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1. Introduction

Age-dependent branching processes define a class of continuous-time stochastic
processes that is increasingly popular in the biological sciences. They offer flex-
ible, yet tractable, stochastic models that describe population dynamics at the
individual level, and allow the lifespan to follow arbitrary distributions (e.g.,
[1, 2, 3, 4, 5, 6, 7]). They can be extended in a number of useful ways to adapt
to specific situations. For example, an immigration component may be included
to describe an influx of immigrants into the population of interest.

Sevastyanov (1957) was the first to study branching processes with immigra-
tion [8]. He investigated the Markov case. Extensions to age-dependent processes
were subsequently considered by Jagers and other authors in the single-type
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and the multi-type case [19, 20]. Re-
cently, this class of processes has been proposed to model the dynamics of cell
populations in vivo under the assumption that immigration obeys a (possibly
time-inhomogeneous) Poisson process [17, 18, 20, 21].

Statistical inference for the Bienaymé-Galton-Watson process with immigra-
tion has been extensively studied and is discussed in Guttorp’s monograph [22].
In contrast, statistical inference for age-dependent branching processes with im-
migration has received little, if any, attention to date. In particular, no methods
have been developed to determine whether the rate of the immigration pro-
cess should be taken as constant or allowed to vary with time. We see two
reasons for developing a procedure that addresses this question: firstly, it is
not always known in practice whether the influx of cells in the population of
interest changes over time such that the procedure could lead to valuable bio-
logical insights; secondly, from a statistical standpoint, it would help to decide
whether the data can support a model with time-inhomogeneous immigration,
and thus could prevent over-parameterization issues. The question of how to
specify the shape of the immigration rate is also important, but we do not
address it here.
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The goal of this paper is to propose a test to determine whether the im-
migration process of an age-dependent branching process with immigration is
time-homogeneous by only observing the population size. The proposed test ap-
plies when several independent populations are observed at discrete time points;
such experimental designs are commonly used in biology. We first investigate
the asymptotic behavior of the coefficient of variation of the population size un-
der various immigration rates and when the branching process is sub-, super-,
and critical. We find that the coefficient of variation converges over time to a
strictly positive constant when the immigration process is time-homogeneous.
In contrast, when the immigration process is time-inhomogeneous, we find that
the coefficient of variation is either time-dependent, possibly after applying
a suitable transformation, or transits to a different constant. Thus, we con-
struct a test which verifies if the empirical coefficient of variation changes
significantly over time, which is accomplished by techniques of linear regres-
sion.

An attractive feature of the test is that it is simple to implement. In par-
ticular, it does not require any branching process to be fitted to the data, and
it does not impose either that the distribution of the lifespan and the shape
of the immigration rate, should it be time-dependent, be formulated. Its im-
plementation is identical whether the process is sub-, super-, or critical. This
simplicity is a consequence of the fact that the test is solely constructed from
the asymptotic behavior of the process. Statistical methods for branching pro-
cesses that rely on their asymptotic behavior have been successfully used in the
past [22, 23, 24, 25, 26, 27], and the proposed test is built in the same vein.
Asymptotic procedures for testing the homogeneity of coefficients of variation
across samples have also been proposed [28, 29] (see also [30] for a derivation
of the asymptotic distribution of the coefficient of variation). These tests do
not apply in our setting because they make two assumptions that would not be
valid: (1) observations are independent across samples; and (2) observations are
normally distributed.

The class of branching processes under consideration is defined in Section 2.
Although this work was motivated by a problem that arises from cell biology,
we consider a process that is more broadly applicable because our procedure
works identically under a more general set of assumptions about the offspring
and lifespan distributions, and generalization comes at no cost. In Section 3, we
study the asymptotic behavior of the coefficient of variation of the population
size when the immigration rate is constant and when it is time-dependent. The
Markov case is treated analytically and the non-Markov case is investigated
numerically. We develop the test in Section 4. In Section 5, we present results
from simulation studies in which we investigate the performance of the test.
These studies show that the test possesses adequate power under a variety of
alternative hypotheses. An application to a real data set on the dynamics of
leukemia is presented in Section 6. The analysis reveals that the immigration
rate of normal (non-leukemic) cells into the blood changed over time. Con-
cluding remarks are offered in Section 7. Technical details are provided in the
Appendix.
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2. Age-dependent branching processes with time-inhomogeneous
immigration

2.1. The general process

Without loss of generality, the process begins at t = 0 with zero cells. Let
{Tj}∞j=1 be a sequence of time points at which Ij new cells (thereafter referred
to as immigrants) arrive in the population, where {Ij}∞j=1 is a collection of
independent and identically distributed, integer-valued random variables (r.v.).
Write γ = E(Ij), γ2 = E{Ij(Ij − 1)}, and g(s) = E(sIj ). The immigration
process P (t) =

∑∞
j=1 1{Tj≤t} is assumed to be a non-homogeneous Poisson

process with instantaneous and cumulative rates r(t) and R(t) =
∫ t

0
r(u)du.

When r(t) = r for every t ≥ 0, P (t) reduces to a standard time-homogeneous
Poisson process.

Upon completion of its lifespan, every cell of the population, including im-
migrants, produces a random number ξ of offspring of age zero. Write pk =
pr(ξ = k), k = 0, 1, . . . , for the distribution of ξ. Let q(s) = E(sξ), |s| ≤ 1,
denote its probability generating function, and put m = E(ξ) and m2 =
E{ξ(ξ − 1)}. Applications to cell biology are primarily concerned with the spe-
cial case q(s) = p0 + p2s

2, in which cells may either die with probability p0
or divide into two cells with probability p2 = 1 − p0. The duration of the
lifespan is described by a non-negative r.v. τ with cumulative distribution func-
tion G(t) = pr(τ ≤ t), assumed non-lattice and satisfying G(0+) = 0. Write
µ = E(τ), assumed finite. Every cell behaves independently of every other cell.
Finally, assume that γ2 < ∞, m2 < ∞, and µ2 < ∞. The distributions G(·) and
q(·) define a Bellman-Harris process embedded in the branching process with
immigration.

2.2. A special case applied to cancer stem cell biology

Recent studies have supported the hypothesis that stem cells play a central role
not only in the generation and maintenance of multicellular systems, but also
in the development of several cancers. For example, they have been identified
in several types of leukemia [31]. As it appeared clear that stem cells should
be targeted by cancer therapy, understanding their properties, including their
dynamics, has become of considerable interest to cancer scientists.

Stem cells are characterized by the unique combination of three features:
(1) they can self-renew by producing daughter cells that retain their properties;
(2) they can generate multicellular lineages; and (3) they are able to maintain
survival of these lineages. They also tend to be rare and are not always experi-
mentally detectable, making the study of their behavior challenging.

The lack of direct observation on stem cells can be attenuated by model-
ing their contribution to disease progression via an immigration process that
describes their influx into the pool of observable cells as they differentiate.
The intensity of this influx of newly differentiated cells may vary over time,
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a feature that can be captured by allowing the immigration process to be time-
inhomogeneous. Upon completing their lifespan, differentiated cells divide into
two differentiated cells with probability p2 or die with probability p0 = 1− p2.
The duration of the lifespan is often assumed to have a gamma distribution, but
other choices are possible (e.g., a log-normal distribution).

3. The coefficient of variation and its asymptotic behavior

3.1. The general case

Let Z(t) denote the population size at time t. For every t ≥ 0 and |s| ≤ 1, put

Ψ(t; s) = E{sZ(t) | Z(0) = 0}

for the probability generating function of Z(t). It has the following expression:

Ψ(t; s) = exp

{
−
∫ t

0

r(t − u)[1− g(F (u; s))]du

}
, (3.1)

where Ψ(0, s) = 1, and where F (t; s), t ≥ 0, |s| ≤ 1, satisfies

F (t; s) =

∫ t

0

q(F (t− u; s))dG(u) + s{1−G(t)}, (3.2)

with the initial condition F (0; s) = s [35]. Define A(t) = ∂F (t; s)/∂s|s=1 and
B(t) = ∂2F (t; s)/∂s2|s=1. These functions are the first and second order facto-
rial moments of the embedded Bellman-Harris process started from a single cell
at time t = 0. It follows from eqn. (3.2) that A(t) and B(t) are solutions to the
renewal-type equations

A(t) = m

∫ t

0

A(t− u)dG(u) + 1−G(t), (3.3)

and

B(t) = m

∫ t

0

B(t− u)dG(u) +m2

∫ t

0

A(t− u)2dG(u), (3.4)

with the initial conditions A(0) = 1 and B(0) = 0 [1].
Define the first and second order moments of Z(t): M(t) = E{Z(t) | Z(0) =

0}, M2(t) = E{Z(t){Z(t) − 1} | Z(0) = 0}, V (t) = Var{Z(t) | Z(0) = 0} =
M2(t) +M(t){1 −M(t)}, and let Cv(t) = V (t)1/2/M(t) denote the coefficient
of variation of Z(t). We deduce from eqn. (3.1) that M(t) and M2(t) take the
expressions

M(t) = γ

∫ t

0

r(t − u)A(u)du, (3.5)
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and

M2(t) = γ

∫ t

0

r(t− u)B(u)du +

{
γ

∫ t

0

r(t − u)A(u)du

}2

+ γ2

∫ t

0

r(t− u)A(u)2du, (3.6)

with initial conditions M(0) = 0 and M2(0) = 0. Eqns. (3.5) and (3.6) imply
directly that:

V (t) = γ

∫ t

0

r(t− u)B(u)du + γ2

∫ t

0

r(t− u)A(u)2du+M(t). (3.7)

Let α denote the Malthusian parameter of the embedded Bellman-Harris
process. Assuming it exists, α is the solution to the equation

m

∫ ∞

0

e−αudG(u) = 1.

The process is said to be sub-critical if α < 0, critical if α = 0, and super-critical
if α > 0.

Define G̃(t) = m
∫ t

0 e
−αudG(u) and µ̃ =

∫∞

0 udG̃(u). Application of renewal
theory to eqns. (3.3) and (3.4) gives A(t) = 1 if α = 0 and A(t) ∼ KAe

αt if
α 6= 0, t ≥ 0, where KA = (m− 1)/αmµ̃, and

B(t) ∼





KB1e
αt if α < 0

KB2t if α = 0
KB3e

2αt if α > 0,

where KB1 = −m2K
2
A/mαµ̃, KB2 = m2/µ, and KB3 = m2K

2
AG̃(2α)/{1 −

mG̃(2α)} [1].
Additional constants that will appear in the limit of the coefficient of variation

include A =
∫∞

0
A(x)dx and B =

∫∞

0
B(x)dx, which are both finite when α < 0.

We also define E1(α) =
∫∞

0
e−αx(1+x)−1dx, and Âρ =

∫∞

0
e−ρuA(x)dx. Notice

that E1(α) < ∞ if α > 0, and Âρ < ∞ if ρ > α.
To simplify the presentation, we discuss the asymptotic behavior of the expec-

tation and variance of the process in Theorems A.1, A.2 and A.3 which have been
placed in the Appendix. The asymptotic behavior of the coefficient of variation
is easily deduced from these theorems. Beginning with the time-homogeneous
case, we have:

Theorem 3.1 (Time-homogeneous Poisson process). Assume that r(·) ≡ r.
Then limt→∞ Cv(t) = c0, where

c0 =





√
γ(A+B)+γ2A2

rγ2A
2 if α < 0

√
m2

2rγµ if α = 0
√

α(γKB3+γ2K2
A
)

2rγ2K2
A

if α > 0.
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When the immigration process is time-inhomogeneous, the behavior of Cv(t)
differs from that exhibited in the time-homogeneous case. Using c as a generic
notation to denote a positive constant that appears in the limit of Cv(t), and
which differs in all cases, we have:

Theorem 3.2 (Time-inhomogeneous Poisson process).

Case 1. If r(t) = r/(1 + t), then

Cv(t) ∼





c
√
t if α < 0

c
√

t
log t if α = 0

√
γKB3+γ2K2

A

rγ2K2
A
E1(α)

if α > 0.

Case 2. If r(t) = rtθ, θ > −1, then

Cv(t) ∼





ct−θ/2 if α ≤ 0√
αθ+1(γKB3+γ2K2

A
)

2rγ2K2
A
Γ(θ+1)

if α > 0.

Case 3. If r(t) = reρt, ρ > 0, then

Cv(t) ∼





√
(α−ρ)2(γKB3+γ2K2

A
)

rγ2K2
A
(2α−ρ)

if ρ < α

ct−1 if ρ = α

ce−(ρ−α)t if α < ρ < 2α

c
√
te−αt if ρ = 2α

ce−ρt/2 if ρ > 2α.

Taken together, these results suggest the following conclusions. If the immi-
gration process is time-homogeneous, we see from Theorem 3.1 that logCv(t)
converges to a constant log c0 as t → ∞. If it is time-inhomogeneous, The-
orem 3.2 indicates that logCv(t) → ±∞ as t → ∞ in most of the consid-
ered cases, except (e.g.) for the exponential rate when 0 < ρ < α, where it
converges to a constant that differs from log c0. Moreover, when it diverges,
logCv(t) is, in most cases, asymptotically equivalent to an affine function of
h(t), logCv(t) ∼ a0 + a1h(t), where h(t) is a function that depends solely on
time (e.g., h(t) = t or h(t) = log t or h(t) = log log t) and no other parameters.
We will use this property when constructing our test.

3.2. The Markov case

The moments of Z(t) are available in closed-form when the process is Markov
and the immigration process is time-homogeneous; that is, whenG(t) = 1−e−t/µ

and r(t) = r, for every t ≥ 0. Specifically, the expectation and variance of the
population size are

M(t) =

{
γr
α (eαt − 1) if α 6= 0
γrt if α = 0,
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and

V (t) =

{
γrm2+γ2rαµ

2α2µ (e2αt − 1)− γr
α (m2

αµ − 1)(eαt − 1) if α 6= 0
γrm2

2µ t2 + r(γ2 + γ)t if α = 0.

We deduce immediately that

Cv(t) =





√
γm2+γ2αµ

2µγ2r
eαt+1
eαt−1 + α

γr
1−m2/αµ
eαt−1 if α 6= 0√

m2

2µγr + γ2+γ
rγ2t if α = 0.

The expectation and variance are therefore asymptotically equivalent to

M(t) ∼





− rγ
α if α < 0

rγt if α = 0
rγ
α eαt if α > 0,

and

V (t) ∼





− rγ
α + r(γm2−γ2αµ)

2µα2 if α < 0
rγm2

2µ t2 if α = 0
r

2µα2 (γm2 + γ2αµ)e
2αt if α > 0.

Finally, we deduce that limt→∞ Cv(t) = c0, where

c0 =





√
− γ2αµ+γm2

2rµγ2 + α
γr (1− m2

αµ ) if α < 0√
m2

2rµγ if α = 0
√

γm2+γ2αµ
2rµγ2 if α > 0,

which is consistent with Theorem 3.1. Moreover,

Cv(t)− c0 =

{
O(e−|α|t) if α 6= 0
O(t−1) if α = 0,

(3.8)

and convergence to c0 occurs quickly over time in all cases.

3.3. Numerical investigations in the non-Markov case

We present results from numerical simulations that further illustrate the behav-
ior of the coefficient of variation of the population size with various immigration
rates, including some that were considered in Theorem 3.2.

The population size process Z(t) (t ≥ 0) was simulated by assuming that:
(i) the lifespan of every cell has a gamma (non-exponential) distribution with
mean 24 and variance 48; and (ii) upon completion of its lifespan, every cell
either divides with probability p2 or dies with probability p0 = 1 − p2. We
considered different values of p0 to run simulations with sub- (p0 > 0.5), super-
(p0 < 0.5), and critical (p0 = 0.5) processes.

We also considered various rates for the immigration process, including the
time-homogeneous rate (r(·) ≡ r) and the following time-inhomogeneous rates:
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Fig 1. Results from simulations. For each scenario we report: 1,000 simulated sample
paths (gray and violet lines), their empirical mean (black line) and coefficient of variation
(CV(t)), as well as the immigration rate (r(t)). The panels on the top were obtained with
time-homogeneous immigration processes and those below were obtained with various time-
dependent immigration processes. The immigration rate is displayed in the subplot embedded
in the plot of the coefficient of variation.



A test of homogeneity for age-dependent branching processes with immigration 907

• r(t) = (r + θt) ∨ 0: the immigration rate increases or decreases affinely
over time and is constrained to remain positive when θ < 0.

• r(t) = r/(1 + t): the immigration rate decreases gradually to 0 over time.
• r(t) = r{1 + cos(θt)}: the immigration rate oscillates over time between 0
and 2r.

• r(t) =

{
r if t ∈ [0, t0]
{r + θ(t− t0)} ∨ 0 if t > t0.

Here, the immigration rate remains constant between times 0 and t0, and
increases or decreases affinely thereafter.

• r(t) = reθt: the immigration rate increases exponentially fast over time;
this scenario could describe immigration of malignant cells from tissues
(e.g., bone marrow) in which they multiply exponentially fast.

We simulated the time-inhomogeneous Poisson process using Lewis and Shed-
ler (1979)’s acceptance-rejection method [36]. A single immigrant entered the
population at every time Tj (that is, pr(Ij = 1) = 1, j = 1, 2, . . .).

We simulated 1,000 runs of the branching process with immigration over the
time interval [0, 250], and computed the empirical mean, variance and coeffi-
cient of variation of these simulations at multiple time points. The results are
shown in Figure 1. The plots in the left column were obtained with sub-critical
processes (p0 > 0.5); those in the center were obtained with critical processes
(p0 = 0.5); and those on the right were obtained with super-critical processes
(p0 < 0.5). In the first two rows, we used a time-homogeneous immigration
process. The results displayed in the next four rows were obtained with time-
inhomogeneous immigration processes. The immigration rate was different in all
cases, as indicated in the figure.

When the immigration process was time-homogeneous, the coefficient of vari-
ation of Z(t) decreased over time to c0. Convergence was quick and virtually
occurred within the time interval [0, 40]. When the immigration process is time-
inhomogeneous, the simulations indicate that the coefficient of variation was
time-dependent. Thus, these simulations corroborate results stated in Theorem
3.2. The magnitude of the change in the coefficient of variation differed across
scenarios.

4. An asymptotic test of homogeneity of the immigration process

We now develop a test of the null hypothesis:

H0 : “r(·) ≡ r”

that the rate of the immigration process is a constant function of time, and we
will test H0 against the general alternative hypothesis H1 = H0. The proposed
procedure applies when several, independent realizations of the process are ob-
served at discrete points in time. This type of experimental design is commonly
used in biology.

Thus, let {Zi(t)}t≥0, i = 1, . . . , n, denote n independent and identically dis-
tributed (i.i.d.) copies of the process {Z(t)}t≥0. Assume that each of them is
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observed at m (m < ∞) discrete time points t1, . . . , tm with 0 < t1 < · · · <
tm < ∞. Write t = (t1, . . . , tm). We note that t1 → ∞ implies that tj → ∞
(j = 1, . . . ,m).

We could construct a test of H0 against the alternative hypothesis H1 by fit-
ting a branching process with time-inhomogeneous immigration to the data and
assessing the significance of the association of the immigration rate with time.
This approach would first require specifying a family of distributions for the lifes-
pan and a functional form for the rate of the immigration process. We would
next fit the postulated model and construct a p-value to decide whether H0

should be rejected. Estimation methods are not yet available for age-dependent
branching processes with immigration, but could arguably be developed (e.g.,
by adapting an existing pseudo-likelihood approach proposed for age-dependent
branching processes [6, 37]). Here, we consider a different approach that requires
none of these steps and assumptions to be made. The developed test only re-
quires existence of a model in the class of branching processes defined in Section
2.1 that can describe the data. It also requires fitting a linear regression model
to the empirical coefficients of variation.

The construction of our test rests on Theorem 3.1, which ensures, ifH0 is true,
that the coefficient of variation of Z(t) will remain virtually constant between
all times of observation, provided that t1 is sufficiently large. Thus, we propose
to test H0 by checking whether the empirical coefficients of variation computed
using the samples {Zi(tj)}ni=1, j = 1, . . . ,m, differ significantly between time
points. The comparison is accomplished via linear regression.

For every t ≥ 0, define the kth central moment M(k)(t) = E[{Z(t)−M(t)}k],
assumed finite for k = 1, . . . , 4. Let

m̂(t) = n−1
n∑

i=1

Zi(t),

v̂(t) = (n− 1)−1
n∑

i=1

{Zi(t)− m̂(t)}2

and

ĉv(t) =
√
v̂(t)/m̂(t) (4.1)

denote the sample mean, variance, and coefficient of variation. Using a result
from [39], we have that

n1/2{ĉv(t)− Cv(t)} D−→ N{0, σ2(t)},

where

σ2(t) = Cv(t)
4 −M(3)(t)M(t)−3 +M(4)(t){4M(t)2V (t)}−1 − Cv(t)

24−1.

This convergence uses a Central Limit Theorem for i.i.d. random variables [38],
which applies here because {Zi(t)}ni=1 are i.i.d. by assumption. It also requires
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that M(4)(t) < ∞. Hence, for any real-valued function L(·) with derivative
L′(x) 6= 0, x > 0, we have that

L(ĉv(t)) = L(Cv(t)) + n−1/2ε(t) + op(n
−1/2), (4.2)

where
ε(t) ∼ N

{
0, L′(Cv(t))

2σ2(t)
}
.

Here, the function L(·) refers to any transformation of Cv(t) that may make it
a diverging function of time, should the null hypothesis be violated. Relevant
examples include L(u) = log u or L(u) = u, as discussed at the end of Section
3.1. Write Σt = Var[(ε(t1), . . . , ε(tm))] and let Σ∞ = limt1→∞ Σt, assuming the
limit exists under H0.

When r(·) ≡ r, Theorem 3.1 and eqn. (4.2) entail that

L(ĉv(t)) = L(c0) + n−1/2ε(t) + o(1) + op(n
−1/2), (4.3)

where o(1) → 0 as t → ∞. Thus, L(ĉv(t)) is virtually centered about L(c0)
under H0 if t is sufficiently large, and we saw in Sections 3.2 and 3.3 that this
occurs quickly. From Theorem 3.2, we expect that this is not the case when r(·)
is time-dependent.

In order to construct our test statistic, we now formulate the linear model

L(ĉv(tj)) = xT
j θ + η(tj) (j = 1, . . . ,m) (4.4)

where
xj = xj(tj) := {1 h1(tj) · · · hp−1(tj)}T

is a vector of covariates defined using a given set of functions h1(·), . . . , hp−1(·),
for some p ≥ 2, where θ = (θ1, . . . , θp)

T is a p-dimensional parameter vector,
and where the r.v. η(tj) describes the error term of the model. The error terms
η(tj), j = 1, . . . ,m, are not formally centered about zero; however, when H0 is
true, it follows from Theorem 3.1 that their expectation converges to zero as
tj → ∞.

When H0 is true and when t1 is sufficiently large, we expect from eqn. (4.3)
that Model (4.4) captures the behavior of L(ĉv(t)) with θ ≃ θ∗, where

θ∗ = {L(c0), 0, . . . , 0}T,

because all coefficients associated with time should be zero. The functions h1(·),
. . . , hp−1(·) are chosen so Model (4.4) can detect a change in L(ĉv(t)) over time
when H1 is true. With reasonably chosen hk(·), we expect the relationship (4.4)
to hold with θ 6= θ∗ under H1 because L(ĉv(ti)) should now be time-dependent.
Thus, the gist of the proposed test is to assess H0 by verifying whether θ = θ∗.

Define
L̂cv(t) = {L(ĉv(t1)), . . . , L(ĉv(tn))}T,
Lcv(t) = {L(Cv(t1)), . . . , L(Cv(tn))}T,

and X = (x1, . . . , xm)T. Assume that
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Assumption 1. rank X = p.

Assumption 1 implies that the matrix XTX is invertible. Let

θ̂ = (XTX)−1XTL̂cv(t)

denote the least squares estimator of θ for Model (4.4), and define

θ∗
t
= (XTX)−1XTLcv(t). (4.5)

As n → ∞, we have that L̂cv(t)
P−→ Lcv(t), θ̂

P−→ θ∗
t
, and

√
n(θ̂ − θ∗

t
) = (XTX)−1XT{L̂cv(t)− Lcv(t)}

D−→ N (0, Vt) , (4.6)

where
Vt = (XTX)−1XTΣtX(XTX)−1.

Under H0, when both n and t1 increase at appropriate rates, we have that

√
n(θ̂ − θ∗)

D−→ N (0, V∞) ,

where

V∞ = lim
t1→∞

Vt = (XTX)−1XTΣ∞X(XTX)−1.

Let ρ(t) denote the rate at which Cv(t) converges to c0 as t → ∞ when H0 is
true; that is, ρ(t) is such that

Cv(t)− c0 = O(ρ(t)).

For example, in the Markov case, we showed that

ρ(t) =

{
e−|α|t if α 6= 0
t−1 if α = 0

(4.7)

(see eqn. (3.8)). Since θ∗ can be expressed as

θ∗ = (XTX)−1XTL(c0)1p,

where 1p is a p× 1 vector with all entries equal to 1, it follows from eqn. (4.5)
and a Taylor series expansion that

θ∗
t
− θ∗ = (XTX)−1XT[Lcv(t)− L(c0)1p]

= (XTX)−1XT [L′(c0){Cv(t)− c01p}+ o(‖Cv(t)− c01p‖)] .
Thus, when H0 holds, we deduce that

‖θ∗
t
− θ∗‖ = O

[
max

j=1,...,m
ρ(tj)

]
. (4.8)

Although converging to 0 under H0 as t1 → 0, the residual difference between
θ∗
t
and θ∗ could be detected if n is large enough, even if H0 is true. Thus, to

impose conditions controlling inflation of the type-1 error rate of our test, we
further assume that the study is designed such that:
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Assumption 2. If H0 holds true, then n = o[{maxj=1,...,m ρ(tj)}−2].

This second assumption prevents the sample size n from being too large rela-
tive to the time points tj , j = 1, . . . ,m. It is needed to eliminate the asymptotic

bias that may persist in θ̂ under H0 as n → ∞ as a result of the fact that Cv(t)
is not equal to c0 when t is finite. It is verified if the process has been running for
a sufficiently long time before the first observations are made. For example, in
the application presented in Section 6, Assumption 2 is expected to be satisfied
by the population of normal cells since hemopoiesis, the process of blood cell
production, had reached steady state before leukemia cells were inoculated. We
note that the assumption pre-assumes that the unit of time remains fixed as n
increases.

To further understand the implications of Assumption 2, we can consider
the Markov case for which ρ(t) is given in eqn. (4.7). Hence, we have that
maxj=1,...,m ρ(tj) = ρ(t1), and Assumption 2 is satisfied in this case if n increases
with t1 at the following rate:

n =

{
o
(
e2|α|t1

)
if α 6= 0

o
(
t21
)

if α = 0.

Therefore, in the Markov case, the impact of increasing the sample size on type-1
errors may be overcome by a moderate increase in t1. We note that sample sizes
are rarely large in biological experiments, such that the validity of Assumption
2 may not be of concern as long as the process is not observed too shortly after
the population started to grow.

When H0 is true, Assumption 2 together with eqns. (4.3), (4.6) and (4.8)
imply that

√
n(θ̂ − θ∗) =

√
n(θ̂ − θ∗

t
) +

√
n(θ∗

t
− θ∗)

D−→ N (0, V∞) ,

as n → ∞. For every k = 1, . . . , q, let θ̂k denote the kth entry of θ̂. Write

θ̂2:p = (θ̂2, . . . , θ̂p)
T, and let V

(2:p)
t

denote the sub-matrix of Vt that corresponds

to the asymptotic variance-covariance matrix of θ̂2:p. Define the Wald statistic

W = nθ̂T2:p{V (2:p)
t

}−1θ̂2:p.

The above derivations yield immediately the following result:

Theorem 4.1. Assume that Assumptions 1–2 hold. Then W
DH0−→ χ2

p−1 as n →
∞ where χ2

p−1 is a chi-squared distributed random variable with p− 1 degrees of
freedom.

To implement the test, we must estimate the variance-covariance matrix Σt in

order to compute the matrix V
(2:p)
t

used in the expression for W . In simulation
studies and in analyses of our experimental data on the progression of leukemia,
we have used a bootstrap estimator [32, 33]. We generate B independent samples
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{Z∗,b
i (t), t ≥ 0}ni=1 by sampling with replacement from {Zi(t), t ≥ 0}ni=1, and

calculate ĉ∗,bv (tj), j = 1, . . . ,m, according to eqn. (4.1) based on the bootstrap

sample {Z∗,b
i (tj)}ni=1, b = 1, . . . , B. We set B = 5,000 in our simulations and

application. Writing

L∗,b(t) =
(
L∗,b(ĉ∗,bv (t1)), . . . , L

∗,b(ĉ∗,bv (tm))
)T

,

we finally approximate Σt by

Σ̂t =
n

B − 1

B∑

b=1

{
L∗,b(t)− 1

B

B∑

b=1

L∗,b(t)

}{
L∗,b(t)− 1

B

B∑

b=1

L∗,b(t)

}T

.

Shao [34] proposed a simple modification of this bootstrap variance estima-
tor based on the idea of truncation. This estimator achieves consistency under
broader assumptions that hold in the present setting if M(4)(t) < ∞.

Once an estimator for Σt has been chosen, the test is implemented by re-
jecting H0 at the significance level δ if W ≥ χ2

p−1(1 − δ), where χ2
p−1(1 − δ) is

the 100(1 − δ)th percentile of a chi-squared distribution with p − 1 degrees of
freedom.

In practice, the processes {Zi(t)}t≥0, i = 1, . . . , n, need not all be observed
under identical experimental conditions. For example, in our leukemia experi-
ment, we have two groups of observations, each corresponding to a particular
sampling scheme. Specificities of the experimental design may be accommodated
in the test by including appropriate covariates in the vector of predictors xj .
The test should then reject H0 if the resulting test statistic W is greater than or
equal to the percentile of a chi-squared distribution with p0 degrees of freedom
where p0 denotes the number of predictors included in xj that are associated
with time, tj . See Section 6 for specific examples.

To obtain the power function of the test, we expand W as

W = n(θ̂2:p − θ∗
t,2:p)

T{V (2:p)
t

}−1(θ̂2:p − θ∗
t,2:p)

+ n(θ̂2:p − θ∗
t,2:p)

T{V (2:p)
t

}−1θ∗
t,2:p (4.9)

+ nθ∗T
t,2:p{V (2:p)

t
}−1θ∗

t,2:p.

The first term in the right-hand side of eq. (4.9) converges in distribution under
Assumption 1 to a chi-squared distributed random variable with p−1 degrees of

freedom; the second term is asymptotically equivalent to
√
n UT{V (2:p)

t
}−T/2θ∗

t,2:p,
where U is a standard normal (p − 1) × 1 random vector. An asymptotic ap-
proximation to the power function of the test in large samples is

Q(δ) ≃ pr
(
UTU − 2

√
n UT∆ > χ2

p−1(1 − δ)− n∆T∆
)
,

where ∆ = {V (2:p)
t

}−T/2θ∗
t,2:p represents a standardized effect size defined as

the departure from the null hypothesis expressed through the coefficients of the
regression model (4.4) that are associated with time, which we have normalized
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Fig 2. Asymptotic power function (Q) plotted against ∆ for various sample sizes (n).

by the variability matrix V
(2:p)
t

. The approximation of the power by Q(δ) as a
function of the standardized effect size is illustrated in Figure 2.

The power of the test may be affected by the choice of the regression function
of Model (4.4), and one must carefully evaluate the benefits of increasing the
number of functions hk(·) included in the design matrix X in order to capture
(potential) complex temporal patterns in the coefficient of variation. In our data
analysis, the coefficient of variation appeared to increase linearly over time (for
time points ≥ 6 days), such that building W with a regression Model (4.4) in
which the regression function depends linearly on time should be an optimal
choice. By increasing the flexibility of the regression function (e.g., allowing this
function to depend quadratically on time), we increase the degrees of freedom
of the asymptotic distribution of W , which could result in loss of power.

5. Simulation studies

We performed simulations to evaluate the level and power of the proposed test
under a variety of immigration rates. The branching process used to generate the
data assumed thatG(t) was a gamma distribution with mean 20 and variance 40.
The offspring generating function was q(s) = p0+(1−p0)s

2, and we considered
three values for p0 to evaluate the test when the process is subcritical (p0 =
0.75), critical (p0 = 0.5) and supercritical (p0 = 0.35 or 0.45). These parameter
values are biologically plausible when time is measured in hours.

We also considered immigration rates with various shapes to study the level
of the test when immigration is time-homogeneous and its power when it de-
pends on time. The functions that define the immigration rates are included
in Tables 1 and 2 which show the percentages of times the test rejected the
null hypothesis in each scenario. We note that the layout of these tables mirrors
that of Figure 1 (for example, in both the figure and tables, the top rows display
results obtained with a time-homogeneous immigration process), and thus the
reader can examine results from these simulation studies in light of the behavior
of the process Z(t) and its coefficient of variation.
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Table 1

Percentage of simulated data sets for which the test rejected H0 at the 5% nominal level as
a function of the sample size and for different types of immigration rates. For each tested
scenario, the table reports results based on test statistics constructed using xj = (1, tj)

′

(linear) and xj = (1, tj , t
2
j
)′ (quadratic), and with log-transformed coefficients of variation

(L(u) = log u)

time-homogeneous immigration process

subcritical critical supercritical

p0 = 0.75 p0 = 0.5 p0 = 0.35

r(t) = 2 r(t) = 2 r(t) = 2

sample size linear quadratic linear quadratic linear quadratic

25 6.9% 9.4% 6.7% 9.4% 7.6% 8.8%

50 7.1% 8.7% 6.6% 7.2% 7.9% 6.4%

100 5.6% 6.3% 5.8% 6.9% 9.4% 9.7%

200 5.4% 6.1% 6.8% 6.8% 9.8% 9.0%

time-inhomogeneous immigration process

subcritical critical supercritical

p0 = 0.75 p0 = 0.5 p0 = 0.35

r(t) = (2− 0.01t) ∨ 0 r(t) = 0.05t r(t) = 3
2(1+t)

sample size linear quadratic linear quadratic linear quadratic

25 100.0% 100.0% 24.8% 23.9% 11.9% 11.3%

50 100.0% 100.0% 40.1% 38.9% 17.4% 16.7%

100 100.0% 100.0% 67.6% 59.1% 25.5% 23.4%

200 100.0% 100.0% 92.9% 89.2% 43.7% 37.5%

subcritical critical supercritical

p0 = 0.75 p0 = 0.5 p0 = 0.45

r(t) = 1
2
{1 + cos( t

12
)} r(t) = 2

1+(t−80)∨0
r(t) = 1

2
e0.015t

sample size linear quadratic linear quadratic linear quadratic

25 7.2% 82.2% 40.0% 35.3% 80.0% 76.6%

50 8.9% 99.2% 63.6% 58.4% 99.1% 96.0%

100 9.5% 100.0% 91.7% 83.4% 100.0% 100.0%

200 13.2% 100.0% 100.0% 98.8% 100.0% 100.0%

For each scenario that was tested, we simulated 1,000 data sets of a given
sample size (n). We considered different values of n : 25, 50, 100 and 200.
The population size was observed every 12 hours from day 7 to day 10 (thus,
m = 7), similar to the study design of our leukemia experiment. In Table 1, the
test statistic was constructed with log-transformed coefficients of variation (that
is, L(u) = log u). In Table 2, we used untransformed coefficients of variation
(that is, L(u) = u). In either case, we set xj = (1, tj)

T and xj = (1, tj , t
2
j)

T,
j = 1, . . . , 6, to study the influence of the choice of xj on performances.
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Table 2

Percentage of simulated data sets for which the test rejected H0 at the 5% nominal level as
a function of the sample size and for different types of immigration rates. For each tested
scenario, the table reports results based on test statistics constructed using xj = (1, tj)

′

(linear) and xj = (1, tj , t
2
j
)′ (quadratic). Here, we did not transformed the coefficients of

variation (L(u) = u)

time-homogeneous immigration process

subcritical critical supercritical

p0 = 0.75 p0 = 0.5 p0 = 0.35

r(t) = 2 r(t) = 2 r(t) = 2

sample size linear quadratic linear quadratic linear quadratic

25 7.4% 9.9% 8.9% 12.3% 9.1% 11.6%

50 7.3% 6.8% 8.9% 8.8% 8.5% 9.1%

100 6.7% 6.6% 6.9% 7.0% 7.7% 6.9%

200 5.7% 6.4% 6.6% 7.6% 9.6% 10.2%

time-inhomogeneous immigration process

subcritical critical supercritical

p0 = 0.75 p0 = 0.5 p0 = 0.35

r(t) = (2− 0.01t) ∨ 0 r(t) = 0.05t r(t) = 3
2(1+t)

sample size linear quadratic linear quadratic linear quadratic

25 62.6% 82.6% 18.2% 27.1% 9.0% 11.2%

50 88.9% 100.0% 23.9% 35.7% 11.5% 13.2%

100 100.0% 100.0% 42.0% 57.0% 16.9% 18.1%

200 100.0% 100.0% 92.7% 87.6% 27.3% 24.0%

subcritical critical supercritical

p0 = 0.75 p0 = 0.5 p0 = 0.45

r(t) = 1
2
{1 + cos( t

12
)} r(t) = 2

1+(t−80)∨0
r(t) = 1

2
e0.015t

sample size linear quadratic linear quadratic linear quadratic

25 8.8% 78.6% 41.2% 37.1% 84.0% 78.5%

50 8.5% 99.7% 64.3% 57.8% 98.6% 96.9%

100 11.2% 100.0% 90.3% 84.9% 100.0% 100.0%

200 18.1% 100.0% 99.8% 99.0% 100.0% 100.0%

When the immigration rate was time-homogeneous (see top rows of Tables 1
and 2), the level of the test approached the nominal level of 5% as n increased,
except when the process was supercritical where the level increased slightly when
increasing the sample size from n = 100 to n = 200. The increase was possibly
due to n being too large compared to t1, violating Assumption 2. The level of
the test was closer to the nominal ones when log-transforming the coefficients
of variation (that is, when using L(u) = log u), and this was true whether the
process was sub-, super- or critical. The test also achieved better levels at small
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sample sizes when time (tj) was included only linearly in the vector of predictors
(xj) compared to when it was included both as a linear and a quadratic term

(t2j). A possible strategy to reduce the rate of type-1 errors is to use nominal
significance levels smaller than the traditional 5% level.

The power of the test increased with n. It was generally highest when the
process was sub-critical or critical (p0 ≤ 0.5). With supercritical processes
(p0 > 0.5), larger sample sizes were required to achieve similar power because
the contribution of the immigration to the dynamics of the population is even-
tually overwhelmed by that of the embedded Bellman-Harris process; that is,
the cells that are present in the population eventually contribute substantially
more to its dynamics than the immigration process, unless the immigration
rate increases exponentially fast and has an exponent that is greater than the
Malthusian parameter.

The choice of xj (linear vs. quadratic) affected slightly the power of the test,
except when the immigration rate oscillated over time (bottom of first column,
r(t) = 1

2{1+cos( t
12 )}), where the test achieved limited power when constructed

using xj = (1, tj)
T. With samples of size 100, and when log-transforming the

coefficients of variation (Table 1), it rejected H0 in only 9.5% of the data sets.
By comparison, with xj = (1, tj , t

2
j)

T, the test regained power because W was
built using a more flexible regression function, and rejected H0 for 100% of the
data sets.

We also observed that the test was slightly but consistently more powerful
when constructed with log-transformed coefficients of variation (L(u) = log u)
than with untransformed coefficients of variation (L(u) = u), and this despite
exhibiting lower type-1 error rates.

6. An application to the progression of leukemia

We conducted an experiment to study tumor growth in mice inoculated with
leukemia stem cells. Eighteen mice were randomized into 2 groups of 9 mice
each. In the first group, blood samples were collected every 24 hours from day 5
to day 10 post-inoculation; in the second group, samples were collected every 24
hours from day 5.5 to day 9.5. We quantified the number of leukemia blast cells
and of normal (non-leukemic) cells using flow cytometry. Figure 3 shows the
number of leukemic cells (panels A) and the number of normal cells (panels B)
on a log-scale. The sample coefficients of variation are plotted against time in
panels C and D.

As tumor burden increases, the number of normal cells in the blood changes
over time primarily through immigration of cells from the bone marrow and
through cell death. Leukemia cells change in number via immigration of cells
from other tissues of the body (e.g., the bone marrow) or from differentiation
of stem/precursor cells that are already in the blood. These cells also undergo
self-renewing division. The impact of apoptosis (cell death) on cancer cells is
likely limited, but these cells may exit the blood stream by migrating into other
tissues and organs of the body. Thus, the pool of normal cells could be described
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Fig 3. Cell counts (log-scale; top panels) and sample coefficients of variation (bottom panels)
for leukemia blast cells (left panels) and for normal cells (right panels) in two groups of mice
(circles: group 1; squares: group 2) plotted against time.

by a subcritical age-dependent branching process with immigration, whereas a
supercritical process with immigration would be more appropriate to model the
kinetics of leukemia cells.

The pool of normal cells in the blood expanded over time, and the increase in
cell count accelerated around days 8–9. The number of leukemia cells increased
exponentially, and there is no clear evidence that their immigration rate might
have changed over time. The coefficients of variation for the number of leukemia
cells were much higher on day 5 and on day 5.5 than in subsequent days, a
possible consequence of the fact that some cell counts were too small to be
reliably quantified at these time points. These values were excluded from the
analyses. For both cell types, the coefficients of variation increased over time
starting from day 6. The trend was similar for the two groups of mice, and
suggested that the immigration rate was time-dependent. Based on Theorem
3.2, the shape of the coefficient of variation as observed for normal cells could
be consistent with an immigration rate that decreases with time; for example,
the immigration rate could have the form r(t) = rtθ, for some exponent θ ∈
(−1, 0). The methodology presented in this paper does not permit confirming
this observation, however.

To assess the assumption that the immigration rate remained constant over
time, we constructed our test using the coefficients of variation (L(u) = u) and
their log-transformed values (L(u) = log u), and considered two sets of linear
predictors:

xj = [1, gj − 1, tj, (gj − 1)tj]
T
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Table 3

P -values resulting from the analysis of the leukemia data

L(u) = u L(u) = log u

linear quadratic linear quadratic

normal cells 5.9× 10−7 7.8× 10−6 1.6× 10−9 1.7× 10−14

leukemia cells 0.051 0.054 0.13 0.027

and
xj = [1, gj − 1, tj, (gj − 1)tj , t

2
j ]

T,

where gj = 1 or 2 in accordance with group membership (i.e., observed from
day 5 or from day 5.5). In the first set of predictors (referred to as linear),
tj is entered linearly in the vector xj , and we compared the value of our test
statistic to a chi-squared distribution with two degrees of freedom: one coming
from tj and one from the interaction between tj and gj . In the second set of
predictors (referred to as quadratic), tj is entered in xj both as a linear and as a
quadratic term, and we compared the value of our test statistic to a chi-squared
distribution with three degrees of freedom because three of the predictors were
associated with tj . We note that group membership (gj) is included in xj to
allow for potential differences between the coefficients of variation computed in
the first and in the second group of mice.

The p-values for normal cells and for leukemia cells obtained with these tests
are presented in Table 3. They were all highly significant for normal cells, sug-
gesting that immigration of these cells into the blood was likely time-dependent.
Depending on the method used to construct the test statistic, the p-values of the
coefficient of variation for leukemia cells were either non-significant but trend-
ing, or barely significant. Thus, immigration of leukemia cells was also possibly
time-dependent. Immigration of leukemia cells could slow down as a result of
cells exiting the mitotic cycle to undergo resting by entering the G0 phase. We
performed additional experiments (see Figure 4) in which we measured the per-
centage of cells in the G0-G1 phase and in the S phase. We found that the former
decreased while the latter increased over time. These results seemed to confirm
our previous conclusions, which may have clinical implications. For example,
it has been suggested that patient’s survival may be prolonged by employing
therapies designed to maintain the population of tumor cells at acceptable lev-
els rather than attempting to eradicate all cancer cells, a strategy which could
result in extensive damage to normal tissues. Such an approach would be viable
if cancer cells were adapting their dynamics to their micro-environment, which
is what our data suggests.

7. Conclusion

We have proposed a test to assess the assumption that the rate of immigration of
an age-dependent branching process with immigration is time-dependent. These
models find many applications in biology.
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Fig 4. Percent normal cells (+) and leukemia cells (o) in the G0-G1 phase (left panel) and
in the S phase (right panel) plotted against time.

Although the construction of our test hinges on the theory of branching
processes, its implementation does not require any such process to be fitted.
Furthermore, the distribution function of the lifespan and the shape of the
immigration rate (if time-dependent) need not be specified. Since the asymp-
totic behavior of the coefficient of variation holds under fairly mild regularity
conditions, this feature endows the test with robustness properties. Practically
speaking, only required is fitting a linear model and estimating a variance-
covariance matrix using (e.g.) a bootstrap procedure. It requires that multiple
independent runs of the process be observed so coefficients of variation can be
estimated, which is the case in many biological experiments.

The test exhibited good performances in simulation studies. As previously
discussed, its power generally decreases when the embedded Bellman-Harris pro-
cess is super-critical. We argued that this arises from the fact that immigration
has less impact on the dynamics of the process than in the sub- and critical cases.
This limitation is inherent to the property of super-critical processes. Thus, we
do not expect it to be unique to the proposed test and it is likely that most, if
not all, tests would suffer from this limitation under the same setting. Nonethe-
less, we found, in simulation studies, that the test exhibited reasonable power in
situations similar those that may be encountered in practice. Another limitation
of the proposed test is that it is constructed using the asymptotic behavior of
the coefficient of variation, and t1 has to be large enough so Cv(tj), j = 1, . . . ,m,
are close to c0, should H0 be true. Exact derivation in the Markov case and our
simulations (non-Markov case) suggested that convergence occurs quickly.

This test not only offers insights into cell kinetics, but provides also an impor-
tant tool in model construction. For example, the analysis presented in Section
6 indicated that the influx of normal (and may be leukemic) cells into the blood
stream should be modeled using a time-dependent immigration rate. Estimators
for this class of processes are yet to be constructed before we can validate our
conclusions. This will be done in future work.
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Appendix A: Asymptotic behavior of the mean and variance

We recall the following result (e.g, see [18]):

Theorem A.1 (Moments when immigration is time-homogeneous).
Assume that r(·) ≡ r.

(i) If α < 0, then M(t) → rγA, and V (t) → r[γ(B +A) + γ2A2].
(ii) If α = 0, then M(t) = rγt, and V (t) ∼ γrKB2t

2/2.
(iii) If α > 0, then M(t) ∼ rγKAe

αt/α, and V (t) ∼ r(γKB3 + γ2K
2
A)e

2αt/2α.

When the immigration rate changes over time, it follows from eqn. (3.5)
that M(t) = γR(t) when α = 0. When α 6= 0, the asymptotic behavior of
M(t) is more complex. It is given in Theorem 3.2 for three important classes
of immigration rates. Define the quantities: E1(α) =

∫∞

0 e−αx(1 + x)−1dx, and

Âρ =
∫∞

0 e−ρuA(x)dx. Notice that E1(α) < ∞ if α > 0, and Âρ < ∞ if ρ > α.

Theorem A.2 (Expectation with time-inhomogeneous immigration).

Case 1. If r(t) = r/(1 + t), then M(t) ∼ γAr/(1 + t) if α < 0, and M(t) ∼
γrE1(α)A(t) if α > 0.

Case 2. If r(t) = rtθ, θ > −1, then M(t) ∼ γAr(t) if α < 0, and M(t) ∼
γrΓ(θ + 1)A(t)/αθ+1 if α > 0.

Case 3. If r(t) = reρt, ρ > 0, then M(t) ∼ γÂρr(t) if ρ > α, M(t) ∼ γrA(t)/(α−
ρ) if ρ < α, and M(t) ∼ γrtA(t) if ρ = α.

Theorem A.3 (Variance when immigration is time-nonhomogeneous).

Case 1. If r(t) = r/(1 + t), then V (t) ∼ [γ(B + A) + γ2A2]r(t) if α < 0,
where A2 =

∫∞

0
A2(x)dx < ∞;V (t) ∼ γrKB2t log(1 + t) if α = 0;

V (t) ∼ rE1(α)(γKB3 + γ2K
2
A)e

2αt if α > 0.

Case 2. If r(t) = rtθ, θ > −1, then V (t) ∼ [γ(B + A) + γ2A2]r(t) if α < 0;
V (t) ∼ γrKB2t

θ+2/(θ + 1)(θ + 2) if α = 0; V (t) ∼ rΓ(θ + 1)(γKB3 +
γ2K

2
A)e

2αt/(2α)θ+1 if α > 0.

Case 3. If r(t) = reρt, ρ > 0, then V (t) ∼ [γ(Âρ + B̂ρ) + γ2Â2
ρ]r(t) if ρ >

2α where Âρ =
∫∞

0 e−ρuA(x)dx < ∞, B̂ρ =
∫∞

0 e−ρuB(x)dx < ∞,

Â2
ρ =

∫∞

0 e−ρuA2(x)dx < ∞; V (t) ∼ r(γKB3 + γ2K
2
A)te

2αt if ρ = 2α;
V (t) ∼ r(γKB3 + γ2K

2
A)e

2αt/(2α− ρ) if ρ < 2α.

Appendix B: Proof of Theorem A.2

It follows from eqn. (3.5) that M(t) can be decomposed as M(t) = γ{J1(t) +
J2(t)}, where J1(t) =

∫ ǫt

0 A(t − u)r(u)du and J2(t) =
∫ t

ǫt A(t − u)r(u)du, for
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some constant ǫ ∈ (0, 1).

Case 1. If α < 0 then

r(t)

∫ t(1−ǫ)

0

A(u)du ≤ J2(t) ≤ r(tǫ)

∫ t(1−ǫ)

0

A(u)du,

and we deduce that J2(t) ∼ Ar(t). Next, for large enough t, there exists ∆ > 0
such that

J1(t) ≤ (KA +∆)A(t(1 − ǫ)) log(1 + ǫt) = o(r(t)),

and we deduce that M(t) ∼ γAr(t).

Assume now that α > 0. Since Ã(t) = e−αtA(t)/KA → 1, we deduce that

M(t) = γKAe
αt

∫ t

0

Ã(t− u)e−αur(u)du = γKAe
αt{I1(t) + I2(t)},

where I1(t) =
∫ ǫt

0
Ã(t − u)e−αur(u)du and I2(t) =

∫ t

ǫt
Ã(t − u)e−αur(u)du for

any ǫ ∈ (0, 1). For large enough t, there exists δ ∈ (0, 1) such that

(1 − δ)

∫ ǫt

0

e−αur(u)du ≤ I1(t) ≤ (1 + δ)

∫ ǫt

0

e−αur(u)du,

from which we deduce that I1(t) → rE1(α). There exists also a constant K > 0
such that

I2(t) ≤ K

∫ t

ǫt

e−αu(1 + u)du → 0.

Hence M(t) ∼ γrE1(α)A(t).

Case 2. Assume that α > 0. Then for large enough t, there exists δ ∈ (0, 1),
such that

(1 − δ)r

∫ ǫt

0

e−αuuθdu ≤ I1(t) ≤ (1 + δ)r

∫ ǫt

0

e−αuuθdu,

which implies that I1(t) → rΓ(θ + 1)/αθ+1. Similarly to the previous case, we
have that

I2(t) ≤ Kr

∫ t

ǫt

e−αuuθdu → 0,

which completes the proof in this case.
Assume next that α < 0. Then

J1(t) ≤ rǫθtθ
∫ t

t(1−ǫ)

A(x)dx = o(r(t)).

Similarly to Case 1, we have, for θ ≥ 0, that

r(ǫt)

∫ t(1−ǫ)

0

A(u)du ≤ J2(t) ≤ r(t)

∫ t(1−ǫ)

0

A(u)du,
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and, for θ ∈ (−1, 0),

r(t)

∫ t(1−ǫ)

0

A(u)du ≤ J2(t) ≤ r(ǫt)

∫ t(1−ǫ)

0

A(u)du,

from which we deduce, in both subcases, that J2(t) ∼ Ar(t). Therefore M(t) ∼
γAr(t).

Case 3. Notice that

M(t) = γreρt
∫ t

0

e−ρuA(u)du.

The proof follows directly from this expression when ρ > α. When 0 < ρ ≤ α,
the proof results from the fact that, for any T ∈ (0, t),

M(t) = γreρt

{∫ T

0

e−ρuA(u)du+

∫ t

T

e−ρuA(u)du

}
= γreρt{L1(T ) + L2(t)},

and, for large (but fixed) T , L1(T ) is finite whereas, as t → ∞, L2(t) ∼
KAe

(α−ρ)t/(α− ρ) when ρ < α and L2(t) ∼ KAt when ρ = α.

Appendix C: Proof of Theorem A.3

When α 6= 0, the proofs are similar to those of Theorem A.2 and they are
omitted. They are only provided for Case 1 when α = 0 (the proofs are similar
in Cases 2 and 3).

Case 1. If α = 0, then B(t) = KB2t+ o(t), and algebraic calculations show that
∫ t

0

r(t− u)udu = r[t log(1 + t)− t+ log t]

∼ rt log(1 + t).

Moreover
∫ t

0
r(t − u)o(u)du = I1(t) + I2(t), where, for any ε ∈ (0, 1), I1(t) =

r
∫ εt

0
o(u)(1 + t− u)−1du and I2(t) = r

∫ t

εt
o(u)(1 + t− u)−1du. It can be shown

that

I1(t) ≤ r[1 + t(1− ε)]−1

∫ εt

0

o(u)du = r[1 + t(1− ε)]−1o(t2) = o(t).

For every δ > 0, we can choose εt large enough such that o(x) ≤ δx for x ≥ εt.
Therefore

I2(t) = r

∫ t

εt

o(u)(1 + t− u)−1du

≤ rδ

∫ εt

0

u(1 + t− u)−1du

= rδ{t log[1 + t(1− ε)]− t(1− ε) + log[1 + t(1− ε)]},
from which we deduce that I2(t) = o(t log[1 + t]). Hence

∫ t

0 r(t − u)B(u)du ∼
rKB2t log(1 + t). Since M(t) = γ log(1 + t), we finally deduce that V (t) ∼
γrKB2t log(1 + t).
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