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1. Introduction

Kernel nonparametric function estimation methods have long attracted a great
deal of attention. Although they are popular, they present only one of many
approaches to the construction of good function estimators. These include, for
example, nearest-neighbor, spline, neural network, and wavelet methods. These
methods have been applied to a wide variety of data. In this article, we shall
restrict attention to the construction of consistent kernel-type estimators of joint
(unconditional and conditional) densities based on mixed data, that is data with
both discrete and continuous components.

When faced such data, researchers have traditionally resorted to a “fre-
quency” approach. This involves breaking the continuous data into subsets ac-
cording to the realizations of the discrete data (“cells”), in order to produce
consistent estimators. However, as the number of subsets increases, the amount
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of data in each cell tends to decrease, leading to a “sparse data” problem. In
such cases, there may be insufficient data in each subset to deliver sensible den-
sity estimators (they will be highly variable). Aitchison and Aitken [1] proposed
a novel extension of the kernel density estimation method to a discrete data
setting in a multivariate binary discrimination context.

The approach we consider below uses “generalized product kernels”. For the
continuous component of a variable we use standard kernels (Epanechnikov,
etc.) and for a general multivariate unordered discrete component we apply the
kernels suggested by Aitchison and Aitken [1]. In case of ordered categorical
data, alternative approaches can be used by essentially applying near-neighbor
weights (see, e.g., Wang and van Ryzin [20]; Burman [3] and Hall and Tittering-
ton [10]). Smoothing methods for ordered categorical data have been surveyed
by Simonoff [18, Sec. 6]. For illustration purposes, we show how this can be done
using a kernel estimator proposed by Wang and van Ryzin [20].

Mason and Swanepoel [13] introduced a general method based on empirical
process techniques to prove uniform in bandwidth consistency of a wide variety
of kernel-type estimators. It is a distillation of results of Einmahl and Mason
[8] and Dony et al. [5], whose work was motivated by the original groundwork
of Nolan and Marron [14]. The goal of the present paper is to provide a general
uniform in bandwidth consistency result for kernel estimators of the joint density
of a distribution, which is defined by a mixed discrete and continuous random
variable. We shall use the setup of Li and Racine [11] and show that the general
Theorem of Mason and Swanepoel [13] applies to it. Our results will imply
uniform in bandwidth consistency of the kernel density estimators for mixed
discrete and continuous data of Li and Racine [11] and the kernel estimator of
the conditional density for such data of Hall, Racine and Li [9].

In Section 2 we introduce and describe our basic setup, and some needed
notation, constructions and assumptions. We prove our main technical result in
Section 3 and in Section 4 we use it to prove a uniform in bandwidth consistency
theorem for kernel density estimators of mixed data. Applications are given in
Section 5. Section 6 contains the material from Mason and Swanepoel [13] that
we use to prove our results. We conclude in Section 7 with an appendix on
pointwise measurability.

2. Some basic notation, a probability construction and assumptions

In order to state and prove our results we shall need the following basic setup,
notation, probability constructions and assumptions. First, we focus on the case
when we have a mix of continuous and general multivariate unordered (nominal)
variables. The case when the discrete variables are ordered (ordinal) will be dealt
with at the end of Section 4.

2.1. The Li and Racine setup

We shall take our basic setup from Li and Racine [11], using the notation (with
some modifications) of Hall, Racine and Li [9]. Let for p ≥ 1, q ≥ 1,
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X =
(
Xc,Xd

)
=
((
Xc

1 , . . . , X
c
p

)
,
(
Xd

1 , . . . , X
d
q

))
∈ Rp × Rq,

be a random vector. Assume that Xd takes on a finite number of values xd =
(xd

1, . . . , x
d
q) in an arbitrary finite subset D of Rq for which

P
{
Xd =

(
xd
1, . . . , x

d
q

)}
=: p

((
xd
1, . . . , x

d
q

))
= p
(
xd
)
> 0.

Also, given Xd = (xd
1, . . . , x

d
q) = xd ∈ D, assume that Xc = (Xc

1 , . . . , X
c
p) has

conditional density on Rp,

f
((
xc
1, . . . , x

c
p

)
|
(
xd
1, . . . , x

d
q

))
= f
(
xc|xd

)
,

for xc = (xc
1, . . . , x

c
p) ∈ Rp. This says that X = (Xc,Xd) has joint density

f
(
xc,xd

)
= f
(
xc|xd

)
p
(
xd
)
,

for (xc,xd) ∈ Rp ×D.
For each xc ∈ Rp and h = (h1, . . . , hp)∈(0, 1]p introduce the kernel function

of zc = (zc1, . . . , z
c
p) ∈ Rp

Kc
h (xc, zc) := Πp

j=1h
−1/p
j K

(
xc
j − zcj

h
1/p
j

)
,

where K is a measurable real-valued function on R satisfying conditions (K.i)–
(K.iv) stated in Subsection 2.4.1 below.

From now on we assume for convenience of labeling that for each 1 ≤ k ≤ q,
Xd

k takes on values 0, 1, . . . , rk − 1, where rk ≥ 2, and thus

D ⊂ {0, 1, . . . , r1 − 1} × · · · × {0, 1, . . . , rq − 1} . (2.1)

For any

λ = (λ1, . . . , λq) ∈ [0, (r1 − 1) /r1]× · · · × [0, (rq − 1) /rq] =: Γ, (2.2)

set for zd = (zd1 , . . . , z
d
q ) ∈ Rq

Kd
λ

(
xd, zd

)
:= Πq

k=1

(
λk

rk − 1

)I(zd
k �=xd

k)
(1− λk)

I(zd
k=xd

k) .

In particular, we have

Kc
h (xc,Xc) = Πp

j=1h
−1/p
j K

(
xc
j −Xc

j

h
1/p
j

)

and

Kd
λ

(
xd,Xd

)
= Πq

k=1

(
λk

rk − 1

)I(Xd
k �=xd

k)
(1− λk)

I(Xd
k=xd

k) .
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Whenever X1 = (Xc
1,X

d
1), X2 = (Xc

2,X
d
2), . . . , is an i.i.d. X = (Xc,Xd) se-

quence, for each i ≥ 1 we define Kc
h(x

c,Xc
i ) and Kd

λ(x
d,Xd

i ) as above with
(Xc

i ,X
d
i ) replacing (Xc,Xd), Xc

i,j replacing Xc
j , for j = 1, . . . , p, and Xd

i,k re-

placing Xd
k , for k = 1, . . . , q.

For any vector z let max z denote the maximum of its components. In par-
ticular,

maxλ = max {λ1, . . . , λq} .
Notice that for each λ ∈ Γ

(1−maxλ)
q
I
{
Xd = xd

}
≤ Kd

λ

(
xd,Xd

)
≤ maxλI

{
Xd �= xd

}
+I
{
Xd = xd

}
.

For any 0 < δ < 1 let

Γ (δ) = {λ ∈ Γ : maxλ ≤ δ} .

We see that uniformly in λ ∈ Γ(δ)

n−1Nn

(
xd
)
(1− δ)

q ≤ n−1
n∑

i=1

Kd
λ

(
xd,Xd

i

)
≤ δ + n−1Nn

(
xd
)
, (2.3)

where

Nn

(
xd
)
=

n∑
i=1

I
{
Xd

i = xd
}
. (2.4)

Consider the Aitchison and Aitken [1] kernel estimator of p(xd),

p̂n
(
xd,λ

)
:= n−1

n∑
i=1

Kd
λ

(
xd,Xd

i

)
.

Remark 1. Although p̂n(x
d,λ) was initially proposed by Aitchison and Aitken

[1] as a smooth estimator of p(xd) in a multivariate binary data discrimination
context, it has since then often been applied to the analysis of general multivari-
ate unordered discrete variables. Note that when λ = 0, the estimator p̂n(x

d,λ)
reduces to the conventional frequency estimator p̃n(x

d) = n−1Nn(x
d). There-

fore, the smoothed estimator p̂n(x
d,λ) includes the frequency estimator as a

special case.
From a statistical perspective it is known (see, e.g., Brown and Rundell [2],

and Ouyang et al. [16]) that the smooth estimator p̂n(x
d,λ) may introduce

some finite sample bias; however, it may also reduce the variance substantially,
leading (using a bandwidth λ which balances bias and variance) to a reduction in
the mean squared error of p̂n(x

d,λ) relative to the frequency estimator p̃n(x
d).

Ouyang et al. [16] provide an informative discussion on some further interesting
properties of p̂n(x

d,λ). It is, among others, pointed out that p̂n(x
d,λ) can be

viewed as a Bayes-type estimator because it is a weighted average of a uniform
probability and a frequency estimator. Their simulation studies also show that
p̂n(x

d,λ), particularly when used in conjunction with a data-driven method
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of bandwidth selection such as least-squares cross-validation, performs much
better than the commonly used frequency estimator p̃n(x

d), especially in the
case when some of the discrete variables are uniformly distributed (a specific
definition of “uniformly distributed variables” is provided in their Section 2).

Lemma 1. With probability 1,

lim sup
n→∞

sup
λ∈Γ(δ)

sup
xd∈D

∣∣p̂n (xd,λ
)
− p
(
xd
)∣∣→ 0, as δ ↘ 0. (2.5)

Proof. Since, with probability 1, n−1Nn(x
d) → p(xd), we readily conclude from

inequality (2.3) that (2.5) holds with probability 1.

Our aim is firstly to study the uniform in bandwidth consistency of estimators
of the joint density f(xc,xd) of X = (Xc,Xd) of the form

f̂n
(
xc,xd,h,λ

)
=

1

n

n∑
i=1

Kc
h (xc,Xc

i )K
d
λ

(
xd,Xd

i

)
.

Our objective is to establish the result stated in Theorem 2, which is given in
Section 4. In order to do this we must first build some needed framework and
machinery.

2.2. Some useful classes of functions

In order to apply the Mason and Swanepoel [13] general uniform in bandwidth
consistency theorem we must introduce the following classes of functions.

T = {t = (t1. . . . , tp) ∈ (0, 1]
p
: at least one tj = 1} .

Notice there is a one to one correspondence between

T × (0, 1] and (0, 1]
p

given by

h = (h1, . . . , hp)∈ (0, 1]
p � (t, h) , where h = maxh and tj = hj/h. (2.6)

Also note that for any t = (t1. . . . , tp) ∈ T and h ∈ (0, 1], we have h = maxh,
where hj = tjh for 1 ≤ j ≤ p.

Choose t ∈ T and xc = (xc
1, . . . , x

c
p) ∈ Rp. Define the function

gt,xc : Rp × (0, 1] → R,

by

(z, h) 	−→ gt,xc (z, h) = Πp
j=1K

(
xc
j − zj

t
1/p
j h1/p

)
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for z = (z1, . . . , zp) ∈ Rp and h ∈ (0, 1]. Choose a measurable subset A of
Rp. Denote the class of measurable functions of (z, h) ∈ Rp × (0, 1] indexed by
(xc, t) ∈ A× T ,

GK = {gt,xc : (xc, t) ∈ A× T } . (2.7)

From this class we form the class GK,0 of measurable real valued functions of
z ∈ Rp defined as

GK,0 = {z 	→ gt,xc(z,h) : gt,xc ∈ GK , 0 < h ≤ 1} . (2.8)

Using this notation we see that

f̂n
(
xc,xd,h,λ

)
=

1

n
(
Πp

j=1tj
)1/p

h

n∑
i=1

gt,xc (Xc
i , h)K

d
λ

(
xd,Xd

i

)
.

where we use the one to one correspondence given in (2.6).

Remark 2. The class of functions given in this subsection can be used to apply
the Theorem in Mason and Swanepoel [13] to obtain uniform in bandwidth con-
sistency results for multivariate kernel estimators based on a vector of smoothing
parameters, where the components may be different.

2.3. A useful probability construction

We shall see that the following probability construction will come in very handy.
Let X1 = (Xc

1,X
d
1),X2 = (Xc

2,X
d
2), . . . , be a sequence of i.i.d. X = (Xc,Xd)

random vectors. Also for each xd ∈ D, let Z(xd) be a random vector with
density f(xc|xd) on Rp, and Z1(x

d), Z2(x
d), . . . , be a sequence of i.i.d Z(xd)

random vectors. Further we assume that the sequences {Xi}i≥1, {Zi(x
d)}i≥1,

xd ∈ D, are independent of each other. For each xd and n ≥ 1, recall the
definition of Nn(x

d) given (2.4). We find that for any class F of measurable real
valued functions ϕ defined on Rp ×D × (0, 1],{

n∑
i=1

ϕ (Xi,h) : ϕ ∈ F , h ∈ (0, 1]

}
n≥1

D
=

⎧⎨⎩∑
xd∈D

∑
i≤Nn(xd)

ϕ
(
Zi

(
xd
)
,xd, h

)
: ϕ ∈ F , h ∈ (0, 1]

⎫⎬⎭
n≥1

.

To see the kind of argument that establishes this distributional identity consult
the proof of Proposition 3.1 of Einmahl and Mason [6].

2.4. Assumptions

Here are our basic assumptions on the kernel and the joint and marginal densi-
ties.
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2.4.1. Assumptions on the kernel K

The kernel K satisfies the following conditions:

(K.i) K = K1 − K2, where K1 and K2 are bounded, nondecreasing, right
continuous functions on R,

(K.ii) |K| ≤ κ < ∞, for some κ > 0,
(K.iii)

∫
K(u)du = 1,

(K.iv) K has support contained in [−B,B], for some B > 0.

Note that (K.ii) and (K.iv) imply that for any h > 0

1

h

∫
|K| (u/h)du =

1

h

∫ Bh

−Bh

|K| (u/h)du =

∫ B

−B

|K| (v)dv ≤ 2Bκ. (2.9)

2.4.2. Assumptions on the joint and marginal densities

For x,y ∈ Rp set |x − y| = max{|xi − yi| : i = 1, . . . , p} and for a measurable
subset A ⊂ Rp and ε > 0 we define

Aε = {x ∈ Rp : |x− y| ≤ ε for some y ∈ A} . (2.10)

(f.i) For some ε > 0 and M > 0

max
xd∈D

sup
xc∈Aε

f
(
xc|xd

)
≤ M.

(f.ii) For some ε > 0 and δ > 0

min
xd∈D

inf
xc∈Aε

f (xc) ≥ δ.

3. Technical result

In this section we establish a technical result that will be used in the next section
to prove our uniform in bandwidth theorem for kernel density estimators for
mixed discrete and continuous data.

For any i ≥ 1 and xd ∈ D, set

Zi

(
xd
)
=
(
Zi,1

(
xd
)
, . . . , Zi,p

(
xd
))

,

where {Zi(x
d)}i≥1 are i.i.d. Z(xd).

In the following proposition, for gt,xc ∈ GK ,

sn(gt,xc ,xd, h) :=

n∑
i=1

gt,xc

(
Zi

(
xd
)
, h
)

=

n∑
i=1

Πp
j=1K

(
xc
j − Zi,j

(
xd
)

t
1/p
j h1/p

)
.

(Here and elsewhere in these notes log x denotes the natural logarithm of the
maximum of x and e.)
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Proposition 1. Let K satisfy (K.i)–(K.iv) and the marginal densities fulfill
(f.i). Then for any xd ∈ D, choice of c > 0 and 0 < b0 < 1 we have, with
probability 1,

lim sup
n→∞

sup
cn≤h≤b0

sup
gt,xc∈GK

|sn(gt,xc ,xd, h)− Esn(gt,xc ,xd, h)|√
nh (| log h| ∨ log logn)

= A(c,xd), (3.11)

where cn=
c logn

n , A(c,xd) is a finite constant depending on c, xd, and the stated
assumptions on the kernel K and the marginal densities.

Proof. Throughout the proof keep in mind that A is the set used in assumption
(f.i) and to define the class GK in (2.7). Choose any xd ∈ D. Notice that for any
gt,xc ∈ GK

sn(gt,xc ,xd, h) =

n∑
i=1

gt,xc

(
Zi

(
xd
)
, h
)
= nhϑ̂n,h(gt,xc).

(See the notation (6.33) below.) The assumptions of Proposition 1 allow us
to apply the general Theorem of Mason and Swanepoel [13] (see below) with
G = GK to conclude (3.11). In particular we see that (K.ii) implies that (G.i)
holds (assumptions (G.i)–(G.iv) are stated in Subsection 6.2). Also it is readily
shown using (f.i) and (K.ii) that (G.ii) is fulfilled, that is, for some constant
C > 0 for all t ∈ T , h ∈ (0, 1], xc ∈ A and xd ∈ D

E
(
gt,xc

(
Z
(
xd
)
, h
))2 ≤ C

(
Πp

j=1tj
)1/p

h ≤ Ch. (3.12)

To see this, observe that gt,xc(·, h) is zero off the set

Bt,h (x
c) = xc +

[
−Bt

1/p
1 h1/p, Bt

1/p
1 h1/p

]
× · · · ×

[
−Bt1/pp h1/p, t1/pp Bh1/p

]
and for all h small enough uniformly in xc ∈ A and t ∈ T , Bt,h(x

c) ⊂ Aε so
that (f.i) holds. From these observations (3.12) follows.

The results in the Appendix prove that (K.i) implies that the pointwise mea-
surable assumption (G.iii) holds for the class GK,0. (Note that in assumption
(F.ii) of Mason and Swanepoel [13] G should be Gγ .) For any 1 ≤ j ≤ p, define
the class of functions

Kj =

{
zj 	→ K

(
xc
j − zj

h
1/p
j

)
:
(
xc
j , hj

)
∈ R× (0, 1]

}
.

Using assumption (K.i), an application of Lemma 22 of Nolan and Pollard [15]
shows that each Kj satisfies (G.iv). Further since by assumption (K.ii), |K| is
assumed to be bounded by some κ > 0, we can apply Lemma A.1 of Einmahl
and Mason [7] to infer that GK,0 satisfies (G.iv).
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3.1. Main technical result

Here is our main technical result. In the following, for any λ ∈ Γ, gt,xc ∈ GK

and xd ∈ D

Υ̂n,h,λ(gt,xc ,xd) :=

n∑
i=1

gt,xc (Xc
i , h)K

d
λ

(
xd,Xd

i

)
=

n∑
i=1

Πp
j=1K

(
xc
j −Xc

i,j

t
1/p
j h1/p

)
Kd

λ

(
xd,Xd

i

)
.

Theorem 1. Let K satisfy (K.i)–(K.iv) and the marginal densities fulfill (f.i).
Then for any choice of c > 0 and 0 < b0 < 1 we have, with probability 1,

lim sup
n→∞

max
xd∈D

sup
cn≤h≤b0

sup
λ∈Γ

sup
gt,xc∈GK

|Υ̂n,h,λ(gt,xc ,xd)− EΥ̂n,h,λ(gt,xc ,xd)|√
nh (| log h| ∨ log logn)

= B(c), (3.13)

where cn=
c logn

n , B(c) is a finite constant depending on c, and the stated as-
sumptions on the kernel K and the marginal densities.

In order to prove the theorem we require the following lemma.

Lemma 2. Let K satisfy (K.i)–(K.iv) and the marginal densities fulfill (f.i).
Then for any zd ∈ D, choice of c > 0 and 0 < b0 < 1 we have, with probability 1,

lim sup
n→∞

sup
cn≤h≤b0

sup
gt,xc∈GK

|sNn(zd)(gt,xc , zd, h)− EsNn(zd)(gt,xc , zd, h)|√
nh (| log h| ∨ log logn)

= C(c, zd), (3.14)

where cn=
c logn

n , C(c, zd) is a finite constant depending on c, zd and the stated
assumptions on the kernel K and the marginal densities.

Proof. Choose any zd ∈ D. Notice that by Wald’s identity

EsNn(zd)(gt,xc , zd, h) = np
(
zd
)
Egt,xc

(
Z
(
zd
)
, h
)
.

Thus

sNn(zd)(gt,xc , zd, h)− EsNn(zd)(gt,xc , zd, h)

= sNn(zd)(gt,xc , zd, h)− np
(
zd
)
Egt,xc

(
Z
(
zd
)
, h
)

= sNn(zd)(gt,xc , zd, h)−Nn

(
zd
)
Egt,xc

(
Z
(
zd
)
, h
)

+
(
Nn

(
zd
)
− np

(
zd
))

Egt,xc

(
Z
(
zd
)
, h
)
.

Since the assumptions of Proposition 1 hold, the sequence of random variables
{Nn(z

d)}n≥1 is independent of {Zn(z
d)}n≥1, and Nn(z

d) → ∞, with probabil-
ity 1, we see that, for every d0 > 0, with probability 1, for some finite constant
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A(d0, z
d) depending on d0 and zd, we have

lim sup
n→∞

sup
d
Nn(zd)

≤h≤b0

sup
gt,xc∈GK

|An

(
h, zd, gt,xc

)
|√

Nn (zd)h (| log h| ∨ log logNn (zd))

= A(d0, z
d), (3.15)

where

An

(
h, zd, gt,xc

)
= sNn(zd)(gt,xc , zd, h)−Nn

(
zd
)
Egt,xc

(
Z
(
zd
)
, h
)
,

and dNn(zd) =
d0 logNn(z

d)
Nn(zd)

. Now since, with probability 1, Nn(z
d)/n → p(zd) >

0, and thus dNn(zd) ≤ 2d0 logn
np(zd)

for all large enough n and 2d0 logn
np(zd)

≤ cn for small

enough d0 > 0, we see from (3.15) that

lim sup
n→∞

sup
cn≤h≤b0

sup
gt,xc∈GK

|sNn(zd)(gt,xc , zd, h)−Nn

(
zd
)
Egt,xc

(
Z
(
zd
)
, h
)
|√

nh (| log h| ∨ log logn)

=
√
p (zd)A(d0, z

d) < ∞. (3.16)

Next, for each gt,xc ∈ GK , we get using the assumptions on K, (f.i) and (2.9)
that for all h > 0 small enough

|Egt,xc (Z (x) , h)| ≤ h (2Bκ)
p
M.

Thus, by the law of the iterated logarithm, with probability 1, for some C0 > 0,

lim sup
n→∞

sup
cn≤h≤b0

sup
gt,xc∈GK

|
(
Nn

(
zd
)
− np

(
zd
))

Egt,xc

(
Z
(
zd
)
, h
)
|√

nh (| log h| ∨ log log n)

≤ lim sup
n→∞

∣∣Nn

(
zd
)
− np

(
zd
)∣∣C0√

n log logn
=
√

2p (zd) (1− p (zd))C0. (3.17)

The proof of (3.14) now follows from (3.16) and (3.17) and the Kolmogorov zero
one law.

Proof of Theorem 1. Notice that as a process in (Xc
i ,X

d
i )i≥1, h ∈ (0, 1], λ ∈ Γ,

xd ∈ D and gt,xc ∈ GK ,

Υ̂n,h,λ(gt,xc ,xd) =

n∑
i=1

Πp
j=1K

(
xc
j −Xc

i,j

t
1/p
j h1/p

)
Kd

λ

(
xd,Xd

i

)
D
=
∑
zd∈D

∑
i≤Nn(zd)

Πp
j=1K

(
xc
j − Zi,j

(
zd
)

t
1/p
j h1/p

)
Kd

λ

(
xd, zd

)
=
∑
zd∈D

sNn(zd)(gt,xc , zd, h)Kd
λ

(
xd, zd

)
. (3.18)
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(Recall the probability construction in Subsection 2.3.) From this we see that

Υ̃n,h,λ(gt,xc ,xd)− EΥ̂n,h,λ(gt,xc ,xd)

=
∑
zd∈D

(
sNn(zd)(gt,xc , zd, h)− EsNn(zd)(gt,xc , zd, h)

)
Kd

λ

(
xd, zd

)
. (3.19)

Noting that each |Kd
λ(x

d, zd)| ≤ 1, we see then using (3.19), with |D| denoting
the cardinality of D, that by Lemma 2, with probability 1,

lim sup
n→∞

max
xd∈D

sup
cn≤h≤b0

sup
λ∈Γ

sup
gt,xc∈GK

|Υ̃n,h,λ(gt,xc ,xd)− EΥ̂n,h,λ(gt,xc ,xd)|√
nh (| log h| ∨ log logn)

≤
∑
zd∈D

lim sup
n→∞

sup
cn≤h≤b0

sup
gt,xc∈GK

|sNn(zd)(gt,xc , zd, h)− EsNn(zd)(gt,xc , zd, h)|√
nh (| log h| ∨ log logn)

≤ max
zd∈D

C
(
c, zd
)
|D| .

The Kolmogorov zero one law now completes the proof.

4. Uniform in bandwidth consistency theorem

For any δ > 0 let
Γ (δ) = {λ ∈ Γ : maxλ ≤ δ} ,

where Γ is as in (2.2). Given sequences 0 < an < bn < 1, set

Hn =

⎧⎨⎩h ∈ (0, 1]
p
: an ≤

(
Πp

j=1hj

)2/p
maxh

≤ maxh ≤ bn

⎫⎬⎭ .

Note that if h1 = · · · = hp = h, then Hn becomes

Hn = {h ∈ (0, 1] : an ≤ h ≤ bn} .

Theorem 2. Let K satisfy (K.i)–(K.iv) and the marginal densities fulfill (f.i).
For any sequences 0 < an < bn < 1, 0 < δn < 1 satisfying bn → 0, δn → 0, and
nan/ logn → ∞, and density f on Rp × D such that for each zd ∈ D, f(·|zd)
is uniformly continuous on the subset Aε of Rp for some ε > 0, we have, with
probability 1,

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣f̂n (xc,xd,h,λ
)
− f
(
xc,xd

)∣∣∣→ 0. (4.20)

In order to prove the theorem we require the following lemma. Let {εn}n≥1

be a sequence of positive constants such that εn → 0 as n → ∞ and set

H (εn) = {h ∈ (0, 1]
p
: maxh ≤εn} .
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Lemma 3. Let K satisfy (K.i)–(K.iv) and the marginal densities fulfill (f.i).
Whenever for a given zd ∈ D, f(·|zd) is uniformly continuous on Aε for some
ε > 0, we have with {εn}n≥1 as above

sup
h∈H(εn)

sup
xc∈A

∣∣EKc
h

(
xc,Z

(
zd
))

− f
(
xc|zd

)∣∣→ 0. (4.21)

Proof. Fix zd ∈ D and ε > 0. Choose h ∈ H(εn), x
c ∈ A and set

Bh (xc) = xc +
[
−Bh

1/p
1 , Bh

1/p
1

]
× · · · ×

[
−Bh1/p

p , Bh1/p
p

]
.

Notice that when (K.i)–(K.iv) are satisfied, we get by using (2.9) that∣∣EKc
h

(
xc,Z

(
zd
))

− f
(
xc|zd

)∣∣
=

∣∣∣∣∣
∫
Bh(xc)

Πp
j=1h

−1/p
j K

(
xc
j − yj

h
1/p
j

)(
f
(
y|zd
)
− f
(
xc|zd

))
dy1 . . . dyp

∣∣∣∣∣
≤ sup

y∈Bh(xc)

∣∣f (y|zd)− f
(
xc|zd

)∣∣ ∫
Bh(xc)

Πp
j=1h

−1/p
j |K|

(
xc
j − yj

h
1/p
j

)
dyj

≤ sup
y∈Bh(xc)

∣∣f (y|zd)− f
(
xc|zd

)∣∣ (2Bκ)
p
.

Hence, with εn(p) = (ε
1/p
n , . . . , ε

1/p
n ), we deduce that

sup
h∈H(εn)

sup
xc∈A

∣∣EKc
h

(
xc,Z

(
zd
))

− f
(
xc|zd

)∣∣
≤ sup

xc∈A

sup
y∈Bεn(p)(xc)

∣∣f (y|zd)− f
(
xc|zd

)∣∣ (2Bκ)
p
,

and using the assumption that f(·|zd) is uniformly continuous on Aε, we get
(4.21), keeping in mind that εn → 0 as n → ∞.

Proof of Theorem 2. Notice that by the one to one correspondence given in
(2.6), for any xd ∈ D,

f̂n
(
xc,xd,h,λ

)
=

1

n

n∑
i=1

Kc
h (xc,Xc

i )K
d
λ

(
xd,Xd

i

)
=

1

n
(
Πp

j=1hj

)1/p n∑
i=1

Πp
j=1K

(
xc
j −Xc

i,j

t
1/p
j h1/p

)
Kd

λ

(
xd,Xd

i

)
,

where h = maxh. Since by the probability construction in Subsection 2.3, as a
process in (Xc

i ,X
d
i )i≥1, h ∈ (0, 1], λ ∈ Γ, xd ∈ D and gt,xc ∈ GK , recalling that

hj = tjh,

{
f̂n
(
xc,xd,h,λ

)}
n≥1

D
=

⎧⎨⎩
∑

zd∈D sNn(zd)(gt,xc , zd, h)Kd
λ

(
xd, zd

)
n
(
Πp

j=1tj
)1/p

h

⎫⎬⎭
n≥1
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=

⎧⎨⎩ Υ̃n,h,λ(gt,xc ,xd)

n
(
Πp

j=1tj
)1/p

h

⎫⎬⎭
n≥1

, (4.22)

we can assume for the purpose of proving limit results that we have equality
in (4.22). We see then, keeping in mind the one to one correspondence given in
(2.6), that

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣f̂n (xc,xd,h,λ
)
− Ef̂n

(
xc,xd,h,λ

)∣∣∣
= max

xd∈D
sup

h∈Hn

sup
λ∈Γ(δn)

sup
gt,xc∈GK

⎧⎨⎩
∣∣∣Υ̃n,h,λ(gt,xc ,xd)− EΥ̃n,h,λ(gt,xc ,xd)

∣∣∣
n
(
Πp

j=1tj
)1/p

h

⎫⎬⎭ ,

which by (3.13) is almost surely for some constant C > 0

≤ sup
h∈Hn

C(
Πp

j=1tj
)1/p
√

logn

nh
= sup

h∈Hn

C(
Πp

j=1hj

)1/p
√

h log n

n

= C sup
h∈Hn

√
maxh(

Πp
j=1hj

)1/p
√

log n

n
= C sup

h∈Hn

√
maxh(

Πp
j=1hj

)2/p lognn .

Now, since for each h ∈Hn,

an ≤
(
Πp

j=1hj

)2/p
maxh

and nan/ logn → ∞,

we get, with probability 1,

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣f̂n (xc,xd,h,λ
)
− Ef̂n

(
xc,xd,h,λ

)∣∣∣→ 0. (4.23)

Now

Ef̂n
(
xc,xd,h,λ

)
= E
(
Kc

h (xc,Xc)Kd
λ

(
xd,Xd

))
=

∑
zd∈D

EKc
h

(
xc,Z

(
zd
))

Kd
λ

(
xd, zd

)
p
(
zd
)
.

Let maxλ = max{λ1, . . . , λq}. Notice that for each λ ∈ Γ

(1−maxλ)
q
I
{
zd = xd

}
≤ Kd

λ

(
xd, zd

)
≤ maxλI

{
zd �= xd

}
+ I
{
zd = xd

}
.

Thus, uniformly in xd, zd ∈ D,

max
xd,zd∈D

∣∣Kd
λ

(
xd, zd

)
− I
{
zd = xd

}∣∣→ 0, as maxλ ↘ 0. (4.24)

Next, Lemma 3 implies that

max
zd∈D

sup
h∈Hn

sup
xc∈A

∣∣EKc
h

(
xc,Z

(
zd
))

− f
(
xc|zd

)∣∣→ 0. (4.25)
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In turn, (4.24) and (4.25) imply that

max
xd,zd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣EKc
h

(
xc,Z

(
zd
))

Kd
λ

(
xd, zd

)
−f
(
xc|zd

)
I
{
zd = xd

}∣∣→ 0.

This implies that

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣ ∑
zd∈D

EKc
h

(
xc,Z

(
zd
))

Kd
λ

(
xd, zd

)
p
(
zd
)

− f
(
xc|xd

)
p
(
xd
) ∣∣∣

= max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣E (Kc
h (xc,Xc)Kd

λ

(
xd,Xd

))
− f
(
xc,xd

)∣∣
= max

xd∈D
sup

h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣Ef̂n (xc,xd,h,λ
)
− f
(
xc,xd

)∣∣∣→ 0. (4.26)

Finally, (4.23) and (4.26) imply that, with probability 1,

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣f̂n (xc,xd,h,λ
)
− f
(
xc,xd

)∣∣∣→ 0.

Remark 3. When the components of Xd have a natural ordering, for example
in the case xd

k, z
d
k ∈ Z = {0,±1,±2, . . .}, for k = 1, . . . , q, Wang and van Ryzin

[20] suggested the following kernel

Kd,o
λ

(
xd, zd

)
:= Πq

k=1

{(
1− λk

2

)
λ
|xd

k−zd
k|

k I
(∣∣xd

k − zdk
∣∣ ≥ 1

)
+ (1− λk) I

(
xd
k = zdk

)}
,

where λ = (λ1, . . . , λq) ∈ [0, 1]q =: Γo. Here we take D = Zq. The corresponding
smooth estimator is

pon
(
xd,λ

)
:= n−1

n∑
i=1

Kd,o
λ

(
xd,Xd

i

)
.

Mean squared error comparisons with the maximum likelihood estimator (fre-
quency estimator) p̃n(x

d) = n−1Nn(x
d) based on large-sample theory and small-

sample simulations were obtained by the authors. Typically, pon(x
d,λ) yielded

significantly smaller mean squared error in these comparisons.
Notice that for each λ ∈ Γo we have

(1−maxλ)
q
I
{
Xd = xd

}
≤ Kd,o

λ

(
xd,Xd

)
≤ maxλ+ I

{
Xd = xd

}
,

so that (2.3) again holds with Γ and Kd
λ replaced by Γo and Kd,o

λ respectively.
Now, consider the estimator

f̂o
n

(
xc,xd,h,λ

)
:=

1

n

n∑
i=1

Kc
h (xc,Xc

i )K
d,o
λ

(
xd,Xd

i

)
,
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for xc ∈ Rp and xd ∈ D. Theorems 1 and 2 then again hold with Γ, Kd
λ and

D replaced by Γo, Kd,o
λ and Do respectively, where Do is a finite subset of D.

This follows from the inequality above and an exact repetition of the steps in
the proofs above.

In practice, it is likely that some of the discrete variables will have natural
orderings while the others will be unordered. Following Section 2.5 of Racine
[17], let X̃d denote a q1×1 vector (say the first q1 components of Xd) of discrete
variables that do not have a natural ordering (1 ≤ q1 ≤ q), and let X̄d denote
the remaining discrete variables that do have a natural ordering. In this case,
we can construct a product kernel of the form

Kc
h (xc,Xc)Kd

λ

(
x̃d, X̃d

)
Kd,o

λ

(
x̄d, X̄d

)
,

where xc = (xc
1, . . . , x

c
p), x̃

d = (xd
1, . . . , x

d
q1) and x̄d = (xd

q1+1, . . . , x
d
q). Then the

conclusions of Theorems 1 and 2 remain unchanged using this kernel. The proofs
of this claim are identical to those above.

5. Applications

5.1. Application to Li and Racine estimator

In this Subsection we shall apply Theorem 3.1 of Li and Racine [11] to obtain
a uniform in bandwidth consistency result for their estimator. They treat the
density estimator of f(xc,xd) in the case hi = h for i = 1, . . . , p and λj = λ for

j = 1, . . . , q. Also their hi is our h
1/p
i . So in our notation

f̂n
(
xc,xd,h,λ

)
=

1

n

n∑
i=1

Kc
h (xc,Xc

i )K
d
λ

(
xd,Xd

i

)
,

where for z = (z1, . . . , zp) ∈ Rp

Kc
h (xc, zc) =

1

h
Πp

j=1K

(
xc
j − zcj
h1/p

)
and for zd= (zd1 , . . . , z

d
q ) ∈ Rq

Kd
λ

(
xd, zd

)
= Πq

k=1

(
λ

rk − 1

)I(zd
k �=xd

k)
(1− λ)

I(zd
k=xd

k) .

Their version of Kd
λ(x

d,Xd
i ) is bit different than ours. However, this does not

affect the conclusion of their Theorem 3.1. See their comment on the general
multivariate discrete case following the statement of Theorem 3.1. Keeping in

mind that their hi is our h
1/p
i , if one assumes in addition to the conditions of

our Theorem 2, those of their Theorem 3.1 one gets for their cross-validation
estimators ĥ and λ̂ of the smoothing parameters h and λ that((

ĥ
)1/p

− (h0)
1/p

)
/ (h0)

1/p
= Op

(
n−α/(4+p)

)
and λ̂−λ0 = Op

(
n−β/(4+p)

)
,
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where for appropriate c1 > 0 and c2 > 0

(h0)
1/p

= c1n
−1/(4+p) and λ0 = c2n

−2/(4+p),

and α = min{2, p/2} and β = min{1/2, 4/(4 + p)}. This implies that λ̂ = op(1)
and for appropriate 0 < a < b < ∞, with probability converging to 1,

ĥ ∈
[
an−p/(4+p), bn−p/(4+p)

]
.

Thus, we can apply Theorem 2 to conclude that

P

{
max
xd∈D

sup
xc∈A

∣∣∣f̂n (xc,xd, ĥ, λ̂
)
− f
(
xc,xd

)∣∣∣→ 0

}
→ 1,

where(ĥ, λ̂) ∈ Rp × Rq is defined as

ĥ =
(
ĥ, . . . , ĥ

)
and λ̂ =

(
λ̂, . . . , λ̂

)
.

5.2. Application to Hall, Racine and Li estimator

The Hall, Racine and Li [9] setup is a follows. Assume that for p ≥ 1, q ≥ 1,

X =
(
Xc,Xd

)
=
((
Xc

1 , . . . , X
c
p

)
,
(
Xd

1 , . . . , X
d
q

))
∈ Rp × Rq,

is as in the Li and Racine [11] setup. Introduce an additional continuous real
valued random variable Y and assume that (X, Y ) = (Xc,Xd, Y ) has joint
density f(x, y) = f(xc,xd, y) with marginal density m(x) = f(x). They study
the kernel estimator of the conditional density of Y given X = x, i.e.,

g (y|x) = f (x,y) /m (x) ,

defined by

ĝn (y|x,h,λ) = f̂n
(
xc,xd, y,h,λ

)
/m̂n

(
xc,xd,h,λ

)
,

where

f̂n
(
xc,xd, y,h, λ

)
=

1

n

n∑
i=1

Kc
h (xc,Xc

i )K
d
λ

(
xd,Xd

i

)
Lh0 (y, Yj) ,

and

m̂n

(
xc,xd,h,λ

)
=

1

n

n∑
i=1

Kc
h (xc,Xc

i )K
d
λ

(
xd,Xd

i

)
.

In order to apply our Theorem 2 we assume that

h =(h0, h1, . . . , hp) ∈ (0, 1]
p+1

,
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for xcand z = (z1, . . . , zp) ∈ Rp,

Kc
h (xc, z) = Πp

j=1h
−1/(p+1)
j K

(
xc
j − zj

h
1/(p+1)
j

)

and for y and z0 ∈ R,

Lh0 (y, z0) = h
−1/(p+1)
0 L

(
y − z0

h
1/(p+1)
0

)
,

with L being a kernel with the same properties as K. Notice that the Hall,

Racine and Li [9] hj are h
1/(p+1)
j in our notation. If one assumes in addition to

the conditions of our Theorem 2, those of their Theorem 2 one gets for their
cross-validation estimators ĥ and λ̂ of the smoothing vector h and λ that

P

{
n1/(p+5)

(
ĥi

)1/(p+1)

→ ai

}
= 1 and P

{
n2/(p+5)λ̂j → bj

}
= 1,

for appropriate ai > 0, i = 0, . . . , p, and bj > 0, j = 1, . . . , q, whenever all of the
variables (Xc,Xd) are relevant in the sense of Hall, Racine and Li [9]. Therefore
we can apply Theorem 2 to get that

P

{
max
xd∈D

sup
(xc,y)∈A

∣∣∣ĝn (y|xc,xd, ĥ, λ̂
)
− g
(
y|xc,xd

)∣∣∣→ 0

}
→ 1, (5.27)

where it is assumed that m(x) = f(x) satisfies (f.ii) for the A in (5.27).

5.3. Further applications to estimating conditional densities

An obvious estimator of

f
(
xc|xd

)
= f
(
xc,xd

)
/p
(
xd
)

is
f̂n
(
xc|xd,h,λ

)
:= f̂n

(
xc,xd,h,λ

)
/p̂n
(
xd,λ

)
,

which under the assumptions of Theorem 2 is readily shown to satisfy, with
probability 1,

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣f̂n (xc|xd,h,λ
)
− f
(
xc|xd

)∣∣∣→ 0. (5.28)

Observe that we can estimate the density function

f (xc) = f
(
xc
1, . . . , x

c
p

)
of Xc = (Xc

1 , . . . , X
c
p) using the estimator

f̂n (x
c,h,λ) :=

∑
xd∈D

f̂n
(
xc,xd,h,λ

)
.
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Clearly, under the assumptions of Theorem 2, we conclude that, with probabil-
ity 1,

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣∣f̂n (xc,h,λ)− f (xc)
∣∣∣→ 0. (5.29)

Further, we can estimate

p
(
xd|xc

)
= f
(
xd,xc

)
/f (xc) ,

the conditional probability that Xd = xd given Xc = xc, by

p̂n
(
xd|xc,h,λ

)
:= f̂n

(
xc,xd,h,λ

)
/f̂n (x

c,h,λ) .

If we also assume (f.ii) we get, with probability 1, that

max
xd∈D

sup
h∈Hn

sup
λ∈Γ(δn)

sup
xc∈A

∣∣p̂n (xd|xc,h,λ
)
− p
(
xd|xc

)∣∣→ 0. (5.30)

Moreover, using the Li and Racine [11] cross-validation estimators (ĥ, λ̂) of
(h,λ) mentioned in Subsection 5.2, we get under appropriate regularity condi-
tions

P

{
max
xd∈D

sup
xc∈A

∣∣∣p̂n (xd|xc, ĥ, λ̂
)
− p
(
xd|xc

)∣∣∣→ 0

}
→ 1

and

P

{
max
xd∈D

sup
xc∈A

∣∣∣f̂n (xc|xd, ĥ, λ̂
)
− f
(
xc|xd

)∣∣∣→ 0

}
→ 1.

Remark 4. The applications in Subsections 5.1–5.3 can also be extended to
cover the case of ordered discrete variables by applying, for example, the kernel
Kd,o

λ (xd, zd). The proofs are slightly more involved and are therefore omitted.
Kernel regression function estimation versions of the results above, using

Einmahl and Mason [8] and Mason [12] as a guide, follow in a routine manner
from our methods.

6. Material from Mason and Swanepoel (2011) paper

6.1. The general setup

Mason and Swanepoel [13] introduced the following general setup for studying
kernel-type estimators. Let X,X1, X2, . . . be i.i.d. random variables on a prob-
ability space (Ω,A, P ) with values in a measure space (S,S). (Typically S will
be a Fréchet space.) Let G denote a class of measurable real valued functions of
(x, h) ∈ S × (0, 1]

g : (x, h) 	→ g(x, h). (6.31)

From this class we form the class of measurable real valued functions G0 of x ∈
S defined as

G0 = {x 	→ g(x, h) : g ∈ G, 0 < h ≤ 1} . (6.32)
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It will be necessary in our presentation to distinguish between G and G0. Always
keep in mind that functions g ∈ G are defined on S×(0, 1] and functions g0 ∈ G0

are defined on S. Introduce the class of estimators

ϑ̂n,h(g) :=
1

nh

n∑
i=1

g(Xi, h), g ∈ G and 0 < h < 1. (6.33)

6.2. The underlying assumptions and basic definitions

Let X be a random variable from a probability space (Ω,A, P ) to a measure
space (S,S). In the sequel, || · ||∞ denotes the supremum norm on the space of
bounded real valued measurable functions on S. To formulate our basic theoret-
ical results we shall need the following class of functions. Let G denote the class
of measurable real valued functions g of (u, h) ∈ S × (0, 1] introduced in our
general setup (6.31) and recall the class of functions G0 on S defined in (6.32).
We shall assume the following conditions on G and G0:

(G.i) supg∈G sup0<h≤1 ‖g(·, h)‖∞ =: η < ∞,

(G.ii) supg∈G Eg2(X,h) ≤ Dh, for some D > 0 and all 0 < h ≤ 1,
(G.iii) G0 is a pointwise measurable class,
(G.iv) N (ε,G0) ≤ Cε−ν , 0 < ε < 1, for some C > 0 and ν ≥ 1.

Note that (G.iii) is a measurability condition that we assume in order to avoid
using outer probability measures in all of our statements. A pointwise measurable
class G0 has a countable subclass Gc such that we can find for any function g ∈ G0

a sequence of functions {gm,m ≥ 1} in Gc for which limm→∞ gm(x) = g(x) for
all x ∈ S. See Example 2.3.4 in [19].

Condition (G.iv) is a so–called uniform entropy condition. As is usual, we
define the covering numbers

N (ε,G0) = sup
Q

N
(
ε
√
Q(G2),G0, dQ

)
, (6.34)

where G is an envelope function for G0, and where the supremum is taken over
all probability measures Q on (S,S) with Q(G2) < ∞. We shall now define the
notation in (6.34). By an envelope function G for G0 we mean a measurable
function G : S → [0,∞], such that

G(u) ≥ sup
g0∈G0

|g0(u)|, u ∈ S.

Note that by the definition of the class G0,

sup
g0∈G0

|g0(u)| = sup {|g(u, h)| : g ∈ G, 0 < h ≤ 1} .

The dQ in (6.34) is the L2(Q)–metric and for any γ > 0, N (γ,G0, dQ) is the
minimal number of dQ–balls with radius γ which is needed to cover the entire
function class G0.



Uniform in bandwidth 1537

We use η as our (constant) envelope function, when condition (G.i) holds.
(In this case EG2(X) < ∞ is trivially satisfied.)

For future reference, recall that we say that a class F is of VC–type for
the envelope function F , if N (ε,F) ≤ Cε−ν , 0 < ε < 1, for some constants
C > 0, ν ≥ 1. (Here N (ε,F) is defined as in (6.34) with F and F replacing G0

and G, respectively.) This condition is automatically fulfilled if the class is a VC
subgraph class (see Theorem 2.6.7 on page 141 of [19], where we refer the reader
for a definition of a VC subgraph class).

6.3. A uniform in bandwidth result

We shall need the following special case of the Theorem in Mason and Swanepoel
[13]. Note that when we apply this result, we should keep in mind that in
condition (F.ii) given there, G should be Gγ .

Theorem 3 (General Theorem (Mason and Swanepoel [13])). Suppose that G
is a class of functions that satisfies all of the conditions in (G.i)–(G.iv). Then
we have for any choice of c > 0 and 0 < b0 < 1 that, with probability 1,

lim sup
n→∞

sup
cn≤h≤b0

sup
g∈G

√
nh|ϑ̂n,h(g)− Eϑ̂n,h(g)|√

| log h| ∨ log logn
= A(c), (6.35)

where cn=
c logn

n , A(c) is a finite constant depending on c and the constants in
(G.i), (G.ii) and (G.iv).

For an even more general uniform in bandwidth result see Theorem 4.1 of
Mason [12].

7. Appendix: Pointwise measurability

We say that a class G0 of measurable functions g : S → R is pointwise measurable
if there exists a countable subclass Gc ⊆ G0, so that for any function g in G0, we
can find a sequence of functions gn ∈ Gc,m ≥ 1 for which gm(x) → g(x), x ∈ S.

Example. Consider a real valued right–continuous function K : R → R, and
define the class of functions

FK := {x 	→ K(γx+ ρ) : γ > 0, ρ ∈ R}. (7.36)

Then this class is always pointwise measurable. Let Q denote the rationals. The
subclass that will do the job here is

FK
c := {x 	→ K(γx+ ρ) : γ > 0, γ, ρ ∈ Q}.

Proof. We claim that FK is a pointwise measurable class. To see this choose
any g(u) = K(γu+ ρ) ∈ FK , u ∈ R and set for m ≥ 1, gm(u) = K(γmu+ ρm),
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u ∈ R, where γm = 1
m2 �m2γ� + 1

m2 and ρm = 1
m�mρ� + 2

m , with �x� denoting
the integer part of x. With εm = γm − γ and δm = ρm − ρ, we can write

Δm := γmu+ ρm − (γu+ ρ) = εmu+ δm.

Now since 2
m2 ≥ εm > 0 and 3

m ≥ δm > 1
m , we get for all large enough m that

Δm = δm (1 + o(1)) > 0.

Thus since γmu+ρm → γu+ρ and K is right continuous at γu+ρ, we see that
gm(u) → g(u) as m → ∞.

This proof is taken from that of Lemma A.1 of Deheuvels and Mason [4] with
a couple of misprints fixed, and for the benefit of the reader is repeated here.

Trivially we get that if K1,. . . ,Kp are right continuous functions on R and ϕ
is a fixed measurable real-valued function on R, then the class of functions{

(x1, . . . , xp, y) 	−→ Πp
j=1Kj (γjxj + ρj) :, γj > 0, ρj ∈ R, 1 ≤ j ≤ p

}
,

is pointwise measurable.
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