
Electronic Journal of Statistics
Vol. 9 (2015) 1799–1825
ISSN: 1935-7524
DOI: 10.1214/15-EJS1062

Consistency of the drift parameter
estimator for the discretized fractional
Ornstein–Uhlenbeck process with Hurst

index H ∈ (0, 12)

Kęstutis Kubilius∗

Vilnius University, Institute of Mathematics and Informatics
Akademijos 4, LT-08663, Vilnius, Lithuania

e-mail: kestutis.kubilius@mii.vu.lt

Yuliya Mishura∗

Department of Probability Theory, Statistics and Actuarial Mathematics
Taras Shevchenko National University of Kyiv

64 Volodymyrska, 01601 Kyiv, Ukraine
e-mail: myus@univ.kiev.ua

Kostiantyn Ralchenko
Department of Probability Theory, Statistics and Actuarial Mathematics

Taras Shevchenko National University of Kyiv
64 Volodymyrska, 01601 Kyiv, Ukraine

e-mail: k.ralchenko@gmail.com

and

Oleg Seleznjev∗

Institute of Mathematics and Mathematical Statistics
University of Umeå

SE-90187 Umeå, Sweden
e-mail: oleg.seleznjev@math.umu.se

Abstract: We consider the Langevin equation which contains an unknown
drift parameter θ and where the noise is modeled as fractional Brownian mo-
tion with Hurst index H ∈ (0, 1

2
). The solution corresponds to the fractional

Ornstein–Uhlenbeck process. We construct an estimator, based on discrete
observations in time, of the unknown drift parameter, that is similar in form
to the maximum likelihood estimator for the drift parameter in Langevin
equation with standard Brownian motion. It is assumed that the interval
between observations is n−1, i.e. tends to zero (high-frequency data) and
the number of observations increases to infinity as nm with m > 1. It is
proved that for strictly positive θ the estimator is strongly consistent for
any m > 1, while for θ ≤ 0 it is consistent when m > 1

2H
.
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1. Introduction and main results

The choice of an appropriate model is one of the crucial problems appearing in
the description of various phenomena in physics, high technology, economics, fi-
nance etc. For example, semimartingale models, including the simplest diffusion
models based on the Wiener process, provide good service in cases where the
data demonstrate the Markovian property and the lack of memory. However,
starting with the famous Hurst phenomena that clearly showed inapplicability
of the Central Limit Theorem to the sequence of data measurements, the need
to involve non-Markov and non-semimartingale processes with memory has be-
come apparent. The fractional Brownian motion is the simplest representative of
such processes. As well as in the diffusion model with a standard Wiener process,
mean-reverting property is very attractive to model processes with memory, and
this naturally explains the appearance of fractional Ornstein-Uhlenbeck process
in the modeling, e.g., of stochastic volatility (see [11] for various fractional mod-
els in stochastic volatility). In all areas of application the most attention has
been paid to the models with the so-called long memory for two reasons: on
one hand, the phenomena of the long memory appeared more often, and, on the
other hand, it is simpler to describe it analytically. However, recent observations
of financial markets (see, e.g., [3]) provide evidence in favor of short and varying
memory. A much more detailed review of the related literature is given below,
now we only say that, without touching multifractionality, in the present paper
we consider the fractional Ornstein-Uhlenbeck process with the short memory.

Let (Ω,F,P) be a complete probability space. We consider the fractional
Brownian motion BH = {BH

t , t ≥ 0} on this probability space, that is, the
centered Gaussian process with the covariance function

R(t, s) =
1

2

(
s2H + t2H − |t− s|2H

)
.

We restrict ourselves to the case H ∈ (0, 1
2 ) and consider the continuous (and

even Hölder up to order H) modification that exists due to the Kolmogorov
theorem. Let us introduce the Langevin equation,

Xt = x0 + θ

∫ t

0

Xs ds+BH
t , t ≥ 0, H ∈ (0, 1

2 ). (1)

According to Proposition A.1 from [9], this equation has a unique solution, which
is called the fractional Ornstein–Uhlenbeck process and can be presented as

Xt = x0e
θt + θeθt

∫ t

0

e−θsBH
s ds+BH

t , t ≥ 0. (2)
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The goal of the paper is to construct a consistent (strongly consistent) es-
timator of the unknown drift parameter θ using discrete observations of the
process X.

The problem of the estimation of the drift parameter θ in the linear equation
containing fBm and in the equation (1) when the Hurst index H ≥ 1

2 was
investigated in many works. For linear models, it suffices to mention the papers
[2] and [17]. Drift parameter estimators for the fractional Ornstein–Uhlenbeck
process with continuous time when the whole trajectory of X is observed were
studied in [1, 16, 21]. Kleptsyna and Le Breton [21] constructed the maximum
likelihood estimator and proved its strong consistency for any θ ∈ R. They also
investigated the asymptotic behavior of the bias and the mean square error of
this estimator. The sequential maximum likelihood estimation was considered
in [28]. Hu and Nualart [16] proved that in the ergodic case (θ < 0) the least
square estimator

θ̂T =

∫ T

0
Xt dXt∫ T

0
X2

t dt
, (3)

is strongly consistent for all H ≥ 1
2 and asymptotically normal for H ∈ [ 12 ,

3
4 ).

Here
∫ T

0
Xt dXt is a divergence-type integral. They also obtained the strong

consistency and asymptotic normality of the estimator

θ̂T =

(
1

HΓ(H)T

∫ T

0

X2
t dt

)− 1
2H

. (4)

In [1] the corresponding non-ergodic case θ > 0 was considered and the strong
consistency of the least square estimator (3) was proved for H > 1

2 . It was also
obtained that eθt(θ̂t − θ) converges in law to 2θC(1) as t → ∞, where C(1)
is the standard Cauchy distribution. The minimum contrast estimators in the
continuous and discrete cases were studied in [4]. The distributional properties
of the maximum likelihood, minimum contrast and the least square estimators
were explored in [30]. For the two-parameter generalization see [10].

In [8, 13, 14] the discretized version of (3) was considered, namely

θ̃n =

∑n
i=1 Xti−1

(
Xti −Xti−1

)
Δn

∑n
i=1 X

2
ti−1

, (5)

where the process X was observed at the points ti = iΔn, i = 0, . . . , n, such
that Δn → 0 and nΔn → ∞ as n → ∞. In [8], the ergodic case θ < 0 was
studied, the strong consistency of this estimator was proved for H ≥ 1

2 , and the
almost sure central limit theorem was obtained for H ∈ (12 ,

3
4 ). The non-ergodic

case θ > 0 was considered in Es-Sebaiy and Ndiaye [14]. They proved the strong
consistency of the estimator (5) for H ∈ ( 12 , 1) assuming that Δn → 0 and
nΔ1+α

n → ∞ as n → ∞ for some α > 0. The same result was obtained for the
estimator

θ̂n =
X2

tn

2Δn

∑n
i=1 X

2
ti−1

.
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In [18, 32] the following discretized version of the estimator (4) was considered

θ̂n = −
(

1

nHΓ(2H)

n∑
k=1

X2
kΔ

)− 1
2H

,

where θ < 0 and the process X was observed at the points Δ, 2Δ, . . . , nΔ for
some fixed Δ > 0. Hu and Song [18] proved the strong consistency of this
estimator for H ≥ 1

2 and the asymptotic normality for 1
2 ≤ H < 3

4 .
In [6, 33], a more general situation was studied, where the equation has

the form dXt = θXtdt + σdBH
t , t > 0, and ϑ = (θ, σ,H) is the unknown

parameter, θ < 0. Consistent and asymptotically Gaussian estimators of the
parameter θ were proposed using the discrete observations of the sample path
(XkΔn , k = 0, . . . , n) for H ∈ ( 12 ,

3
4 ), where nΔp

n → ∞, p > 1, and Δn → 0 as
n → ∞. In [33] the strongly consistent estimator is constructed for the scheme
when H > 1

2 , the time interval [0, T ] is fixed and the process is observed at the
points hn, 2hn, . . . , nhn, where hn = T

n .
In [12, 23], the so-called sub-fractional Ornstein–Uhlenbeck process was stud-

ied, where the process BH
t in (1) was replaced with a sub-fractional Brown-

ian motion. In [12], the maximum likelihood estimator for such a process was
constructed and in [23] the estimator (3) was investigated in the case θ > 0.
The maximum likelihood drift parameter estimators for the fractional Ornstein–
Uhlenbeck process and even more general processes involving fBm with Hurst
index from the whole interval (0, 1) were constructed and studied in [31]. These
estimators involve singular kernels and therefore are more complicated to study
and simulate. To the best of our knowledge, it is the only paper where the dis-
cretized estimates of the drift parameter are constructed in the case H < 1

2 .
However, the observations of the real financial markets demonstrate that the
Hurst index often falls below the level of 1

2 , taking values around 0.45–0.49
([3]). In order to consider the case of H < 1

2 and to overcome the technical dif-
ficulties connected with singular kernels, we construct a comparatively simple
estimator that is similar in form to the maximum likelihood estimator for the
Langevin equation with the standard Brownian motion. The observations are
assumed to be discrete in time and we assume that the interval between the
observations is n−1, i.e. tends to zero, so we consider high-frequency data. At
the same time, the number of observations increases to infinity with the speed
nm with m > 1. Let n ≥ 1, tk,n = k

n , 0 ≤ k ≤ nm, where m ∈ N is some fixed
integer. Suppose that we observe X at the points {tk,n, n ≥ 1, 0 ≤ k ≤ nm}.
Consider the estimator

θ̂n(m) =

∑nm−1
k=0 Xk,nΔXk,n

1
n

∑nm−1
k=0 X2

k,n

, (6)

where Xk,n = Xtk,n
, ΔXk,n = Xk+1,n −Xk,n.

Remark 1. The estimator θ̂n(m) is well-defined for all 0 < H < 1. However,
the case H ≥ 1/2 has already been studied in many works. In particular, for
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H > 1/2 the strong consistency of the estimator (6) for m > 1 follows directly
from the corresponding results for the estimator θ̃n defined in (5). Indeed, let
us consider θ̃n with Δn = n−1/m, m > 1. In this case, the conditions Δn → 0
and nΔ1+α

n → ∞ as n → ∞ are satisfied, and θ̃n → θ a. s. as n → ∞ by [8]
for the ergodic case, and by [14] for the non-ergodic one. Then the estimator
θ̂n(m) is also strongly consistent, since θ̂n(m) = θ̃nm . It is worth to mention
that in the case H = 1/2 the estimators of this type have been known since the
mid-seventies ([5]), for the corresponding strong consistency results see, e. g.,
[19, 20, 24, 27, 29] and the references cited therein. Therefore, in this work we
concentrate on the case H < 1/2.

Remark 2. Considering the asymptotic behavior of the estimator θ̂n(m), we
need in particular to study the asymptotics of its denominator which is a non-
linear functional of the integral type (sum, as the discrete analog of the integral)
of the fractional Brownian motion. The results in this direction, including the
non-ergodic case, were obtained in the paper [7] using Hermite ranks of the func-
tionals. Since our goal is simply to compare the numerator to the denominator,
we use another approach, bounding the denominator from below.

According to (1), the estimator θ̂n(m) from (6) can be represented in the
following form, which is more convenient for evaluation:

θ̂n(m) = θ +
θ
∑nm−1

k=0 Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds+
∑nm−1

k=0 Xk,nΔBH
k,n

1
n

∑nm−1
k=0 X2

k,n

. (7)

It is proved that for strictly positive θ the estimator is strongly consistent for
any m > 1 and for θ ≤ 0 it is consistent for m > 1

2H .

Theorem 1.1. Let θ > 0. Then for any m > 1 the estimator θ̂n(m) is strongly
consistent.

Theorem 1.2. Let θ ≤ 0. Then for any m > 1
2H the estimator θ̂n(m) is

consistent.

Our paper is organized as follows. Section 2 is devoted to numerics. In Sec-
tion 3 we consider an auxiliary result, namely, the bounds with probability 1 for
the values and increments of the fractional Brownian motion and the fractional
Ornstein–Uhlenbeck process. The bounds are factorized to the increasing non-
random function and a random variable not depending on time. In Section 4
we get the bounds for the numerator of the estimator, while in Section 5 we
relate the discretized integral sum in the denominator of the estimator to the
corresponding integral

∫ t

0
X2

s ds. This relation is convenient for some values of
the parameters because it is easier to apply the L’Hôpital’s rule to the integral∫ t

0
X2

s ds than the Stolz–Cesàro theorem to the sum
∑nm−1

k=0 X2
k,n with its terms

depending on n. In this section, we also provide the convergence of the ratios
that appear in the proof of the main result for the case θ < 0, which is obviously
more technical. Section 6 contains the proofs of Theorem 1.1 and Theorem 1.2.
Section 7 contains some auxiliary statements.
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2. Simulations

In this section, we present the results of simulation experiments. We simulate
20 trajectories of the fractional Ornstein–Uhlenbeck process (1) with x0 = 1 for
different values of θ and H. Then we compute the values of θ̂n(m). For each
combination of θ, H, n and m the mean of the estimator is reported.

In Tables 1–3 the true value of the drift parameter θ equals 2. In this case the
behavior of the estimators is almost the same for different values of H. Also,
we can see that the value of θ̂n(m) is determined by n and does not depend
on m. Further, we consider the case of negative θ. We simulate the process with
H = 0.45, θ = −3 and m = 4, 5. The results are reported in Tables 4–5. One
can see that the method works but the rate of convergence to the true value of
the parameter is not very high. There are two reasons for this: the estimator is
only consistent but not strongly consistent, and moreover, the trajectories are so
irregular that even though the length of the interval is small we can not “catch”
the trajectory. Simulation results for the process with zero drift are reported in
Tables 6–7.

Table 1

θ = 2, m = 2

n 5 10 50 100 500 1000

H = 0.05 2.45763 2.21281 2.0395 2.01911 2.00300 2.00100

H = 0.25 2.45766 2.21281 2.0395 2.01911 2.00300 2.00100

H = 0.45 2.45794 2.21281 2.0395 2.01911 2.00300 2.00100

Table 2

θ = 2, m = 3

n 5 10 20 25

H = 0.05 2.45763 2.21281 2.10231 2.08109

H = 0.25 2.45763 2.21281 2.10231 2.08109

H = 0.45 2.45763 2.21281 2.10231 2.08109

Table 3

θ = 2, m = 4

n 5 8 10 12 15

H = 0.05 2.45763 2.27092 2.21281 2.17240 2.13566

H = 0.25 2.45763 2.27092 2.21281 2.17240 2.13566

H = 0.45 2.45763 2.27092 2.21281 2.17240 2.13566

Table 4

θ = −3, H = 0.45, m = 4

n 2 4 6 8 10

θ̂n(4) −1.50913 −2.41157 −2.71411 −2.9546 −3.12058

Table 5

θ = −3, H = 0.45, m = 5

n 2 3 4 5 6

θ̂n(5) −1.63396 −2.04297 −2.38237 −2.5595 −2.72538
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Table 6

θ = 0, H = 0.45, m = 3

n 5 10 20 25

θ̂n(3) −0.10060 −0.04206 −0.01149 −0.01008

Table 7

θ = 0, H = 0.45, m = 4

n 4 5 8 10

θ̂n(4) −0.04281 −0.03331 −0.00962 −0.00727

3. Bounds for the values and the increments of the fractional
Brownian motion and the fractional Ornstein–Uhlenbeck process

In what follows we shall use auxiliary estimates for the rate of the asymptotic
growth with probability 1 of the fractional Brownian motion and its increments.
Throughout the paper while considering functions of the form tp log t, p > 0 we
suppose that 0 · ∞ = 0.

Proposition 3.1. (i) For any p > 1 and any H ∈ (0, 1) there exists a non-
negative random variable ξ(p,H) such that for all t ≥ 0,

sup
0≤s≤t

∣∣BH
s

∣∣ ≤ ((
tH | log t|p

)
∨ 1

)
ξ(p,H), (8)

and there exists such a number cξ(p,H) > 0 that for any 0 < y < cξ(p,H),
E exp{yξ2(p,H)} < ∞.

(ii) For any q > 1
2 and any H ∈ (0, 1) there exists a nonnegative random

variable η(q,H) such that for any 0 < t1 < t2 < ∞∣∣BH
t2 −BH

t1

∣∣ ≤ (t2− t1)
H
(
|log(t2 − t1)|1/2 + 1

)
(log(t2+2))qη(q,H), (9)

and there exists such a number cη(q,H) > 0 that for any 0 < y < cη(q,H),
E exp{yη2(q,H)} < ∞.

Proof. The 1st statement was proved in the paper [22]. The 2nd statement fol-
lows immediately from the next relation that can be proved similarly to Theo-
rem 1 from [25], where an even more complicated functional than the increment
of fractional Brownian motion, more precisely, the fractional derivative, was
considered. Thus, we have from Theorem 1, [25], that for any q > 1

2 and any
H ∈ (0, 1) the random variable

η(q,H) = sup
0≤t1<t2≤t1+1

∣∣BH
t1 −BH

t2

∣∣
(t2 − t1)H

(
|log(t2 − t1)|1/2 + 1

)
(log(t2 + 2))q

is finite almost surely, whence (ii) follows.

Now our goal is to estimate the numerator in (7) and to compare it to the
denominator. At first, we describe the bounds for the values of X and its incre-
ments.
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Lemma 3.2. We have the following bounds for the fractional Ornstein-Uhlenbeck
process X in terms of the underlying fractional Brownian motion:

(i) Let θ > 0. Then for any t > 0

sup
0≤s≤t

|Xs| ≤ |x0| eθt + θeθt
∫ t

0

e−θs sup
0≤u≤s

∣∣BH
u

∣∣ ds+ sup
0≤s≤t

∣∣BH
s

∣∣ (10)

and for any s ∈ [ kn ,
k+1
n )

sup
k
n≤u≤s

|Xu −Xk,n| ≤
∫ s

k
n

(
eθu

(
|x0|+ θ

∫ u

0

e−θv sup
0≤z≤v

∣∣BH
z

∣∣ dv)
+ sup

0≤z≤u

∣∣BH
z

∣∣) du+ sup
k
n≤u≤s

∣∣BH
u −BH

k,n

∣∣ . (11)

(ii) Let θ < 0. Then for any t > 0

sup
0≤s≤t

|Xs| ≤ |x0|+ 2 sup
0≤s≤t

∣∣BH
s

∣∣ (12)

and for any s ∈ [ kn ,
k+1
n )

sup
k
n≤u≤s

|Xu −Xk,n| ≤
|θ| |x0|

n
+

2 |θ|
n

sup
0≤u≤s

∣∣BH
u

∣∣
+ sup

k
n≤u≤s

∣∣BH
u −BH

k,n

∣∣ . (13)

Proof. (i) The bound (10) follows immediately from (2), and the bound (11)
follows immediately from (10) and (1).

(ii) The bound (12) follows from (2):

|Xt| ≤ |x0| eθt + |θ| eθt sup
0≤s≤t

∣∣BH
s

∣∣ · ∫ t

0

e−θsds+
∣∣BH

t

∣∣ ≤ |x0|+ 2 sup
0≤s≤t

∣∣BH
s

∣∣ .
To establish the bound (13), we substitute (12) into the following inequality
that can be easily obtained from (1): for s ≥ k

n

|Xs −Xk,n| ≤ |θ|
∫ s

k
n

|Xu| du+
∣∣BH

s −BH
k,n

∣∣ .
Remark 3. Plugging p = 2 and q = 1 into the formulae (8)–(9), we get the
following bounds:

sup
0≤s≤t

∣∣BH
s

∣∣ ≤ (
tH log2 t+ 1

)
ξ(2, H), (14)

and for s ∈ [ kn ,
k+1
n ]∣∣∣BH

s −BH
k
n

∣∣∣ ≤ (
s− k

n

)H (∣∣log (s− k
n

)∣∣1/2 + 1
)
log(s+ 2)η(1, H)

≤
((

s− k
n

)H ∣∣log (s− k
n

)∣∣1/2 + (
s− k

n

)H)
log(s+ 2)η(1, H).

(15)
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The function f(x) = xr |log x|
1
2 is bounded on the interval (0, 1] for any r > 0.

Therefore (
s− k

n

)H ∣∣log (s− k
n

)∣∣1/2 ≤ C
(
s− k

n

)H−r

for any 0 < r < H. Furthermore, for s ∈ [ kn ,
k+1
n ] we have that (s − k

n )
H ≤

(s − k
n )

H−r. Therefore, we get from (15) that for any 0 < r < H and for
s ∈ [ kn ,

k+1
n ] ∣∣∣BH

s −BH
k
n

∣∣∣ ≤ C
(
s− k

n

)H−r
log(nm−1 + 2)η(1, H). (16)

It follows immediately from (14) that for θ > 0∫ t

0

e−θs sup
0≤u≤s

∣∣BH
u

∣∣ ds ≤ ξ(2, H)

∫ t

0

e−θs
(
sH log2 s+ 1

)
ds ≤ Cξ(2, H),

and therefore both integrals
∫∞
0

e−θsBH
s ds and

∫∞
0

e−θs sup0≤u≤s

∣∣BH
u

∣∣ ds exist
with probability 1 and admit the same upper bound Cξ(2, H). Combining (10)–
(13), (14) and (16), we get that for θ > 0

sup
0≤u≤s

|Xu| ≤ |x0|eθs + Cθeθsξ(2, H) +
(
sH log2 s+ 1

)
ξ(2, H),

and for s ∈ [ kn ,
k+1
n ]

sup
k
n≤u≤s

|Xu −Xk,n| ≤ θ

∫ s

k
n

(
eθu (|x0|+ Cθξ(2, H))

+ (uH log2 u+ 1)ξ(2, H)
)
du+

(
n−H+r logn

)
η(1, H),

while for θ < 0

sup
0≤u≤s

|Xu| ≤ |x0|+ 2
(
sH log2 s+ 1

)
ξ(2, H),

and for s ∈ [ kn ,
k+1
n ]

sup
k
n≤u≤s

|Xu −Xk,n| ≤
|θ| |x0|

n
+

2 |θ|
n

sup
0≤u≤s

∣∣BH
u

∣∣
+ sup

k
n≤u≤s

∣∣BH
u −BH

k,n

∣∣ ≤ |θ| |x0|
n

+
2 |θ|
n

(
sH log2 s+ 1

)
ξ(2, H)

+
(
n−H+r logn

)
η(1, H).

To simplify the notations, we denote by C any constant whose value is not
important for our bounds. Furthermore, we denote by Z the class of nonnegative
random variables with the following property: there exists C > 0 not depending
on n such that E exp{xζ2} < ∞ for any 0 < x < C. For example, ξ(2, H)+C and
η(1, H) +C, Cξ(2, H) and Cη(1, H) for any constant C belong to Z. Also, note
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that for fixed m > 1 and n > 3 we have the upper bound log(nm−1+3) ≤ C logn.
Moreover, for any α > 0 there exists such n(α) that for n ≥ n(α) we have
logn < nα. Taking this into account and using the simplified notations, we get
the bounds with the same ζ ∈ Z: for θ > 0 we have for any fixed α > 0, starting
with n ≥ n(α):

sup
0≤u≤s

|Xu| ≤
(
eθs + sH log2 s

)
ζ, (17)

and for s ∈ [ kn ,
k+1
n ]

sup
k
n≤u≤s

|Xu −Xk,n| ≤
(
1
ne

θs + 1
ns

H log2 s+ n−H+α
)
ζ, (18)

while for θ < 0
sup

0≤u≤s
|Xu| ≤

(
1 + sH log2 s

)
ζ, (19)

and for s ∈ [ kn ,
k+1
n ]

sup
k
n≤u≤s

|Xu −Xk,n| ≤
(
1
n + 1

ns
H log2 s+ n−H+α

)
ζ. (20)

4. The bounds for the numerator of the estimator

Now we are in the position to bound both terms in the numerator of the right-
hand side of (7). First, we present the bound with probability 1 for the 1st term
in the numerator of (7). All inequalities claimed in Lemma 4.1 hold for any
α > 0 starting with some non-random number n(α).

Lemma 4.1. (i) Let θ > 0. Then for any m > 1 there exists such ζ ∈ Z that∣∣∣∣∣
nm−1∑
k=0

Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds

∣∣∣∣∣ ≤ ζ2n−1e2θn
m−1

.

(ii) Let θ < 0. Then we have two cases.

(a) Let 1 < m ≤ 1
H . Then there exists such ζ ∈ Z that∣∣∣∣∣

nm−1∑
k=0

Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds

∣∣∣∣∣ ≤ ζ2nmH+m−2H−1+α.

(b) Let m > 1
H . Then there exists such ζ ∈ Z that∣∣∣∣∣
nm−1∑
k=0

Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds

∣∣∣∣∣ ≤ ζ2n2Hm+m−2H−2+α.
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Proof. (i) It follows immediately from (17) that

|Xk,n| ≤ sup
0≤u≤k+1

n

|Xu| ≤
(
eθ

k+1
n +

(
k+1
n

)H
log2

(
k+1
n

))
ζ. (21)

Now we take into account (21), substitute k+1
n instead of s into (18) and apply

Lemma 7.1 to get the following relations for any α > 0:∣∣∣∣∣
nm−1∑
k=0

Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds

∣∣∣∣∣ ≤ ζ2
1

n

nm−1∑
k=0

(
eθ

k+1
n +

(
k+1
n

)H
log2

(
k+1
n

))
×
(
1

n
eθ

k+1
n +

1

n

(
k+1
n

)H
log2

(
k+1
n

)
+ n−H+α logn

)
= ζ2

(
1

n2

nm−1∑
k=0

e2θ
k+1
n +

2

n2

nm−1∑
k=0

eθ
k+1
n

(
k+1
n

)H
log2

(
k+1
n

)
+

1

n2

nm−1∑
k=0

(
k+1
n

)2H
log4

(
k+1
n

)
+ n−1−H+α logn

×
(

nm−1∑
k=0

eθ
k+1
n +

nm−1∑
k=0

(
k+1
n

)H
log2 k+1

n

))

≤ ζ2
(
1

n
e2θn

m−1

+ eθn
m−1

(
nH(m−1)+m−2+α + n−H+α

)
+nm−1−H+(m−1)H+α

)
.

(22)
Evidently, the term 1

ne
2θnm−1

dominates and the other terms are negligible,
whence the proof of (i) follows.

(ii) According to (19),

|Xk,n| ≤ sup
0≤u≤ k+1

n

|Xu| ≤
(
1 +

(
k+1
n

)H
log2 k+1

n

)
ζ.

Substituting k+1
n instead of s into (20), we get the following relations:∣∣∣∣∣

nm−1∑
k=0

Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds

∣∣∣∣∣ ≤ ζ2
1

n

nm−1∑
k=0

(
1 +

(
k+1
n

)H
log2 k+1

n

)
×
(

1
n + 1

n

(
k+1
n

)H
log2

(
k+1
n

)
+ n−H+α

)
= ζ2

(
nm−2 +

2

n2

nm−1∑
k=0

(
k+1
n

)H
log2

(
k+1
n

)
+

1

n2

nm−1∑
k=0

(
k+1
n

)2H
log4 k+1

n

+ nm−1−H+α + n−1−H+α
nm−1∑
k=0

(
k+1
n

)H
log2 k+1

n

)
.

(23)
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Substituting the bounds from Lemma 7.1 into the right-hand side of (23), we
obtain∣∣∣∣∣

nm−1∑
k=0

Xk,n

∫ k+1
n

k
n

(Xs −Xk,n) ds

∣∣∣∣∣ ≤ ζ2
(
nm−2 + n(m−1)H−2+m log2 n

+n2H(m−1)−2+m log4 n+ nm−1−H+α + n(m−2)H−1+m+α log2 n
)
.

We take into account that logn = o(nα) as n → ∞, for any α > 0. So, it is
necessary to compare the exponents m−2, (m−1)H−2+m, 2H(m−1)−2+m,
m−1−H and (m−2)H −1+m. We get that the exponent 2H(m−1)−2+m
is the largest under the condition m > 1

H while the exponent (m− 2)H − 1+m

is the largest under the condition m ≤ 1
H whence the proof of (ii) follows.

Now we establish the moment bounds for the 2nd term in the numerator
of the right-hand side of (7). In order to do this, we apply the well-known
Isserlis’ formula to calculate the higher moments of the Gaussian distribution:
let {χ1, χ2, χ3, χ4} be a Gaussian vector, then

E(χ1χ2χ3χ4) = E(χ1χ2)E(χ3χ4) +E(χ1χ3)E(χ2χ4) +E(χ1χ4)E(χ2χ3).

Therefore, we can calculate the mathematical expectations EBH
s BH

u ΔBH
k ΔBH

j

for k �= j as

EBH
s BH

u ΔBH
k ΔBH

j = EBH
u ΔBH

k EBH
s ΔBH

j +EBH
s ΔBH

k EBH
u ΔBH

j

+EBH
s BH

u EΔBH
k ΔBH

j ≤ EBH
u ΔBH

k EBH
s ΔBH

j

+EBH
s ΔBH

k EBH
u ΔBH

j (24)

because for H ∈ (0, 1
2 ) the increments of fBm BH are negatively correlated and

so EΔBH
k ΔBH

j < 0. Similarly,

EBH
s BH

u

(
ΔBH

k,n

)2
= 2EBH

u ΔBH
k,nEBH

s ΔBH
k,n + n−2HEBH

s BH
u . (25)

Lemma 4.2. (i) Let θ > 0. Then for any m > 1 we have the following moment
bound

E

(
nm−1∑
k=0

Xk,nΔBH
k,n

)2

≤ Cn2−4He2θn
m−1

.

(ii) Let θ < 0. Then for any m > 1 we have the following moment bound

E

(
nm−1∑
k=0

Xk,nΔBH
k,n

)2

≤ Cn2m−4H .
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Proof. (i) It follows from (2) that

nm−1∑
k=0

Xk,nΔBH
k,n = x0

nm−1∑
k=0

eθ
k
nΔBH

k,n

+ θ

nm−1∑
k=0

eθ
k
n

∫ k
n

0

e−θsBH
s ds ·ΔBH

k,n +

nm−1∑
k=0

BH
k,nΔBH

k,n =: I1n + I2n + I3n.

Note that EΔBH
k,nΔBH

j,n < 0 for k �= j. Therefore

0 ≤ E

(
nm−1∑
k=0

eθ
k
nΔBH

k,n

)2

≤ n−2H
nm−1∑
k=0

e2θ
k
n ≤ n1−2H

∫ nm−1

0

e2θsds = Cn1−2He2θn
m−1

.

So, E(I1n)
2 ≤ Cn1−2He2θn

m−1

, n ≥ 1.
Consider I3n. It is well known (see, e. g., the relation (1.8) from [26], but it

can be easily deduced from the ergodic properties of the quadratic variation of
the fractional Brownian motion) that for H ∈ (0, 1

2 )

n2H−1
n−1∑
k=0

BH
k,nΔBH

k,n

L2(P)−−−−→ cH ,

where cH is some constant. Therefore, there exists C > 0 such that

E

(
n2H−1

n−1∑
k=0

BH
k,nΔBH

k,n

)2

≤ C, n ≥ 1.

Now we can use the self-similarity property of BH , namely,(
BH

at, t ≥ 0
) d
= aH

(
BH

t , t ≥ 0
)

and get

E
(
I3n
)2

= E

(
nm−1∑
k=0

BH
k,nΔBH

k,n

)2

= n4(m−1)HE

(
nm−1∑
k=0

BH
k

nm

(
BH

k+1
nm

−BH
k

nm

))2

≤ n4(m−1)H · n2m(1−2H)E

(
nm(2H−1)

nm−1∑
k=0

BH
k

nm

(
BH

k+1
nm

−BH
k

nm

))2

≤ Cn2m−4H .

(26)
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At last,

0 ≤ E
(
I2n
)2

= θ2
nm−1∑
j,k=0

eθ
k
n+θ j

n

∫ k
n

0

∫ j
n

0

e−θs−θu EBH
s BH

u ΔBH
k,nΔBH

j,n du ds

= θ2
nm−1∑
k=0

e2θ
k
n

∫ k
n

0

∫ k
n

0

e−θs−θu EBH
s BH

u

(
ΔBH

k,n

)2
du ds

+ θ2
∑
k �=j

eθ
k
n+θ j

n

∫ k
n

0

∫ j
n

0

e−θs−θu EBH
s BH

u ΔBH
k,nΔBH

j,n du ds =: Jn
1 + Jn

2 .

(27)
We get from (24) and (25) that

EBH
s BH

u

(
ΔBH

k,n

)2
=

1

2

((
k+1
n

)2H −
∣∣u− k+1

n

∣∣2H −
(
k
n

)2H
+

∣∣u− k
n

∣∣2H)
×
((

k+1
n

)2H −
∣∣s− k+1

n

∣∣2H −
(
k
n

)2H
+
∣∣s− k

n

∣∣2H)
+ n−2HEBH

s BH
u

≤ Cn−4H + Cn−2H
(
s2H + u2H − |s− u|2H

)
,

(28)
and

EBH
s BH

u ΔBH
k ΔBH

j ≤ 1

2

((
k+1
n

)2H −
(
k
n

)2H −
∣∣u− k+1

n

∣∣2H +
∣∣u− k

n

∣∣2H)
×
((

k+1
n

)2H −
(
k
n

)2H −
∣∣s− k+1

n

∣∣2H +
∣∣s− k

n

∣∣2H)
≤ Cn−4H .

(29)
Substituting the above bounds into (27), we get that

Jn
1 ≤ Cn1−2He2θn

m−1

and Jn
2 ≤ Cn2−4He2θn

m−1

.

Evidently, for m > 1 the largest contribution is from the bound Cn2−4He2θn
m−1

whence the proof follows.
(ii) Let θ < 0. In this case

0 ≤ E

(
nm−1∑
k=0

eθ
k
nΔBH

k,n

)2

≤
nm−1∑
k=0

e2θ
k
nE

(
ΔBH

k,n

)2
≤

nm−1∑
k=0

E
(
ΔBH

k,n

)2
= nmn−2H = nm−2H .

So, E(I1n)
2 ≤ Cnm−2H , n ≥ 1.

The term I3n is estimated as before, and

0 ≤ E
(
I2n
)2

= θ2
nm−1∑
j,k=0

eθ
k
n+θ j

n

∫ k
n

0

∫ j
n

0

e−θs−θu EBH
s BH

u ΔBH
k,nΔBH

j,n du ds
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= θ2
nm−1∑
k=0

e2θ
k
n

∫ k
n

0

∫ k
n

0

e−θs−θu EBH
s BH

u

(
ΔBH

k,n

)2
du ds

+ θ2
∑
k �=j

eθ
k
n+θ j

n

∫ k
n

0

∫ j
n

0

e−θs−θu EBH
s BH

u ΔBH
k,nΔBH

j,n du ds =: Jn
1 + Jn

2 .

(30)
Substituting bounds (28) and (29) into (30), we get that

Jn
1 ≤ Cn−4H

nm−1∑
k=0

e2θ
k
n

∫ k
n

0

∫ k
n

0

e−θs−θuds du

+Cn−2H
nm−1∑
k=0

e2θ
k
n

∫ k
n

0

∫ k
n

0

e−θs−θu
(
s2H + u2H − |s− u|2H

)
ds du

≤ Cn2m−4H + Cn−2H
nm−1∑
k=0

eθ
k
n

∫ k
n

0

e−θss2Hds

≤ Cn2m−4H + Cn1−2H

∫ nm−1

0

eθs
∫ s

0

e−θuu2Hdu ds

≤ Cn2m−4H + Cn1−2Heθn
m−1

∫ nm−1

0

e−θuu2Hdu+ Cn1−2H

∫ nm−1

0

u2Hdu

≤ Cn2m−4H + Cn1−2H

∫ nm−1

0

u2Hdu

≤ Cn2m−4H + Cn2Hm+m−4H ≤ Cn2m−4H , and Jn
2 ≤ Cn2m−4H .

Comparing the exponents 2m− 4H, 4H +2m− 8Hm and m− 2H, we get that
for m > 1 2m− 4H is the largest one, whence the proof follows.

Corollary 4.3. (i) Let θ > 0. Then

E

(
n4H−2e−2θnm−1

nm−1∑
k=0

Xk,nΔBH
k,n

)2

≤ C.

If we denote ξn = n2H−1e−θnm−1 ∑nm−1
k=0 Xk,nΔBH

k,n then supn≥1 Eξ2n < ∞. It
means that for any m > 1 the numerator of (7) can be bounded by the sum

ζ2n−1e2θn
m−1

+ n1−2Heθn
m−1

ξn,

where supn≥1 Eξ2n < ∞.
(ii) Let θ < 0. Then we have two cases.

(a) Let 1 < m ≤ 1
H . Then for any α > 0 the numerator of (7) can be bounded

by the sum
ζ2n(m−2)H+m−1+α + nm−2Hξn,

where supn≥1 Eξ2n < ∞.
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(b) Let m > 1
H . Then for any α > 0 the numerator of (7) can be bounded by

the sum
ζ2n(2H+1)m−2H−2+α + nm−2Hξn,

where supn≥1 Eξ2n < ∞.

5. How to deal with the denominator and with the ratios

Now our goal is to present the denominator of (7) in a more convenient form.
First, we compare the sum 1

n

∑nm−1
k=0 X2

k,n to the corresponding integral∫ nm−1

0
X2

s ds. The reason to replace the sum with the corresponding integral
is that for some values of H and m we can prove the consistency with the help
of some kind of L’Hôpital’s rule, however, the application of the L’Hôpital’s rule
or the Stolz—Cesàro theorem to the sum

∑nm−1
k=0 X2

k,n is problematic because
not only the upper bound but also the terms in the sum depend on n.

Lemma 5.1. (i) Let θ > 0. Then there exists such ζ1 ∈ Z that∣∣∣∣∣
∫ nm−1

0

X2
s ds−

1

n

nm−1∑
k=0

X2
k,n

∣∣∣∣∣ ≤ ζ21
n
e2θn

m−1

.

(ii) Let θ < 0. Then we have two cases.

(a) Let 1 < m ≤ 1
H . Then there exists such ζ1 ∈ Z that for any β > 0 we have

the following bound∣∣∣∣∣
∫ nm−1

0

X2
s ds−

1

n

nm−1∑
k=0

X2
k,n

∣∣∣∣∣ ≤ ζ21n
mH+m−2H−1+β .

(b) Let m > 1
H . Then there exists such ζ1 ∈ Z that for any β > 0 we have the

following bound∣∣∣∣∣
∫ nm−1

0

X2
s ds−

1

n

nm−1∑
k=0

X2
k,n

∣∣∣∣∣ ≤ ζ21n
2mH+m−2H−2+β .

Proof. Evidently, the difference between the integral and the corresponding in-
tegral sum can be bounded as∣∣∣∣∣

∫ nm−1

0

X2
s ds−

1

n

nm−1∑
k=0

X2
k,n

∣∣∣∣∣ ≤
∫ nm−1

0

|ϕn(s)| ds,

where the integrand has the form

ϕn(s) =
(
X2

s −X2
k,n

)
1s∈[ kn , k+1

n ), 0 ≤ k ≤ nm − 1.
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Furthermore, the integrand can be bound as

|ϕn(s)| ≤ |Xs −Xk,n| (|Xs|+ |Xk,n|)1s∈[ kn , k+1
n )

≤ 2 |Xs −Xk,n| sup
0≤u≤s

|Xu|1s∈[ kn , k+1
n ).

(i) Let θ > 0. Then from (17), (18) and similarly to (22),

|Xs −Xk,n| sup
0≤u≤s

|Xu|1s∈[ kn , k+1
n ) ≤

(
n−1e2θs + 2n−1eθssH log2 s

+ eθsn−H+α + n−1s2H log4 s+ n−H+rsH log2 s
)
ζ21 .

(31)

Integrating over [0, nm−1], we see that the integral of the first term in the right-
hand side of (31) dominates, whence the proof follows.

(ii) Let θ < 0. Then according to (19)–(20),

|Xs −Xk,n| sup
0≤u≤s

|Xu|1s∈[ kn , k+1
n ) ≤

(
1
n + 1

n

(
k+1
n

)H
log2

(
k+1
n

)
+n−H+α

)(
1 +

(
k+1
n

)H
log2

(
k+1
n

))
ζ21 ,

therefore ∫ nm−1

0

|ϕn(s)| ds ≤
(
nm−2 +

2

n2

nm−1∑
k=0

(
k+1
n

)H
log2 k+1

n

+
1

n2

nm−1∑
k=0

(
k+1
n

)2H
log4 k+1

n + nm−H−1+α

+ n−H−1+α
nm−1∑
k=0

(
k+1
n

)H
log2 k+1

n

)
ζ21 .

(32)

To get rid of logarithms, we apply Lemma 7.1 to (32) and obtain that for any
β > 0∫ nm−1

0

|ϕn(s)| ds ≤
(
nm−2 + nmH+m−H−2+β + nm−H−1+β

+ n2Hm+m−2H−2+β + nmH+m−2H−1+β
)
ζ21 .

Comparing the exponents m−2, mH+m−H−2, m−H−1, 2Hm+m−2H−2
and mH+m−2H−1, we deduce that for 1 < m ≤ 1

H the largest exponent equals
mH+m−2H−1, and for m > 1

H the largest exponent equals 2Hm+m−2H−2,
whence the proof follows.

Corollary 5.2. (i) Let θ > 0. Then there exists such ζ1 ∈ Z that

1

n

nm−1∑
k=0

X2
k,n =

∫ nm−1

0

X2
s ds+ ϑn,
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where

|ϑn| ≤
ζ21
n
e2θn

m−1

.

(ii) Let θ < 0. Then we have two cases.

(a) Let 1 < m ≤ 1
H . Then there exists such ζ1 ∈ Z that for any β > 0

1

n

nm−1∑
k=0

X2
k,n =

∫ nm−1

0

X2
s ds+ ϑn(β), (33)

where
|ϑn(β)| ≤ ζ21n

mH+m−2H−1+β . (34)

(b) Let m > 1
H . Then for any β > 0 the representation (33) holds with

|ϑn(β)| ≤ ζ21n
2mH+m−2H−2+β.

Now, in order to adequately treat the case θ < 0 that is more technically
complicated, we additionally bound the following ratios:

K1
n(m,α, β) :=

nmH+m−2H−1+α∫ nm−1

0
X2

s ds+ ϑn

, K̃1
n(m,α, β) :=

n2Hm+m−2H−2+α∫ nm−1

0
X2

s ds+ ϑn

and K2
n := nm−2Hξn

1
n

∑nm−1
k=0 X2

k,n

.

Lemma 5.3. Let θ < 0.

(i) For any 1 < m < 2H+1
H+1 < 1

H there exist such α > 0 and β > 0 that

K1
n(m,α, β) → 0

a.s. as n → ∞.
(ii) For any 2H+1

H+1 ≤ m ≤ 1
H there exist such α > 0 and β > 0 that

K1
n(m,α, β) → 0

in probability as n → ∞.
(iii) There exist such α > 0 and β > 0 that for any m > 1

H

K̃1
n(m,α, β) → 0

in probability as n → ∞.

Proof. (i) Let 1 < m < 2H+1
H+1 < 1

H . Then the exponent mH + m − 2H − 1 is
negative. Indeed, for H < 1

2 we have the inequality 2H+1
H+1 < 1

H . First, choose
α > 0 so that mH +m − 2H − 1 + α < 0 and put β = α. Then it is sufficient
to note that nmH+m−2H−1+α → 0 and ϑn → 0 a.s. as n → ∞ while the
integral

∫ nm−1

0
X2

s ds is increasing with probability 1 and tends to a nonzero
with probability 1 random variable as n → ∞.
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(ii) Let 2H+1
H+1 ≤ m ≤ 1

H . Then the exponent mH +m − 2H − 1 is positive.
Choose α = β. It is sufficient to prove that there exists such α > 0 that

n−mH−m+2H+1−α

∫ nm−1

0

X2
s ds+ n−mH−m+2H+1−αϑn(α) → ∞

in probability as n → ∞. In view of (34) it is equivalent to

n−mH−m+2H+1−α

∫ nm−1

0

X2
s ds → ∞ in probability as n → ∞.

To establish this convergence note that it follows from the Cauchy–Schwarz
inequality that

n−mH−m+2H+1−α

∫ nm−1

0

X2
s ds ≥ n−mH−2m+2H+2−α

(∫ nm−1

0

Xs ds

)2

.

Denote γ = −mH − 2m+ 2H + 2− α < 0. Without loss of generality suppose
that x0 > 0. Note that

∫ nm−1

0
Xs ds is a Gaussian process with the mean

en =
x0

θ

(
eθn

m−1 − 1
)
∈ (0,−x0

θ
)

and variance

σ2
n =

∫ nm−1

0

∫ nm−1

0

EXsXt ds dt− e2n

=

∫ nm−1

0

∫ nm−1

0

E

(
θeθs

∫ s

0

e−θuBH
u du+BH

s

)
×
(
θeθt

∫ t

0

e−θzBH
z dz +BH

t

)
ds dt. (35)

Since for any u, z > 0 we have EBH
u BH

z > 0, the variance can be bounded from
below by the value

σ2
n ≥

∫ nm−1

0

∫ nm−1

0

EBH
s BH

t ds dt

=
1

2
n(m−1)(2H+2)

∫ 1

0

∫ 1

0

(
s2H + t2H − |s− t|2H

)
ds dt = Cn(m−1)(2H+2).

(36)
Note that the other terms in (35) are of the same order so bound (36) is
exact. Now, denoting as N (0, 1) the standard Gaussian random variable and
Φ(x) = (2π)−

1
2

∫ x

−∞ e−
y2

2 dy, we can deduce that for any A > 0 and sufficiently
large n

P

⎧⎨⎩nγ

(∫ nm−1

0

Xs ds

)2

≤ A2

⎫⎬⎭ = P

{
n

γ
2

∣∣∣∣∣
∫ nm−1

0

Xs ds

∣∣∣∣∣ ≤ A

}
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= P
{
n

γ
2 |σnN (0, 1) + en| ≤ A

}
= Φ

(
A

σnn
γ
2

− en
σn

)
− Φ

(
− A

σnn
γ
2

− en
σn

)
≤

∣∣∣∣Φ(
A

σnn
γ
2

− en
σn

)
− 1

2

∣∣∣∣+ ∣∣∣∣Φ(
− A

σnn
γ
2

− en
σn

)
− 1

2

∣∣∣∣ ≤ 2

(
A

σnn
γ
2

− en
σn

)
≤ C

σnn
γ
2

≤ C

n
mH
2 −α

2

. (37)

Choosing 0 < α < mH we get the proof of (ii).
(iii) For m > 1

H the exponent 2Hm+m− 2H − 2 is positive. Therefore, we
repeat the proof of (ii) with the same σn and with γ̃ = −2Hm−2m+2H+3−α
instead of γ. So, in the inequality similar to (36), we get in the right-hand side
the upper bound

C

σnnγ̃/2
≤ C

n
1
2−

α
2

.

Choosing 0 < α < 1
2 we get the proof of (iii).

Remark 4. We can prove more than it was mentioned in (i), namely, to estab-
lish that ∫ nm−1

0

X2
s ds → ∞

a.s. as n → ∞ (see Lemma 7.2 in Section 7).

Lemma 5.4. Let θ < 0, m > 1
2H . Then K2

n → 0 in probability as n → ∞.

Proof. We apply the same method as in the proof of Lemma 5.3, but to the
sum 1

n

∑nm−1
k=0 X2

k,n instead of the integral
∫ nm−1

0
X2

s ds. As before, suppose
that x0 > 0. According to the Cauchy–Schwarz inequality,

1

n

nm−1∑
k=0

X2
k,n ≥ n−m−1

(
nm−1∑
k=0

Xk,n

)2

, (38)

where
∑nm−1

k=0 Xk,n is a Gaussian random variable with the mean

0 < ẽn = x0

nm−1∑
k=0

eθ
k
n ≤ nx0

∫ nm−1

0

eθs ds ≤ −nx0

θ

and variance

σ̃2
n =

nm−1∑
k,j=0

EXk,nXj,n ≥
nm−1∑
k,j=0

EBH
k,nB

H
j,n

=
1

2

nm−1∑
k,j=0

((
k
n

)2H
+
(
j
n

)2H −
∣∣ j
n − k

n

∣∣2H)

= nm
nm−1∑
k=0

(
k
n

)2H −
nm−1∑
l=0

(
l
n

)2H
(nm − l) (39)
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= n−2H
nm−1∑
l=0

l2H+1 = n−2H+m(2H+1)+m
nm−1∑
l=0

(
l

nm

)2H+1 1
nm

≥ Cn−2H+m(2H+1)+m.

Therefore, for any ε > 0 and xn > 0

P
{
K2

n ≥ ε
}
≤ P

{
|ξn|nm−2H

1
n

∑nm−1
k=0 X2

k,n

≥ ε

}
≤ P

{
1

n

nm−1∑
k=0

X2
k,n < xn

}

+P
{
|ξn| > xnεn

2H−m
}
≤ P

⎧⎨⎩ 1

nm+1

(
nm−1∑
k=0

Xk,n

)2

< xn

⎫⎬⎭+
Eξ2n

x2
nε

2n4H−2m

≤ P

⎧⎨⎩ 1

nm+1

(
nm−1∑
k=0

Xk,n

)2

< xn

⎫⎬⎭+
C

x2
nε

2n4H−2m
.

Similarly to (37),

P

⎧⎨⎩ 1

nm+1

(
nm−1∑
k=0

Xk,n

)2

< xn

⎫⎬⎭ = P
{
|σ̃nN (0, 1) + ẽn| < x

1
2
nn

m+1
2

}

= Φ

(
− ẽn
σ̃n

+
x

1
2
nn

m+1
2

σ̃n

)
− Φ

(
− ẽn
σ̃n

− x
1
2
nn

m+1
2

σ̃n

)
≤ C

(
x

1
2
nn

m+1
2

σ̃n
+

n

σ̃n

)
.

Evidently, for any m > 1, n
σ̃n

→ 0 as n → ∞. Therefore, to supply the
convergence K2

n → 0 in probability, we need to choose xn in such a way that
1

x2
nn

4H−2m → 0 and x
1
2
n n

m+1
2

σ̃n
→ 0 as n → ∞. Put xn = nr. Then r must satisfy

the double inequality

m− 2H < r < m+ 2Hm− 2H − 1.

This inequality can be satisfied only for m > 1
2H whence the proof follows.

6. Proofs of the main consistency results

6.1. Proof of Theorem 1.1

According to Corollaries 4.3 and 5.2, it is sufficient to prove that

ψn :=
ζ2n−1e2θn

m−1

+ n1−2Heθn
m−1

ξn∫ nm−1

0
X2

s ds+ ϑn

→ 0

a.s. as n → ∞, where supn≥1 Eξ2n < ∞ and |ϑn| ≤ ζ2
1

n e2θn
m−1

. Rewrite ψn as

ψn :=
ζ2n−1 + n1−2He−θnm−1

ξn

e−2θnm−1
∫ nm−1

0
X2

s ds+ e−2θnm−1ϑn

.
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Evidently, ζ2n−1 → 0 a.s. as n → ∞. Furthermore, for any x > 0

P
{
n1−2He−θnm−1

ξn > x
}
≤ Eξ2n

x2n4H−2e2θnm−1 ≤ C

x2n4H−2e2θnm−1 ,

and the series
∑∞

n=1
1

n4H−2e2θnm−1 converges. It means by the Borel–Cantelli

lemma that n1−2He−θnm−1

ξn → 0 a.s. as n → ∞. Evidently, e−2θnm−1 |ϑn| ≤
ζ2
1

n → 0 a.s. as n → ∞. At last, according to (2) and the L’Hôpital’s rule,

lim
T→∞

∫ T

0
X2

s ds

e2θT
= lim

T→∞

X2
T

2θe2θT
= (2θ)−1

(
x0 +

∫ ∞

0

e−θsBH
s ds

)2

,

and the limit random variable is positive a.s. as the square of a Gaussian variable,
whence the proof follows.

6.2. Proof of Theorem 1.2

Let θ < 0. According to Corollaries 4.3 and 5.2, for 1 < m ≤ 1
H we need to

bound K1
n(m,α, β) and K2

n, and for m > 1
H we need to bound K̃1

n(m,α, β) and
the same K2

n. However, we can establish the convergence of K2
n in probability

to 0 only for m > 1
2H , see Lemma 5.4, while K̃1

n(m,α, β) tends in probability
to 0 for m > 1

H , see Lemma 5.3. Hence the proof follows.
Let θ = 0. In this case Xt = x0 +BH

t , t ≥ 0 and

θ̂n(m) =
x0B

H
nm +

∑nm−1
k=0 BH

k,nΔBH
k,n

1
n

∑nm−1
k=0 (x0 +BH

k,n)
2

.

Similarly to (38),

1

n

nm−1∑
k=0

(x0 +BH
k,n)

2 ≥ n−m−1

(
nmx0 +

nm−1∑
k=0

BH
k,n

)2

= nm−1

(
x0 + n−m

nm−1∑
k=0

BH
k,n

)2

= nm−1 (x0 + σ̂nN (0, 1))
2
,

where, according to (39),

σ̂2
n ≥ n−2m

nm−1∑
k,j=0

EBH
k,nB

H
j,n ≥ Cn2H(m−1) → ∞

as n → ∞. Since for any α > 0 |BH
nm | ≤ nHm+αζ, then in order to establish

that
x0B

H
nm

1
n

∑nm−1
k=0 (x0 +BH

k,n)
2
→ 0

in probability, it is sufficient to prove that nHm+α−m+1

(x0+σ̂nN (0,1))2 → 0 in probability, as
n → ∞. But this is the case when m ≥ 2 since for any ε > 0
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P

{
nHm+α−m+1

(x0 + σ̂nN (0, 1))
2 > ε2

}
= P

{∣∣∣∣x0

σ̂n
+N (0, 1)

∣∣∣∣ < n1/2(Hm+α−m+1)

εσ̂n

}
≤ P

{∣∣∣∣x0

σ̂n
+N (0, 1)

∣∣∣∣ < n−1/2(Hm−α+m−1−H)

ε

}
→ 0

(40)
as n → ∞, if we choose α sufficiently small. Furthermore, according to (26),

E(ξ̂n)
2 := E

(
nm−1∑
k=0

BH
k,nΔBH

k,n

)2

≤ Cn2m−4H .

Therefore, for any ε > 0 and for the sequence x̂n = nm−2H+β

P

{
ξ̂n

nm−1 (x0 + σ̂nN (0, 1))
2 > ε2

}

≤ Cn2m−4H

x̂2
n

+P

{∣∣∣∣x0

σ̂n
+N (0, 1)

∣∣∣∣ < √
x̂n

εσ̂nn
m−1

2

}
≤ C

n2β
+P

{∣∣∣∣x0

σ̂n
+N (0, 1)

∣∣∣∣ < n1/2−Hm+β

ε

}
→ 0

as n → ∞ for m > 1
2H and 0 < β < Hm− 1

2 . Theorem is proved.

7. Auxiliary results

At first we establish an auxiliary result concerning the bounds for several sums
of integral type that will participate in the bounds for the numerator of (7).

Lemma 7.1. For any m > 1 and n ≥ 2 there exists C > 0 not depending on n
such that

(i)
nm−1∑
k=0

(
k+1
n

)H
log2 k+1

n ≤ Cn(m−1)H+m log2 n,

(ii)
nm−1∑
k=0

(
k+1
n

)2H
log4 k+1

n ≤ Cn2H(m−1)+m log4 n.

Proof. We base the proof of both statements on the following evident relation:
for any function f : [0, 1] → R that is Riemann integrable on [0, 1], and for any
m ≥ 1 the integral sums S(f(x), nm) := 1

nm

∑nm−1
k=0 f(k+1

nm ) tend to the integral∫ 1

0
f(x)dx as n → ∞. In particular, these integral sums are bounded. Consider

the statement (i). Evidently,

nm−1∑
k=0

(
k+1
n

)H
log2 k+1

n = n(m−1)H
nm−1∑
k=0

(
k+1
nm

)H
log2(k+1

nm nm−1)
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≤ 2n(m−1)H
nm−1∑
k=0

(
k+1
nm

)H (
log2

(
k+1
nm

)
+ (m− 1)2 log2 n

)
= 2n(m−1)H+mS(xH log2 x, nm) + 2(m− 1)2n(m−1)H+m log2 n · S

(
xH , nm

)
≤ Cn(m−1)H+m + Cn(m−1)H+m log2 n ≤ Cn(m−1)H+m log2 n

for n ≥ 2. Statement (ii) is established similarly.

The next auxiliary result establishes the asymptotic behavior of the integral∫ T

0
X2

s ds as T → ∞.

Lemma 7.2. Let a process X satisfy the equation (1). Then
∫ T

0
X2

s ds → ∞
with probability 1 as T → ∞.

Proof. The result is obvious for θ > 0, therefore we consider only the case
θ < 0. Since

∫ T

0
X2

s ds is nondecreasing in T > 0, it is sufficient to prove that∫ T

0
X2

s ds → ∞ in probability. For any λ > 0 consider the moment generation
function ΘT (λ) = E exp{−λ

∫ T

0
X2

s ds} and Θ∞(λ) = E exp{−λ
∫∞
0

X2
s ds} so

that
Θ∞(λ) = lim

T→∞
ΘT (λ).

Evidently, ∫ T

0

X2
s ds ≥ T−1

(∫ T

0

Xs ds

)2

,

whence

ΘT (λ) ≤ Θ
(1)
T (λ) := E exp

⎧⎨⎩− λ

T

(∫ T

0

Xs ds

)2
⎫⎬⎭ .

The random variable T− 1
2

∫ T

0
Xs ds is Gaussian with the mean m(T ) and vari-

ance σ2(T ). Note that for a Gaussian random variable ξ = m + σN (0, 1) we
have that

E exp
{
−λξ2

}
=

(
2λσ2 + 1

)− 1
2 exp

{
− λm2

2aσ2 + 1

}
≤

(
2λσ2 + 1

)− 1
2 .

Therefore, it is sufficient to prove that

lim
T→∞

σ2(T ) = ∞.

Similarly to (36).

σ2(T ) ≥ T 2H+1

∫ 1

0

∫ 1

0

(
s2H + t2H − |s− t|2H

)
ds dt → ∞

as T → ∞, whence the proof follows.
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