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Abstract: In this paper, we consider the problem of statistical inference
for generalized Ornstein-Uhlenbeck processes of the type

Xt = e−ξt

(
X0 +

∫ t

0
eξu−du

)
,

where ξs is a Lévy process. Our primal goal is to estimate the characteristics
of the Lévy process ξ from the low-frequency observations of the process X.
We present a novel approach towards estimating the Lévy triplet of ξ, which
is based on the Mellin transform technique. It is shown that the resulting
estimates attain optimal minimax convergence rates. The suggested algo-
rithms are illustrated by numerical simulations.
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1. Introduction

Let (ξt)t≥0 be a compound Poisson process (CPPt)t≥0 with drift μ ∈ R, that
is,

ξt = μt+ CPPt, CPPt :=

Nt∑
k=1

Yk,

where Nt is a Poisson process with intensity λ, and Y1, Y2, . . . are i.i.d. r.v’s
independent of Nt. The process ξt is a Lévy process with triplet (μ, 0, ν), where
the Lévy measure for any subset B ∈ B(R) is equal to ν(B) := λ · P {Y1 ∈ B}.
The main object of our study is the so-called generalized Ornstein-Uhlenbeck
(GOU) process defined as

Xt = e−ξt

(
X0 +

∫ t

0

eξu−du

)
, t ≥ 0. (1)

The GOU processes have recently got much attention in the literature. A com-
prehensive study of the GOU processes and an extended list of references can
be found in the thesis of Behme [2], where, in particular, it is shown that Xt

satisfies the following SDE:

dXt = Xt−dUt + dt, where Ut := −ξt +
∑

0<s≤t

(
e−Δξs − 1 + Δξs

)
.

The popularity of GOU processes is related to the fact they appear to be useful
in several applications. For instance, the process (1) determines the volatility
process in the COGARCH (COntinuous Generalized AutoRegressive Condition-
ally Heteroscedastic) model introduced in Klüppelberg et al. [19]. One impor-
tant result from the theory of GOU processes is that, under some conditions,
the process (1) is stationary with invariant stationary distribution given by the
distribution of the following exponential functional of ξ :

A∞ :=

∫ ∞

0

e−ξt dt. (2)

For instance, if Yk, k = 1, 2, . . . are drawn from the exponential distribution, and
μ > 0, then A∞ has a Beta-distribution, see Carmona, Petit and Yor [9]. This
partial case is illustrated by Figure 1.

Let us note that the functional A∞ appeared in such application areas as
finance (see, e.g. the monograph by Yor [34]), carousel systems (see Litvak and
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Fig 1. Left picture: a realization of the generalized Ornstein-Uhlenbeck process for the case
when Yk, k = 1, 2, . . . are drawn from the exponential distribution with density p(x) =
be−bxI{x > 0}, b = 3, μ = 0.5 and intensity parameter λ = 0.7. Right picture: density
of the invariant measure of this process, which corresponds to B(b+ 1, λ/μ)/μ distribution.

Adan [24], Litvak and van Zwet [25]), self-similar fragmentations (see Bertoin
and Yor [7]), and information transmission problems (especially TCP/IP pro-
tocol, see Guillemin, Robert and Zwart [14]). For the detailed discussion on
the physical interpretations, we refer to Comtet, Monthus and Yor [10] and the
dissertation by Monthus [27].

The properties of A∞ have been widely studied in the literature and we
refer to the survey by Bertoin and Yor [7] for a theoretical background of the
exponential functionals. In particular, it is known that the Mellin transform of
the density π of the exponential functional A∞,

M(z) := E
[
Az−1

∞
]
=

∫ ∞

0

xz−1π(x) dx,

satisfies the following recursive formula

M(z) =
φ(z)

z
M(z + 1), (3)

where φ(z) is a Laplace exponent of the process ξ, i.e., φ(z) := − logE
[
e−zξ1

]
,

and complex z is taken from the strip

Υ :=
{
z ∈ R : 0 < Re(z) < θ

}
with θ := sup

{
x ≥ 0 : E[e−xξ1 ] ≤ 1

}
. (4)

The recursive formula (3) first appeared for real z in the paper by Maulik and
Zwart [26]. The validity of (3) for complex z was recently shown by Kuznetsov,
Pardo and Savov [21].

In this paper, we focus on the case when ξt is a subordinator, and the distri-
bution of Y1, Y2, . . . is absolutely continuous with respect to Lebesque measure
on R+. Suppose that the process (1) is observed at equidistant time points
0 = t0 < t1 < · · · < tn. Since under some mild assumptions the process is
stationary and the invariant distribution is given by the distribution of the ex-
ponential functional A∞ (see Behme [2] and Fasen [12]), we assume that the



Statistical inference for GOU 1977

random variables Xk := Xtk , k = 1, . . . , n, have all the same distribution, which
coincides with the distribution of A∞. Our main goal is statistical inference on
the Lévy triplet (μ, 0, ν) based on the observations Xt0 , . . . , Xtn . More precisely,
we will pursue the following two aims: (1) estimation of the drift term μ and the
intensity parameter λ; (2) estimation of the jump size density of the compound
Poisson process.

To the best of our knowledge, the statistical inference for GOU processes of
the form (1) from their low-frequency observations has not been yet studied in
the literature. In fact the resulting statistical problem is quite challenging and
needs a careful treatment. Indeed, the only connection between the stationary
distribution of a GOU process, which can be estimated from the data, and the
parameters of the underlying Lévy process is given by the recurrent relation
(3) which is rather implicit. The main idea of our procedure for estimating the
parameters of the process ξ can be described as follows. First, by making use
of (3), we estimate the Laplace exponent φ(z) at the points z = u◦ + iv ∈ Υ,
where u◦ > 0 is fixed and v varies on the equidistant grid between εVn and Vn

(with ε > 0 and Vn → ∞ as n → ∞). Afterwards, we use the representation

φ(u◦ + iv) = λ+ μ (u◦ + iv)−F [ν̄](−v), v ∈ R, (5)

where ν̄(dx) := e−u◦xν(dx), and F [ν̄](v) stands for the Fourier transform of the
measure ν̄, i.e., F [ν̄](v) :=

∫
R+

eivxν̄(dx). Since F [ν̄](v) → 0 as v → ∞ by the

Riemann-Lebesgue lemma, upon taking real and imaginary parts of the left and
right hand sides of (5), we are able to estimate the parameters μ and λ. With
no doubt, the second aim, a complete recovering of the Lévy measure ν, is the
most difficult task. Since the estimates of the parameters μ and λ are already
obtained, we can estimate by (5) the Fourier transform F [ν̄](v) of ν̄ for v from
[−Vn, Vn]. The last step of this procedure, the estimation of the Lévy measure ν,
is based on the regularised inverse Fourier transform formula.

The above estimation algorithm bears some similarity to the spectral estima-
tion algorithm introduced by Belomestny and Reiss [4, 5]. Let us also mention
that the problem of statistical inference for Lévy processes (or some of their gen-
eralizations) observed at low frequency was the subject of many studies, see, e.g.
Neumann and Reiß [28], Reiß [29], Kappus [17], Trabs [32] and Jongbloed et al.
[16]. Note that the last reference deals with the Lévy-driven Ornstein-Uhlenbeck
processes, which are not of the form (1).

The paper is organized as follows. In the next section, we formulate our main
assumptions and give some examples. In Section 3, the main estimation algo-
rithm is presented and discussed in details. Next, we analyze the convergence
rates of the proposed algorithms in Section 4 and provide some numerical exam-
ples in Section 5. The proofs of our theoretical results are collected in Section 6.

2. Main setup

As it was explained in the introduction, we study the class of subordinators
with finite Lévy measures as possible choice for the Lévy process (ξt). In terms
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of the Lévy triplet (μ, 0, ν), this means that

μ ≥ 0, ν(R−) = 0, λ := ν(R+) < ∞. (6)

A detailed discussion of the subordination theory as well as various examples of
such processes (Gamma, Poisson, tempered stable, inverse Gaussian, Meixner
processes, etc.), are given in [1, 6, 11, 30, 31]. Note that in the case of subordi-
nators, the truncation function in the Lévy-Khinchine formula can be omitted,
that is, the characteristic exponent of ξ is equal to

ψ(z) = logE
[
eizξ1

]
= iμz +

∫ ∞

0

(
eizx − 1

)
ν(dx). (7)

Later on, we also need the Laplace exponent of ξ, which is defined as

φ(z) := − logE
[
e−zξ1

]
= −ψ (iz) .

In the next proposition, we summarize the main properties of the functional
A∞ =

∫∞
0

e−ξtdt and the Laplace exponent φ(z) in our case.

Proposition 2.1. (i) The random variable A∞ admits a bounded density π
and fulfills E

[
As−1

∞
]
< ∞ for all s > 0. If μ > 0, then 0 < A∞ ≤ 1/μ a.s.

(ii) Moreover, the following relation holds for Re[z] > 0,

φ(z) = z
M(z)

M(z + 1)
, (8)

where M(z) is the Mellin transform of π.
(iii) The Laplace exponent φ(·) has the following representation:

φ(z) = μz +

∫ ∞

0

(
1− e−zu

)
ν(du) (9)

= λ+ μz −
∫ ∞

0

e−zxν(dx). (10)

In particular, taking z = u◦ + iv with any fixed u◦ , we get

φ(u◦ + iv) = λ+ μ · (u◦ + iv)−F [ν̄](−v), v ∈ R, (11)

where F [ν̄](v) :=
∫
R+

eivxν̄(dx) is the Fourier transform of the measure

ν̄(dx) := e−u◦xν(dx).

Proof. The proof of (i) is given in [9] as Proposition 2.1 and Remark 2.2. For-
mula (8) was firstly proved in [26] for real positive z such that φ(z) > 0 and
M(z + 1) < ∞. The case of complex z is considered in [21], where one can also
find some generalizations of the formula (8) to the integrals with respect to
Brownian motion with drift. In particular, applying Theorem 2 from [21], we
get that (8) holds for any z ∈ Υ. It would be a worth mentioning that in our case,
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the set Υ coincides with the positive half-plane (equivalently, the parameter θ
is equal to infinity) due to

E
[
e−xξ1

]
= −φ(x) = −μx− x

∫
R+

e−xuν ((u,+∞)) du < 0, ∀ x > 0.

The last item (iii) directly follows from the Lévy-Khintchine formula.

3. Estimation of the Lévy triplet

The first step of our estimation procedure consists in the estimation of the
Laplace exponent φ(z) for z = u◦ + iv, where u◦ > 0 is fixed and v varies. An
estimator of φ(z) can be obtained from the recursive formula (8) for the Mellin
transform of π. In fact, motivated by (10), we first estimate the Mellin transform
M(z) via its empirical counterpart

Mn(z) :=
1

n

n∑
k=1

Xz−1
k (12)

and then define an estimate of the Laplace exponent φ(z) by

Yn(z) = z
Mn(z)

Mn(z + 1)
. (13)

If the sequence X1, . . . , Xn has some mixing properties, then we can expect that
Yn(z) → φ(z) in probability.

3.1. Estimation of λ and μ

The general idea of the procedure described below is to estimate the Laplace
exponent φ(·) at the points z = u◦+iv with v ∈ R and then use the relation (11)
for the estimation of parameters. Assuming that the measure ν̄ has a density,
we can apply the Riemann-Lebesque lemma, which states that F [ν̄](−v) → 0
as v → +∞ (see, e.g.[18]). Therefore, we conclude from (11) that φ(u◦ + iv)
is approximately (at least for large v) a linear function in v with the slope μ
and the intercept term λ. This observation suggests that a properly weighted
least-squares approach can be applied to estimate μ and λ. Let Vn be a se-
quence of positive real numbers and w(·) be a nonnegative weight function
supported on [ε, 1] with some small ε > 0. Define a scaled weight function
wn(v) = V −1

n w(v/Vn) and introduce the estimator of the parameter μ as the
solution of the following optimization problem:

μn := argmin
μ

∫ Vn

εVn

wn(v) · (Im [Yn(u
◦ + iv)]− μv)

2
dv,

with Yn(z) defined by (13). This estimator naturally arises by taking the imag-
inary parts from both sides of (11). Afterwards, we take real parts in (11), and
define the estimate of the parameter λ by the solution of another optimization
problem
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λn := argmin
λ

∫ Vn

εVn

wn(v) · (Re [Yn(u
◦ + iv)]− λ− μnu

◦)2 dv.

The introduced estimators can be also represented in the following form:

μn =

∫ Vn

εVn
wn(v)Im [Yn(u

◦ + iv)] dv∫ Vn

εVn
vwn(v) dv

=

∫ Vn

εVn

wμ,n(v)Im [Yn(u
◦ + iv)] dv

λn =

∫ Vn

εVn
wn(v)Re [Yn(u

◦ + iv)] dv∫ Vn

εVn
wn(v) dv

− μnu
◦

=

∫ Vn

εVn

wλ,n(v)Re [Yn(u
◦ + iv)] dv − μnu

◦

with wμ,n(v) := V −2
n wμ(v/Vn) and wλ,n(v) := V −1

n wλ(v/Vn), where

wμ(·) = c−1
1,ww(·), wλ(·) = c−1

0,ww(·), ci,w =

∫ 1

ε

viw(v) dv, i = 0, 1.

Taking into account the definition of the weight function wn(·), we get also some
equivalent representations of the estimators μn and λn

μn = argmin
μ

∫ 1

ε

w(α)
(
Im[Yn(u+ iαVn)]− μαVn

)2
dα

λn := argmin
λ

∫ 1

ε

w(α)
(
Re[Yn(u+ iαVn)]− μnu− λ

)2
dα.

In practice, we need to replace the above integrals by sums. To this end, let
the numbers α1, . . . , αM constitute an equidistant grid on the set [ε, 1] for some
ε > 0. We estimate the Mellin transform M(z) for all z ∈ {u◦ + iαmVn, m =
1, . . . ,M} and z ∈ {u◦ − 1+ iαmVn, m = 1, . . . ,M} and so get the estimates of
the Laplace exponent at the discrete points z = u◦ + iαmVn (see above). Now
we define an estimate of the parameter μ via

μ̂n := argmin
μ

M∑
m=1

w(αm)
(
Im[Yn(u

◦ + iαmVn)]− μαmVn

)2
(14)

=

∑M
m=1 w(αm)αm Im[Yn(u

◦ + iαmVn)]

Vn ·
∑M

m=1 w(αm)α2
m

. (15)

Afterwards, we estimate the parameter λ by

λ̂n := argmin
λ

M∑
m=1

w(αm)
(
Re[Yn(u

◦ + iαmVn)]− μ̂nu− λ
)2

(16)

=

∑M
m=1 w(αm)Re[Yn(u

◦ + iαmVn)]∑M
m=1 w(αm)

− μ̂nu
◦. (17)
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The whole algorithm is described below.

Algorithm 1: Estimation of λ and μ

Data: n observations X1, . . . , Xn of the GOU process (Xt) observed
at equidistant grid j ·Δ, j = 1, . . . , n.

Initiate: Fix Vn → ∞, ε ∈ (0, 1) and u◦ > −1.
Set αj = ε+ j · (1− ε) /M, j = 1, . . . ,M.
Fix a function w(·) ≥ 0 supported on [ε, 1].
Denote vm,n := αmVn.

Algorithm:

1. Estimate the Mellin transform M(z) := E
[
Az−1

∞
]

for z ∈ {u◦ + ivm,n, 1 + u◦ + ivm,n, m = 1, . . . ,M} via

Mn(z) =
1

n

n∑
k=1

Xz−1
k .

2. Estimate the Laplace exponent φ(z) := − logE
[
e−zξ1

]
at the points z ∈ {u◦ + ivm,n, m = 1, . . . ,M} by

Yn(z) = z
Mn(z)

Mn(z + 1)
.

3. Estimate μ by

μn :=

∑M
m=1 w(αm)αm Im[Yn(u

◦ + ivm,n)]

Vn ·
∑M

m=1 w(αm)α2
m

.

4. Estimate λ by

λn :=

∑M
m=1 w(αm)Re[Yn(u

◦ + ivm,n)]∑M
m=1 w(αm)

− μnu
◦.

3.2. Estimation of the Lévy measure ν

As a result of Algorithm 1, we obtain the estimates μn and λn of the parameters
μ and λ, respectively. Based on (11), we first define an estimate for the Fourier
transform of ν̄ via

F̂ [ν̄](−v) = −Yn(u
◦ + iv) + μn · (u◦ + iv) + λn. (18)
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Next we estimate the measure ν by a regularised Fourier inversion formula

νn(x) =
eu

◦x

2π

∫
R

eivxF̂ [ν̄](−v)K(−v/Vn) dv, (19)

where K is a regularizing symmetric kernel supported on [−1, 1]. Note that with
a slight abuse of notation, we use ν also for the density of the Lévy measure,
and νn for an estimate of this density. In what follows, we also use the notation
ν̄n = e−u◦xνn. The formal description of the algorithm is given below.

Algorithm 2: Estimation of ν

Data: n observations X1, . . . , Xn of the GOU process (Xt) observed
at equidistant grid points j ·Δ, j = 1, . . . , n.

Initiate: Fix Vn → ∞ and u◦ > −1.
Set αm = −1 + 2 · j/M, m = 0, . . . ,M.
Fix a regularizing kernel K supported on [−1, 1].
Denote vm,n := αmVn.

Algorithm:

1-2 The first two steps coincide with ones of Algorithm 1.
3. Estimate F [ν̄](−vm,n) for ν̄(dx) = e−u◦xν(dx) by

F̂ [ν̄](−vm,n) = −Yn(u+ ivm,n) + μn · (u+ ivm,n) + λn

for m = 0, . . . ,M.
4. Estimate ν by

ν̄n(x) = eu
◦x 1

2π · (1 +M)

M∑
m=0

eivm,nxF̂ [ν̄](−vm,n)K(αm).

4. Convergence

In order to analyse the convergence properties of the estimates μn, λn and νn
we need to further specify the class of Lévy processes (ξt).

Definiton 4.1. For s ∈ N ∪ {0} and R > 0, let G(s,R) denote the set of all
Lévy triplets (μ, 0, ν), such that ν is supported on R+ and

max

{
ν(R+),

∫
R

|v|2s |F [ν̄](v)|2 dv

}
≤ R, (20)

where ν̄(dx) = e−u◦xν(dx).
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Note that if (20) holds, then ν̄ is s-times (weakly) differentiable with

∥∥ν̄(s)∥∥∞ ≤ 1

2π

∫
R

|v|s |F [ν̄](−v)| dv < ∞. (21)

It turns out that the convergence rates of the estimates μn, λn and νn crucially
depend on the asymptotic behaviour of the Mellin transform of A∞. In order
to specify this behaviour, let us fix some u0 > 0 and introduce two classes of
probability densities:

P(β) :=

{
p : ∃L > 0 s.t. lim inf

|v|→∞

[
|v|β |M[p](u◦ + iv)|

]
≥ L

}
, (22)

E(α) :=

{
p : ∃L > 0 s.t. lim inf

|v|→∞

[
eα|v| |M[p](u◦ + iv)|

]
≥ L

}
, (23)

where α, β ∈ R, and for any density p, M[p] stands for the Mellin transform
of p. Trivially, for any β, it holds P(β) ⊂ E(α) with any α ∈ R.

Before we formulate the main convergence results, let us look at some exam-
ples.

Example 4.2. Consider the class of Lévy processes with μ = 0, σ = 0 and the
Lévy density ν of the form

ν(x) =

N∑
j=1

[
mj∑
k=1

gjkx
k−1

]
e−ρjx · I{x > 0}

with N,mj ∈ N, ρj > 0, gjk > 0. We can apply the Erdélyi lemma (see Sec-
tion 3.2 from [13]) to derive∫

R+

xk−1f(x)eivxdx � c1v
−k, v → ∞

for any exponentially decaying and smooth function f on R+, and some complex
c1 depending on f . Therefore, we conclude that

|F [ν̄](−v)| =

∣∣∣∣∣∣
N∑
j=1

mj∑
k=1

αjk

∫
R+

xk−1fj(x)e
ivxdx

∣∣∣∣∣∣ � c2v
−k∗

,

where fj(x) = e−(ρj+u◦)x, k∗ := argmin
k

{∃ j : αjk 
= 0} ,

where c2 > 0 depends on u◦. Hence for any s < k∗−1 , the condition (20) holds
for some R > 0. Furthermore, taking into account the asymptotic behaviour of
the Gamma function (see, e.g., formula 8.328 from [15]):

|Γ(u+ iv)| = exp

{
−π

2
v +

(
u− 1

2

)
ln v

}
·
√
2π (1 + o(1)) , v → ∞, (24)
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we derive

|M(u◦ + iv)| �
√
2πA1−u◦

exp

{
−π

2
v +

(
u◦ − 1

2
+

N∑
j=1

ρjmj +

K∑
j=1

Re(ζj)

)
ln v

}
,

where ζ1, . . . , ζK are the roots of the equation

N∑
j=1

mj∑
k=1

gjk(k − 1)!

(ρj + z)
k

= λ− μz,

see [20]. Therefore, for any u◦ > 1/2, we conclude that π ∈ E(π/2) with any
L > 0.

Example 4.3. Next, we provide an example of a Lévy process ξt with A∞ =∫∞
0

e−ξt dt having a density from P(β). Consider a subordinator T with drift
μ > 0 and the Lévy density

ν(x) = ab exp{−bx} I{x > 0}, a, b > 0.

The exponential functional A∞ of the process (ξt) has a density of the form

π(x) = C1x
b(1− μx)(a/μ)−1 I{0 < x < 1/μ}

with some C1 > 0, see [9]. In other words, A∞ has the same distribution as
ξ/μ, where the r.v. ξ has the Beta distribution with parameters α = b+ 1 and
β = a/μ = λ/μ. The Mellin transform of the function π(x) in the half-plane
Re(s) > −α is hence given by

M(z) =
E
[
ξz−1

]
μz−1

=
1

μz−1

B(z + α− 1, β)

B(α, β)

=
Γ(α+ β)

Γ(α)
· 1

μz−1

Γ(z + α− 1)

Γ(z + α+ β − 1)
.

Using (24), we conclude that the Mellin transform of A∞ has a polynomial decay
in this case. More precisely,

|M(u◦ + iv)| � L · |v|−λ/μ with L = μ−u◦+1Γ(λ/μ+ b+ 1)

Γ(b+ 1)
,

as |v| → ∞ and therefore π ∈ P(λ/μ).

Example 4.4. Another interesting example arises when we the process ξt is
proportional to a Poisson process Nt. In this case, we have the integral

A∞ =

∫
R+

qNtdt =

∫
R+

e− log(q)Ntdt,

where q ∈ (0, 1). This integral can be also represented as A∞ =
∑∞

n=0 q
n(Tn+1−

Tn), where Tn are the jumping times of the process Nt. In [7], it is shown that

M(z) = Γ(z) ·
∏∞

j=0

(
1− qz+j

)
∏∞

j=0 (1− q1+j)
.
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Since for z = u◦ + iv,∣∣∣∣∣∣
∞∏
j=0

(
1− qz+j

)∣∣∣∣∣∣ =

∣∣∣∣∣∣exp
⎧⎨
⎩

∞∑
j=0

ln
(
1− qz+j

)⎫⎬⎭
∣∣∣∣∣∣

=

∣∣∣∣∣∣exp
⎧⎨
⎩

∞∑
j=0

∞∑
n=1

(−1)n+1

n
qn(z+j)

⎫⎬
⎭
∣∣∣∣∣∣

=

∣∣∣∣∣exp
{ ∞∑

n=1

(−1)n+1

n
· qnz

1− qn

}∣∣∣∣∣
= exp

{
cos (v ln(q)) ·

[ ∞∑
n=1

(−1)n+1

n
· qnu

◦

1− qn

]}
,

and taking into account the asymptotic behaviour of the gamma-function (24),
we conclude that π ∈ E(π/2).

Let us now formulate the main result concerning the convergence of the es-
timates μn and λn.

Theorem 4.5 (upper bounds for μn and λn). Let (ξt) be a Lévy process
with a triplet from G(s,R). Suppose that the sequence X0, X1, . . . , Xn is α-
mixing and strictly stationary. Denote the α-mixing coefficients of the sequence
X0, X1, . . . , Xn by α(s).

(i) Assume that the density π of A∞ belongs to P(β) with some β ∈ R and
L > 0 , and moreover

α(j) � e−jα∗
, j ∈ N, for some α∗ ≥ 0. (25)

Then the quadratic risks of the estimates μn and λn, under the choice
Vn = n1/(2β+2s+3), satisfy the following asymptotic relations

E
[
|μn − μ|2

]
� n−2(s+2)/(2β+2s+3) log(n)

and
E
[
|λn − λ|2

]
� n−2(s+1)/(2β+2s+3) log(n),

as n → ∞.
(ii) If π ∈ E(α) and

α(j) � j−α∗
, j ∈ N, for some α∗ ≥ 2, (26)

then the choice

Vn =
1

2α
log(n)− s+ 2

α
log(log(n)),

leads to the rates
E
[
|μn − μ|2

]
� log−2(s+2)(n),

E
[
|λn − λ|2

]
� log−2(s+1)(n).
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Discussion. Theorem 4.5 shows that the estimates μn and λn converge poly-
nomially fast to μ and λ, respectively, provided π ∈ P(β). For example, the rate
for λn can be written (up to a logarithmic factor) as

n−2(s+1)/(2β+2(s+1)+1)

indicating an inverse problem with regularity of order s + 1 and ill-posedness
of order β, latter being related to the decay of the Mellin transform of π. If
π ∈ E(β), then the rates are logarithmic pointing out to a severely ill-posed
statistical problem.

Proof. Proof is given in Section 6.1.

In a similar way, we can establish the upper bounds for the risk of ν̄n. In the
theorem formulated below, the quality of the estimate ν̄n is measured in terms
of the mean integrated squared error (MISE):

MISE(ν̄n) := E

[∫
R

|ν̄n(x)− ν̄(x)|2 dx
]
.

Theorem 4.6 (upper bounds for ν̄n). Let the assumptions of Theorem 4.5 be
fulfilled and let K(·) be a kernel satisfying

|1−K(x)| ≤ A|x|s, ∀x ∈ R \ {0} (27)

with some A > 0.

(i) Assume that the density of A∞ belongs to P(β) with some β ∈ R and
L > 0, and moreover

α(j) � e−jα∗
, j ∈ N, for some α∗ > 0.

Then under the choice Vn = n1/(2β+2s+3), the MISE of the estimator ν̄n
is bounded as follows:

MISE(ν̄n) � n−2s/(2β+2s+3), n → ∞.

(ii) If the density of A∞ belongs to the class E(α) and

α(j) � j−α∗
, j ∈ N, for some α∗ ≥ 2,

then under the choice

Vn =
1

2α
log(n)− s+ 2

α
log(log(n))

we have

MISE(ν̄n) � log−2s(n), n → ∞.

Proof. Proof is given in Section 6.2.
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The next theorem shows that the rates obtained in the previous theorem are
optimal up to a logarithmic factor.

Theorem 4.7 (lower bounds for ν̄n). Fix some s ∈ N ∪ {0}, R > 0, α > 0,
β > 0, L > 0 and define

ϕn(π) := ϕn(π, ρ) =

{
ns/(2β+2s+3) log−ρ(n), if π ∈ P(β),

logs(n), if π ∈ E(α),

for any ρ > 0 and any probability density π ∈ P(β) ∪ E(α), Then for some
ρ∗ > 0, it holds

inf
ν̄n

sup
T ∈G(s,R)

πT ∈P(β)∪E(α)

{
ϕ2
n(πT , ρ

∗) · Eπ⊗n
T

[∫
R

|ν̄n(x)− ν̄(x)|2 dx
]}

> 0, (28)

where the infimum is taken over all possible estimates ν̄n of the function ν̄ based
on an i.i.d. sample X1, . . . , Xn from the distribution πT of A∞ :=

∫∞
0

e−ξt dt
such that the Lévy triplet T of (ξt) belongs to G(s,R).

Proof. Proof is given in Section 6.3.

An important condition of Theorems 4.5 and 4.6 is (25), which means that
the sequence X0, X1, . . . , Xn is exponentially α-mixing. Since β-mixing coeffi-
cient between two sigma-algebras is larger than or equal to the corresponding
α-mixing coefficient, it is sufficient to show that X0, X1, . . . , Xn is an expo-
nentially β-mixing sequence (see Section 1.1 from [8]). For the case of the GOU
processes (1), the latter question was addressed in [12]. The sufficient conditions
for exponential β-mixing given in [12] are:

1. the distribution of A∞ has a Pareto-like asymptotic behaviour, that is,

P {A∞ > x} � Cx−α as x → ∞

with some α > 0 and C > 0;
2. there exist A > 0, B > A and h > 0 such that ψ(A) = 0, ψ(B) < ∞ with

ψ given in (7), and

E

∣∣∣∣∣e−ξh

∫ h

0

eξu−du

∣∣∣∣∣
B

< ∞.

As it is proved in [23], both conditions are guaranteed by the positiveness of μ
and the existence of a positive zero of the function ψ(·). We refer also to [22]
for some further results in this direction.

5. Simulation study

Example 1. Consider the subordinator τt with the Lévy density

ν(x) = ab exp{−bx} I{x > 0}, a, b > 0. (29)
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Note that in this case, λ =
∫
R+

ν(u)du = a. Define a Lévy process

ξt = μt+ σWt + τt, (30)

where Wt is a Brownian motion. The Laplace exponent of ξt is given by

φ(z) = z

(
μ− 1

2
σ2z +

a

b+ z

)
. (31)

In [9], it is shown that the exponential functionalA∞ =
∫∞
0

e−ξt dt is finite for
any μ and σ, and moreover the density function π of A∞ satisfies the following
differential equation

− σ2

2
x2π′′(x) +

[(
σ2

2
(3− b) + μ

)
x− 1

]
π′(x)

+

[
(1− b)

(
σ2

2
+ μ

)
− a+

b

x

]
π(x) = 0. (32)

Some special cases are considered below:

1. In the case μ = 0, σ = 0 (pure jump process), this equation has a solution

π1(x) = Cxbe−ax I{x > 0}, (33)

and therefore A∞
d
= G(b + 1, a), where G(α, β) is a Gamma distribution

with shape parameter α and rate β.
2. If μ > 0, σ = 0 (pure jump process with drift), then

π2(x) = Cxb(1− μx)(a/μ)−1 I{0 < x < 1/μ}. (34)

In this situation A∞
d
= B(b+ 1, a/μ)/μ, where B(α, β) is a Beta - distri-

bution.
3. In the case μ 
= 0, σ 
= 0, the equation (32) also allows for the closed

form solution. Assuming for simplicity σ2/2 = 1, μ = −(b+1), we get the
solution of (32) in the following form:

π3(x) = C xb−1/2 exp

{
1

2x

}
Iμ

(
1

2x

)
, (35)

where we denote by Iμ the modified Bessel function of the first kind, μ =√
a+ 1/4, and the constant C is later chosen to guarantee the condition∫∞

0
π3(x)dx = 1.

For our numerical study, we assume that the data are generated from the dis-
tribution of (2), where the process (ξt) is defined by (30) with μ = 1.8, σ = 0,
and the subordinator τt in the form (29) with a = 0.7, b = 0.2. A sample from
the distribution of the integral A∞ can be simulated from the corresponding
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Fig 2. Plots of theoretical (blue dashed) and empirical (red solid) Laplace exponents in Ex-
ample 1. Real, imaginary parts and absolute values are presented. Note that the difference
between dotted blue curve and red curve is quite small on all plots.

Beta-distribution, see (34). The aim of the estimation procedure is to estimate
the parameters μ and λ = a.

We apply Algorithm 1 with u◦ = 29, Vn = 30, and w(x) = I{x ∈ (0.001, 1)}.
Figure 2 graphically compares the proposed estimator of the Laplace exponent
φ(u◦ + iv) with its theoretical values (μ+ a/(b+ u◦ + iv)) · (u◦ + iv). Estimates
for the parameters μ and λ = a are given in (15) and (17), respectively. The
boxplots of this estimates based on 25 simulation runs are presented on Figure 3.

Remark 5.1. Let us comment on the choice of the tuning parameters u◦ and Vn.
In fact the estimates for the parameters μ and λ = a are not sensitive to
the choice of the parameter u◦. To see this, we run the estimation algorithm
for different values of u◦. The results in form of the corresponding boxplots
are shown in Figure 4. While the quality of the estimate μn can be slightly
improved by increasing u◦, the estimate λn behaves in a similar way for different
values of u◦. For the choice of the cut-off parameter Vn one can use either the
asymptotic formulas of Theorem 4.5 or some adaptive procedures.

Example 2. Consider the compound Poisson process

ξt = − log q

(
Nt∑
k=1

ηk

)
,

where q ∈ (0, 1) is fixed, Nt is a Poisson process with intensity λ and ηk are
i.i.d. random variables with a distribution L. The integral A∞ admits the rep-
resentation

A∞ =

∫ ∞

0

q−ξtdt =

∞∑
n=0

qSn (Tn+1 − Tn) ,
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Fig 3. Boxplots for the estimates of μ and λ for different sample sizes n based on 25 simulation
runs.

Fig 4. Boxplots for the estimates of μ and λ for different values of the parameter u◦ based
on 25 simulation runs and sample size n = 3000.

where Tn is the jump time of N, i.e., Tn = inf {t : Nt = n}, and Sn =
∑n

k=1 ηk.
Note that if ηk take only positive values, then ξt is a subordinator.

Fix some positive α and consider the case when L is the standard normal
distribution truncated on the interval (α,+∞). The density function of L is
given by

pL(x) = p(x)/(1− F (α)),

where p(·) and F (·) are the density and the distribution functions of the standard
Normal distribution. In this case, the Laplace exponent of ξt is equal to

φ(z) = λ

[
1− 1− F (α+ (log q)z)

1− F (α)
exp

{
− (log q)

2
z2

2

}]
,
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Fig 5. Plots of theoretical (blue dashed) and empirical (red solid) Laplace exponents for
Example 2. Graphs present real, imaginary and absolute values. For v ∈ [−3, 3] the curves
are visually indistinguishable.

where the function F (·) can be calculated for complex arguments from the error
function:

F (z) :=
1

2

(
erf

(
z√
2

)
+ 1

)
, where erf(z) =

2√
π

∫ z

0

e−s2ds.

In this example, we aim to estimate the Lévy measure of the process (ξt), which
is given by

ν(dx) =
λ

1− F (α)
p(x)I{x > α}dx.

For our numerical study, we take q = 0.5, α = 0.1, and λ = 1. First, we estimate
the Laplace exponent by (13). The quality of the corresponding estimate at the
complex points z = u◦ + iv with u◦ = 1 and v ∈ [−5, 5] can be visually seen in
Figure 5.

Next, we proceed with the estimation of the Fourier transform of the measure
ν̄(x) := e−u◦xν(x) by applying (18). For the last step of the Algorithm 2, i.e. the
reconstruction of the Lévy measure by (19), we follow [3] and use the so-called
flat-top kernel, which is defined as follows:

K(x) =

⎧⎪⎪⎨
⎪⎪⎩
1, |x| ≤ 0.05,

exp
(
− e−1/(|x|−0.05)

1−|x|

)
, 0.05 < |x| < 1,

0, |x| ≥ 1.

The quality of the resulting estimate ν̄n is shown in Figure 6.
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Fig 6. Left: plots of the function ν̄(x) (blue dashed line) and its estimate Re(ν̄n(x)) (red
solid). Right: the imaginary part of the estimate ν̄n(x) (red solid) and the line Y = 0 (blue
dashed line). The right plot shows that the imaginary part of our estimate is quite small.

6. Proofs

6.1. Upper bounds for the quadratic risks of μn and λn

The next proposition is the main technical result for this section.

Proposition 6.1. Let ξt be a Lévy triplet from G(s,R). Suppose that the se-
quence X0, X1, . . . , Xn of observations of the exponential functional A∞ :=
limT→∞ AT =

∫∞
0

e−ξt dt is α-mixing and strictly stationary. Denote the mixing
coefficients of the sequence X0, X1, . . . , Xn by α(s).

Then for any p ∈ {0, 1, . . . , n} we have

E
[
|μn − μ|2

]
� p

n

∫ ∞

0

|u◦ + iv|2

|M(u◦ + iv + 1)|2
|wμ,n(v)|2 dv

+
n∑

j=p+1

α(j)

[∫ ∞

0

|u◦ + iv| |wμ,n(v)|
|M(u◦ + iv + 1)| dv

]2

+ ‖ν̄(s)‖2∞‖F−1[wμ,n(·)/(−i·)s]‖2L1 ,

E
[
|λn − λ|2

]
� p

n

∫ ∞

0

|u◦ + iv|2

|M(u◦ + iv + 1)|2
|wλ,n(v)|2 dv

+

n∑
j=p+1

α(j)

[∫ ∞

0

|u◦ + iv| |wλ,n(v)|
|M(u◦ + iv + 1)| dv

]2

+ ‖ν̄(s)‖2∞‖F−1[wλ,n(·)/(−i·)s]‖2L1 ,

provided
∑∞

j=1 α
1−ε(j) < ∞ for some ε > 0 and the sequence Vn satisfies

sup
v∈[0,Vn]

1

|M(u◦ + iv + 1)| = o(n1/2). (36)
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Proof. 1. Denote Y (z) := φ(z) = z · M(z)/M(z + 1), then

μ =

∫ ∞

0

wμ,n(v)Im [Y (u◦ + iv)] dv +

∫ ∞

0

wμ,n(v)Im[F [ν̄](−v)] dv

and we have

μn − μ =

∫ ∞

0

wμ,n(v)Im [Yn(u
◦ + iv)− Y (u◦ + iv)] dv

−
∫ ∞

0

wμ,n(v)Im[F [ν̄](−v)] dv

= Im

[∫ ∞

0

wμ,n(v)Sn(u
◦ + iv) dv

]
− Im[Dn(u

◦)]

with

Sn(u
◦ + iv) = Yn(u

◦ + iv)− Y (u◦ + iv), Dn(u
◦) =

∫ ∞

0

wμ,n(v)F [ν̄](−v)dv.

Note that

E

[
(μn − μ)

2
]
≤ 2 · E

[(
Im

[∫ ∞

0

wμ,n(v)Sn(u
◦ + iv) dv

])2
]
+ 2 |Dn(u

◦)|2 .

2. Since

Sn(z)

z
=

Mn(z)

Mn(z + 1)
− M(z)

M(z + 1)

=
Mn(z)M(z + 1)−M(z)Mn(z + 1)

Mn(z + 1)M(z + 1)

=
[Mn(z)−M(z)]Mn(z + 1)− [Mn(z + 1)−M(z + 1)]Mn(z)

Mn(z + 1)M(z + 1)

=
[Mn(z)−M(z)]

M(z + 1)
− Yn(z)

z

[Mn(z + 1)−M(z + 1)]

M(z + 1)

=
[Mn(z)−M(z)]

M(z + 1)
− Sn(z)

z

[Mn(z + 1)−M(z + 1)]

M(z + 1)

−Y (z)

z

[Mn(z + 1)−M(z + 1)]

M(z + 1)
,

we get
Sn · (1 +R2,n) = −Y ·R2,n +R1,n

with

R1,n(z) = z
[Mn(z)−M(z)]

M(z + 1)
, R2,n(z) =

[Mn(z + 1)−M(z + 1)]

M(z + 1)
.

Following the lines of the proof of Theorem 1.5 from [8], we get
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E
[
|Mn(z)−M(z)|2

]
=

1

n2

∑
0≤k,j≤n−1

Cov
(
Xz−1

k , Xz−1
j

)

=
1

n
Var
(
Xz−1

0

)
+

2

n

n−1∑
k=1

(
1− k

n

)
Cov

(
Xz−1

0 , Xz−1
k

)
. (37)

Note that the sum in the last representation converges as n → ∞, because by
Davydov’s inequality (see Corollary 1.1. from [8])

∣∣Cov (Xz−1
0 , Xz−1

k

)∣∣ ≤ 2r

r − 2
(2α(k))

(r−2)/r
(
E

[
X

(u◦−1)r
0

])2/r
, (38)

and therefore the series
∑(

Xz−1
0 , Xz−1

k

)
is convergent if r = 2/ε.

We have E[|Mn(u
◦ + iv) − M(u◦ + iv)|2] � n−1 uniformly in v ∈ R. As a

result

E
[
|R2,n(u

◦ + iv)|2
]

� 1

n · |M(u◦ + iv + 1)|2 .

The condition (36) implies now that supv∈[0,Vn] |R2,n(u
◦ + iv)|2 = oP (1). Fur-

thermore, we have

Var

[∫ ∞

0

R1,n(u
◦ + iv)wμ,n(v) dv

]

=

∫ ∞

0

∫ ∞

0

Cov(Mn(u
◦ + iv1),Mn(u

◦ + iv2))

M(u◦ + iv1 + 1)M(u◦ + iv2 + 1)

· (u◦ + iv1)(u
◦ − iv2)wμ,n(v1)wμ,n(v2) dv1dv2.

Similar to (37), we consider a representation

Cov(Mn(u
◦ + iv1),Mn(u

◦ + iv2))

=
1

n

⎡
⎣g0(v1, v2) + 2

p∑
j=1

gj(v1, v2) + 2
n−1∑

j=p+1

gj(v1, v2)

⎤
⎦ ,

where gj(v1, v2) := (1 − j/n) · Cov(Xu◦+iv1−1
0 , Xu◦+iv2−1

j ), j = 0 . . . (n − 1).
Applying once more Davydov’s inequality, we get

|gj(v1, v2)| ≤
2r

r − 2
(2α(j))

(r−2)/r
(
E

[
X

(u◦−1)r
0

])2/r
, (39)

Now using the Cauchy-Schwarz inequality we get

Var

[∫ ∞

0

R1,n(u
◦ + iv)wμ,n(v) dv

]
� p

∫ ∞

0

|u◦ + iv|2|wμ,n(v)|2
|M(u◦ + iv + 1)|2 dv

+

n∑
j=p+1

α(j)

[∫ ∞

0

|u◦ + iv||wμ,n(v)|
|M(u◦ + iv + 1)| dv

]2
.
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Finally using the fact supv∈[0,Vn] |R2,n(u
◦ + iv)|2 = oP (1), we derive

Var

[∫ ∞

0

Sn(u
◦ + iv)wμ,n(v) dv

]
� p

∫ ∞

0

|u◦ + iv|2|wμ,n(v)|2
|M(u◦ + iv + 1)|2 dv

+

n∑
j=p+1

α(j)

[∫ ∞

0

|u◦ + iv||wμ,n(v)|
|M(u◦ + iv + 1)| dv

]2
.

3. Turn now to the term Dn. By Plancherel’s identity∣∣∣∣
∫ ∞

0

wμ,n(v)F [ν̄](−v)dv

∣∣∣∣ =

∣∣∣∣
∫ ∞

0

wμ,n(v)

(−iv)s
[(−iv)sF [ν̄](−v)] dv

∣∣∣∣
=

∣∣∣∣
∫ ∞

0

wμ,n(v)

(−iv)s

[
F [ν̄(s)](−v)

]
dv

∣∣∣∣
= 2π

∣∣∣∣
∫ ∞

−∞
ν̄(s)(x)F−1[wμ,n(·)/(−i·)s](x)dx

∣∣∣∣
≤ 2π‖ν̄(s)‖∞‖F−1[wμ,n(·)/(−i·)s]‖L1 .

Proof of Theorem 4.5

(i) Suppose that π ∈ P(β) and α(j) � e−jα∗
, then by taking p = c log(n) for

c large enough, we arrive at

E
[
|μn − μ|2

]
� V −4

n log(n)

n

∫ Vn

0

|v|2β+2 |wμ(v/Vn)|2 dv + V −2(s+2)
n

� n−1 log(n)Vn
2β−1 + V −2(s+2)

n ,

E
[
|λn − λ|2

]
� V −2

n log(n)

n

∫ Vn

0

|v|2β+2 |wλ(v/Vn)|2 dv + V −2(s+1)
n

� n−1 log(n)Vn
2β+1 + V −2(s+1)

n

By taking Vn = n1/(2β+2s+3), we get

E
[
|μn − μ|2

]
� n−2(s+2)/(2β+2s+3) log(n)

and
E
[
|λn − λ|2

]
� n−2(s+1)/(2β+2s+3) log(n).

(ii) Suppose that π ∈ E(α), then by taking p = 0, we get

E
[
|μn − μ|2

]
� V −4

n

n

[∫ Vn

0

|u◦ + iv| |wμ(v/Vn)|
exp(−α|v|) dv

]2
+ V −2(s+2)

n

� 1

n
exp(2αVn) + V −2(s+2)

n ,
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E
[
|λn − λ|2

]
� V −2

n

n

[∫ Vn

0

|u◦ + iv| |wλ(v/Vn)|
exp(−α|v|) dv

]2
+ V −2(s+1)

n

� V 2
n

n
exp(2αVn) + V −2(s+1)

n .

Under the choice Vn = 1
2α log(n)− s+2

α log(log(n)), one derives

E
[
|μn − μ|2

]
� log−2(s+2)(n)

and
E
[
|λn − λ|2

]
� log−2(s+1)(n).

6.2. Upper bounds for MISE(ν̄n)

Proposition 6.2. Let the assumptions of the Proposition 6.1 be fulfilled and let
the kernel K(·) satisfy the assumption (27). Then the mean integrated squared
error of the estimator ν̄n(x) satisfies the following asymptotic relation

MISE(ν̄n) � 1

n

∫
R

|u◦ + iv|2 [K(v/Vn)]
2

|M(u◦ + iv + 1)|2
dv

+C1V
3
n · E

[
(μn − μ)

2
]
+ C2Vn · E

[
(λn − λ)

2
]
+ C3

AL

V 2s
n

with some C1, C2, C3 > 0.

Proof. Recall that

ν̄n(x) =
1

2π

∫
R

eivxF̂ [ν̄](−v)K(−v/Vn)dv = F−1[F̂ν̄(·)K(·/Vn)](x),

and

F̂ [ν̄](−v) = −Yn(u
◦ + iv) + μn · (u◦ + iv) + λn,

F [ν̄](−v) = −Y (u◦ + iv) + μ · (u◦ + iv) + λ.

By the Parsenval’s identity,

MISE =
1

2π
E

[∫
R

|F [ν̄n](v)−F [ν̄](v)|2 dv
]

=
1

2π
E

[∫
R

∣∣∣F̂ [ν̄](v)K(v/Vn)−F [ν̄](v)
∣∣∣2 dv]

=
1

2π
E

[∫
R

∣∣∣(F̂ [ν̄](v)−F [ν̄](v)
)
K(v/Vn) + (K(v/Vn)− 1)F [ν̄](v)

∣∣∣2 dv]

≤ 1

π
E

[∫
R

∣∣∣(F̂ [ν̄](v)−F [ν̄](v)
)
K(v/Vn)

∣∣∣2 dv]
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+
1

π
E

[∫
R

|(K(v/Vn)− 1)F [ν̄](v)|2 dv
]

≤ 3

π
(J1 + J2 + J3) +

1

π
J4,

where

J1 := E

[∫
R

|Yn(u
◦ + iv)− Y (u◦ + iv)|2 [K(v/Vn)]

2
dv

]
,

J2 := An · E
[
(μn − μ)

2
]

with An :=

∫
R

|u◦ + iv|2 · [K(v/Vn)]
2
dv,

J3 := Bn · E
[
(λn − λ)

2
]

with Bn :=

∫
R

[K(v/Vn)]
2
dv,

J4 :=

∫
R

|(K(v/Vn)− 1)F [ν̄](v)|2 dv.

The treatment of J1 is based on the observation that

Yn(z)− Y (z) � R1,n = z
[Mn(z)−M(z)]

M(z + 1)
.

We get that

J1 �
∫
R

E

[
|Mn(u

◦ + iv)−M(u◦ + iv)|2
] |u◦ + iv|2 [K(v/Vn)]

2

|M(u◦ + iv + 1)|2
dv.

As it was shown before, E[|Mn(u
◦ + iv)−M(u◦ + iv)|2] � n−1, see (37)–(39).

Therefore,

J1 � 1

n
·
∫
R

|u◦ + iv|2 [K(v/Vn)]
2

|M(u◦ + iv + 1)|2
dv.

To complete the proof, it is sufficient to note that

An � V 3
n ·
∫
R

y2 [K(y)]
2
dy, Bn = Vn ·

∫
R

[K(y)]
2
dy,

and

J4 ≤ A

∫
R

∣∣∣∣ vVn

∣∣∣∣
2s

|F [ν̄](v)|2 dv ≤ AL

V 2s
n

.

Proof of Theorem 4.6

(i) Recall that if π ∈ P(β), then

E
[
|μn − μ|2

]
� n−1 log(n)Vn

2β−1 + V −2(s+2)
n ,

E
[
|λn − λ|2

]
� n−1 log(n)V 2β+1

n + V −2(s+1)
n ,
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see the proof of Theorem 4.5. Taking into account that J1 � n−1V 2β+3
n ,

we arrive at

MISE(ν̄n) � n−1V 3+2β
n + n−1 log(n)V 2β+1

n + V −2(s+1)
n + V −2s

n .

Choosing Vn = n1/(2β+2s+3), we get

n−1V 3+2β
n = V −2s

n � V −2(s+1)
n ,

and therefore

MISE(ν̄n) � n−1 log(n)V 2β+1
n + V −2s

n � n−2s/(2β+2s+3).

(ii) Similarly, we derive the upper bound for the class E(α). Recall that

E
[
|μn − μ|2

]
� n−1 exp(2αVn) + V −2(s+2)

n ,

E
[
|λn − λ|2

]
� n−1V 2

n exp(2αVn) + V −2(s+1)
n

and therefore

MISE(ν̄n) � n−1 log(n)V 3
n e

2αVn + V −2s
n � (log n)

−2s
.

6.3. Lower bounds for MISE

Proof of Theorem 4.7. The general idea of the proof is to apply Theorem 2.7
from [33]. This theorem yields that (28) holds, if there exists a parameterized
set of Lévy triplets

Tθ = (1, 0, νθ) ⊂ G(s,R), θ ∈ {0, 1}L

for some s ∈ N ∪ 0, R > 0, L > 0 and a set of parameters {θ(j), j = 0, . . . ,M}
such that the following two properties hold.

(i) For any 0 ≤ j < k ≤ M ,∫
R

|νθ(j)(x)− νθ(k)(x)|2 dx ≥ 2ϕn. (40)

(ii) Denote by πθj , j = 0, . . . ,M, the probability distribution of the exponential

Lévy model Aj,∞ =
∫∞
0

e−ξj,sds, where ξj,s is a Lévy subordinator with
triplet Tθj . Then

n

M

M∑
j=1

χ2 (πθ(j) , πθ(0)) ≤ κ log(M), (41)

for n large enough, where for any probability measures P and Q we denote
their χ2-divergence by

χ2(P|Q) :=

{∫ (
dP
dQ − 1

)2
dQ, if P � Q,

+∞, otherwise.
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Below we present a detailed proof for the polynomial case.

1. Presentation of the models. Consider an exponential Lévy model
A0,∞ =

∫∞
0

e−ξ0,sds, where ξ0,s is a Lévy subordinator with a triplet (1, 0, ν0)

and ν0(x) = abe−bx for some 0 < a ≤ 1, 0 < b < 1. It is clear that (1, 0, ν0) ∈
G(0, R) for some R > 0 and the Laplace exponent of ξ0,s is given by

φ0(z) = z +

∫ ∞

0

(1− e−xz) ν0(x) dx = z

[
1 +

a

z + b

]
, Re(z) > −b,

see Example 1 from Section 5. For the case of general classes G(s,R) with s > 0,
we could take a Lévy density of the form ν0(x) = b1+sxse−bx/Γ(s+ 1).

Fix some L > 0 and let us construct now a parameterized set of Lévy triplets
Tθ = (1, 0, νθ), θ ∈ {0, 1}L, with Lévy measure νθ defined by

νθ(x) := ν0(x) + δ ·Δθ(x),

where δ > 0 small enough,

Δθ(x) :=
(
gθ(x) + a(gθ � exp(−b·)(x))

)′
,

gθ(x) :=

2L∑
k=L+1

θk−L cos(kγLx)g0(x),

θk−L stands for the (k − L)-th component of the vector θ, γL → ∞ as L → ∞,
and

g0(x) := x−3/2 exp(−1/x), x > 0.

2. Distributional properties of the models. In this step, we perform
some technical calculations, which will be used later. It holds

L[Δθ](z) =

∫ ∞

0

e−zxΔθ(x) dx

= z

[
1 +

a

z + b

] [∫ ∞

0

e−zxgθ(x) dx

]
= φ0(z) · L[gθ](z),

where L[gθ](z) is the Laplace transform of the function g0(·), which is equal to

L[gθ](z) =
1

2

2L∑
k=L+1

θk−L [L[g0](z + iγLk) + L[g0](z − iγLk)] .

We see that
∫∞
0

Δθ(x) dx = 0 and

φθ(z)− φ0(z) = δφ0(z)L[gθ](z),

where φθ(·) is the Laplace exponent of a Lévy process ξθ,s with the Lévy triplet
Tθ. Furthermore, the Laplace transform of g0 is given by

L[g0](u+ iv) =
√
πe−2(z++iz−)
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with 2z2± =
√
u2 + v2±u. The Mellin transform of the density πθ corresponding

to the Lévy model Tθ satisfies the following functional equation

Mθ(z)

M0(z)
=

φθ(z)

φ0(z)

Mθ(z + 1)

M0(z + 1)
.

Since
φθ(z)

φ0(z)
− 1 = δL[gθ](z),

and

∞∑
k=1

|L[gθ](z + k)| ≤ C exp
(
−
√

2Re(z)−
√

2 |Im(z)|
)

·
∞∑
k=1

2L∑
j=L+1

exp(−
√

2γLj −
√
2k)

≤ C ′ exp
(
−
√

2Re(z)−
√
2 |Im(z)|

)
, Re(z) ≥ 0,

we derive the following infinite product representation for the ratio Mθ(z)/
M0(z)

Mθ(z)

M0(z)
=

∞∏
k=0

(1 + δL[gθ](z + k)).

Furthermore, it can be proved that∣∣∣∣Mθ(u+ iv)

M0(u+ iv)
− 1

∣∣∣∣ ≤ cδ |L[gθ](u+ iv)|

for some absolute constant c > 0. Note that the random variables Aθ,∞ =∫∞
0

e−ξθ,sds with ξθ,s being a Lévy process with the triplet Tθ, satisfies 0 <
Aθ,∞ < 1 a.s. Moreover the density p0 of the r.v. A0,∞ has the form

π0(x) =
1

B(b− 1, a)
xb(1− x)a−11{0<x<1}

and the Mellin transform M0(z) of A0,∞ is given by

M0(z) =
B(z + b, a)

B(b− 1, a)
, (42)

see Example 4.3.

3. Class G(s,R). In this step, we check that constructed models Tθ(j) , j =
1, . . . ,M belong to class G(s,R) with s = 0 and some R > 0. We have for any
θ ∈ {0, 1}L,∫
R

|v|2s |F [νθ] (v)|2 dx ≤
∫
R

|v|2s |F [ν0] (v)|2 dv
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+

∫
R

|v|2s |F [νθ] (v)−F [ν0] (v)|2 dv

≤
∫
R

|v|2s |F [ν0] (v)|2 dv + δ2
∫
R

|v|2s |F [Δθ](v)|2 dv.

The inequality |φ0(−iv)| ≤ c · |v| for v ∈ R, where c = 1 + a/b, implies∫
R

|v|2s |F [Δθ](v)|2 dv ≤ c

∫
R

|v|2(s+1) |L[gθ](−iv)|2 dv

=
c

2

∫
R

|v|2(s+1) ·
∣∣∣∣∣

2L∑
k=L+1

θk−L (L[g0](−iv + iγLk)

+L[g0](−iv − iγLk))|2 dv

≤ c

2

2L∑
k=L+1

∫
R

|v|2(s+1) |L[g0](−iv + iγLk)|2 dv

+
c

2

2L∑
k=L+1

∫
R

|v|2(s+1) |L[g0](−iv − iγLk)|2 dv

+RL,

where

RL = 2
∑
k �=j

∫
R

|v|4L[g0](−iv − ijγL)L[g0](−iv − ikγL) dv

+2
∑
k �=j

∫
R

|v|4L[g0](−iv + ijγL)L[g0](−iv + ikγL) dv

It holds

|RL| ≤ CL
2L∑
j=1

(jγL)
2(s+1) exp(−

√
2γLj)

≤ CL2(s+1)+2γL
2(s+1) exp(−

√
2γL)

= o
(
L2(s+1)+1

)
,

provided γL = c log2(L) for large enough c > 0. Hence
∫
R
|v|2s |F [Δθ](v)|2 dv is

bounded if δ2γ
2(s+1)
L L2s+3 = O(1).

4. Upper bound for the L2-distance between elements of {νθ}.
Fix two vectors θ, θ′ ∈ {0, 1}L. We have∫
R

|νθ(x)− νθ′(x)|2 dx =
1

2π
δ2
∫
R

|φ0(−iv)L[gθ − gθ′ ](−iv)|2 dv

=
1

2π
δ2

2L∑
k=L+1

(
θk−L − θ′k−L

)2



2002 D. Belomestny and V. Panov

·
∫
R

|φ0(−iv)L[g0](−iv + iγLk)|2 dv

+
1

2π
δ2

2L∑
k=L+1

(
θk−L − θ′k−L

)2

·
∫
R

|φ0(−iv)L[g0](−iv − iγLk)|2 dv

+
1

2π
δ2RL,

where

RL ≤ 2
∑
k �=j

∫
R

|φ0(−iv)|2 L[g0](−iv − ijγL)L[g0](−iv − ikγL) dv

+2
∑
k �=j

∫
R

|φ0(−iv)|2 L[g0](−iv + ijγL)L[g0](−iv + ikγL) dv.

Consider, for example,

∫
R

|φ0(−iv)L[g0](−iv + iγLk)|2 dv =

∫
R

|φ0(−i(v + γLk))L[g0](−iv)|2 dv

=

∫
R

|v + γLk|2
∣∣∣∣1 + a

b− i(v + γLk)

∣∣∣∣
2

e−2
√

2|v| dv

= γ2
Lk

2

∫
R

∣∣∣∣1 + a

b− i(v + γLk)

∣∣∣∣
2

e−2
√

2|v| dv +O(γLk).

So we have

2L∑
k=L+1

(
θk−L − θ′k−L

)2 ∫
R

|φ0(−iv)L[g0](−iv + iγLk)|2 dv

= Cγ2
L

2L∑
k=L+1

(
θk−L − θ′k−L

)2
k2 + o

(
γ2
L

2L∑
k=L+1

(
θk−L − θ′k−L

)2
k2

)

≥ C ′γ2
LL

2
L∑

k=1

I(θk 
= θ′k),

as L → ∞ and ρ(θ, θ′) =
∑L

k=1 I(θk 
= θ′k) > 0. Analogously,

2L∑
k=L+1

(
θk−L − θ′k−L

)2 ∫
R

|φ0(−iv)L[g0](−iv − iγLk)|2 dv = C ′′γ2
LL

2ρ(θ, θ′).

Furtheremore, one shows (see above) that

|RL| = o
(
L3
)
.
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5. Choice of θ(0), . . . , θ(M).
Our choice is based on the well-known Varshamov-Gilbert bound (see [33],

Lemma 2.9), which implies that there are M > 2L/8 vectors θ(0), . . . , θ(M) ∈
{0, 1}L such that

ρ(θ(j), θ(k)) ≥ L/8.

6. Upper bound for K(π0, πθ).
By Parseval identity for Mellin transforms, we get

K(π0, πθ) =

∫ 1

0

|πθ(x)− π0(x)|2

π0(x)
dx

=

∫ 1

0

x−b(1− x)1−a |πθ(x)− π0(x)|2 dx

≤
∫ 1

0

x−b |πθ(x)− π0(x)|2 dx

=
1

2π

∫ ∞

−∞
|Mθ((1− b)/2 + iv)−M0((1− b)/2 + iv)|2 dv

≤ cδ2

2π

∫ ∞

−∞
|M0((1− b)/2 + iv)|2 |L[gθ](u+ iv)|2 dv.

So we get

K(π0, πθ) ≤ cδ2

2π

2L∑
k=L+1

∫
R

|M0((1− b)/2 + iv)|2 |L[g0](−iv + iγLk)|2 dv,

+
cδ2

2π

2L∑
k=L+1

∫
R

|M0((1− b)/2 + iv)|2 |L[g0](−iv − iγLk)|2 dv

+
cδ2

2π
RL,

where

RL ≤ 2
∑
k �=j

∫
R

|M0((1− b)/2 + iv)|2 L[g0](−iv − ijγL)L[g0](−iv − ikγL) dv

+ 2
∑
k �=j

∫
R

|M0((1− b)/2 + iv)|2 L[g0](−iv + ijγL)L[g0](−iv + ikγL) dv.

The equation (42) implies that M0(z) is finite for all z with Re(z) ≥ 0 and

M0(u+ iv) = C(a, b)
Γ(u+ iv + b)

Γ(u+ iv + b+ a)

� C(a, b)e−a log(u+iv+b)

= C(a, b)
(
(u+ b)2 + v2

)−a/2
eiArg(u+iv+b), u2 + v2 → ∞.
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Hence

|M0(u+ iv)| � C(a, b)
(
(u+ b)2 + v2

)−a/2
, u2 + v2 → ∞

and the density π0 of A0,∞ belongs to the class P(a) with L = C(a, b) (see also
Example 4.3). We have

2L∑
k=L+1

∫
R

|M0((1− b)/2 + iv)|2 |L[g0](−iv + iγLk)|2 dv = O(L−2a+1)

and

2L∑
k=L+1

∫
R

|M0((1− b)/2 + iv)|2 |L[g0](−iv − iγLk)|2 dv = O(L−2a+1).

Hence

n

M

M∑
m=1

χ2(π0, πθ(m)) ≤ nδ2L−2a log(M), L → ∞ (43)

for large n.

7. Choice of L. To complete the proof, we choose L such that the conditions
(40) and (41) are fulfilled. First note that since our model belongs to the class

G(s,R), we can take γL = c log2(L) and δ2 = γ
−2(s+1)
L L−2s−3 ·O(1), see Step 3

of the proof for details. Second, comparing (43) with (41), we fix κ = nδ2L−2a.
This leads to the choice of L as the solution of the equation

L2a+2s+3 log4(s+1)(L) = nO(1)

Combination of the results from Steps 4 and 5 yields the condition (40), because∫
R

|νθ(x)− νθ′(x)|2 dx ≥ C1δ
2γ2

LL
3

= C2(logL)
−4sL−2s

= C3 (logL)
4s −2a−1

2a+2s+3 n−2s/(2a+2s+3)

for some C1, C2, C3 > 0 and L large enough. This observation completes the
proof.
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