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Abstract: We consider the problem of detecting a sparse Poisson mix-
ture. Our results parallel those for the detection of a sparse normal mix-
ture, pioneered by Ingster (1997) and Donoho and Jin (2004), when the
Poisson means are larger than logarithmic in the sample size. In particular,
a form of higher criticism achieves the detection boundary in the whole
sparse regime. When the Poisson means are smaller than logarithmic in
the sample size, a different regime arises in which simple multiple testing
with Bonferroni correction is enough in the sparse regime. We present some
numerical experiments that confirm our theoretical findings.
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1. Introduction

The Poisson distribution is well suited to model count data in a broad variety of
scientific and engineering fields. In this paper, we consider a stylized detection
problem where we observe n independent Poisson counts X1, . . . , Xn from a
mixture

Xi ∼ (1− ε) Pois(λi) +
ε

2
Pois(λ′

i) +
ε

2
Pois(λ′′

i ), (1)

where

λ′
i = λi +Δi, λ′′

i = max(0, λi −Δi), for some Δi > 0, (2)

and ε ∈ [0, 1] is the fraction of the non-null effects. All the parameters are allowed
to change with n. We are interested in detecting whether there are any non-null
effects in the sample. Specifically, given some null means, λ1, . . . , λn > 0, and
our goal is to test

H0 : ε = 0 versus H1 : ε > 0. (3)

We assume that ε is the same for all i, although this is done to ease the expo-
sition. (Note that the Δi’s in (2) are unknown.)

This model may arise in goodness-of-fit testing for homogeneity in a Poisson
process. Suppose we record the arrival time of alpha particles over a time period
and we are interested in testing for uniformity. One way to do so is to partition
the time period into non-overlapping intervals, and count how many particles
arrived with each interval. These counts can be modeled by a Poisson distribu-
tion. For this problem, and any other discrete goodness-of-fit testing problem,
one would typically use Pearson’s chi-squared test, but we show that, under
some mild conditions, this test is (grossly) suboptimal in the sparse regime
where ε = εn = o(1/

√
n).

In another situation, we might be interested in detecting genes that are dif-
ferentially expressed. Marioni et al. (2008) find that the variation of count data
across technical replicates can be captured using a Poisson model when the over-
(or under-) dispersion is not significant. Suppose we know the Poisson mean
count for each gene expressed under normal conditions and want to detect a
difference in expression under some other (treatment) condition.

In the model we consider here (1) the sparsity assumption is on the number
of nonzero effects, which on average is nε. We assume that ε → 0, so the number
of nonzero effects is negligible compared to the number n of bins or genes being
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tested. In order that there are some nonzero effects under the alternative, we
need nε → ∞. This lead us to assume throughout the paper that

ε → 0, nε → ∞. (4)

We note that sparsity here has a different meaning than in the literature on
sparse multinomials (Holst, 1972; Morris, 1975), where the number of bins is
so large so that some bins have small expected counts, possibly much smaller
than 1.

The call our model the sparse Poisson means model. It is analogous to the
well-known sparse normal means model, whose study in the context of detection
was pioneered by Ingster (1997) and Donoho and Jin (2004). In this model, the
normal distribution N (λ, λ) plays the role of the Poisson distribution Pois(λ).
(We note that in the normal model, one can work withN (μ, 1), μ =

√
λ, without

loss of generality, while such a reduction does not apply to the Poisson model.)
Our results for the Poisson model are completely parallel to those for the normal
model when the Poisson means are large enough that the normalized counts

Zi := (Xi − λi)/
√
λi (5)

are uniformly well-approximated by the standard normal distribution under the
null. Specifically, we show that this is the case when

min
i

λi � log n. (6)

(For two sequences (an), (bn) ⊂ R+, an � bn means that an/bn → ∞.) In
particular, we show that multiple testing via the higher criticism, which Donoho
and Jin (2004) developed based on an idea of John Tukey, is asymptotically
optimal to first order, just as in the normal model. To show this, we use care in
approximating the tails of the Poisson distribution with the tails of the normal
distribution. This is done by standard moderate deviations bounds.

When the Poisson means are smaller, by which we mean

max
i

λi 	 logn, (7)

we uncover a different regime where multiple testing via Bonferroni correction
is optimal in the sparse regime. In this regime, the normal approximation to
the Poisson distribution is not uniformly valid, and in fact not valid at all for
those indices i for which λi remains fixed. Here we use large deviations bounds
to control the tails of the Poisson distribution.

In any case, we assume that the expected counts are lower bounded by a
positive constant, concretely

λi ≥ 1, ∀i = 1, . . . , n. (8)

This is to make the paper self-contained, and also because in practice it is
common to pool together bins to make the expected counts larger than some
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pre-specified minimum. (The constant 1 in the lower bound could be changed
by any other positive number.)

We mention here a closely related model suggested concurrently by Mukherjee
et al. (2015), which could be called the sparse binomial model. This model is
motivated in that paper (see Section 6 there) as logistic regression model with an
ANOVA design. Presented as a mixture model, the setting is that of X1, . . . , Xn

independent with common distribution

Xi ∼ (1− ε) Bin(r, 1/2) +
ε

2
Bin(r, 1/2 + η) +

ε

2
Bin(r, 1/2− η),

and the testing problem remains the same (3). As expected, the asymptotic
theory is exactly parallel to that of the normal means models, if in the sparse
regime, the condition r � logn holds — in analogy with our requirement (6).
The only noticeable difference is in the setting r 	 logn, where all tests are
asymptotically powerless — the analog in the Poisson model is the setting (7),
where a more complex detection boundary emerges (see Proposition 3).

The remainder of the paper is organized as follows. In Section 2, we derive
information lower bounds under various conditions on the Poisson means. In
Section 3, we study a number of tests. In Section 4, we show the result of
some numerical simulations to accompany our theoretical findings. The proofs
are gathered in Section 5. We then briefly touch on the one-sided setting in
Section 6. Section 7 is a brief summary and discussion section.

2. Information bounds

We are particularly interested in regimes where the proportion of non-null effects
tends to zero as the sample size grows to infinity — recall (4). In so doing, we
follow the literature on the normal sparse mixture model (Ingster, 1997; Donoho
and Jin, 2004; Cai, Jeng and Jin, 2011). In particular, we set

ε = n−β , where β ∈ (0, 1) is fixed, (9)

and consider two regimes where the detection problem behaves quite differently:
the sparse regime where β ∈ (1/2, 1) and the dense regime where β ∈ (0, 1/2].
We then parameterize the Poisson means in (1) differently in each regime. When
the λi’s are relatively large, we are guided by the correspondence between the
normal model and the Poisson model via the normalized counts (5).

Suppose we know the fraction ε and all null and non-null Poisson rates. By
the Neyman-Pearson fundamental lemma, the most powerful test for this simple
versus simple hypothesis testing problem is the likelihood ratio test (LRT).
Hence the performance of the LRT gives an information bound for this detection
problem. We investigate this information bound by finding the conditions such
that the risk (the sum of probabilities of type I and type II errors) of the LRT
goes to 1 as n → ∞. We say a test is asymptotically powerful when its risk tends
to zero and asymptotically powerless when its risk tends to one. All the limits
are with respect to n → ∞. All this is standard in the literature on the normal
means model and we contrast this with a minimax-type approach in Section 7.
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2.1. Dense regime

Guided by the correspondence with the normal model, in the dense regime,
where β ≤ 1/2, we parameterize the effects as follows

Δi = ns ·
√

λi, (10)

where s ∈ R is fixed. Define

ρdense(β) =
β

2
− 1

4
. (11)

Proposition 1. Consider the testing problem (3). In dense regime where β ≤
1/2 in (9) and under parameterization (10), all tests are asymptotically power-
less if

s < ρdense(β). (12)

The expert will recognize the perfect correspondence with the detection
boundary for the dense regime in the two-sided detection problem in the normal
model.

2.2. Sparse regime

Guided by the correspondence with the normal model, in the sparse regime
where β > 1/2, we start by parameterizing the effects as follows

Δi =
√
2r logn ·

√
λi, (13)

where r ∈ (0, 1) is fixed. Define

ρsparse(β) =

{
β − 1/2, 1/2 < β ≤ 3/4,

(1−
√
1− β)2, 3/4 < β < 1.

(14)

Proposition 2. Consider the testing problem (3). In sparse regime where β >
1/2 in (9) and under parameterization (6), all tests are asymptotically powerless
if

r < ρsparse(β). (15)

Thus, Propositions 1 and 2 together show that, when (6) holds, meaning
that mini λi � logn, the detection boundary for the Poisson model is in perfect
correspondence with the detection boundary for the normal model.

When the null means (λi : i = 1, . . . , n) are smaller, a different detection
boundary emerges in the sparse regime. To better describe the detection bound-
ary that follows, we adopt the following parameterization

λ′
i = λ1−γ

i (logn)γ , λ′′
i = 0, where γ > 0 is fixed. (16)

Indeed, assuming the λi’s are smaller than logn as we do, this is essential our
standing model (1) with Δi = λ1−γ

i (logn)γ , in which case λ′′
i = 0, as it cannot

be negative.
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Proposition 3. Consider the testing problem (3). In sparse regime where β >
1/2 in (9) and under parameterization (16) with (7) and (8), all tests are asymp-
totically powerless if γ < β.

3. Tests

In this section we analyze some tests that are shown to achieve parts of the
detection boundary. We find that the chi-squared test achieves the detection
boundary in the dense regime (β ≤ 1/2), the test based on the maximum nor-
malized count (which is closely related to multiple testing with Bonferroni cor-
rection) achieves the detection boundary in the very sparse regime (β > 3/4),
while multiple testing with the higher criticism achieves the detection bound-
ary in the whole sparse regime (β > 1/2). The max test and higher criticism
are analyzed when the lambda’s are large, specifically when (6) holds. When
the lambda’s are small, namely when (7) holds, we show that multiple testing
with Bonferroni correction achieves the detection boundary in the whole sparse
regime (β > 1/2).

We speak of tests without specifying a critical value. In each case, the partic-
ular form of the critical value (which can be gleaned from the proof) will depend
on the signal strength under the alternative. This is because we are dealing with
the notion of risk. We find this unessential as, in practice, the level is controlled
and the corresponding critical value is more often than not obtained by Monte
Carlo simulation.

3.1. The chi-squared test

We start by analyzing Pearson’s chi-squared test, which rejects for large values
of

D =
n∑

i=1

(Xi − λi)
2

λi
=

n∑
i=1

Z2
i . (17)

(The Zi’s are the normalized counts defined in (5).) The rationale behind using
this test is two-fold. On the one hand, D =

∑
i Z

2
i is the analog of the chi-

squared test, which achieves the detection boundary in the dense regime under
the normal means model. On the other hand, this is one of the most popular
approaches for goodness-of-fit testing if one interprets X1, . . . , Xn as the counts
in a sample of size N ∼ Pois(

∑
i λi) with values in {1, . . . , n}.

Although we could state a more general result, we opt for simplicity and state
a performance bound when the expected counts are not too small.

Proposition 4. Consider the testing problem (3) with (8), and let ai = Δ2
i /λi.

Then the chi-squared test is asymptotically powerful if

ε
∑

iai �
√
n and ε

(∑
iai

)2 �
∑

ia
2
i , (18)

and asymptotically powerless if

ε
∑

iai 	
√
n and ε

∑
ia

2
i = o(n) and ε

∑
ia

4
i = o(n2). (19)
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From this, we immediately obtain the following result, which at once states
that the chi-squared test achieves the detection boundary in the dense regime,
and does not achieve the detection boundary in the sparse regime.

Corollary 1. Consider the testing problem (3) with the lower bound (8). In
the dense regime, where β ≤ 1/2 in (9) and under parameterization (10), the
chi-squared test is asymptotically powerful when s > ρdense(β) defined in (11).
In the sparse regime, where β > 1/2 in (9) and under parameterization (13),
the chi-squared test is asymptotically powerless when r remains bounded.

Other classical goodness-of-tests include the (generalized) likelihood ratio G2

test and the Freeman-Tukey test. Adapted to our context, the likelihood ratio
G2 test rejects for large values of

G2 = 2

n∑
i=1

Xi log

(
Xi

λi

)
, (20)

while the Freeman-Tukey test rejects for large values of

H2 = 4

n∑
i=1

(
√

Xi −
√

λi)
2. (21)

We did not investigate these tests in detail, but partial work suggests that they
are (as expected) equivalent to the chi-squared in the regimes we are most
interested in.

3.2. The max test

In analogy with the normal model, we consider the max test which rejects for
large values of

M = max
i=1,...,n

|Zi|, (22)

where the Zi’s are defined in (5).

Proposition 5. Consider the testing problem (3). In the very sparse regime,
where β > 3/4 in (9) and under parameterization (13) with (6), the max test is
asymptotically powerful when r > (1−

√
1− β)2.

Hence, the max test achieves the detection boundary (14) in the very sparse
regime (β > 3/4). We speculate that, just as in the normal model, the max test
does not achieve the detection boundary when β < 3/4.

3.3. The higher criticism test

In the normal model, Donoho and Jin (2004) propose a test based on the normal-
ized empirical process of the Zi’s. In our case, these variables are not identically
distributed. It would make sense to convert these to P-values and we elaborate
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on that in Section 3.4. For now, we opt for the following definition

T � = sup
z∈Zn

T (z), T (z) :=

∑
i

(
1{|Zi|>z} −Kλi(z)

)
√∑

i Kλi(z)(1−Kλi(z))
, (23)

where
Kλ(z) := P

(
|Υλ − λ|/

√
λ > z

)
,

with
Υλ is a Poisson random variable with mean λ, (24)

and
Zn :=

{
z ∈ N :

∑
i Kλi(z)(1−Kλi(z)) ≥ logn

}
.

We consider the higher criticism test that rejects for large values of T �. This def-
inition extends the higher criticism of Donoho and Jin (2004), in particular the
variant HC+, to the case where the test statistics are not identically distributed
under the null — and cannot be transformed to be so. The discretization of the
supremum makes the control under the null particularly simple.

Proposition 6. Consider the testing problem (3). In the sparse regime, where
β > 1/2 in (9) and under parameterization (13) with (6), the higher criticism
test is asymptotically powerful when r > ρsparse(β).

Thus the higher criticism achieves the detection boundary (14) in the whole
sparse regime (β > 1/2). We speculate that, just as in the normal model, the
higher criticism is also able to achieve the detection boundary in the dense
regime.

3.4. Multiple testing: Fisher, Bonferroni and Tukey

We now take a multiple testing perspective. In multiple testing jargon, our null
hypothesis H0 is the complete null, since

H0 =

n⋂
i=1

H0,i, H0,i : Xi ∼ Pois(λi).

Several possible definitions for P-values are possible here. We define the P-value
for the ith hypothesis testing problem as follows (recall (24))

pi = Gλi(Xi), where Gλ(x) := P(|Υλ − λ| ≥ |x− λ|). (25)

There does not seem to be a consensus on the definition of P-value for asymmet-
ric discrete null distributions (Dunne, Pawitan and Doody, 1996). We speculate
that any reasonable definition leads to the same asymptotic results in our con-
text. We note that the pi’s are independent, but they are discrete, and therefore
not uniformly distributed in (0, 1) under the complete null. In fact, they are not
even identically distributed unless the λi’s are all equal. That said, for each i,
the null distribution of pi stochastically dominates the uniform distribution.
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Lemma 1 (Lehmann and Romano, 2005, Lem 3.3.1). For any λ > 0,

P(Gλ(Υλ) ≤ u) ≤ u, ∀u ∈ (0, 1).

With P-values now defined, we can draw from the literature on multiple
comparisons and make correspondences with the tests that we studied in the
previous sections.

Fisher’s method

The chi-squared test is, in our context, intimately related to multiple testing
with Fisher’s method, which rejects the complete null for large values of

− 2
n∑

i=1

log pi. (26)

We speculate that, like Pearson’s chi-squared test, Fisher’s method achieves
the detection boundary in the dense regime. We were able to prove this in the
one-sided setting of Section 6.

Bonferroni’s method

The max test is, in turn, intimately related to multiple testing with Bonferroni’s
method, which rejects the (complete) null for small values of

min
i=1,...,n

pi.

In fact, the two procedures are identical when the λi’s are all equal. One can show
that Proposition 5 applies to the Bonferroni test also. Instead of formally proving
this, we focus on complementing the lower bound established in Proposition 3.

Proposition 7. Consider the testing problem (3). In the sparse regime, where
β > 1/2 in (9) and under parameterization (16) with (7), Bonferroni test is
asymptotically powerful when γ > β.

We note that the same is true if we merely focus on the large Zi’s, meaning,
if we replace the two-sided P-values pi with

ponei = Gone
λi

(Xi), where Gone
λ (x) := P(Υλ ≥ x). (27)

In fact, one cannot exploit the assumption that λ′′
i = 0 for all i. Indeed, if

we consider the test that rejects for large values of Y := #{i : Xi = 0}, it
is asymptotically powerless. This follows from a simple analysis based on the
first two moments. By a simple application of Lyapunov’s central limit theorem
and (8), Y is asymptotically normal both under the null and the alternative.
Moreover,

E0(Y ) =
n∑

i=1

e−λi
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and

Var0(Y ) =

n∑
i=1

e−λi(1− e−λi) ≥ (1− e−1)ne−maxi λi = n1+o(1),

where we used (8) and (7), while

E1(Y ) =

n∑
i=1

(
(1− ε)e−λi +

ε

2
e−λ′

i +
ε

2

)
≤ (1− ε/2)E0(Y ) + nε/2 ≤ E0(Y ) + n1−β ,

and, after some simple calculations and using (8),

Var0(Y ) ≤ Var1(Y ) ≤ (1− ε/2)2 Var0(Y ) + nε/2 ≤ Var0(Y ) + n1−β .

We can easily check that the conditions of Lemma 5 (stated later on) are satisfied
when β > 1/2.

Tukey’s higher criticism

The higher criticism may be seen as an intermediate method between Fisher’s
and Bonferroni’s methods. Donoho and Jin (2004) attribute to Tukey the idea
of testing the complete null based on the maximum of the normalized empirical
process of the P-values, which equivalently leads to rejecting for larges values of

max
1≤i≤n/2

√
n (i/n− p(i))√
p(i)(1− p(i))

, (28)

where p(1) ≤ · · · ≤ p(n) are the sorted P-values. In our context where the
P-values are almost uniformly distributed, we can show that the test based on
(28) achieves the detection boundary when all the λi’s are equal. When this
is not so, we are not able to conclude that this is still the case. (Details are
omitted.)

4. Simulations

We present the result of some numerical experiments to complement the theory
presented earlier. In order for the asymptotic analysis to be relevant, we chose
to work with large sample size, n = 104 and n = 106. In some bioinformat-
ics/genetics applications, n could be in the millions. We compare the tests in
terms of their power when the level is controlled at α = 0.05 by simulation. (We
generate the test statistic 500 times under the null and take the (1−α)-quantile
as the critical value.) The power against a particular alternative is then obtained
empirically from 200 repeats.

We note that, for the higher criticism, we work with the P-values defined in
(25) and their corresponding null distribution Fi(t) := P(Gλi(Υλi) ≤ t), that is,

HC = max
t∈T

∑n
i=1(1{pi≤t} − Fi(t))√∑n
i=1 Fi(t)(1− Fi(t))

, (29)
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Fig 1. Simulation results in the dense regime, with n = 106 and all λi’s equal to λ0 = 15.
The blue line is the detection boundary (11).

where T := {t ∈ (0, 1) : 1/n ≤ Fi(t) ≤ 1/2, i = 1, . . . , n}. We note that (29)
is a generalized form of Tukey’s higher criticism (28) for the case where the
pi’s are not identically distributed. Thus we find (29) more natural than (23),
but the two are very closely related and the latter is more easily amenable to
mathematical analysis. In practice, we estimate Fi by simulation.

4.1. In the dense regime

We consider the dense regime, where β ≤ 1/2 in (9) and the parameterization
is as in (2) with (10).

In the first set of experiments, we investigate the performances of various tests
and compare that with the theoretical detection boundary (11). We set n = 106,
all the λi’s equal to λ0 = 15 > log(n) ≈ 14, and vary β in the range of (0, 1/2)
with 0.025 increments and s in the range of [−1/2, 0] with 0.025 increments.
When the λi’s are all equal, Bonferroni’s method is equivalent to the max test,
and is therefore omitted. The results are summarized in Figure 1. We see that
the phase transition phenomenon is clear. We also observe that the performances
of the chi-squared test and Fisher’s method are similar and comparable with
that of the higher criticism, and achieve the asymptotic detection boundary. As
expected, the max test has hardly any power in the dense regime. We note that
very similar trends are observed in the normal means model.
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Fig 2. Simulation results in the dense regime, with n = 104, β = 0.2, and the λi’s generated
iid from λ0 + Exp(λ0). The vertical dotted line is the detection threshold.

Fig 3. Simulation results in the sparse regime, with n = 106 and all λi’s equal to λ0 = 15.
The blue line is the detection boundary (14). In the middle plot, the dashed blue curve is the
detection boundary that the max test can achieve.

In the second set of experiments, we generate settings where the λi’s are
different. We take n = 104 and fix β = 0.2, and the λi’s are generated iid from
λ0 +Exp(λ0), where Exp(λ) denotes the exponential distribution with mean λ,
and we let λ0 ∈ {1, 10, 100}. The results are summarized in Figure 2. We can
see that the chi-squared test and Fisher’s method perform similarly and are the
best, followed by the higher criticism, while the max test and the Bonferroni’s
method are indistinguishable, performing poorly. The effect of λ0 does not seem
important.

4.2. In the sparse regime

We consider the sparse regime, where β > 1/2 in (9) and the parameterization
is as in (2) with (13).

In the first set of experiments, we set n = 106, means all equal to λ0 = 15, and
vary β in the range (1/2, 1) with increments of 0.025, and r in the range [0, 1]
with increments of 0.05. The results are summarized in Figure 3. While the chi-
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Fig 4. Simulation results in the moderately sparse regime, with n = 104, β = 0.6, and the
λi’s generated iid from λ0 + Exp(λ0). The vertical dotted line is the detection threshold.

Fig 5. Simulation results in the very sparse regime, with n = 104, β = 0.8, and the λi’s
generated iid from λ0 + Exp(λ0). The vertical dotted line is the detection threshold.

squared test is not competitive, as expected, we can see that the higher criticism
has more power in the moderately sparse regime where β ∈ (1/2, 3/4), while
the max test is clearly the best in the very sparse regime where β ∈ (3/4, 1).
The asymptotic detection boundary is seen to be fairly accurate, although less
so as β approaches 1, where the asymptotics take longer to come into effect.
(For example, when n = 106 and β = 0.9, there are only n1−0.9 ≈ 4 anomalies.)
We note that very similar trends are observed in the normal means model.

In the second set of experiments, we set n = 104 and β = 0.6 (moderately
sparse) or β = 0.8 (very sparse), and the λi’s are generated iid from λ0+Exp(λ0),
where λ0 ∈ {1, 10, 100}. The simulation results are reported in Figure 4 and Fig-
ure 5. We can see that the max test and Bonferroni’s method perform similarly,
and dominate in the very sparse regime. The chi-squared test is somewhat bet-
ter than Fisher’s method, and to some extent competitive in the moderately
sparse regime, but essentially powerless in the very sparse regime. The higher
criticism is the clear winner in the moderately sparse regime, as expected, and
holds its own in the very sparse regime, although clearly inferior to the max
test. Comparing the results for different values λ0, we may conclude that, in the
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Fig 6. Simulation results in the sparse regime, with n = 104, λ0 = 1 and the λi’s gener-
ated iid from λ0 + Exp(λ0). The vertical dotted line is the detection threshold. Here, the
parameterization is as in (16).

sparse regime, smaller counts (i.e., small λ0) make the problem more difficult —
at least in this finite sample setting.

We also notice in Figure 5 that the phase transition is not as sharp as in
the previous settings, particularly at λ0 = 1. However, the reader may recall
(16), where that for small λ’s we parameterized the model differently. Figure 6
presents similar simulations at λ0 = 1 shown in the scale given in (16). In that
scale, the plots are clearly congruent with the theory.

5. Proofs

For a, b ∈ R, let a ∧ b = min(a, b) and a ∨ b = max(a, b). For two sequences of
reals (an) and (bn): an ∼ bn when an/bn → 1; an = o(bn) when an/bn → 0;
an = O(bn) when an/bn is bounded; an � bn when an = O(bn) and bn = O(an);
an 	 bn when an = o(bn). Finally, an ≈ bn when |an/bn| ∨ |bn/an| = O(logn)w

for some w ∈ R. We use similar notation with a subscript P when the sequences
(an) and (bn) are random. In particular, an = OP (bn) means that an/bn is
bounded in probability, i.e., supn P(|an/bn| > x) → 0 as x → ∞, and an =
oP (bn) means that an/bn → 0 in probability.

For a real x, let �x� (resp. �x�) denote the smallest (resp. largest) integer
greater (resp. smaller) than or equal to x.

When X and Y are random variables, X ∼ Y means they have the same
distribution. For a random variable X and distribution F , X ∼ F means that
X has distribution F . For a sequence of random variables (Xn) and a distribu-
tion F , Xn ⇀ F means that Xn converges in distribution to F . Everywhere, we
identify a distribution and its cumulative distribution function. For a distribu-
tion F , F̄ (x) = 1−F (x) will denote its survival function. We say that an event
En hold with high probability (w.h.p.) if P(En) → 1 as n → ∞.

Let P0,E0,Var0 and P1,E1,Var1 (resp. P0,i,E0,i,Var0,i and P1,i,E1,i,Var1,i)
denote the probability, expectation and variance, under the null and the al-
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ternative (resp. null and alternative at observation i), respectively. Recall the
notation (24) and let Pλ denote the Poisson distribution with mean λ, so that
Pλ(A) = P (Υλ ∈ A).

5.1. Preliminaries

We state here a few results that will be used later on in the proofs of the main
results stated earlier in the paper. We start with a couple of facts about the
Poisson distribution.

The following are moderate deviation bounds for the Poisson distribution
Pois(λ) as λ → ∞.

Lemma 2. Let a : (0,∞) → (0,∞) be such that a(λ) → ∞ and a(λ)/λ → 0 as
λ → ∞. Then

lim
λ→∞

1

a(λ)
logP

(
Υλ ≥ λ+

√
λa(λ)

)
= −1

2

and

lim
λ→∞

1

a(λ)
logP

(
Υλ ≤ λ−

√
λa(λ)

)
= −1

2
.

Proof. We focus on the first statement. Let m = �λ� and take Y1, . . . , Ym+1 iid
Poisson with mean 1. Fixing ε ∈ (0, 1), we have

P

(
Υλ ≥ λ+

√
λa(λ)

)
≤ P

( m∑
i=1

Yi + Ym+1 ≥ m+
√
ma(λ)

)
≤ I + II,

where

I := P

( m∑
i=1

(Yi − 1) ≥ (1− ε)
√

ma(λ)
)
, II := P

(
Ym+1 ≥ ε

√
ma(λ)

)
,

where in the first inequality we used the fact that Υλ is stochastically bounded
from above by

∑m+1
i=1 Yi, and in the second inequality we used the union bound.

By (Dembo and Zeitouni, 1998, Th 3.7.1),

1

a(λ)
log I → − (1− ε)2

2
, m → ∞.

And using the fact that P(Υ1 ≥ x)/P(Υ1 = x) → 1 as x → ∞, we have

log II = logP
(
Υ1 = [ε

√
ma(λ)]

)
+ o(1) ∼ −ε

√
ma(λ) log

√
ma(λ), m → ∞.

Since a(λ) = o(m), we have that II = o(I), and conclude that

lim sup
λ→∞

1

a(λ)
logP

(
Υλ ≥ λ+

√
λa(λ)

)
≤ − (1− ε)2

2
,

and because ε > 0 is arbitrary, we may take ε = 0 in this last display. The
reverse inequality is proved similarly.
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The following are concentration bounds for the Poisson distribution.

Lemma 3. For x ≥ 0, define h(x) = x log(x)− x+1, with h(0) = 0. Then, for
any λ > 0,

−λh(�x�/λ)− 1
2 log�x� − 1 ≤ logP

(
Υλ ≥ x

)
≤ −λh(x/λ), ∀x ≥ λ,

and

−λh(�x�/λ)− 1
2 log�x� − 1 ≤ logP

(
Υλ ≤ x

)
≤ −λh(x/λ), ∀ 0 ≤ x ≤ λ.

Proof. The upper bounds result from a straightforward application of Chernoff’s
bound. For the first lower bound, take x ≥ λ and let m = �x�. Then

logP
(
Υλ ≥ x

)
≥ logP

(
Υλ = m

)
= log

(
e−λλ

m

m!

)
≥ −λh(m/λ)− 1

2 logm− 1,

using the fact that m! ≤ mm+1/2e−m+1. The second lower bound is proved
similarly.

The following is Berry-Esseen’s theorem applied to the Poisson distribution
Pois(λ) as λ → ∞.

Lemma 4. There is a universal constant C > 0 such that

sup
x∈R

∣∣∣∣∣P
(
Υλ − λ√

λ
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C/
√
λ.

Proof. It is enough to prove the result when λ ≥ 1. Let m = �λ� and note that
1/2 ≤ λ/m ≤ 1. Take Y1, . . . , Ym are iid Pois(λ/m), so that Υλ is stochastically
dominated by

∑m
i=1 Yi. We have E(Yi) = Var(Yi) = λ/m and E(|Yi − λ/m|3) ≤

E(Υ3
1) < ∞. The result now follows by the Berry-Esseen theorem.

The following lemma is standard, and appears for example in (Arias-Castro
and Wang, 2013).

Lemma 5. Consider a test that rejects for large values of a statistic Tn with
finite second moment, both under the null and alternative hypotheses. Then the
test that rejects when Tn ≥ tn := E0(Tn) +

an

2

√
Var0(Tn) is asymptotically

powerful if

an :=
E1(Tn)− E0(Tn)√
Var1(Tn) ∨Var0(Tn)

→ ∞. (30)

Assume in addition that Tn is asymptotically normal, both under the null and
alternative hypotheses. Then any test based on Tn is asymptotically powerless if

E1(Tn)− E0(Tn)√
Var0(Tn)

→ 0 and
Var1(Tn)

Var0(Tn)
→ 1. (31)

Finally, we state without proof the following simple result.

Lemma 6. The function f(β) = (1−
√
1− β)2 − (β − 1/2) is nonnegative and

strictly increasing on (3/4, 1).
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5.2. Proof of Proposition 1

Here we use the second moment method without truncation, which amounts to
proving that Var0(L) → 0, or equivalently, E0(L

2) ≤ 1 + o(1), where L is the
likelihood ratio

L =

n∏
i=1

Li,

where

Li :=
(1− ε)Pλi(Xi) +

ε
2Pλ′

i
(Xi) +

ε
2Pλ′′

i
(Xi)

Pλi(Xi)
. (32)

We have E0(L
2) =

∏n
i=1 E0(L

2
i ), where

E0(L
2
i ) =

∞∑
x=0

[
(1− ε)Pλi(x) +

ε
2Pλ′

i
(x) + ε

2Pλ′′
i
(x)

]2
Pλi(x)

=

∞∑
x=0

[
(1− ε)e−λi λ

x
i

x! +
ε
2e

−λ′
i
λ′x
i

x! + ε
2e

−λ′′
i
λ′′x
i

x!

]2
e−λi

λx
i

x!

= (1− ε)2 + 2(1− ε)ε

+
ε2

4
e
−2λ′

i+λi+
λ′2
i

λi +
ε2

4
e
−2λ′′

i +λi+
λ′′2
i
λi +

ε2

2
e
−λ′

i−λ′′
i +λi+

λ′
iλ

′′
i

λi

= 1 +
ε2

2

[
(en

2s − 1) + (e−n2s − 1)
]

= 1 + an, where an := ε2
[
cosh(n2s)− 1

]
.

In the third line we used the fact that
∑∞

x=0 λ
x/x! = eλ for all λ ∈ R, and in

the fourth line we used (10). Condition (12) and the fact that β ≤ 1/2 imply
that s < 0, and using the fact that cosh(x) − 1 ≤ x2 for all x ∈ [0, 1], together
with (9), gives an ≤ n−2β+4s, eventually. We deduce that E0(L

2) ≤ (1 + an)
n,

and the RHS tends to 1 when nan → 0, which is the case because of (12).

5.3. Proof of Proposition 2

We use the truncated second moment method of Ingster in the form put forth
by Butucea and Ingster (2013). Define

xi = λi +
√

2(1 + η) log(n)
√
λi, yi = λi −

√
2(1 + η) log(n)

√
λi,

where η > 0 is chosen small enough that (35) and (36) below hold.
Define the truncated likelihood function,

L̃ =

n∏
i=1

Li1Ai , Ai := {yi ≤ Xi ≤ xi},

where Li is defined in (32). As in (Butucea and Ingster, 2013), it suffices to
prove that

E0(L̃) ≥ 1 + o(1) and E0(L̃
2) ≤ 1 + o(1).
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First moment. We have

E0(L̃) =

n∏
i=1

E0(Li1Ai) =

n∏
i=1

P1(Ai).

We have
P1(A

c
i ) = (1− ε)Pλi(A

c
i ) +

ε

2
Pλ′

i
(Ac

i ) +
ε

2
Pλ′′

i
(Ac

i ),

and applying Lemma 2 — using (13) and the fact that λ′
i ∼ λ′′

i ∼ λi � logn
because of (6) — we get

Pλi(A
c
i ) ≤ n−1−η+o(1), Pλ′

i
(Ac

i ) ∨ Pλ′′
i
(Ac

i ) ≤ n−(
√
1+η−√

r)2+o(1),

uniformly over i = 1, . . . , n. Hence,

P1(Ai) ≥ 1− an, for some an ≤ n−1−η+o(1) + εn−(
√
1+η−√

r)2+o(1),

which in turn implies
E0(L̃) ≥ (1− an)

n.

Using (9), we have

nan ≤ n−η+o(1) + n1−β−(
√
1+η−√

r)2+o(1).

By (15) and Lemma 6, for any β ∈ (1/2, 1), we have

r < ρsparse(β) ≤ (1−
√
1− β)2 ≤ (

√
1 + η −

√
1− β)2,

which in turn implies that 1− β − (
√
1 + η −√

r)2 < 0. Therefore, nan = o(1),
and so E0(L̃) ≥ 1− o(1).

Second moment. We have

E0(L̃
2) =

n∏
i=1

E0(L
2
i1Ai),

where

E0(L
2
i1Ai) (33)

=
∑

yi≤x≤xi

[
(1− ε)Pλi(x) +

ε
2Pλ′

i
(x) + ε

2Pλ′′
i
(x)

]2
Pλi(x)

=
∑

yi≤x≤xi

(1− ε)2Pλi(x) + ε(1− ε)
(
Pλ′

i
(x) + Pλ′′

i
(x)

)
+

ε2

4

(
Pλ′

i
(x) + Pλ′′

i
(x)

)2
Pλi(x)

≤ (1− ε)2 + 2ε(1− ε) +
ε2

4

∑
yi≤x≤xi

2
[
e−λ′

i
λ′x
i

x!

]2
+ 2

[
e−λ′′

i
λ′′x
i

x!

]2
e−λi

λx
i

x!
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= 1− ε2 +
ε2

2

∑
yi≤x≤xi

1

x!

[
e−2λ′

i+λi
(λ′2

i

λi

)x
+ e−2λ′′

i +λi
(λ′′2

i

λi

)x]

≤ 1 +
ε2

2

[
e(λ

′
i−λi)

2/λiPλ′2
i /λi

([0, xi]) + e(λ
′′
i −λi)

2/λiPλ′′2
i /λi

([yi,∞))
]

≤ 1 + bi, bi :=
1

2
n−2β+2r

[
Pλ′2

i /λi
([0, xi]) + Pλ′′2

i /λi
([yi,∞))

]
. (34)

In the third line we used the fact that (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R.
Let δ = ρsparse(β)− r, which is strictly positive by (15).
When β ≤ 3/4, −2β + 2r = −1− δ, so that in (34) we have bi ≤ n−1−δ.
When β > 3/4, we distinguish two sub-cases. Let f be the function defined

in Lemma 6. When δ ≥ 1/2, −2β+2r = −1−2[δ−f(β)] < −1 for any β < 1, so
that in (34) we have bi ≤ n−1−2[δ−f(β)]. When δ < 1/2, f−1(δ) exists in (3/4, 1).
If β < f−1(δ), then f(β) < δ and the same bound on bi applies. If β ≥ f−1(δ),
we have r = ρsparse(β) − δ ≥ ρsparse(f

−1(δ)) − δ = f−1(δ) − 1/2 > 1/4. Fix
η > 0 small enough that

f−1(δ)− 1/2 > (1 + η)/4. (35)

Since λ′
i ∼ λ′′

i ∼ λi � logn,

λ′2
i /λi = λi + 2

√
2r log(n)

√
λi(1 + o(1))

and

λ′′2
i /λi = λi − 2

√
2r log(n)

√
λi(1 + o(1)).

Hence,

Pλ′2
i /λi

([0, xi]) = Pλ′2
i /λi

(
Zi ≤ −(2

√
r −

√
1 + η)

√
2 log(n)(1 + o(1))

)
= n−(2

√
r−

√
1+η)2+o(1),

and

Pλ′′2
i /λi

([yi,∞)) = Pλ′′2
i /λi

(
Zi ≥ (2

√
r −

√
1 + η)

√
2 log(n)(1 + o(1))

)
= n−(2

√
r−

√
1+η)2+o(1),

because of Lemma 2, and the fact that 2
√
r >

√
1 + η by our choice of η in (35).

We thus have bi ≤ n2r−2β−(2
√
r−

√
1+η)2+o(1). Note that

2r − 2β − (2
√
r − 1)2 = −1− 2(β − 1 + (1−

√
r)2)

< −1− 2(β − 1 + (1− ρ1/2sparse(β))
2) = −1.

Hence, when η > 0 is small enough,

2r − 2β − (2
√
r −

√
1 + η)2 < −1. (36)
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In any case, taking η small enough, we have maxibi = o(1/n). Then coming
back to (34), we find that

E0(L̃
2) =

n∏
i=1

E0(L
2
i1Ai)

≤
n∏

i=1

(1 + bi) ≤ (1 + max
i

bi)
n = (1 + o(1/n))n = 1 + o(1).

5.4. Proof of Proposition 3

The proof parallels that of Proposition 2. Here we define

xi = (1 + c)
logn

log(ζi)
, ζi :=

logn

λi
,

where c is a small positive constant that will be chosen later on, and consider
the following truncated likelihood

L̃ =

n∏
i=1

Li1Ai , Ai := {Xi ≤ xi}.

First moment. Taking into account the fact that λ′′
i = 0, it suffices to prove

that

max
i

[
Pλi(A

c
i ) + εPλ′

i
(Ac

i )
]
= o(1/n).

Let h(t) = t log t − t + 1. There is t0 such that, for t ≥ t0, h((1 + c)t) ≥
(1+c/2)t log t. Note that xi/λi ≥ ζi/ log(ζi) ≥ ζmin/ log(ζmin) → ∞, eventually,
since (7) implies ζmin := mini ζi → ∞. Hence, using Lemma 3, we get

logPλi(A
c
i ) ≤ −λih(xi/λi)

≤ −λi(1 + c/2)
ζi

log(ζi)
log

( ζi
log(ζi)

)
≤ −(1 + c/3) logn,

as soon as ζmin/ log(ζmin) is large enough. Hence, maxi Pλi(A
c
i ) = o(1/n).

Note that (log n)/λ′
i = ζ1−γ

i . So we also have xi/λ
′
i ≥ ζ1−γ

min / log(ζmin) → ∞,
and using Lemma 3, we get

logPλ′
i
(Ac

i ) ≤ −λ′
ih(xi/λ

′
i)

≤ −λ′
i(1 + c/2)

ζ1−γ
i

log(ζi)
log

( ζ1−γ
i

log(ζi)

)
≤ −(1 + c/3)(1− γ) logn,

as soon as ζ1−γ
min / log(ζmin) is large enough. Since γ < β by assumption, this

implies εmaxi Pλ′
i
(Ac

i ) = o(1/n).
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Second moment. Taking into account the fact that λ′′
i = 0, it suffices to

prove that

max
i

ε2
[
e(λ

′
i−λi)

2/λiPλ′2
i /λi

([0, xi]) + eλi

]
= o(1/n).

We quickly see that

ε2eλi ≤ n−2β+1/ζmin = n−2β+o(1) = o(1/n),

since β > 1/2 is fixed. For the other term, we distinguish two cases.
First, assume that γ < 1/2. Then

ε2e(λ
′
i−λi)

2/λiPλ′2
i /λi

([0, xi]) ≤ ε2eλ
′2
i /λi ≤ n−2β+ζ2γ−1

min = n−2β+o(1) = o(1/n).

Now, assume that γ ≥ 1/2. Then λ′2
i /(λixi) ≥ ζ2γ−1

min log ζmin → ∞, so that
applying Lemma 3, we get

logPλ′2
i /λi

([0, xi]) ≤ −λ′2
i

λi
h(xiλi/λ

′2
i ) = xi log(λ

′2
i /(λixi)) + xi −

λ′2
i

λi
,

with

xi log(λ
′2
i /(λixi)) ≤ (1 + c)(logn)

[
(2γ − 1) +

log log ζmin

log ζmin

]
, (37)

so that

ε2e(λ
′
i−λi)

2/λiPλ′2
i /λi

([0, xi])

≤ exp
[
− 2β logn− 2λ′

i + λi + xi log(λ
′2
i /(λixi)) + xi

]
≤ n−2β+(1+c)(2γ−1)+o(1),

uniformly over i = 1, . . . , n, since in addition to (37), we also have

−2λ′
i + λi + xi ≤ xi ≤ (1 + c) logn/ log ζmin = o(log n).

Since γ < β, we may choose c > 0 small enough that −2β+(1+c)(2γ−1) < −1.

5.5. Proof of Proposition 4

We have

E(Υλ) = λ, Var(Υλ) = λ, E(Υλ − λ)3 = λ, E(Υλ − λ)4 = 3λ2 + λ.

Using this, for the Poisson model (1), we have

E0(D) = n, E1(D) = n+ ε
n∑

i=1

Δ2
i

λi
, Var0(D) = 2n+

n∑
i=1

1

λi
,
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and, after some simple but tedious calculations,

Var1(D) = Var0(D) + εR,

where

R =

n∑
i=1

[
4Δ2

i

λi
+

7Δ2
i

λ2
i

+
(1− ε)Δ4

i

λ2
i

]
≤ C

n∑
i=1

(ai + a2i ),

for some universal constant C > 0, using (8). We have

E1(D)− E0(D) = ε

n∑
i=1

ai

and

Var0(D) ∨Var1(D) ≤ 2n+
n∑

i=1

1

λi
+ Cε

n∑
i=1

(ai + a2i ).

Because of (8), we have
∑n

i=1
1
λi

= O(n). By (18), we have ε
∑n

i=1 ai → ∞.
With the second part of (18), it becomes straightforward to see that the first
part of Lemma 5 applies and we conclude that way.

We now prove that the chi-squared test is asymptotically powerless under
(19). For one thing, this condition implies that Var1(D) ∼ Var0(D), based on
(19) and the bound on R above. The same condition also implies that

E1(D)− E0(D) 	
√
Var1(D) ∨Var0(D).

In view of Lemma 5, it therefore suffices to prove that D is asymptotically
normal both under the null and under the alternative. We have D =

∑
i Z

2
i ,

where Z2
i := (Xi − λi)

2/λi, and these being independent random variables, it
suffices to verify Lyapunov’s conditions. Some straightforward calculations yield

E0(Z
2
i − E0(Z

2
i ))

4 = E0(Z
2
i − 1)4 ≤ C

(
1 +

1

λi
+

1

λ2
i

+
1

λ3
i

)
,

for some constant C > 0, and using (8), we get

Var0(D)−2
n∑

i=1

E0(Z
2
i − 1)4 = O(1/n2)n = O(1/n) = o(1).

With some more work, and using (8), we obtain

E1(Z
2
i − E1(Z

2
i ))

4 ≤ C
(
1 + ε(ai + a4i )

)
,

for some constant C > 0, so that

Var1(D)−2
n∑

i=1

E1(Z
2
i − E1(Z

2
i ))

4 = O(1/n2)

n∑
i=1

(
1 + ε(ai + a4i )

)
= o(1),

which is an immediate consequence of (19).
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5.6. Proof of Proposition 5

When r > (1−
√
1− β)2, there exists a δ > 0 such that r > (

√
1 + δ−

√
1− β)2.

Define the threshold cn =
√
2(1 + δ) log(n). Under the null, by the union bound

and Lemma 2, under (6),

P0(M ≥ cn) ≤
n∑

i=1

P0(|Zi| ≥ cn) = n−δ+o(1) = o(1).

We now assume we are under the alternative. Define I ′ := {i : Xi ∼ Pois(λ′
i)}

and p′i,n = P(Υλ′
i
≥ λi + cn

√
λi). By Lemma 2, we have

p′n := min
i=1,...,n

p′i,n ≥ n−(
√
1+δ−√

r)2+o(1).

We then derive the following

P1(M ≥ cn) ≥ P
(
max
i∈I′

Zi ≥ cn
)

= 1− E

[ ∏
i∈I′

(1− p′i,n)
]

≥ 1− E

[
(1− p′n)

|I′|
]

≥ 1− (1− p′n)
nε/4 − o(1),

where in the last line we used the fact that |I ′| ∼ Bin(n, ε/2), so that |I ′| ≥ nε/4
with probability tending to one. Using (9), we have

(nε)p′n ≥ n1−β−(
√
1+δ−√

r)2+o(1) → ∞, n → ∞,

because r > (
√
1 + δ −

√
1− β)2 by construction. Hence, P1(M ≥ cn) → 1 as

n → ∞, as we needed to prove.

5.7. Proof of Proposition 6

We first control the size of the statistic T � (defined in (23)) under the null. For
each z ∈ R, the variables 1{|Zi|>z}, i = 1, . . . , n, are independent Bernoulli, with
respective parameters Kλi(z), i = 1, . . . , n. We can therefore apply Bernstein’s
inequality, to get

logP0

(∑
i(1{|Zi|>z} −Kλi(z)) > tσ(z)

)
≤ −

1
2 t

2

1+ 1
3 t/σz

, ∀t ≥ 0,

where σ2
z :=

∑
i Kλi(z)(1−Kλi(z)). Choosing t = 2

√
logn and letting z ∈ Zn,

so that σz ≥ 1
2 t, the right-hand side is bounded by −6

5 log n. Thus, applying the
union bound, we get

P0

(
T � > 2

√
logn

)
≤ |Zn|n−6/5,



The sparse Poisson means model 2193

where |Zn| is the cardinality of Zn. We now show that |Zn| is sub-polynomial
in n. By Lemma 3, we have

Kλ(z) ≤ e−λh(1+z/
√
λ) + e−λh(1−z/

√
λ),

where the function h is defined in that lemma. We extend it to R by setting
h(t) = ∞ when t < 0, so that this inequality is true for all λ, z > 0. Note
that h(1 + t) = t2/2 + O(t3) when t = o(1). Take zn =

√
3 logn. Because of

(6), uniformly in i = 1, . . . , n, we have Kλi(zn) ≤ n−3/2+o(1), and in particular,
σ2
zn ≤ n−1/2+o(1) < log n eventually. Hence, by monotonicity, z ≤ zn for all

z ∈ Zn. In particular, |Zn| ≤ zn. Hence, we have P0

(
T � > 2

√
logn

)
= o(1).

Suppose we are now under the alternative. We focus on the case where r < 1,
which is more subtle. Consider zn(q) = �

√
2q logn�, defined for any q > 0. By

Lemma 2, (6) and (13), we have Kλi(zn(q)) = n−q+o(1) uniformly over i. Hence,

p0n,i(q) := P0(|Zi| > zn(q)) = Kλi(zn(q)) = n−q+o(1),

uniformly over i. Thus, when q ∈ (0, 1) is fixed, σ2
zn(q)

= n1−q+o(1) ≥ logn,

eventually, in which case zn(q) ∈ Zn. Hence, for each fixed q ∈ (0, 1), we have
T � ≥ T (zn(q)) for n large enough, and so it suffices to prove that, for some
well-chosen q, P1(T (zn(q)) ≤ 2

√
log n) = o(1).

Assume q > r. By Lemma 2 again, this time under the alternative, together
with (6) and (13),

Kλ′
i
(zn(q)) = n−(

√
q−√

r)2+o(1),

Kλ′′
i
(zn(q)) = n−(

√
q−√

r)2+o(1),

uniformly over i = 1, . . . , n. Hence,

p1n,i(q) := P1(|Zi| > zn(q))

= (1− ε)Kλi(zn(q)) +
ε

2
Kλ′

i
(zn(q)) +

ε

2
Kλ′′

i
(zn(q))

= p0n,i(q) + n−β−(
√
q−√

r)2+o(1),

uniformly over i = 1, . . . , n. It follows that

E1(T (zn(q))) =

∑
i(p

1
i,n(q)− p0i,n(q))√∑

i p
0
i,n(q)(1− p0i,n(q))

=
n1−β−(

√
q−√

r)2+o(1)

√
n1−q+o(1)

= n1/2+q/2−β−(
√
q−√

r)2+o(1)

and

Var1(T (zn(q))) =

∑n
i=1 p

1
i,n(q)(1− p1i,n(q))∑

i p
0
i,n(q)(1− p0i,n(q))

= O(1) ∨ nq−β−(
√
q−√

r)2+o(1).
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First, assume that r < 1/4, so that r− (β − 1/2) = r− ρsparse(β) > 0, where
the equality follows from (14) and the fact that r < 1/4. We take q = 4r and
get

E1(T (zn(4r))) = nr−β+1/2+o(1),

with r − β + 1/2 = r − (β − 1/2) > 0, and

Var1(T (zn(4r))) = O(1) ∨ n−β+3r+o(1).

By Chebyshev’s inequality, we have

P1(T (zn(4r)) < 2
√
log n) ≤ Var1(T (zn(4r))

(E1(T (zn(4r))− 2
√
log n)2

=
O(1) ∨ n−β+3r+o(1)

n1+2r−2β+o(1)

=

{
O(n−1−2r+2β+o(1)), if β ≥ 3r,

O(nβ+r−1+o(1)), if β < 3r,

with −1−2r+2β < −1−2(β−1/2)+2β = 0 and β+r−1 < r+1/2+r−1 < 0
since r < 1/4.

Now, assume that r ≥ 1/4, which together with r > ρsparse(β) and r ≥ 1/4
implies that r > (1−

√
1− β)2, which in turn forces 1−β− (1−√

r)2 > 0. Take
r < q < 1 such that 1− β − (

√
q −√

r)2 > 0 Then

E1(T (zn(q))) = n1−β−(
√
q−√

r)2+o(1)

and
Var1(T (zn(q))) = n1−β−(

√
q−√

r)2+o(1).

Thus, by Chebyshev’s inequality,

P1(T (zn(q)) < 2
√

logn) ≤ Var1(T (zn(q))

(E1(T (zn(q)))− 2
√
logn)2

= n(
√
q−√

r)2−1+β+o(1) = o(1).

5.8. Proof of Proposition 7

Consider the situation under the null. Because of Lemma 1, we have

min
i

pi ≥sto min
i

ui, u1, . . . , un
iid∼ Unif(0, 1).

Therefore, under the null we have P0(mini pi ≤ ωn/n) = o(1) for any sequence
ωn = o(1). Take ωn = 1/ logn.

Under the alternative, let I ′ = {i : Xi ∼ Pois(λ′
i)}. Note that λih(Xi/λi) ≥

log(n/ωn) implies
pi = P(Υλi ≥ Xi|Xi) ≤ ωn/n,
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where the equality is due to the fact that, necessarily, Xi ≥ 3λi eventually,
and the inequality comes from Lemma 3. Thus, defining qi = P

(
λih(Υλ′

i
/λi) ≥

log(n/ωn)
)
, we arrive at

P1(min
i

pi > ωn/n) ≤ P

(
min
i∈I′

pi > ωn/n
)

≤ E

[ ∏
i∈I′(1− qi)

]
≤ (1− qmin)

nε/4,

where qmin := mini=1,...,n qi, and in the last line we used |I ′| ∼ Bin(n, ε/2), so
that |I ′| ≥ nε/4 with probability tending to one. Note that

qi = P

(
Υλ′

i
≥ bi

)
, bi := λih

−1
( log(n/ωn)

λi

)
,

where for t ≥ 0, h−1(t) is defined as the unique x ≥ 1 such that h(x) = t. Notice
that h−1(t) ∼ t/ log t when t → ∞. Let ζi = logn/λi, so that ζmin := mini ζi →
∞ when (7) holds. We have

bi/λ
′
i ∼ logn/(λ′

i log ζi) = ζ1−γ
i / log ζi ≥ ζ1−γ

min / log ζmin → ∞.

Therefore, applying the first lower bound in Lemma 3, we get

log qi ≥ −λ′
ih(�bi�/λ′

i)− 1
2 log�bi� − 1

∼ −bi log(bi/λ
′
i) ∼ − logn

log ζi
log(ζ1−γ

i ) = −(1− γ) logn,

uniformly over i = 1, . . . , n because mini(bi ∧ (bi/λ
′
i) ∧ ζi) → ∞. In particular,

qmin ≥ n−(1−γ)+o(1), implying that nεqmin ≥ nγ−β+o(1) → ∞, because γ > β
by assumption. We conclude that P1(mini pi > ωn/n) = o(1), as we needed to
prove.

6. The one-sided setting

Up until now, we considered a two-sided setting, partly motivated by the im-
portant example of goodness-of-fit testing, where Pearson’s chi-squared test is
omnipresent. Consider now a one-sided setting, where instead of (1) we have

Xi ∼ (1− ε) Pois(λi) + ε Pois(λ′
i), (38)

together with λ′
i = λi + Δi and ε ∈ [0, 1]. We address the problem (3) in this

context. Such a model may be relevant in some image processing applications
where the goal is to detect an anomaly in the form of scattered pixels of unusu-
ally large intensity.
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6.1. Dense regime

In the dense regime where (9) holds with β ≤ 1/2, we consider the same param-
eterization (10). Define

ρonedense(β) = β − 1

2
. (39)

Proposition 8. Consider the testing problem (3) in the one-sided setting (38).
In dense regime where β ≤ 1/2 in (9) and under parameterization (10), all tests
are asymptotically powerless if

s < ρonedense(β). (40)

The proof is parallel to that of Proposition 1 — in fact simpler — and is
omitted. We note that this detection boundary is in direct correspondence with
that in the normal model (Cai, Jeng and Jin, 2011).

In the one-sided setting, the chi-squared test does not achieve the detection
boundary. However, its one-sided version does. Indeed, consider the test that
rejects for large values of

n∑
i=1

Xi − λi√
λi

. (41)

Proposition 9. Consider the testing problem (3) in the one-sided setting (38),
with (8), and let ai = Δi/

√
λi. The test based on (41) is asymptotically powerful

if (18) holds. In particular, in dense regime where β ≤ 1/2 in (9) and under
parameterization (10), the test is asymptotically powerful when s > ρonedense(β).

The proof is parallel to that of Proposition 4 — in fact much simpler — and
is omitted.

All the arguments are simpler in the one-sided setting, so much so that we
are able to analysis Fisher’s method. In the one-sided setting, instead of (25),
define the P-values as in (27). Note that Lemma 1 still applies.

Proposition 10. Consider the testing problem (3) in the one-sided setting (38),
with (8), and let ai = Δi/

√
λi. Fisher’s test (based on (26)) is asymptotically

powerful if

ε
∑

i(ai ∧ 1) �
√
n.

In particular, in dense regime, where β ≤ 1/2 in (9) and under parameterization
(10), the test is asymptotically powerful when s > ρonedense(β).

To streamline the proof, which is somewhat long and technical, we implicitly
focused on the most interesting case where the ai’s are bounded, but this is not
intrinsic to the method. In fact, the test has increasing power with respect to
each ai. The technical proof is detailed in Section 6.3.
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6.2. Sparse regime

In the sparse regime, the same results apply. In particular, the detection bound-
ary described in Propositions 2 and 3 applies. The max test — now based on
maxi Zi — and Bonferroni’s method achieve the detection boundary in the very
sparse regime (β > 3/4). The higher criticism is now based on

T � = sup
x∈Xn

T (x), T (x) :=

∑
i

(
1{Xi>x} −Gλi(x)

)
√∑

i Gλi(x)(1−Gλi(x))
,

with definition (27) and

Xn :=
{
x ∈ N :

∑
i Gλi(x)(1−Gλi(x)) ≥ logn

}
,

and it achieves the detection boundary over the whole sparse regime (β > 1/2).
The technical arguments are parallel — in fact simpler — and are omitted.

6.3. Proof of Proposition 10

Let V be the statistic (26). We seek to apply Lemma 5, which is based on the
first two moments, under the null and under the alternative. In what follows,
λ ≥ 1 and λ′ = λ+ a

√
λ with 0 < a ≤ 1.

Difference in means. For λ > 0, gλ(x) = P(Υλ = x), Gλ(x) = P(Υλ ≥ x),
and Fλ = −2 logGλ(Υλ). We have

Eλ(Fλ) = −2
∑
x≥0

[logGλ(x)]gλ(x) = 2
∑
x≥1

[logGλ(x− 1)− logGλ(x)]Gλ(x),

using the fact that gλ(x) = Gλ(x) − Gλ(x + 1) and Gλ(0) = 1. A similar
expression holds for Eλ′(Fλ), and combined, we get

Eλ′(Fλ)− Eλ(Fλ) = 2
∑
x≥1

[logGλ(x− 1)− logGλ(x)][Gλ′(x)−Gλ(x)]

= 2
∑
x≥1

log
[
1 +

gλ(x− 1)

Gλ(x)

]
[Gλ′(x)−Gλ(x)].

In that case, the summands are positive, since logGλ(x − 1) ≥ logGλ(x) by
monotonicity of Gλ, and Gλ′(x) ≥ Gλ(x) by the fact that Υλ′ stochastically
dominates Υλ when λ′ > λ. To get a lower bound, we may thus restrict the sum
to any subset of x’s, and we choose x ∈ Iλ := [λ, λ+

√
λ]. Since λ ≥ 1, Iλ �= ∅.

Moreover,
1

C0
≤ Gλ(x) ≤ C0, ∀x ∈ Iλ,

for some universal constant C0 > 1. This is a direct consequence of Lemma 4
when λ ≥ λ0 for some large-enough constant λ0, and otherwise, it comes from
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the fact that Gλ(x) > 0 for all pairs (λ, x) such that λ < λ0 and x ∈ Iλ, which
is a finite set of pairs. We also have

1

C1

√
λ
≤ gλ(x) ≤

C1√
λ
, ∀x ∈ [λ− 1, λ+

√
λ].

for a numeric constant C1 > 1. Indeed, by Stirling’s formula, we have gλ(x) �
x−1/2 exp(−λh(x/λ)), where we recall that h(x) = x log x− x+ 1, and we have
x−1/2 � λ−1/2, and also λh(x/λ) � 1, uniformly over x ∈ Iλ. Furthermore,

gν(x)

gλ(x)
≥ 1/C2, ∀x ∈ Iλ, ∀ν ∈ [λ, λ′],

for a numeric constant C2 > 1. Indeed,

gν(x)

gλ(x)
≥ exp

[
− ν + λ+ λ log(ν/λ)

]
= exp

[
− 1

2
(ν−λ)2

λ +O
( (ν−λ)3

λ2

)]
≥ exp

[
− 1

2a
2 +O(a3/

√
λ)

]
,

which is bounded from below when a is bounded from above. Using the fact that
∂λGλ(x) = gλ(x−1), by the mean-value theorem, we also have Gλ′(x)−Gλ(x) =
(λ′ − λ)gλx(x), for some λx ∈ [λ, λ′], which together with the last two bounds
implies that

Gλ′(x)−Gλ(x) ≥ a/C3, ∀x ∈ Iλ,

for a numeric constant C3 > 1. Gathering all these results, we derive

Eλ′(Fλ)− Eλ(Fλ) ≥ 2
∑

x∈Iλ∩Z

log
[
1 +

1

C0C1

√
λ

] a

C3
≥ a

C4
,

for another constant C4 > 1, because |Iλ ∩ Z| �
√
λ.

Variances. By Lemma 1, Gλ(Υλ) stochastically dominates U ∼ Unif(0, 1),
and because t → (log t)2 is decreasing on (0, 1), we have

Eλ(F
2
λ) ≤ C5 := 4E[(logU)2] < ∞.

Let Rλ,λ′(X) = gλ′(X)/gλ(X). We have

Eλ′(F 2
λ) = Eλ[F

2
λ Rλ,λ′ ] ≤ 2Eλ(F

2
λ) + Eλ[F

2
λ Rλ,λ′1{Rλ,λ′>2}].

Note that Rλ,λ′(x) > 2 if and only if x > x∗ := (Δ+log 2)/ log(1+Δ/λ). Hence,

Eλ[F
2
λRλ,λ′1{Rλ,λ′>2}] =

∑
x>x∗

[logGλ(x)]
2gλ′(x).

The following inequality appears in (DasGupta, 2008, Sec 35.1.8).

Lemma 7 (Bohman’s inequality). For any λ > 0,

P
(
Υλ ≥ x

)
≥ Φ̄

(
x−λ√

λ

)
, ∀x ∈ N.
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This lemma, together with Mills ratio, yields

∑
x>x∗

[logGλ(x)]
2gλ′(x) = O(1)

∑
x>x∗

(x− λ√
λ

)4

x−1/2 exp[−λh(x/λ)],

since, for any x > x∗, (x − λ)/
√
λ > t∗ := (x∗ − λ)/

√
λ � 1/a ≥ 1. Next, we

learn in (Shorack and Wellner, 1986, Prop 1, p. 441) that h(1+t) ≥ 1
2 t

2/(1+ 1
3 t)

for all t ≥ 0. Hence,

λh(x/λ) ≥ (x− λ)2

2λ

1

1 + 1
3
x−λ
λ

≥ (x− λ)2

4λ
1{x≤4λ} +

3

4
(x− λ)1{x>4λ}.

Thus

∑
x>x∗

(x− λ√
λ

)4

x−1/2 exp[−λh(x/λ)]

≤
∑

x∗<x≤4λ

(x− λ√
λ

)4

x−1/2 exp
[
− (x− λ)2

4λ

]

+
∑
x>4λ

(x− λ√
λ

)4

x−1/2 exp
[
− 3

4
(x− λ)

]
.

The first sum on the RHS is bounded by

λ−1/2

�3
√
λ�∑

t=t∗


λ+(t+1)
√
λ�∑

x=
λ+t
√
λ�

(t+ 1)4e−t2/4 ≤
∑
t≥t∗

(t+ 1)4e−t2/4 = o(1),

while the second sum is bounded by

λ−5/2
∑
x>4λ

(x− λ)4e−
3
4 (x−λ) = λ−5/2

∑
x>3λ

x4e−
3
4x ≤ C6,

for a numeric constant C6, since λ ≥ 1. We conclude that

Eλ′(F 2
λ) ≤ C7,

for some numeric constant C7.

Conclusion. Since the test has increasing power with respect to each ai, we
may assume that ai ≤ 1 for all i. Let Fλi = −2 logGλi(Xi) and notice that
V =

∑
i Fλi is our test statistic. Using our finding above, we have

E1(V )− E0(V ) =

n∑
i=1

[
E1(Fλi)− E0(Fλi)

]

= ε
n∑

i=1

[
Eλ′

i
(Fλi)− Eλi(Fλi)

]
≥ ε

n∑
i=1

ai
C4

,
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and

Var0(V ) ≤
n∑

i=1

Eλi(F
2
λi
) ≤ nC5,

as well as

Var1(V ) ≤
n∑

i=1

E1(F
2
λi
) ≤

n∑
i=1

Eλ′
i
(F 2

λi
) ≤ nC7.

By Lemma 5, we conclude that the test is asymptotically powerful when

ε
∑

iai �
√
n.

7. Summary and discussion

We drew a strong parallel between the Poisson means model and the normal
means model. The correspondence is in fact exact when all the λi’s are at
least logarithmic in n. When the λi are smaller, we uncovered a new detection
boundary in the sparse regime. We studied the chi-squared test, the max test and
the higher criticism, which are shown here to have similar properties as in the
normal model. Motivated by the higher criticism, we also advocated a multiple
testing approach to Poisson means model, and studied emblematic approaches
such as Fisher’s and Bonferroni’s methods, which are indeed shown to achieve
the detection boundary in some regime/model.

An open direction might be to adapt the method of Meinshausen and Rice
(2006) for estimating the number of non null effects in the Poisson means model.

On minimax testing.1 We evaluate the performance of a test procedure based
on the sample size needed to achieve a risk tending to 0 asymptotically against
a particular alternative. In doing so, we follow Donoho and Jin (2004), and
essentially all the publications that have built on that seminal work. Another
option would be to consider a minimax criterion. While this is fruitful in set-
tings like regression or density estimation, in our setting this would actually be
much less stringent and comparatively less clear. Indeed, as was done before us,
we compare the (asymptotic) power of a test for the simple versus composite
problem (3) against a given alternative with the power of the likelihood ratio
test that knows this particular alternative. This is indeed more stringent —
a form of oracle inequality — because when a test is found to match that per-
formance to first-order, it is automatically (asymptotically) minimax. And we
argue that this measure of performance is also clearer, as it does not necessitate
the specification of a (least-favorable) prior on the (ε,Δ1, . . . ,Δn).
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