#’ @param lims.sigsqe numeric vector of length 2 of the form \code{c(lower, upper)}
#’ containing the x-limits of the box.

Approximately exact calculations 2319

#’ @param lims.sigsqs numeric vector of length 2 of the form \code{c(lower, upper)}
#’ containing the y-limits of the box.
#’ @param lines dataframe containing the constants that define the shape of each
#’ term in the sum. Output from \code{\link{findlines}}.
#’
#’ @return A factor of length of \code{lines} denoting the location of the box
#’ relative to each line.

getstatus <- function(lims.sigsqe, lims.sigsqs, lines) {
Is a box above, below, or straddling the lines with these slopes and
intercepts?

value of the lines at the left side of the box
tmp1 <- lines$int.sigsqs + lines$slope * lims.sigsqe[1]
tmp1[is.infinite(tmp1)] <- NA

value of the lines at the right side of the box
tmp2 <- lines$int.sigsqs + lines$slope * lims.sigsqe[2]
tmp2[is.infinite(tmp2)] <- NA

where is the box relative to the lines?
above <- with(lines, ifelse(slope > -Inf, lims.sigsqs[1] > tmp1,

lims.sigsqe[1] > int.sigsqe))
below <- with(lines, ifelse(slope > -Inf, lims.sigsqs[2] < tmp2,

lims.sigsqe[2] < int.sigsqe))
status <- rep("straddle", nrow(lines))
status[above] <- "above"
status[below] <- "below"

return(status)
}

getbounds: compute {Lb
j , U

b
j }

#’ Get bounds for a given box
#’
#’ Computes the lower and upper bounds on every term in the sum of
#’ the objective function within a box.
#’
#’ @param lims.sigsqe numeric vector of length 2 of the form \code{c(lower, upper)}
#’ containing the x-limits of the box.
#’ @param lims.sigsqs numeric vector of length 2 of the form \code{c(lower, upper)}
#’ containing the y-limits of the box.
#’ @param lines dataframe containing the constants that define the shape of each
#’ term in the sum. Output from \code{\link{findlines}}.
#’ @param status factor of length of \code{lines} denoting the location of the box
#’ relative to each line.
#’
#’ @return A matrix with a row corresponding each term in the sum. The first column
#’ contains the lower bound of that term within the box and the second column
#’ contains the upper bound. Note that the \code{colSums} of this matrix yields the
#’ \code{c(lower, upper)} bounds on the full objective function.

getbounds <- function(lims.sigsqe, lims.sigsqs, lines, status) {
small sanity check
if (missing(lims.sigsqe) || missing(lims.sigsqs))

print("Please supply lims.sigsqe and lims.sigsqs")
if (missing(lines))

print("Please supply lines")
if (missing(status))

print("Please supply status")
if (length(status) != nrow(lines))

print("length(status) != nrow(lines)")

evaluate each line at the upper-right corner of the box
ur <- with(lines, a * lims.sigsqs[2] + b * lims.sigsqe[2])
eval.ur <- with(lines, -0.5 * (multiplier.log * log(ur) + multiplier.inv/ur))

2320 M. Lavine et al.

evaluate each line at the lower-left corner of the box
ll <- with(lines, a * lims.sigsqs[1] + b * lims.sigsqe[1])
eval.ll <- ifelse(ll == 0, -Inf, with(lines, -0.5 * (multiplier.log * log(ll) +

multiplier.inv/ll)))

bounds <- matrix(rep(eval.ur, 2), ncol = 2)
The next two lines of code are for lines that are not straddled. ’above’
means the box is above the line
bounds[status != "above", 1] <- eval.ll[status != "above"] # lower
bounds[status == "above", 2] <- eval.ll[status == "above"] # upper
now we’ll take care of straddled lines
strad <- status == "straddle"
bounds[strad, 1] <- pmin(eval.ur[strad], eval.ll[strad]) # lower
for the upper bound, we can evaluate anywhere on the line, so we might as
well evaluate at (int.sigsqe,0)
bounds[strad, 2] <- with(lines[strad,], ifelse(is.na(int.sigsqe), -0.5 *

(multiplier.log * log(int.sigsqs) + multiplier.inv/int.sigsqs), -0.5 *
(multiplier.log * log(int.sigsqe) + multiplier.inv/int.sigsqe)))

return(bounds)
}

findlines: find the sz + 1 lines for logRL

#’ Find the constants that define each line.
#’
#’ Given X, Y, Z, find the constants {a_j, b_j, c_j, d_j} that define the shape
#’ of each term in the sum.
#’
#’ @param x a matrix with n rows corresponding to the fixed effects.
#’ @param z a matrix with n rows corresponding to the random effects.
#’ @param y a numeric vector of length n.
#’ @param SigE an n x n covariance matrix for the random error.
#’ @param SigS an n x n covariance matrix for the random effects.
#’
#’ @return A dataframe of containing the constants that define the shape of each
#’ term in the sum.

findlines <- function(x, z, y, SigE, SigS) {
if (!is.matrix(x))

print("x should be a matrix")
if (!is.matrix(z))

print("z should be a matrix")
if (!is.vector(y))

print("y should be a vector")

n <- length(y)
nx <- ncol(x)
nz <- ncol(z)

if (nrow(x) != n)
print("nrow(x) != length(y)")

if (nrow(z) != n)
print("nrow(z) != length(y)")

if (!is.matrix(SigE))
print("SigE should be a matrix")

if (!is.matrix(SigS))
print("SigS should be a matrix")

if (nrow(SigE) != n || ncol(SigE) != n)
print("SigE should be a square matrix to match length(y)")

if (nrow(SigS) != nz || ncol(SigS) != nz)
print("SigS should be a square matrix to match ncol(z)")

Is SigE the identity? If not, make it so.
if (!identical(SigE, diag(n))) {

tmp <- inv.sqrt(SigE)
y <- tmp %*% y

Approximately exact calculations 2321

x <- tmp %*% x
z <- tmp %*% z
SigE <- diag(n)

}

Is SigS the identity? If not, make it so.
if (!identical(SigS, diag(nz))) {

tmp <- sqrt.m(SigS)
z <- z %*% tmp
SigS <- diag(nz)

}

sx, sz, Gamma_x, Gamma_z, Gamma_c # Is Gamma_c really needed?
qrx <- qr(x, LAPACK = FALSE) # use LINPACK to get rank(x)
sx <- qrx$rank
Gamx <- qr.Q(qrx)[, 1:sx]
if (sx == 1)

Gamx <- matrix(Gamx, ncol = 1)

tmp <- qr.resid(qrx, z)
qrz <- qr(tmp, LAPACK = FALSE) # use LINPACK to get rank(x)
sz <- qrz$rank
Gamz <- qr.Q(qrz)[, 1:sz]
if (sz == 1)

Gamz <- matrix(Gamz, ncol = 1)

M <- qr.solve(cbind(Gamx, Gamz), cbind(x, z))
M.zz <- M[-(1:sx), -(1:ncol(x)), drop = FALSE]
tmp <- svd(M.zz)
a <- tmp$d^2 # follows Eq (15.1)
v <- t(tmp$u) %*% t(Gamz) %*% y # follows Eq (15.4)
if (length(a) != sz)

print("length(a) != sz")
if (length(v) != sz)

print("length(v) != sz")
rss <- sum(resid(lm(y ~ cbind(Gamx, Gamz)))^2)

lines <- data.frame(a = c(a, 0), v = c(v, sqrt(rss)), int.sigsqs = c(v^2/a,
NA), int.sigsqe = c(v^2, rss/(n - (sx + sz))), slope = c(-1/a, -Inf),
multiplier.log = c(rep(1, sz), n - (sx + sz)),
multiplier.inv = c(v^2, rss), b = 1)

return(lines)
}

addprior: adjust the sz + 1 line and add the sz + 2 line to account for
a prior

#’ Add a prior to the RLL
#’
#’ Modifies the \code{lines} dataframe that is output from the
#’ \code{\link{findlines}} function to add a term corresponding to the
#’ prior for use in a Bayesian analysis.
#’
#’ Working with the posterior density of \eqn{\sigma^2_e, \sigma^2_e} instead
#’ of the RLL requires this incorporation of a prior distribution on those same
#’ parameters. We work here with the inverse Gamma, which is the conjugate prior,
#’ \enumerate{
#’ \item \eqn{\sigma^2_e ~ IG(\alpha_e, \beta_e)}
#’ \item \eqn{\sigma^2_s ~ IG(\alpha_s, \beta_s)}
#’ }
#’ Given a dataframe output from \code{findlines},
#’
#’ @param alpha_e a positive numeric. The shape parameter for the IG prior on
#’ \eqn{\sigma^2_e}.
#’ @param beta_e a positive numeric. The scale parameter for the IG prior on
#’ \eqn{\sigma^2_e}.
#’ @param alpha_s a positive numeric. The shape parameter for the IG prior on

2322 M. Lavine et al.

#’ \eqn{\sigma^2_s}.
#’ @param beta_s a positive numeric. The scale parameter for the IG prior on
#’ \eqn{\sigma^2_s}.
#’
#’ @return Returns a new \code{lines} dataframe with the constants associated
#’ with the prior term appended to the bottom.

addprior <- function(lines, alpha_e = 0, beta_e = 0, alpha_s = 0, beta_s = 0) {
if ((alpha_e != 0) || (beta_e != 0)) {

vert <- which(lines$slope == -Inf)
lines$multiplier.log[vert] <- lines$multiplier.log[vert] + 2 * (alpha_e +

1)
lines$multiplier.inv[vert] <- lines$multiplier.inv[vert] + beta_e
lines$v[vert] <- sqrt(lines$multiplier.inv[vert])
lines$int.sigsqe[vert] <- lines$multiplier.inv[vert]/lines$multiplier.log[vert]

}
if ((alpha_s != 0) || (beta_s != 0)) {

horiz <- data.frame(a = 1, multiplier.inv = 2 * beta_s, multiplier.log = 2 *
(alpha_s + 1), v = sqrt(2 * beta_s), int.sigsqs = beta_s/(alpha_s + 1),
int.sigsqe = NA, slope = 0, b = 0)

lines <- rbind(lines, horiz)
}
return(lines)

}

References

[1] Browne, W., Goldstein, H., and Rasbash, J. (2001), “Multiple Mem-
bership Multiple Classification (MMMC) Models,” Statistical Modeling, 1,
103–124.

[2] Bryk, A. S. and Raudenbush, S. W. (1992), Hierarchical Linear Models:
Applications and Data Analysis Methods, Sage, Newbury Park.

[3] Henn, L. and Hodges, J. S. (2014), “Multiple Local Maxima in Re-
stricted Likelihoods and Posterior Distributions for Mixed Linear Models,”
International Statistical Review, 82, 90–105.

[4] Hill, B. (1965), “Inference About Variance Components in the One-
way Model,” Journal of the American Statistical Association, 60, 806–825.
MR0187319

[5] Hodges, J. H. (1998), “Some Algebra and Geometry for Hierarchical Mod-
els Applied to Diagnostics,” JRSS B, 60, 497–536. MR1625954

[6] Hodges, J. S. (2013), Richly Parameterized Linear Models: Additive, Time
Series, and Spatial Models Using Random Effects, CRC Press. MR3289097

[7] Houtman, A. and Speed, T. (1983), “Balance in Designed Experiments
with Orthogonal Block Structure,” Annals of Statistics, 11, 1069–1085.
MR0720254

[8] Liu, J. and Hodges, J. S. (2003), “Posterior Bimodality in the Balanced
One-way Random-effects Model,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 65, 247–255.

[9] McCaffrey, D., Lockwood, J., Koretz, D., Louis, T., and Hamil-

ton, L. (2004), “Models for Value-added Modeling of Teacher Effects,”
Journal of Behavioral and Educational Statistics, 29, 67–101.

[10] Mullen, K. M. (2014), “Continuous Global Optimization in R,” Journal
of Statistical Software, 60.

http://www.ams.org/mathscinet-getitem?mr=0187319
http://www.ams.org/mathscinet-getitem?mr=1625954
http://www.ams.org/mathscinet-getitem?mr=3289097
http://www.ams.org/mathscinet-getitem?mr=0720254

Approximately exact calculations 2323

[11] Reich, B. and Hodges, J. (2008), “Identification of the Variance Compo-
nents in the General Two-variance Linear Model,” JSPI, 138, 1592–1604.
MR2427291

[12] Reiss, P. T., Huang, L., Chen, Y.-H., Huo, L., Tarpey, T., and
Mennes, M. (2014), “Massively Parallel Nonparametric Regression, with
an Application to Developmental Brain Mapping,” Journal of Computa-
tional and Graphical Statistics, 23, 232–248. MR3173769

[13] Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric
Regression, Cambridge University Press, Cambridge. MR1998720

[14] Verbeke, G. and Molenberghs, G. (2000), Linear Mixed Models for
Longitudinal Data, Springer, first edn.

[15] Wakefield, J. (1998), “Comment on Some Algebra and Geometry for Hi-
erarchical Models Applied to Diagnostics,” Journal of the Royal Statistical
Society (Series B), 60, 497–536. MR1625954

[16] Welham, S. and Thompson, R. (2009), “A Note on Bimodality in the
Log-likelihood Function for Penalized Spline Mixed Models,” Computa-
tional Statistics and Data Analysis, 53, 920–931. MR2657058

[17] West, B. T., Welch, Kathleen, B., and Galecki, A. T. (2014), Lin-
ear Mixed Models: A Practical Guide Using Statistical Software, CRC Press,
second edn.

http://www.ams.org/mathscinet-getitem?mr=2427291
http://www.ams.org/mathscinet-getitem?mr=3173769
http://www.ams.org/mathscinet-getitem?mr=1998720
http://www.ams.org/mathscinet-getitem?mr=1625954
http://www.ams.org/mathscinet-getitem?mr=2657058

	Introduction
	Satisfying the desiderata
	Partial derivatives determine lines
	Lines determine a bounding box
	Lines determine bounds within boxes

	An algorithm
	Examples
	HMO premiums
	Introduction to the data
	A log RL analysis
	A Bayesian analysis

	Global mean surface temperature

	Discussion
	Derivation of {aj} and {j} in (3), (4), and (5)
	Details of the algorithm
	References

