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1. Introduction

The aim of this contribution is to study estimation and testing for non-linear
mixed Poisson autoregressions. In fact, we enlarge the existing framework of
Poisson and negative binomial based autoregressive models, as discussed by [35,
Ch.4], [12] and [22], among others. It turns out that the class of mixed Poisson
models contains numerous examples of integer-valued models including Poisson-
stopped-sum distributions ([32, Sec. 3]), Tweedie-Poisson models ([33, 37]) and
other. Mixed Poisson models do not necessarily belong to the exponential family
models as discussed by [35] and more recently by [13]; a case in point is the
negative binomial distribution with an unknown dispersion parameter.

We discuss ergodicity and stationarity conditions of those models by employ-
ing the notion of weak dependence (see [15]). Furthermore, assuming that the
mean of the process has been correctly specified, we develop quasi maximum
likelihood inference by employing the Poisson log-likelihood function. This ap-
proach avoids complicated likelihood functions–as in the case of mixed Poisson
models–yet it produces consistent estimates under the correct mean specifica-
tion. We omit details regarding estimation theory because these can be found
in [9] for the case of negative binomial process.

We are particularly interested in testing linearity of the assumed model for
the mean process. This question can be attacked by using the likelihood ratio,
Wald or score (or Lagrange Multiplier) tests. The score test is often a very
convenient tool because it does not require estimation of the model under the
alternative. However, its application in the context of mixed Poisson time series
modes, needs to be done with care because the test statistic is calculated by
employing a quasi–likelihood function. All aforementioned types of test statistics
are asymptotically equivalent (cf. [26, Ch. 8]).

Special attention is paid to two classes of nonlinear models specifying the
mean process of a count time series under the alternative hypotheses. The first
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class consists of identifiable models. In this case and under the null hypothesis of
linearity, the score test statistic possesses an asymptotic chi-square distribution.
The second class consists of models in which a nonnegative nuisance parameter
exists only under the alternative hypothesis. Then the testing problem is non-
standard and the classical asymptotic theory does not apply; see [11, 2, 44, 1, 40]
among others. A notable example of a time series model which is not identi-
fiable under the null, is the threshold model ([45]). We propose a supremum
score-type test statistic for dealing with the problem of non-identifiability. Our
contribution is summarized by the following:

• An introduction of a general framework for modeling count time series.
Indeed, mixed Poisson models include several parametric models which
are quite useful to integer valued data analysis.

• Inference and testing linearity based on a quasi-likelihood function. In fact,
testing hypotheses by employing a score test which is based on a quasi-
likelihood function requires suitable adjustment, as we show in Proposi-
tion 3.1.

• The proposed score test gives an additional tool to the data analyst for
checking linearity of a given model. Further diagnostics for identification
of a suitable model can be found in [34, 10, 13].

The paper is organized as follows. Section 2 discusses mixed Poisson autore-
gression and gives conditions for proving ergodicity, stationarity and existence
of moments for the proposed models. In addition, we develop quasi-likelihood
inference to obtain consistent regression parameters. This section generalizes
previous results (see [9]); the interested reader is referred to this work for fur-
ther details. This section lays out basic ideas and notation used throughout the
paper. In Section 3, we discuss the score test for testing linearity of the assumed
model for the mean process. We consider the cases of identifiable and non iden-
tifiable parameters. Section 4 reports empirical results for the performance of
the proposed test statistics. In Section 5 the proposed testing methodology is
illustrated to a real count time series.

2. Mixed poisson autoregression and inference

Assume that {Yt, t ∈ Z} denotes a count time series and let {λt, t ∈ Z} be a

sequence of mean processes. Denote by FY,λ
t the past of the process up to and

including time t, that is FY,λ
t = σ(Ys, s ≤ t, λ0), where λ0 denotes some starting

value. We will study the following class of count time series models defined by

Yt = Ñt(0, Ztλt], λt = f(Yt−1, λt−1), t ≥ 1. (2.1)

In the above, Ñt is a standard homogeneous Poisson process (that is a Pois-
son process with rate equal to 1) and {Zt} denotes a sequence of independent
and identically distributed positive random variables with mean 1, such that
E|Zt|r < ∞, r ∈ N, which are independent of Ñt. In addition, we assume that
λt is measurable with respect to {Ys, s < t} and Zt is independent of {Ys, s < t}.
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The family of processes belonging to (2.1) is called mixed Poisson process (see
[41], for instance). Two important distributional assumptions are implied by
(2.1) and they are routinely employed for the analysis of count time series.
Namely, the Poisson distribution given by

P[Yt = y | FY,λ
t−1] =

exp(−λt)λ
y
t

y!
, y = 0, 1, 2, . . . (2.2)

and the negative binomial distribution given by

P[Yt = y | FY,λ
t−1] =

Γ(ν + y)

Γ(y + 1)Γ(ν)

( ν

ν + λt

)ν( λt

ν + λt

)y

, y = 0, 1, 2, . . . , (2.3)

where ν > 0. Note that (2.2) is a special case of (2.1) when {Zt} is a sequence
of degenerate random variables with mean 1. Furthermore, (2.3) is a special
case of (2.1) when {Zt} are iid Gamma with mean 1 and variance 1/ν. Related
work for the case of the negative binomial is that of [49] but with a different
parametrization and when the function f(·, ·) of (2.1) is linear (see (2.5)). Re-
gardless of the choice of Z ′s, the conditional mean of {Yt} as given by (2.1) is
always equal to λt. Furthermore, the variance of (2.1) is given by λt + σ2

Zλ
2
t ,

with σ2
Z = Var(Zt). The conditional variance of the Poisson distribution is equal

to λt, whereas the conditional variance of (2.3) is equal to λt + λ2
t/ν.

We show that modeling based on (2.1) generalizes several existing results
reported in the literature. Consider, for instance, the work by [50] who sug-
gests the generalized Poisson distribution for modeling count time series data;
see [32, pp. 396] who prove that the generalized Poisson distribution is proper
distribution for a certain range of parameter values. In fact, the generalized
Poisson distribution is a Poisson–stopped–sum distribution; hence it is an in-
finitely divisible distribution. [31] use the property of infinite divisibility to show
that a proper generalized Poisson distribution is a mixed Poisson distribution.
Hence, (2.1) covers the case of generalized Poisson distribution after suitable
model reparametrization. Moreover, likelihood based inference for the gener-
alized Poisson distribution is implemented by constraining its parameters; see
[32, pp. 399] for more. In general, mixed Poisson distributions with an infinitely
divisible mixing random variable Z are Poisson–stopped–sum distribution; [32,
pp. 324].

Another count time series model, which was suggested by [51], is that of zero-
inflated Poisson (negative binomial) distribution. These models are included in
the framework introduced by (2.1). When the mixing variables Zt are binary,
then we obtain a zero-inflated Poisson model. A similar argument yields a zero-
inflated negative binomial model. In this contribution, we will employ quasi-
maximum likelihood for estimation. In the context of zero-inflated Poisson and
negative binomial models, [51] employs the E-M algorithm. We point out that
[50, 51] considers linear autoregressions but we consider nonlinear models, in
general. As a final remark, the works of [33] and [37] show that suitable choice of
the mixing variables Zt in (2.1) yields to Tweedie–Poisson exponential dispersion
models which include the Neyman type A and the Poisson-inverse Gaussian
distributions.
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2.1. Modeling

Assume that the mean process of (2.1) is given by

λt = f(Yt−1, λt−1), t ≥ 1, (2.4)

where f(·, ·) is a parametric function defined on N0 × R+ and taking values on
(0,∞), where N0 = {0, 1, 2, . . .}. For instance, consider the linear model

λt = d+ a1λt−1 + b1Yt−1, (2.5)

where d > 0, a1 > 0, b1 > 0, such that a1 + b1 < 1. Model (2.5) has been shown
to be stationary with any moments (see [22, 43] for the Poisson case and [9] for
the negative binomial case). Some examples of (2.4) include

λt =
d

(1 + Yt−1)γ
+ a1λt−1 + b1Yt−1, (2.6)

λt = d+ a1λt−1 + (b1 + c1 exp(−γY 2
t−1))Yt−1, (2.7)

and

λt = d+ a1λt−1 + b1Yt−1 + (d2 + a2λt−1 + b2Yt−1)I(Yt−1 ≤ r). (2.8)

Models (2.6) and (2.7) are modifications of analogous models studied by
[43, 23, 19, 9]. Model (2.6) introduces a deviation of (2.5) in the sense that
small values of γ make (2.6) to approach (2.5). [9] show that when max{b1, dγ−
b1}+a1 < 1, model (2.6) is ergodic and stationary whose moments are finite. The
same holds for the mixed Poisson process specification given by (2.1). Similarly
model (2.7) can be viewed as a Smooth Transition Autoreggressive (STAR)
model (see [44]). It turns out that when 0 < a1 + b1 + c1 < 1, model (2.7) is
ergodic, stationary and it has moments of all orders. Model (2.8) is a threshold
model and has been studied recently by [47, 18, 46]. In particular, [46] show
that (2.8) posses a stationary and ergodic solution, with any moments if 0 <
a1 + b1 < 1 and a1 + a2 < 1, under the Poisson assumption (provided that
min(d1, a1, b1, d+d2, a1+a2, b1+b2) > 0). Furthermore, to obtain the asymptotic
distribution of the MLE, they stipulate the condition b1 + b2 < 1. If all the
coefficients are positive, then the condition a1+a2+b1+b2 < 1 guarantees that
(2.8) has a unique stationary solution which possess any moments; in addition
the MLE of the parameter vector (a1, a2, b1, b2)

′
is consistent and asymptotically

normally distributed (see also [47, 18] for stationarity and consistency of the
MLE for model (2.8)). We are not aware of any study regarding the probabilistic
properties of the threshold model under any other distributional assumption.
The following proposition generalizes [9, Thm.1] and it applies to (2.6) and
(2.7); see also [13] in the context of exponential family.

Proposition 2.1. Suppose that {Yt, t ∈ Z} is a count time series specified by
(2.1) with a mean process {λt, t ∈ Z} given by (2.4). Let {Zt} be a sequence of
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independent and identically distributed positive random variables with mean 1,
such that E|Zt|r < ∞, r ∈ N, which are independent of Ñt and independent
of {Ys, s < t}. Suppose that there exist constants α1, α2 of non-negative real
numbers such that

|f(y, λ)− f(y′, λ′)| ≤ α1|λ− λ′|+ α2|y − y′|.

Assume that α = α1 + α2 < 1. Then there exists a unique causal solution
{(Yt, λt), t ∈ Z} to model (2.4) which is stationary, ergodic and for any r ∈ N

satisfies E‖(Y0, λ0)‖r < ∞.

2.2. Inference

For the case of mixed Poisson models (2.1), it is rather challenging, in gen-
eral, to have readily available a likelihood function, because the distribution
of the mixing variable Zt is generally unknown. Hence, we resort to a quasi
maximum likelihood (QMLE) methodology. This method is quite analogous
to quasi-likelihood inference developed for estimation and fitting of ordinary
GARCH models. For instance [4, 25, 42, 3] among others, study the Gaussian
likelihood function irrespectively of the assumed error distribution. It turns out
that QMLE are consistent estimators of regression parameters under a correct
mean process specification (see also [48, 28, 30], for instance). To define prop-
erly the QMLE, consider the Poisson log-likelihood function, conditional on
some starting value λ0,

ln(θ) =

n∑
t=1

lt(θ) =

n∑
t=1

(Yt log λt(θ)− λt(θ)) , (2.9)

where θ denotes the unknown parameter vector. The quasi-score function is
defined by

Sn(θ) =
∂ln(θ)

∂θ
=

n∑
t=1

∂lt(θ)

∂θ
=

n∑
t=1

(
Yt

λt(θ)
− 1

)
∂λt(θ)

∂θ
. (2.10)

The solution of the system of nonlinear equations Sn(θ) = 0, if it exists,

yields the QMLE of θ which we denote by θ̂. The conditional information matrix
is defined by

Gn(θ) =

n∑
t=1

Var
[∂lt(θ)

∂θ

∣∣∣FY,λ
t−1

]
=

n∑
t=1

( 1

λt(θ)
+ σ2

Z

) (
∂λt(θ)

∂θ

) (
∂λt(θ)

∂θ

)′

.

It can be shown, under the assumptions of [9, Thm. 2] that θ̂ is consistent
and asymptotically normally distributed; that is

√
n(θ̂ − θ0)

D−→ N (0,G−1(θ0)G1(θ0)G
−1(θ0)), (2.11)
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where the matrices G and G1 are given by

G(θ) = E

(
1

λt(θ)

(
∂λt

∂θ

) (
∂λt

∂θ

)′)
, (2.12)

and

G1(θ) = E

((
1

λt(θ)
+ σ2

Z

)(
∂λt

∂θ

) (
∂λt

∂θ

)′)
. (2.13)

If σ2
Z > 0, then an estimator, say σ̂2

Z , is given as the solution of

n∑
t=1

(Yt − λ̂t)
2

λ̂t(1 + λ̂tσ2
Z)

= n−m, (2.14)

where m denotes the dimension of θ and λ̂t = λt(θ̂). There exists at most one
solution of (2.14). If it exists, then it is consistent and can be calculated by
existing software (cf. [14, 6]). For the case σ2

Z = 1/ν, see [7, Ch. 3] and [38].

3. Testing linearity

Testing linearity, within a parametric framework, is a problem which is attacked
by computing the likelihood ratio, Wald and score tests. The likelihood ratio and
Wald tests require estimation for the full model which can be computationally
challenging. Consider (2.7), for instance. To obtain the maximum likelihood
estimation of γ, we need rather large sample sizes. The problem’s complexity
increases especially for small values of γ, as empirical experience has shown;
see also [52, Ch.18, p. 684] who consider smooth transition models. For (2.8),
it is well known, from the linear model estimation theory, that the threshold
parameter r is not estimated at the rate n−1/2 (see [8]). Hence, testing and
inference in the context of (2.8) rise challenging computational and theoretical
issues.

The computational advantage of the score test is that it is calculated after
estimating the constrained model under the null. In other words, testing for
linearity requires estimation of the simple linear model (2.5). In addition, the
asymptotic distribution of the score statistic is not affected when parameters lie
at the boundary of the hypothesis, (see [26, Ch. 8]). Denote by θ = (θ(1),θ(2))

the unknown parameter, where θ(1) and θ(2) are vectors of dimension m1 and
m2, respectively, such that m1 +m2 = m. The hypotheses of interest are

H0 : θ(2) = θ
(2)
0 vs. H1 : θ(2) > θ

(2)
0 , componentwise.

Let θ̃n = (θ̃
(1)

n , θ̃
(2)

n ) be the constrained quasi-likelihood estimator of θ =

(θ(1),θ(2)). Put Sn = (S(1)
n ,S(2)

n ) for the corresponding partition of the score
function. The general form of the score statistic is given by (cf. [6] and [29, Ch.
5]),

LMn = S(2)′

n (θ̃n)Σ̃
−1

(θ̃n)S
(2)
n (θ̃n). (3.1)
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In the above, Σ̃ is an appropriate estimator for the covariance matrix Σ =
Var(S(2)

n (θ̃n)/
√
n).

Because this approach is based on quasi–score instead of the true score, certain
adjustments should be made for obtaining its asymptotic distribution. Recall
(2.12) and consider the following partition

G =

(
G11 G12

G21 G22

)
,

and similarly for G1 (see (2.13)). Then it can be shown that

Σ ≡ ΣMP = G1,22 −G21G
−1
11 G1,12 −G1,21G

−1
11 G12 +G21G

−1
11 G1,11G

−1
11 G12.

(3.2)
If the true distribution is Poisson, then the matrices G and G1 coincide and

Σ ≡ ΣP = G22 −G21G
−1
11 G12.

3.1. Standard implementation

If all the parameters are identified under the null hypothesis, then the standard
asymptotic theory holds as the following result shows.

Proposition 3.1. Suppose that {Yt, t = 1, . . . , n} is a count time series specified
by (2.1) with mean process {λt} defined by (2.4) and suppose that the assump-
tions of Proposition 2.1 and [9, Thm.2] hold true. Suppose that the function

f(·) depends upon a vector (θ(1),θ(2)), where θ(i) is of dimension mi, i = 1, 2.
Consider the problem

H0 : θ(2) = θ
(2)
0 vs. H1 : θ(2) > θ

(2)
0 , componentwise. (3.3)

Then the score test statistic converges to a chi-square random variable, i.e.

LMn = S(2)′

n (θ̃n)Σ̃
−1

(θ̃n)S
(2)
n (θ̃n)

D→ X 2
m2

,

as n → ∞, when H0 is true. In addition, consider testing

H0 : θ(2) = θ
(2)
0 vs. H1 : θ(2) = θ

(2)
0 + n−1/2δ,

where δ is a fixed vector in R
m2
+ . Then

LMn = S(2)′

n (θ̃n)Σ̃
−1

(θ̃n)S
(2)
n (θ̃n)

D→ X 2
m2

(δ′Δδ),

with Δ = Σ̃P Σ̃
−1

MP Σ̃P .

The proof is postponed to the appendix.
Recall (2.6) and let θ(1) = (d, a1, b1)

′ and θ(2) = γ. The hypothesis H0 : γ =
0 implies that the parameter γ lies at the boundary of the parameter space.
Following [26, pp. 196], Proposition 3.1 assures that the quasi-likelihood based
score test statistic follows asymptotically the chi-square distribution with one
degree of freedom for testing γ = 0.
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3.2. Non-standard implementation

We deviate from the notation used so far in this section so that we can bring
across the main ideas. We are interested on testing linearity of the mean process
when a non-linear model contains nuisance parameters that are not identified
under the null; recall (2.7) and (2.8). Then the quasi maximum likelihood es-
timators have nonstandard behavior. The lack of identification affects also the
score test and the classical asymptotic theory does not apply.
Consider (2.7). When c1 = 0, the parameter γ is not identified under the null.
Consequently, testing of

H0 : c1 = 0 vs. H1 : c1 > 0, (3.4)

cannot be implemented in a standard way and the traditional large sample
theory does not apply. To deal with this problem, we consider a fixed arbitrary
value of γ. Then the model is still linear in the parameters and the score statistic
LMn is asymptotically distributed as a chi–square random variable with one
degree of freedom, under the null. Despite the fact that this test is in general
consistent, even for alternatives where γ0 �= γ, it may lack power for alternatives
where γ0 is far from γ. To avoid low values of power obtained by the above
approach, we propose a supremum type of test statistic. Consider Γ, a grid of
values for the parameter γ. Then the sup-score test statistic is given by

LMn = sup
γ∈Γ

LMn(γ), (3.5)

where LMn(γ) is given by (3.1). We reject hypothesis (3.4) for large values of
LMn. Critical values are calculated by bootstrapping the test statistic.

Recall now (2.8) and consider testing the following hypotheses

H0 : d2 = a2 = b2 = 0 vs. H1 : d2 > 0 or a2 > 0 or b2 > 0. (3.6)

Similarly, consider a grid of values for the threshold parameter r, say Γ, and
calculate

LMn = sup
r∈Γ

LMn(r).

We reject (3.6) for large values of the test statistic.

Remark 3.1. It is of interest to develop the asymptotic distribution of the
supremum type score test statistic LMn similarly to the works by [24] and [39].
Note that Proposition 2.1 shows that the joint process (Yt, λt) is τ -weakly de-
pendent ( [15, 20]). However a uniform central limit theorem for multivariate
τ -weakly dependent process is not available in the literature, to the best of
our knowledge (but see [16] who prove a central limit theorem for the case of
univariate empirical distribution function). For univariate functions of mixing
process, see additionally the recent work by [17]. The main challenge is to extend
the work of [16] to multivariate empirical processes indexed by classes of func-
tions. We conjecture that under the null hypothesis and using the assumptions
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of Proposition 2.1, the process supγ LMn(γ), as defined by (3.5), will converge
to the supremum of a chi-square process (see also [11]). Our work focuses ex-
plicitly on the computational aspects of LMn and the problem of obtaining its
asymptotic distribution will be examined elsewhere.

In the following, we examine the finite sample behavior of the score test under
both cases of identifiable and non identifiable parameters.

4. Simulation study

We present a limited simulation study to demonstrate empirically the theo-
retical results. For this work, we employ parametric bootstrap based either on
the Poisson distribution or the negative binomial distribution. More specifically,
given the data, we estimate by QMLE the parameters of model (2.5) and cal-
culate the score test statistic LMn given by (3.1). Then, we generate B time
series of length n using the estimated model under H0. For each time series,
b = 1, . . . ,B, we compute the value of the score statistic denoted by LM∗

b and
compute the p-values by the formula

p-value =
#{b : LM∗

b ≥ LM}+ 1

B + 1
.

In the case of a non identifiable parameter, the score test is computed by
choosing a grid for the values of the non identifiable parameter and then take
the supremum over this grid. We use B = 499 bootstrap replicates and 200
simulations for various sample sizes.

4.1. Results for identifiable models

We consider the size of the proposed score test statistic. Recall model (2.5)
and choose (d, a1, b1) = (1.5, 0.05, 0.6) and n = 250, 500 and 1000. We maxi-
mize the quasi log-likelihood function (2.9) by a quasi-Newton method using
the constrOptim() function of R to obtain the QMLE. For selected nominal
significance level α = 1%, α = 5% or α = 10% we obtain the results reported
by Table 1 for the size of the test statistic (3.1). For comparison, the last three
columns list the achieved significance levels of the test derived from the asymp-
totic chi-square distribution with one degree of freedom. The empirical results
show that the bootstrap approximation performs well; in fact it yields achieved
significance levels which are closer to nominal significance levels, especially for
smaller sample size.

To study the power of the test statistic we work analogously under the model

λt =
1.5

(1 + Yt−1)γ
+ 0.05λt−1 + 0.6Yt−1,

where γ = 0.3, 0.5, 1. Table 2–which is obtained in the same manner as Table 1–
shows that as γ assumes larger values, the power of the test statistic (3.1)
approaches unity; see also Figure 1.
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Table 1

Empirical size of the test statistic (3.1) for testing H0 : γ = 0 of model (2.6) and for sample
sizes n = 250, 500 and 1000. Data are generated from the linear model (2.5) with true values

(d, a1, b1) = (1.5, 0.05, 0.6)

Bootstrap test for n = 250 Approximation test for n = 250
Nominal
significance Poisson NegBin NegBin Poisson NegBin NegBin
level (ν = 2) (ν = 4) (ν = 2) (ν = 4)
α = 1% 0.000 0.015 0.000 0.005 0.015 0.010
α = 5% 0.045 0.055 0.020 0.055 0.065 0.060
α = 10% 0.090 0.111 0.050 0.145 0.115 0.115

Bootstrap test for n = 500 Approximation test for n = 500
α = 1% 0.010 0.005 0.005 0.020 0.010 0.015
α = 5% 0.041 0.068 0.037 0.075 0.030 0.055
α = 10% 0.096 0.094 0.084 0.150 0.075 0.110

Bootstrap test for n = 1000 Approximation test for n = 1000
α = 1% 0.010 0.010 0.026 0.010 0.005 0.010
α = 5% 0.057 0.037 0.051 0.060 0.020 0.035
α = 10% 0.114 0.115 0.097 0.115 0.055 0.090

Table 2

Empirical power of the test statistic (3.1) for testing H0 : γ = 0 of model (2.6) for sample
sizes n = 250, 500 and 1000. Data are generated from (2.6) with true values

(d, a1, b1) = (1.5, 0.05, 0.6) and γ ∈ {0.3, 0.5, 1}. The nominal significance level is set to
α = 5%

Nonlinear model (2.6) Bootstrap test for n = 250 Approximation test for n = 250
γ Poisson NegBin NegBin Poisson NegBin NegBin

(ν = 2) (ν = 4) (ν = 2) (ν = 4)
γ = 0.3 0.115 0.050 0.117 0.110 0.025 0.065
γ = 0.5 0.255 0.082 0.184 0.230 0.065 0.165
γ = 1 0.652 0.508 0.579 0.650 0.370 0.545

Bootstrap test for n = 500 Approximation test for n = 500
γ = 0.3 0.207 0.061 0.157 0.210 0.045 0.130
γ = 0.5 0.450 0.251 0.424 0.485 0.240 0.300
γ = 1 0.924 0.756 0.837 0.920 0.710 0.870

Bootstrap test for n = 1000 Approximation test for n = 1000
γ = 0.3 0.271 0.144 0.212 0.360 0.185 0.250
γ = 0.5 0.740 0.548 0.688 0.745 0.455 0.635
γ = 1 1.000 0.974 0.995 0.995 0.955 0.990

4.2. Results for non identifiable models

To examine the performance of the sup-score test statistic (3.5) for testing model
(2.7), put

λt = 0.5 + 0.3λt−1 + (0.2 + c1 exp(−γY 2
t−1))Yt−1,

where c1 ∈ {0.2, 0.4} and γ ∈ {0.05, 0.2, 0.5, 1}. Consider testing the hypotheses
(3.4). The sup-score test statistic (3.5) is calculated by choosing a grid which
consists of a sequence of thirty equidistant values in the interval [0.01, 2]. Ta-
ble 3 shows that the test statistic, generally, achieves its nominal significance
level. However, larger sample sizes yield to more accurate approximation of the
nominal level. Table 4 shows that the power of the test statistic is relatively
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Fig 1. Plot for the power of the test statistic (3.1) for testing H0 : γ = 0 for model (2.6). Data
are generated from the nonlinear model (2.6) with true values (d, a1, b1) = (1.5, 0.05, 0.6),
ν = 4 and for different values of γ. Results are based on 1000 data points, 500 simulations
and on the asymptotic approximation based on the chi-square distribution with one degree of
freedom.

Table 3

Empirical size of the test statistic (3.5) for testing (3.3) of model (2.7) and for sample sizes
n = 250, 500 and 1000. Data are generated from the linear model (2.5) with true values

(d, a1, b1) = (0.5, 0.3, 0.2)

Bootstrap test for n = 250
Nominal Poisson NegBin NegBin
significance level (ν = 2) (ν = 4)
α = 1% 0.000 0.000 0.009
α = 5% 0.028 0.004 0.062
α = 10% 0.112 0.065 0.106

Bootstrap test for n = 500
α = 1% 0.000 0.000 0.010
α = 5% 0.048 0.043 0.037
α = 10% 0.122 0.102 0.099

Bootstrap test for n = 1000
α = 1% 0.000 0.000 0.005
α = 5% 0.020 0.045 0.060
α = 10% 0.046 0.075 0.105

large for increasing sample sizes and for values of γ close to zero provided that
the parameter c1 is also of large magnitude.

Consider next the threshold model which specifies the time series mean pro-
cess by model (2.8). The empirical results for testing (3.6) are based on the
Poisson assumption. The sup-score test statistic is computed by defining a grid
of values for the threshold parameter r. Following the suggestion of [46], let
the grid defined by a sequence of ten equidistant values in the interval [q1, q2],
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Table 4

Empirical power for test statistic (3.5) for testing (3.3) of model (2.7) and for sample sizes
n = 250, 500 and 1000. Data are generated from the exponential model (2.7) with true values

(d, a1, b1) = (0.5, 0.3, 0.2), c1 ∈ {0.2, 0.4} and γ ∈ {0.05, 0.2, 0.5, 1}. The nominal
significance level is α = 5%

Nonlinear model (2.7) Bootstrap test for n = 250
c1 γ Poisson NegBin NegBin

(ν = 2) (ν = 4)
c1 = 0.2 γ = 0.05 0.105 0.132 0.069
c1 = 0.2 γ = 0.2 0.110 0.120 0.090
c1 = 0.2 γ = 0.5 0.044 0.062 0.037
c1 = 0.2 γ = 1 0.000 0.045 0.055
c1 = 0.4 γ = 0.05 0.356 0.302 0.404
c1 = 0.4 γ = 0.2 0.349 0.341 0.319
c1 = 0.4 γ = 0.5 0.202 0.212 0.263
c1 = 0.4 γ = 1 0.091 0.102 0.067

Bootstrap test for n = 500
c1 = 0.2 γ = 0.05 0.140 0.178 0.220
c1 = 0.2 γ = 0.2 0.199 0.175 0.231
c1 = 0.2 γ = 0.5 0.111 0.156 0.122
c1 = 0.2 γ = 1 0.077 0.070 0.084
c1 = 0.4 γ = 0.05 0.755 0.690 0.739
c1 = 0.4 γ = 0.2 0.746 0.609 0.628
c1 = 0.4 γ = 0.5 0.420 0.358 0.469
c1 = 0.4 γ = 1 0.174 0.154 0.235

Bootstrap test for n = 1000
c1 = 0.2 γ = 0.05 0.315 0.390 0.355
c1 = 0.2 γ = 0.2 0.485 0.335 0.372
c1 = 0.2 γ = 0.5 0.312 0.190 0.265
c1 = 0.2 γ = 1 0.105 0.122 0.135
c1 = 0.4 γ = 0.05 0.985 0.950 0.985
c1 = 0.4 γ = 0.2 0.985 0.905 0.925
c1 = 0.4 γ = 0.5 0.855 0.650 0.775
c1 = 0.4 γ = 1 0.465 0.255 0.340

where q1 and q2 are set to be respectively the empirical 0.2 and 0.8 quantile of
each time series replication. Table 5 (respectively, Table 6) reports simulation
results on the size (respectively, power) of the test statistic. The approximation
of nominal significance levels improves for large sample sizes. Furthermore, the
power of the test statistic increases for values of parameters a2 and b2 of large
magnitude.

5. Example

We consider a time series of weekly number of measles at Sheffield for the period
between September 8th, 1978 and April 17th, 1987. The total number of obser-
vations is 450. The sample mean (sample variance, respectively) of these data
is 17.151 (265.781, respectively), showing strong overdispersion. Employing the
quasi-likelihood methodology as outlined in Section 2.2, we obtain the QMLE of
the regression parameters for each of models (2.5)–(2.8). Table 7 summarizes the
results. We also report standard errors (in parentheses) where the first row shows
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Table 5

Empirical size of test statistic (3.5) for testing (3.6) of model (2.8) and for sample sizes
n = 250, 500 and 1000. Data are generated from the linear model (2.5) with true values

(d, a1, b1) = (0.5, 0.05, 0.1)

Nominal
significance level n = 250 n = 500 n = 1000
α = 1% 0.000 0.010 0.005
α = 5% 0.000 0.031 0.050
α = 10% 0.063 0.061 0.076

Table 6

Empirical power of test statistic (3.5) for testing (3.6) of model (2.8) and for sample sizes
n = 250, 500 and 1000. Data are generated from the threshold model (2.8) with true values
(d1, a1, b1, d2) = (0.5, 0.05, 0.1, 0.7), a2 ∈ {0.1, 0.2}, b2 ∈ {0.1, 0.3} and r = 5. The nominal

significance level is α = 5%

a2 b2 n = 250 n = 500 n = 1000
a2 = 0.1 b2 = 0.1 0.030 0.032 0.075
a2 = 0.2 b2 = 0.1 0.032 0.071 0.232
a2 = 0.2 b2 = 0.3 0.326 0.813 0.960

Table 7

Quasi maximum likelihood estimators and their standard errors (in parentheses) for the
linear model (2.5) and the nonlinear models (2.6), (2.7) and (2.8), for the monthly number
of measles at Sheffield for the period between September 8th, 1978 and April 17th, 1987. The

total number of observations is 450

Model Quasi Maximum Likelihood Estimators

d̂ â1 b̂1 γ̂ ĉ1 d̂2 â2 b̂2 r̂

(2.5) 0.720 0.490 0.469 – – – – – –
(0.122) (0.024) (0.023)
(0.235) (0.057) (0.055)

(2.6) 1.274 0.490 0.486 0.468 – – – – –
(0.507) (0.024) (0.024) (0.305)
(0.858) (0.058) (0.062) (0.591)

(2.7) 0.712 0.492 0.433 0.596 0.041 – – – –
(0.270) (0.043) (0.043) (15.771) (1.300)
(0.504) (0.090) (0.099) (21.751) (1.785)

(2.8) 0.720 0.490 0.469 – – 0.700 0.009 0.010 3
(0.172) (0.026) (0.025) (0.640) (0.093) (0.269)
(0.302) (0.050) (0.050) (0.915) (0.140) (0.381)

the standard errors under the Poisson assumption and the second row shows the
standard errors obtained by the sandwich matrix G−1(θ̂)G1(θ̂)G

−1(θ̂); recall
(2.11). For model (2.5) and under the negative binomial working assumption
the estimator of ν is ν̂ = 5.309. Similarly, for model (2.6) is given by ν̂ = 5.303,
for model (2.7) is ν̂ = 5.283 and for (2.8) is ν̂ = 5.309. The estimator of the
threshold parameter r is obtained by a profiling procedure whereby we calculate
the log-likelihood function (2.9) for a grid of values of r and then we choose r
as the value that maximizes the log-likelihood function. As a general comment,
note that all results obtained indicate that there exists some non stationarity
in these data.
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Table 8

Bootstrap p-values for testing linearity for the mean process of the monthly number of
measles at Sheffield for the period between September 8th, 1978 and April 17th, 1987. The

total number of observations is 450

Model Poisson NegBin
(2.6) 0.362 0.600
(2.7) 0.622 0.618
(2.8) 0.104 0.368

To test for linearity for each of these models, we use B = 499 bootstrap
replications and calculate the p-values for each model and for each distributional
assumption. Table 8 reports the results and indicates that the linear model
(2.5) is always accepted. This is in accordance with the results obtained by
Table 7 when we compare the estimators with their standard errors. To support
further this conclusion we have calculated the scoring rules considered by [34,
10, 13]. All results obtained by fitting different models under different response
distributions are close to the results obtained by [10] and they are not reported
again. However, all these methods point out to the suitability of the linear mixed
Poisson model even though some non-stationarity is quite evident.

Appendix

Proof of Proposition 3.1. Recall that σ̂2
Z is defined by the solution of (2.14)

and is consistent. Consider first the case where the data are generated from

the Poisson distribution and recall again that θ̃n = (θ̃
(1)

n , θ̃
(2)

n ) is the consistent

estimator of θ = (θ(1),θ(2)) under the null hypothesis. Since θ̃
(1)

n is a consistent

estimator of θ(1) and θ(1) > 0, then for n large enough we have that θ̃
(1)

n > 0

and Sn,i(θ̃n) := ∂ln(θ̃n)/∂θi = 0, ∀ i = 1, . . . ,m1. That is, θ̃
(1)

n > 0 and

S(1)
n (θ̃n) = 0.

If we define the matrices K = (Om2×m1 , Im2) and K̃ = (Im1 ,Om1×m2), we
have that

S(1)
n (θ̃n) = K̃Sn(θ̃n) = 0 and Sn(θ̃n) = K ′S(2)

n (θ̃n). (A.1)

Since
1

n
Hn(θ0) = − 1

n

n∑
t=1

∂2lt(θ0)

∂θ∂θ′
p−→ G(θ0),

a Taylor expansion shows that

Sn(θ̃n)
op(1)
= Sn(θ0)−G(θ̃n − θ0).

Therefore, the last m2 components of the above relation give

S(2)
n (θ̃n)

op(1)
= S(2)

n (θ0)−KG(θ̃n − θ0), (A.2)
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and the first m1 components yield

0 = S(1)
n (θ̃n)

op(1)
= S(1)

n (θ0)− K̃G(θ̃n − θ0).

In addition,

(θ̃n − θ0) = K̃
′
(θ̃

(1)

n − θ
(1)
0 ). (A.3)

Thus, we have that

0
op(1)
= S(1)

n (θ0)− K̃GK̃
′
(θ̃

(1)

n − θ
(1)
0 ),

or

(θ̃
(1)

n − θ
(1)
0 )

op(1)
= (K̃GK̃

′
)−1S(1)

n (θ0). (A.4)

Substituting (A.1), (A.2) and (A.3) in the general expression of the score
test, we have that

LMn = S′
n(θ̃n)I

−1(θ̃n)Sn(θ̃n)

= S′
n(θ̃n)G

−1(θ̃n)Sn(θ̃n)

= S(2)′

n (θ̃n)KG−1K ′S(2)
n (θ̃n)

op(1)
= (S(2)

n (θ0)−KG(θ̃n − θ0))
′KG−1K ′(S(2)

n (θ0)−KG(θ̃n − θ0))

=(S(2)
n (θ0)−KGK̃

′
(θ̃

(1)

n −θ
(1)
0 ))′KG−1K ′(S(2)

n (θ0)−KGK̃
′
(θ̃

(1)

n −θ
(1)
0 )).

Let

W =

(
W 1

W 2

)
=

1√
n

(
S(1)

n (θ0)

S(2)
n (θ0)

)
D−→ N (0,G) ≡ N

(
0,

(
G11 G12

G21 G22

))
.

It holds that KGK̃
′
= G21, K̃GK ′ = G12, K̃GK̃

′
= G11 and KG−1K ′ =

(G22−G21G
−1
11 G12)

−1, where the last equality comes from the inversion of the

block matrix G and denotes the matrix Σ̃
−1

P .
Thus, the score statistic is

LMn = (W 2−G21(θ̃
(1)

n −θ
(1)
0 ))′(G22−G21G

−1
11 G12)

−1(W 2−G21(θ̃
(1)

n −θ
(1)
0 )),

and using (A.4) we finally have that

LMn = (W 2 −G21G
−1
11 W 1)

′Σ̃
−1

P (W 2 −G21G
−1
11 W 1). (A.5)

Then LMn
D−→ LM

H0∼ X 2
m2

, because of the fact that

W 2 −G21G
−1
11 W 1

H0∼ N (0, Σ̃P ).

Consider now the misspecified model where the data are generated from the
mixed Poisson model. Following [26] and [27, pp. 126], (see also [5, 36, 21]), the
score statistic is given by

LMn = S′
n(θ̃n)G

−1K ′(KG−1G1G
−1K ′)−1KG−1Sn(θ̃n)
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= S(2)′

n (θ̃n)KG−1K ′(KG−1G1G
−1K ′)−1KG−1K ′S(2)

n (θ̃n).

Some calculations yield that KG−1K ′ = G22 = (G22−G21G
−1
11 G12)

−1 and

(KG−1G1G
−1K ′)−1 = (G22)−1Σ̃

−1

MP (G
22)−1, where Σ̃MP is given by (3.2),

that is

Σ̃MP = G1,22 −G21G
−1
11 G1,12 −G1,21G

−1
11 G12 +G21G

−1
11 G1,11G

−1
11 G12

and thus, the score test statistic is given by

LMn = S(2)′

n (θ̃n)Σ̃
−1

MPS
(2)
n (θ̃n). (A.6)

It can be shown that

S(2)
n (θ̃n)

op(1)
= W 2 −G21G

−1
11 W 1

H0∼ N (0, Σ̃MP ).

and therefore, LMn
D−→ LM

H0∼ X 2
m2

.
Assume now that the data are generated again from a Poisson model under

the local Pitman-type alternatives H1 : θ(2) = θ
(2)
0 +n−1/2δ. In order to obtain

the limiting distribution of the score test statistic (3.1) under the alternative,
we only need the asymptotic distribution of the score function under H1. By a
Taylor expansion of Sn(θ0) about θn = θ0 + n−1/2δ∗, where now δ∗ is a fixed
vector in R

m
+ of the form δ∗ = (δ1, δ), we have that

n−1/2Sn(θ0)
op(1)
= n−1/2Sn(θn)− n−1Hn(θn)δ

∗.

Since n−1/2Sn(θn)
D−→ N (0,G(θ0)) and n−1Hn(θn)δ

∗ p−→ G(θ0)δ
∗

under the alternative, then W = n−1/2Sn(θ0)
D−→ N (−G(θ0)δ

∗,G(θ0)).
Therefore,

S(2)
n (θ̃n)

op(1)
= W 2 −G21G

−1
11 W 1

H1∼ N (−Σ̃P δ, Σ̃P ),

and considering again the expression of the score statistic given by (A.5), we

have that LMn
D−→ LM

H1∼ X 2
m2

(δ′Δδ), where for the case of the Poisson

assumption Δ = Σ̃P = G22 −G21G
−1
11 G12 evaluated at θ̃n.

If the data are generated from the mixed Poisson model, then following the

same steps as for the Poisson and since now it holds that n−1/2Sn(θn)
D−→

N (0,G1(θ0)) and n−1Hn(θn)δ
∗ p−→ G(θ0)δ

∗ under the alternative, we have
that

W = n−1/2Sn(θ0)
D−→ N (−G(θ0)δ

∗,G1(θ0)).

Thus,

S(2)
n (θ̃n)

op(1)
= W 2 −G21G

−1
11 W 1

H1∼ N (−Σ̃P δ, Σ̃MP )

and considering again the expression of the score statistic given by (A.6), we

have that LMn
D−→ LM

H1∼ X 2
m2

(δ′Δδ), where for this case Δ = Σ̃
′
P Σ̃

−1

MP Σ̃P

evaluated at θ̃n.
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