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Abstract: Applying the standard stochastic approximation algorithm of
Robbins and Monro (1951) to calculating confidence limits leads to poor
efficiency and difficulties in estimating the appropriate governing constants
as well as the standard error.

We suggest sampling instead from an alternative importance distribu-
tion and modifying the Robbins-Monro recursion accordingly. This can re-
duce the asymptotic variance by the usual importance sampling factor. It
also allows the standard error and optimal step length to be estimated from
the simulation. The methodology is applied to computing almost exact con-
fidence limits in a generalised linear model.
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1. Introduction

Robbins and Monro (1951) proposed a stochastic approximation scheme for
solving equations of the form

M(θ)
def
= EθH(Y) = α (1)

where Y ∈ R
k and Eθ means expectation with respect to a family of distri-

butions p(y; θ) indexed by θ. Such schemes are of use when the function M(θ)
is unknown or too complex to give explicitly. They showed that under weak
regularity conditions the recursion

θn+1 = θn − cn(H(Yn)− α) (2)

converges in mean square to the solution θ∗ of (1), where the Yn are drawn
from p(y; θn). The damping constants cn must decrease fast enough that the
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series converges, but slow enough that the series is drawn towards the solution.
The mathematical conditions for this are that

∑
n c

2
n < ∞ and

∑
n cn = ∞.

One simple family of such constants is cn = c/nγ where γ ∈ (0.5, 1].
Blum (1954) and Kallianpur (1954) showed almost sure convergence for γ ∈

(2/3, 1]. Chung (1954) showed that the rescaled errors nγ/2(θn−θ∗) converge in
distribution to normal with mean zero if γ ∈ (1/2, 1] and the even moments of
H(Y) are bounded in θ. This in turn recommends γ = 1 whence the asymptotic
variance is given by

c2Varθ∗(H(Y))

2cM ′(θ∗)− 1
(3)

provided that cM ′(θ∗) > 1/2 and where Vθ(H(Y)) denotes variance with respect
to p(y; θ). When c equals c∗ = 1/M ′(θ∗), (3) has its minimum value

VRM = Varθ∗(H(Y))/[M ′(θ∗)]2 (4)

and is known as the Robbins-Monro (RM) variance bound since it sets the min-
imum variance of any estimator of θ∗ based on simulating H(Y), see Wetherill
(1975). Not surprisingly, both the variance and the optimal constant depend on
the first derivative of M(θ) near the solution θ∗. Consequently, estimation of
M ′(θ∗) will be an important part of applying and evaluating the method. Note
that the variance is more adversely affected when c is smaller than c∗ than when
it is larger. For instance, when c = 0.5c∗ the variance (3) is infinite while when
c = 2c∗ it equals 4VRM/3.

The RM scheme has many applications. One statistical application, pioneered
by Garthwaite and Buckland (1992), is to generate a 1− α (upper) confidence
limit for a parameter θ of a statistical model p(y; θ) for data Y . This requires
solving the equation P(T (Y) ≤ t; θ) = α for θ where T (Y) is the maximum
likelihood estimator (MLE) of θ with observed value t. The left hand side is
seldom available in closed form. The RM scheme applies upon letting H(Y) be
I{T (Y)≤t}, where I{A} is the indicator of the event A.

Even though it has never been pursued in the literature, this scheme can be
naturally extended to models with nuisance parameters, see Section 4. Indeed,
this application motivates a new accelerated version of the algorithm described
in Section 2.

There are many difficulties that can arise with the RM algorithm, two of
which are germane to the application just mentioned. The first is that even
the minimised variance (4) can be large. For instance, if the estimator T is
normally distributed, then VRM = α(1 − α)/φ2(zα), where φ is the standard
normal density and zα is the α quantile of φ, which diverges rapidly when α
is near 0. So it will be difficult to simulate a 99.5% limit using this algorithm.
The problem with the large variance can sometimes be mitigated by running
multiple instances of the RM algorithm (see O’Gorman (2014)), but this may
incur increased computational cost. The second problem is that the derivative
M ′(θ) is not easily estimated by this scheme. Consequently, the optimal constant
c∗ and the achieved variance (3) are difficult to obtain. The problem of obtaining
the optimal constant c∗ can be side-stepped by averaging iterates, as shown in
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the seminal paper of Polyak and Juditsky (1992). This motivated Garthwaite
and Jones (2009) to define a more complicated scheme where c∗ is estimated in
three stages. Their numerical experiments show that the variance of the estimate
generated by this stage-wise scheme is, at best, 10% larger than the RM bound.
They also do not provide a standard error and recommend as many iterations
as possible.

The idea of this paper is quite simple. We express M(θ) as the expectation of
a different variable H(Y, θ) with respect to a known θ-free distribution pS(y) as
in Monte Carlo importance sampling, see Kroese et al. (2011). An astute choice
of pS can lead to an asymptotic variance much smaller than (4), in practical
cases 10–100 times smaller. Moreover, we can accurately estimate the optimal
constant c∗ and the achieved variance, unlike competing methods. The idea of
combining the RM method with importance sampling has been considered in
Jourdain and Lelong (2009); Lemaire and Pages (2010); Bardou et al. (2009).
However, the first two articles consider the RM procedure mainly as a tool for
tuning the tilting parameter of an importance sampling density so that the
variance of the estimator is minimal. Our setting and application are different
— here the RM scheme estimates the quantity of interest directly and is not
a tool for tuning the importance sampling density, which in our case is fixed.
In contrast to Bardou et al. (2009), here we consider a more general change
of measure, and instead of optimizing the tuning parameter of the importance
sampling density, we focus on estimating the optimal damping sequence cn.

The plan of the paper is as follows. Section 2 describes the new algorithm
and states the theoretical convergence results. Section 3 illustrates the feasibil-
ity of the method on a toy one-parameter example. Section 4 illustrates how
the method may be used to compute accurate confidence limits on a realistic
example with many parameters.

2. Importance accelerated Robbins-Monro

The general context is a parametric model p̃(y; θ, ψ̃) for dataY where θ ∈ Θ ⊆ R

is a scalar parameter of interest and ψ̃ ∈ Ψ is a vector of nuisance parameters.
Let H̃(Y) be any statistic, though in later applications it will be the indicator
function of a tail set. We seek the value θ∗ of θ for which the mean of H̃(Y)
equals a known value. The problem is the free nuisance parameter ψ̃.

Let ψθ trace out a one dimensional continuous path in Ψ ⊆ R as θ varies over
Θ. Replacing ψ̃ by ψθ reduces the parameter space to one dimension. Motivation
for this will be given in Section 4, where ψθ will be the MLE of ψ̃ for fixed θ.
We denote the restricted model p̃(y; θ, ψθ) by p(y; θ) and consider solving

M(θ)
def
= EθH̃(Y) = α (5)

where Eθ denotes expectation with respect to the restricted one-parameter
model.
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2.1. Importance accelerated recursion

Choose any density pS(y) such that pS(y) = 0 ⇒ p(y; θ) = 0 for all y. Define

H(Y; θ)
def
= H̃(Y)w(Y; θ) where w(Y; θ) = p(Y; θ)/pS(Y) are so-called impor-

tance weights. By the usual importance sampling argument M(θ) = ESH(Y; θ),
where ES denotes expectation with respect to pS . The key difference in this rep-
resentation is that the variable H(Y; θ) now depends on θ rather than the on Y
only. The key advantage is that we have considerable freedom in how we select
the importance distribution pS(y). In that regard, we use the following result.

Proposition 1. Let Y ∈ R
k have a known distribution pS(y) and suppose we

wish to solve for θ

M(θ) =

∫
Rk

H(y; θ)pS(y)dy = ESH(Y; θ) = α, θ ∈ Θ ⊆ R (6)

under the regularity conditions (i) to (vi) given in the supplementary appendix,
which ensure that M(θ) has a unique root, is sufficiently smooth, and H(Y; θ)
has bounded well-behaved second moment. Consider the recursion for n = 1, 2,
3, . . .

θn+1 = θn − c

n
(H(Yn; θn)− α), Y1,Y2, . . .

iid∼ pS(y) . (7)

Then, θn converges almost surely and in mean squared error to the unique solu-
tion θ∗ of (6). Moreover, n1/2(θn− θ∗) converges in distribution to normal with
mean zero and variance

c2VarS{H(Y; θ∗)}
2cM ′(θ∗)− 1

, (8)

where VS denotes variance with respect to pS . The proof involves known
results in stochastic approximation theory, but is nevertheless lengthy and thus
delegated to the supplementary appendix.

The variance (8) has the same form as (3) except that VarS{H(Y; θ∗)} re-
places Varθ∗{H̃(Y)}. Consequently, the variance is minimised at the same value
c∗ = 1/M ′(θ∗) as for the standard RM scheme. The minimised variance is

VIS = VarS{H(Y; θ∗)}/M ′(θ∗)2 (9)

which differs from (4) by the ratio VarS{H(Y; θ∗)}/Varθ∗{H̃(Y)}. With an
astute choice of pS , this variance ratio can be made much smaller than 1. The
reciprocal of this ratio measures the relative efficiency compared to the standard
scheme.

2.2. Estimating the optimal constant

For both traditional RM and the new algorithm, the optimal constant c∗ de-
pends on M ′(θ). This is difficult to estimate within the standard RM scheme.
In practice it can be crudely approximated on a case by case basis.
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For instance, consider the Garthwaite and Buckland (1992) application for
estimating a confidence limit of coverage 1−α where H̃(Y) = I{T (Y)≥t} and T
is the MLE of θ with observed value t. Assuming T is normally distributed with
mean θ and variance free of θ, it can be shown that

c∗ = (θ∗ − t)/(zαφ(zα)). (10)

The only unknown θ∗ is estimated at each step by θn. Because the variance is in-
creased much more by under-estimating c∗ than over-estimating it, Garthwaite
and Buckland (GB) recommend doubling this value. In practice, this leads to
variance about 20–30% higher than the RM bound in the problems they con-
sidered. Moreover, the RM variance itself is not estimated by the simulation.

The new proposal provides an estimator ofM ′(θ∗) and therefore of c∗ without
any normality assumption. The key point is that ESH(Y; θ) = M(θ) for all
values of θ and that perturbing θ provides information about the first derivative.
For instance, for any small value δ (we used δ = 0.001 in our experiments):

ES [H(Y; θ + δ)−H(Y; θ − δ)] = M(θ + δ)−M(θ − δ) ≈ 2δM ′(θ) (11)

and so M ′(θ) can be estimated via the average of the iterates H(Yn; θ + δ) −
H(Yn; θ− δ), similar to Kiefer and Wolfowitz (1952). Theoretically, the value δ
is chosen to be as small as possible subject to numerical accuracy, and possibly
decaying to zero at a rate O(n−s), s ∈ (0, 1/2); see the supplementary appendix.

In practice, it is taken to be a very small fraction of the standard error of θ̂.
Each new estimate of M ′(θ) can be used to generate a new estimate c∗n of the
optimal step length c∗ = 1/M ′(θ∗) at each step of the recursion.

To guard against divergence early in the recursion, one can start with c∗n
equal to a robust but suboptimal sequence, such as the above mentioned ap-
proximation of Garthwaite and Buckland and, after a suitable burn-in period,
move smoothly to the more refined estimator based on (11) as the recursion
progresses. A simple method is given in step 4 of the algorithm below where w
is a “burn-in” parameter (we used w = 50 in our experiments) and the estimates
c∗n start moving from the robust to the more refined estimator after w steps.

Step 0. Initialise θ1 and c∗1.
Step 1. Generate Yn from pS(y).
Step 2. Calculate H(Yn, θn) = H̃(Yn)p(Yn; θn)/pS(Yn).
Step 3. Calculate θn+1 = θn − c∗n(H(Yn, θn)− α)/n.
Step 4A. When n < w calculate c∗n+1 using a robust estimate like GB.
Step 4B. When n ≥ w, estimate M ′(θ∗) by

m′
n = 1

(n−1)2δ

∑n−1
i=1 {H(Yi, θi + δ)−H(Yi, θi − δ)} (12)

and then the optimal step length c∗ by

c∗n+1 = (wc∗w + (n+ 1− w)/m′
n)/(n+ 1) (13)

Step 5. Cycle steps 1-4 until convergence of the sequence θn.
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At step 4B, in equation (12) one can alternatively evaluate H(Yi, θ) at θn±δ
rather than at θi± δ (which yields a computationally cheaper online estimator).
At termination of the algorithm, the variance (9) can be easily estimated. If B
is the index of the final iterate then the numerator is estimated by the sample
variance of the iterates of H(Y1, θ1), . . . , H(YB , θB) and the denominator by
m′

B . The supplementary appendix discusses the theoretical convergence under
certain constraints on the asymptotic behavior of m′

n.

2.3. Choice of the function H̃(Y)

There is a slight ambiguity in the formulation of the basic equation (1) to be
resolved. We can leave α on the right hand side, or we can subtract it from
the function H. In the former case, the increment to θn at step 3 becomes

(H̃(Yn)− α)p(Yn;θn)
pS(Yn)

instead of H̃(Yn)
p(Yn;θn)
pS(Yn)

− α ignoring the common con-

stants c∗n/n. The asymptotics of these two schemes are identical and in our
examples their performance could not be distinguished. The slope estimate in
step 4B is identical under both formulations.

2.4. Choice of the importance distribution pS

The ratio of the variance of the new algorithm to that of the standard RM
algorithm is VarS(H(Y; θ∗))/Varθ∗{H̃(Y)}. Naturally, we want this factor to
be as small as possible.

It is well known that the importance sampling density pS(y) that minimises
the asymptotic variance (9) is proportional to the integrand H̃(y)p(y; θ), see,
for example, (Kroese et al., 2011, p. 364). This choice will make the factor
equal to zero, but since the normalizing constant of this distribution is the
unknown M(θ), this is not much help. Nevertheless, matching the shape of pS
to the integrand H̃(y)p(y; θ) is the rough guiding principle of most methods for
selecting pS . The main restrictions are that it should be easy to generate from
pS and that pS(y) can be quickly calculated for any y.

In higher dimensions finding an importance sampling distribution that
matches the shape of the integrand can be quite difficult, and can easily lead
to problems that are at least as hard as the original problem, see, for example,
Kroese et al. (2011). However, in our applications we will find that efficient
choices of pS are easily available. The reasons are first that θ is scalar and sec-
ondly that H(y) will be a simple indicator function. The recommended choice
will be thoroughly explained in our examples.

3. Simple one parameter example

We illustrate the method on a toy example, firstly to confirm the theory but
also to clarify for the reader exactly how and why the method works.

Consider a single binomial observation y = 60 from n = 100 trials and an
upper 99.5% limit for the success probability θ. The exact upper limit of Clopper



2064 Z. I. Botev and C. J. Lloyd

and Pearson (1934) is the unique solution for θ of P(Y ≤ 60; θ) = 0.005 which
yields θ∗ = 0.7238. We want to estimate this number from an efficient recursion.

3.1. Standard GB algorithm

In our earlier notation for the Garthwaite and Buckland algorithm, let M(θ) =
Eθ[IY≤60 − 0.005] where Eθ denotes expectation with respect to the binomial
probability function p(y; θ) with parameters (100, θ). We want to find the solu-
tion θ∗ of M(θ) = 0. Note that there is no nuisance parameter in this problem.

The function M(θ) is decreasing in θ and so the step length constant c needs
to be negative, but for ease of presentation we change its sign and write the
standard RM recursion as θn+1 = θn + c∗n(IYn≤60 − 0.005)/n where Yn is gen-
erated from the binomial distribution with θ = θn. The optimal step length
can be calculated numerically here and equals c∗ = 3.062. However, this is not
available in the GB algorithm, which instead uses the normal approximation
given in (10), giving here 3.322. This value is estimated and doubled at each
step via the equation

c∗n = 2
(θn − 0.6)

z.005φ(z.005)
= 53.70(θn − 0.6) (14)

One realisation of this algorithm is given as the dashed curve in the left panel
of Figure 1. It is worth noting that for around 99.5% of the generated values
IYn≤60 = 0 and so the recursion almost always moves in a negative direction,
offset by much rarer but larger positive movements.

3.2. Importance accelerated recursion

The importance accelerated algorithm involves always sampling from a selected
distribution pS(y). So far we have said little about how to choose pS(y). There
is a wide literature on this issue (see Kroese et al. (2011) and the references
therein), but none of those complex methods are required here. A rather com-
mon prescription is to use the distribution that concentrates samples near the
observed sample. This suggests using the binomial distribution with θ equal to
the MLE, i.e. pS(y) = p(y; θs) with θs = 0.6. The new algorithm is θn+1 =

θn − c∗nH(Yn, θn)/n where H(yn, θn) = (Iyn≤60 − 0.005)
(
θn
0.6

)yn
(
1−θn
0.4

)100−yn
.

Notice that the increments to θn are now negative/positive roughly half of the
time because we are sampling at θ = 0.6. The innovations can also take a
smoother range of values depending on the value yn, rather than the two values
possible under the standard algorithm. So convergence will be more symmetric
and smoother.

A realisation of 5000 iterates is displayed in the left panel of Figure 1 as a
solid line. To focus attention on the key idea of sampling from an importance
distribution, the same sequence of constants c∗n is used in both cases, namely
the sub-optimal Garthwaite and Buckland constants. Clearly the new method
gets to the answer much more quickly for this realisation.
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Fig 1. Estimating a binomial confidence limit. (Left) A single realised path of the GB/RM
algorithm (dashed) and new algorithm (solid). (Right) RMSE at each iteration, across 1000
repetitions. Vertical scale is logarithmic. Upper curves are for GB/RM and lower are for new
algorithm. The jagged curves are the observed RMSE and the smooth dashed curves are the
optimal standard deviation from (4) and (9).

Both procedures were repeated 1000 times and the root mean square error
(RMSE) calculated at each iteration. The right panel plots the RMSE against
the iteration number (on a log-scale). The upper curves are for the standard GB
method and the lower for the new method. The smooth dashed curves are the
theoretical bounds given by (4) and (9) and the jagged curves are the empirical
RMSE. The new method has error around 9.8 times smaller, which means the
same accuracy as the GB method can be achieved with roughly 100 times less
simulation. This is consistent with recommendations in Garthwaite and Jones
(2009) that at least 200,000 simulations are required in practice using their
non-accelerated method.

3.3. Estimating the optimal constant

For both algorithms, it is apparent in the plots that the observed RMSE is
(around 20%) higher than the theoretical bound, because of the deliberate over-
estimation of c∗ involved in using (14). Figure 2 investigates the effectiveness of
estimating c∗ = 3.062 using (13) in step 4B, with burn-in parameter w = 50.

The left panel shows the estimate of the optimal step length for the first 1000
iterations of a single run. Apparently, one arrives at close to the optimal value
within a few hundred iterations. The right panel shows the RMSE of the final
accelerated estimate, again estimated across 1000 repetitions. Our new method
is the dashed line and achieves the bound (4) displayed as a smooth dashed
line. The previous method with c∗ estimated by (14) is the dotted line and is
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Fig 2. Step length estimation. (Left) Realisation of estimate (13) of optimal step length c∗ =
3.062 (horizontal line). (Right) RMSE of new method using (13) (dashed) and (14) (dotted)
to estimate c∗. Theoretical bound (8) is smooth dashed curve. Vertical scale is logarithmic.

included for reference. Clearly, the major advance here is using the importance
distribution to simulate Yn, and the improved estimation of c∗ is secondary. The
other major advance is that the variability of θn as an estimator of θ∗ can be
estimated.

In this case, referring to (9), the sample variance of the H(Yn; θn) turns out
to equal 7.423×10−5 for the simulation presented in Figure 1, and the last value
of the estimated slope is -0.329 (the true slope is -0.326) and so the variance (9)
is estimated by 6.963 × 10−4. With n = 1000 iterates, this implies a standard
error of

√
0.0006963/1000 = 0.00083 for the final estimate, which in this case

was 0.7233 (the true value is θ∗ = 0.7237).

4. General limits with nuisance parameters

The main motivation for the importance accelerated algorithm presented in this
article is to compute highly accurate confidence limits for parametric models
p̃(y; θ, ψ̃) with nuisance parameters. To this end, it is necessary to give a very
short detour on the theory for the kind of limits we want to compute.

4.1. Profile upper limits

A very general method of generating an upper limit for θ starts with a statistical
quantity T (Y, θ) and equates tail probabilities to the target coverage error.
Because the nuisance parameters ψ̃ are free, they are replaced by the (restricted)

MLE ψ̂θ for known θ. The restricted MLE plays the role of ψθ in the earlier
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theory of Section 2. We then solve

P(T (Y, θ) ≤ T (y, θ); θ, ψ̂θ) = α, (15)

see, for instance, (Davison and Hinkley, 1997, p. 233). One could further approx-
imate the distribution of T (Y; θ) by an asymptotic distribution but we want to
use the exact distribution.

When the statistical quantity T (Y, θ) is an approximate test statistic this is
called the test inversion method. For discrete models, which will be the focus
of this section, this is problematic because the left hand side of (15) is a dis-
continuous function of θ. Test inversion limits are not feasible for discrete data.
Computability requires a choice of T (Y; θ) that does not depend on θ.

An obvious choice is to let T (Y) = Θ̂ be the MLE. The solution of (15) is
then often known as the parametric bootstrap upper limit. For illustrating our
new algorithm we will make a different choice. We take T (Y) to itself be an
approximate upper limit for θ. Theory described in Buehler (1957) and Kabaila
and Lloyd (2001) indicates unequivocally that this is a better choice than the
MLE. Moreover, the final limit is hardly affected by which of the standard
approximate limits is used, see Kabaila and Lloyd (2002). The resulting limits
are called profile upper limits. If the reader finds this choice of T (Y) problematic,
one can use the MLE in what follows without any changes to the algorithm at
all. The only difference is that the final computed upper limit returned by our
new algorithm will tend to have poorer statistical properties (i.e. will tend to
be larger) than the profile upper limit.

So our problem is to solve (15) where T (Y) = θ̂(Y) + z1−ασ̂(Y) in obvious
notation, this being the most common approximate upper limit for θ. As in
Section 2, denote p̃(y; θ, ψ̂θ) by p(y; θ). In our accelerated algorithm we simulate

data sets Yn from the model p(yn; θ̂), i.e. from the fitted model. The innovation
at step 2 of the general algorithm is

H(Yn, θn) =
(
IT (Yn)≤t − α

) p(Yn; θn)

p(Yn; θ̂)
.

For each iterate, the model needs to be fitted twice, once to compute T (yn) and

again to find the restricted MLE ψ̂(θn), suppressed in the notation p(yn; θn),
using the original data set. The latter is easily computed in most packages, for
instance using the offset command in R. We later point out several methods for
reducing the number of model fits during the recursion.

4.2. Example

These data are from Gordon and Foss (1966) and have been use by many authors
to illustrate accurate inference for discrete data, for instance Cox and Snell
(1989) and Brazzale et al. (2007). On 18 days, babies not crying at a specified
time were chosen as subjects. One baby was randomly chosen for stimulation,
which is the treatment. The response was whether or not the baby was crying
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Table 1

Crying babies data from Gordon and Foss (1966)

Control babies Treated babies
Day Not Crying Crying Not Crying Crying
1 3 5 1 0
2 2 4 1 0
3 1 4 1 0
4 1 5 0 1
5 4 1 1 0
6 4 5 1 0
7 5 3 1 0
8 4 4 1 0
9 3 2 1 0
10 8 1 0 1
11 5 1 1 0
12 8 1 1 0
13 5 3 1 0
14 4 1 1 0
15 4 2 1 0
16 7 1 1 0
17 4 2 0 1
18 5 3 1 0

at the end of a specified period. Each row of data in Table 1 is a 2 × 2 table
measuring the effect of stimulation on crying.

The data Y here consists of 36 binomial counts and can be modeled by a
logistic regression. The model p̃(y; θ, ψ̃) is a generalised linear model, the interest
parameter θ is the effect of the treatment on the log-odds of not crying and the
nuisance parameters ψ̃ describe the effects of the dummy variables for each of
the 18 days.

Alternative standard approximate methods give considerably different an-
swers. A 95% upper limit for θ based on the Wald statistic is 2.631 and on the
LR statistic is 2.785. To estimate the profile upper limit, we simulated 36 counts
from the fitted model B = 5000 times. For each simulation, we needed to fit the
model twice, one time to compute the Wald upper limit and a second time to
compute the restricted MLE. The resulting estimate was 2.761 with simulation
error 0.006.

A 95% lower limit for θ based on the Wald statistic is −0.460 and on the
LR statistic is −0.252. The profile lower limit is estimated simply by replacing
the covariate indicating treatment by a covariate indicating non-treatment. Our
estimate of this limit from B = 5000 iterations is −0.316 with simulation error
0.007.

4.3. Diagnostics

The importance accelerated method can break down for a poor choice of pS . Re-
call the importance weights w(y; θ) = p(y; θ∗)/pS(y) and note that
ES{w(Y; θ∗)} = 1. Poor efficiency occurs when the numerator

VarS{H(Y; θ∗)} = VarS{(IT (Y)≤t − α)w(Y; θ∗)}



Robbins-Monro for confidence limits 2069

in (8) is large. So there will be a problem when the mean square weights w2(y; θ∗)
are large on that part of the sample space where T (y) ≤ t. Since the mean
weights equal 1, this could only occur if the distribution of w(Y; θ) becomes
highly skewed. This is characterized by the existence of very large weights with
very small probability.

This situation is detected from the simulations in one of two ways. In the un-
likely event that an improbable large weight appears in the sample, the sample
variance will be appropriately large and estimated efficiency compared to stan-
dard RM will be less than 1. In the more likely case that the improbable large
weights do not appear in the sample, the sample mean of the weights will be
much less than the theoretical value of 1. So we diagnose estimation breakdown
when either the efficiency or the mean sample weights are much less than 1.

For the previous example, the mean value of the observed weights was 0.99
and the relative efficiency of the new method was 9.79 compared to standard
RM. This suggests that the choice of importance distribution has led to a reliable
and highly efficient estimate.

With the current application to confidence limits in logistic regression, the
only cases where breakdown occurred was when the ML estimator θ̂ was infinite.
In this case, using pS(y) = p(y; θ) with θ equal to a slight perturbation of the
ML estimator was successful.

4.4. Computational savings

The computation took just over 40 seconds using the algorithm as described so
far but it can be speeded up significantly. Recall that the approximate upper
limit T (yn) has to be computed for each iteration which requires B fits of the
model. These fits can be sped up by fitting the model to batches of simulated
data simultaneously. Consider the first b simulated data sets y1, . . . ,yb. We fit a
joint model to these data sets with b sets of parameters (θj , ψ̃j) for j = 1, . . . , b.
For instance, in the previous example we define a dummy variable for each batch
of 36 counts and interact this with the 19 parameters of the model.

The point is that this computation will often take far less than b times as
long as a single fit. The optimal value of b depends on the package being used
but can be easily determined by experimentation. In the previous example, we
found that b = 5 leads to a reduction in computation by a factor of 3.

The original algorithm also required computation of ψ̂θ(yobs) at θ = θn which
requires another B fits of a restricted model to the original data. This can be
largely avoided also. One option is to use the fact that ψ̂θ(yobs) is a smooth
function of θ from the first 100 or so iterations. One can then extrapolate or
interpolate at subsequent values of θ using a polynomial spline. We have found
that this approach was completely successful in the previous example and halved
the total computing time. The same approach should work for any model where
ψ̂θ is smooth in θ. A variant on this method is to combine the smooth extrap-
olation with an explicit calculation of ψ̂θ at θ = θn say every 10-th iteration.
If nothing else, this can be used to verify the extrapolation. In summary, these
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two computational devices reduced the computational cost by a factor of five
(from 40 seconds to 8 seconds) in the previous example.

5. Conclusion

This paper presents a new accelerated Robbins-Monro algorithm that can re-
duce computation by an order of magnitude or more. The new computational
approach is motivated by the problem of finding an accurate confidence limit.
Previous research has only dealt with the standard RM scheme and with mod-
els without nuisance parameters. The proposed method opens the way to more
general application of stochastic approximation to higher order frequentist in-
ference.

The Robbins-Monro algorithm has been used to estimate an optimal impor-
tance sampling distribution from within a parametric family, see most recently
Lemaire and Pages (2010). However, inserting importance sampling into the
Robbins-Monro algorithm itself appears to be new, to the statistical literature
at least.

It has been known since Polyak and Juditsky (1992) and Kushner and Yang
(1993) that the RM method bound can be achieved by averaging the iterates
rather than just taking the last. Moreover, provided that the damping con-
stants cn decrease more slowly than O(1/n), the precision does not depend on
these constants. Whether or not these ideas can be applied to the accelerated
algorithm studied in this paper is an area for future research.
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Appendix A: Proof of Proposition 1

Let (Ω,F ,P) be a probability space and Y : Ω → R
k with pdf pS(y), and

p(y; θ) is another pdf with θ ∈ Θ ⊆ R. Recall that we wish to find the root of
the function M : Θ → R, where without loss of generality and for simplicity of
notation we assume α = 0. The non-adaptive Robbins-Monro recursion (that
is, without any attempt to estimate c∗) is given by θn+1 = θn − cH(Yn; θn)/n.
We derive the asymptotic distribution of θn under the following assumptions.

(i) Let M(θ∗) = 0 and assume θ �= θ∗ ⇒ (θ − θ∗)M(θ) > 0;
(ii) M(·) is continuously differentiable and supθ |M ′(θ)| ≤ K1;
(iii) For every δ > 0 we have inf |ϑ−θ∗|≥δ |M(ϑ)| > 0;
(iv) Constant c is such that for every δ > 0 we have inf |ϑ−θ∗|<δ 2cM

′(ϑ) > 1;
(v) Finite variance: for all ϑ ∈ Θ, we have EH2(Y;ϑ) < ∞;

(vi) For every θn
a.s.−→ θ∗ and δ > 0 we have limn↑∞ EH2(Y; θn)I{H2(Y;θn)>nδ} =0.
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We now proceed to derive the asymptotic distribution using a result of Fabian
(1968). For convenience we restate a simpler one-dimensional version of his result
using our notation. This result corresponds to the one in Fabian’s paper given
α = β = k = 1 and regularity condition (2.2.3).

Theorem 1 (Fabian (1968)). Let F1 ⊆ F2 ⊆ · · · be a non-decreasing sequence

of σ-fields. Let Un, Vn, Tn,Γn,Φn ∈ R be random variables for all n and σ2
n

def
=

E[V 2
n | Fn]. Assume that:

• Un+1 =
(
1− Γn

n

)
Un + 1

nΦnVn + 1
n3/2Tn;

• Γn,Φn−1, Vn−1 are Fn-measurable;

• Γn
a.s.−→ γ > 1/2, Φn

a.s.−→ φ, Tn
a.s.−→ t (or Tn

L2→ t) for γ > 1/2 and
φ, t ∈ R;

• E[Vn | Fn] = 0, σn
a.s.−→ σ < ∞ and

limn↑∞ E[V 2
n I{V 2

n≥nδ}] = 0 for every δ > 0.

Then,
√
nUn converges in distribution to a normal with mean 2t

2γ−1 and variance
φ2σ2

2γ−1 .

To apply Fabian’s result to the recursion θn+1 = θn − c
nH(Yn; θn), let Fn =

σ{θ1,Y1, . . . ,Yn−1} be the smallest σ-field with respect to which the indicated
random variables are measurable. We have that F1 ⊆ F2 ⊆ · · · is an increasing
sequence of σ-fields. The recursion can be rewritten as follows:

θn+1 − θ∗︸ ︷︷ ︸
Un+1

=

(
1− cξ(θn)

n

)
(θn − θ∗)︸ ︷︷ ︸

Un

− 1

n
c [H(Yn, θn)−M(θn)]︸ ︷︷ ︸

Vn

,

where ξ(θ) = (M(θ)−M(θ∗))/(θ − θ∗) if θ �= θ∗ and ξ(θ) = M ′(θ∗), otherwise.
We thus apply Theorem 1 using the substitutions (all identities hold in the
almost sure sense):

Un = θn − θ∗, Γn = cξ(θn), Φn = φ = −1

Tn = t = 0, Vn = c(H(Yn, θn)−M(θn))

We now need to establish each of the dot points in Fabian’s result:

1. It is clear from θn+1 = θn− c
nH(Yn; θn) that since the sequence of random

variables θ2, θ3, . . . , θn is constructed from the sequence θ1,Y1, . . . ,Yn−1,
then Γn and Vn−1 = c(H(Yn−1, θn−1)−M(θn−1)) are both Fn-measurable.

2. Under the assumptions (i),(ii), and (iii) we have that θn
a.s.→ θ∗ and in

mean square sense. First, from θn+1 = θn − c
nH(Yn; θn) we have

θn+1 − θ1 + c

n∑
k=1

M(θk)

k
= −

n∑
k=1

Vk

k
(16)

so that Sn
def
=

∑n
k=1 Vk/k is a discrete-time martingale with respect to

the filtration {Fn, n ≥ 1}. Further, the independence of the Y1,Y2, . . . ,
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implies that ES2
n =

∑n
k=1 E[V

2
k ]/k

2, which by (v) is uniformly bounded

and finite. Hence, there exists a finite square integrable S such that Sn
a.s.−→

S and Sn
L2−→ S. Hence, the left-hand side of (16) converges a.s. and in

mean square. Now, the argument of Blum (1954) is that if we assume θn
does not converge to θ∗, we reach a contradiction. For example, assume
that θn

a.s.−→ θ̆ �= θ∗. Now, note that θk+1 = θk− c
kH(Yk; θk) implies θn+1−

1
n

∑n
k=1 θk = − c

n

∑n
k=1 H(Yk; θk) or

1
n

∑n
k=1 θk − θn+1 = 1

n

∑n
k=1 Vk + c

n

∑n
k=1 M(θk) (17)

Since, θn
a.s.−→ θ̆ and M(·) is continuous, Cesaro summation implies that

c
n

∑n
k=1 M(θk)

a.s.−→ cM(θ̆) and 1
n

∑n
k=1 θk

a.s.−→ θ̆. In addition, Kronecker’s
lemma (if bn ↓ 0 and

∑
k akbk < ∞, then bn

∑n
i=1 ai → 0) implies that

1
n

∑n
k=1 Vk

a.s.−→ 0, because
∑∞

k=1 Vk/k is finite. Therefore, taking limits on

both sides of (17) yields the identity M(θ̆) = 0, whence we conclude that

θ̆ = θ∗. Similarly, we can rule out all other possibilities like lim supn θn =
∞ or θ∗ < lim infn θn, and so on, except lim supn θn = lim infn θn = θ∗.

3. Using point 2. above and the assumption (ii), it follows by the continuous

mapping theorem that Γn = cξ(θn)
a.s.→ cM ′(θ∗) = γ, where from (iv) we

have that γ > 1/2.
4. Using the fact that Y1, · · · ,Yn are independent, we have with probability

one

E[Vn | Fn] = cE[H(Yn, θn)−M(θn) | θn] = cE[H(Y, θn) | θn]− cM(θn)= 0

σ2
n =E[V 2

n | Fn] = c2E[(H(Yn, θn)−M(θn))
2 | θn]

= c2EH2(Y; θn)− c2M2(θn)
a.s.→ c2ESH

2(Y; θ∗)
def
= σ2,

where we have used assumptions (v) and (vi).

Thus, all conditions of Theorem 1 are satisfied and we conclude that
√
n(θn −

θ∗) converges in distribution to normal with mean zero and variance given by
c2VarS(H(Y; θ∗))/(2cM ′(θ∗)− 1).

A.1. Importance accelerated Robbins-Monro scheme

Regarding the asymptotic properties of the adaptive version, where we attempt
to estimate the optimal value of the derivative M ′(θ∗) online, we need to control
the asymptotic behavior of m′

n so that: (a) it ultimately converges to M ′(θ∗) as
n ↑ ∞; (b) it does not become too small or too large too rapidly, compromising
the RM recursion. To achieve (a) we let δ = δn, where δn = O(n−s), s ∈ (0, 1/2)
goes to zero, but not too fast. Regarding objective (b), we consider the clipped
estimator (c1 � c2 > 0):

mn
def
=

⎧⎪⎨
⎪⎩
sign(m′

n)c2n
−1/2+ε, if |m′

n| < c2n
−1/2+ε

sign(m′
n)c1, if |m′

n| > c1

m′
n, otherwise

, (18)
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where we recall that m′
n = 1

n−1

∑n−1
k=1 Zk with Zk

def
= H(Yk;θk+δk)−H(Yk;θk−δk)

2δk
.

Note that m′
n is deliberately a sum up to n − 1, so that it and mn are Fn

measurable.
We now can consider the asymptotic behavior of the adaptive Robbins-Monro

scheme: θn+1 = θn − 1
nmn

H(Yn, θn). This can again be recast into a Fabian
recursion:

θn+1 − θ∗ =

(
1− ξ(θn)/mn

n

)
(θn − θ∗) +

1

n

−1

mn
(H(Yn; θn)−M(θn)) . (19)

via the substitution Un = θn − θ∗, Vn = H(Yn; θn) − M(θn), Φn = −1/m′
n,

Γn = ξ(θn)/m
′
n, Tn = t = 0.

Assuming thatmn
a.s.−→M ′(θ∗) and θn

a.s.−→ θ∗, it follows that Φn
a.s.−→−1/M ′(θ∗)

and Γn
a.s.−→ 1, and by Fabian’s theorem the asymptotic distribution of

√
n(θn −

θ∗) is zero-mean normal with variance VarS(H(Y; θ∗))/[M ′(θ∗)]2. Thus, the

only difficulty is showing that θn
a.s.−→ θ∗ and mn

a.s.−→M ′(θ∗).

Proof of θn
a.s.−→ θ∗ and mn

a.s.−→M ′(θ∗). First, note that from (i) we have

E[Zk | Fk] =
M(θk+δk)−M(θk−δk)

2δk
> 0, almost surely. By repeating the martingale

arguments in the previous section, one can easily show that
∑n

k=1
Zk−E[Zk | Fk]

k

with variance of order O(
∑

k(kδk)
−2) = O(

∑
k k

−2(1−s)) converges to a square
integrable random variable for s < 1/2. Hence, by Kronecker’s lemma we have
1
n

∑n
k=1(Zk−E[Zk | Fk])

a.s.−→ 0. Now, since
∣∣E[Zk | Fk]

∣∣∣ ≤ |M ′(θk)|+O(k−2s) with

s > 0, it follows by Kronecker’s lemma that 1
n

∑n
k=1 E[Zk | Fk] converges almost

surely. In other words, m′
n

a.s.−→ limn↑∞
1
n

∑n
k=1 M

′(θk). Note that if θk
a.s.−→ θ∗,

then Cesaro summation implies that 1
n

∑n
k=1 M

′(θk)
a.s.−→M ′(θ∗) and hence m′

n
a.s.−→M ′(θ∗). Thus, it remains to show that θk

a.s.−→ θ∗.
As in the non-adaptive case, E[Vk/mk | Fk] = 0 (almost surely) and thus

Sn =
∑n

k=1
Vk

kmk
is a martingale with respect to {Fn, n = 1, 2, . . .} with second

moment ES2
n =

∑n
k=1

E(Vk/mk)
2

k2 , which is bounded by (v) and the clipping from
below in (18). Hence, Sn converges almost surely and in mean square sense.
Given this, repeating the argument by contradiction as in the non-adaptive
case we can show that P(lim inf θn = −∞) = P(lim sup θn = ∞) = 0.

Next, recall Lemma 1 of Venter (1967), which states that if ζn+1 = (1 −
an)ζn − bn and an ↓ 0 (from above),

∑
n an = ∞,

∑
n bn < ∞, then ζn → 0.

We can apply this lemma here in the almost sure sense on the recursion (19)
with the substitution ζn = Un, an = ξ(θn)/(nmn) and bn = Vn/(nmn). Here,∑

n bn < ∞ almost surely, and since θn cannot converge to ±∞, we have an > 0

and an ↓ 0 with
∑

n an = ∞, establishing that Un
a.s.−→ 0 or θk

a.s.−→ θ∗.
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