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1. Introduction

The statistical analysis of extreme outcomes of stochastic processes plays an
important role in many disciplines, including environmental and climatological
research, finance and actuarial science. Extreme events in such processes can
stretch across space and time and can inflict considerable damage. Extreme
value analysis provides a coherent methodology to stochastically model extremes
and to quantify extreme risks.

The last decade has seen a boom in the development of workable models
and statistical inference for spatial and spatio-temporal extremes in the asymp-
totically dependent case; see Davison, Padoan and Ribatet [17], Davison and
Gholamrezaee [15] who provide an overview of the field of geostatistics of ex-
tremes. The commonly used models are based on max-stable processes [19].
Max-stability arises naturally as an asymptotic property for maxima and has
its counterpart for threshold exceedances in the peaks-over-threshold stability of
generalized Pareto processes [26, 20, 2]. Estimation approaches based on thresh-
old exceedances [7, 28, 3, 48, for instance] currently receive increasing attention
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due to their potential for more efficient and more flexible estimation in compar-
ison to an often used composite likelihood approach with block maxima [34].

In this paper, we exploit peaks-over-threshold stability in the bivariate distri-
butions: in adequately defined pseudo-polar coordinate systems, it corresponds
to limiting independence between the angular and the radial component as the
radial level increases towards infinity. The spectral measure describes the distri-
bution of angles and characterizes the bivariate extremal dependence. It presents
the advantage of being a univariate measure, which simplifies statistical proce-
dures. Throughout the following presentation, we employ the term “space-time”
when referring to time, space or space augmented by the time dimension.

Based on the assumption of stationarity, we define the spectrogram as an
inferential tool for pairwise behavior with respect to the lag in space-time. It
is constituted from the spectral measures for point pairs in space-time and
provides a generalized and unified view on dependence characterizations like
the extremal coefficient function [42] or the tail correlation function, a variant
of the extremogram [14]. We propose novel and flexible estimation procedures
for such summary functionals and parametric extreme value models.

The remainder of this paper is organized as follows: At the beginning of Sec-
tion 2, we first present some necessary background on extreme value theory and
max-stable processes. Then, it is adapted to our purposes by defining the notions
of radial aggregation and spectral measures closely related to well-known sum-
maries and characterizations of extreme value dependence. This approach gen-
eralizes the usual norm-based definition of radial aggregations in the literature.
The spectrogram and its inferential toolbox are subject of the central Section 3,
which features novel theoretical results for a variance reduction technique in em-
pirical estimation and for parametric inference in model-based approaches. We
substantiate the utility of the introduced notions: first numerically, by means of
a simulation study in Section 4 that shows to what extent our parametric esti-
mation approach can improve estimation efficiency in comparison to a standard
approach, then in the context of an application to daily precipitation data over
the French Cévennes region in Section 5. The concluding remarks in Section 6
address some remaining issues and perspectives. A recall of useful dependence
structures for spatial extremes is deferred to the appendix. All computations in
this paper were carried out with the statistical software library R [47].

Notations

Operations on vectors shall be interpreted componentwise, as in x+ y = (x1 +
y1, . . . , xm + ym) or x/y = (x1/y1, . . . , xm/ym). We further use the constant
vectors 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T . The components of an indexed
vector xi are given as xij , j = 1, . . . ,m. Rectangular bounded or unbounded
sets are given with vectorized notations like [y, z] = [y1, z1]×· · ·× [ym, zm]. The
complementary set of B ⊂ R

m is denoted by BC , and its boundary is written
∂B. The operator (·)+ = max( · , 0) truncates at 0. The indicator function of a
set B is written χB. For a Dirac function we write χx0

(·) with χx0
(x) = 1 if

x = x0 and χx0
(x) = 0 otherwise.
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2. Extreme value theory

2.1. Domain of attraction

The fundamental limit theorem of extreme value theory states that convergence
of a process of rescaled pointwise maxima leads to a max-stable limit process
[19]: for n independent copies {Xi(s), s ∈ D} of a process X defined on a non-
empty measurable set D ⊂ R

d, we assume that
{

max
i=1,...,n

an(s)
−1(Xi(s)− bn(s))

}

→ {Z(s)}, n→ ∞, (2.1)

where an(s) > 0 and bn(s) are adequately chosen normalizing sequences and
Z = {Z(s)} is a non-degenerate limit process. Then Z is max-stable, and we say
that X is in the domain of attraction of Z. For continuous stochastic processes,
the domain of attraction condition (2.1) has recently been related to exceedances
over a high threshold. The limiting Generalized Pareto (GP) processes have
been studied by Ferreira and de Haan [26] and Dombry and Ribatet [20]; an
adaptation to the flexible extremal-t dependence model was developed in [48].
When continuity is assured on a compact domain D, each max-stable process
has its Pareto equivalent and vice versa.

A general constructive approach to generate max-stable models goes back to
the seminal paper of de Haan [19]: Let {Vi} be the points of a Poisson process
on (0,∞) with intensity v−2dv, and let independently Qi(s) for s ∈ D and
i = 1, 2, . . . be independent replicates of a random function Q with EQ+(s) = 1.
Then

Z(s) = max
i=1,2,...

ViQi(s), s ∈ D, (2.2)

defines a max-stable field on D with unit Fréchet margins. This construction
was interpreted by Smith [44] to introduce a class of models sometimes referred
to as storm profile processes : a uniform Poisson process {Si} on R

d is used to
define Qi(s) = f(s, Si) for some non-negative kernel function f : Rd×R

d → R+,
∫

f(s1, s2)ds2 = 1 for all s1, which describes the deterministic shape of storms.
The Gaussian extreme value process is obtained for the Gaussian density f .
Random storm shapes Q were proposed by Schlather [41] and define the class
of extremal Gaussian processes if Q is a Gaussian random field Qgauss. A more
general class are the extremal t processes which arise from Q = cη(Qgauss

+)η

with η > 0 and a normalizing constant cη [32]. The Brown–Resnick process

[6, 29] arises from Q = exp(Q̃ − 0.5 var(Q̃)) with Q̃ defined as a fractional
Brownian motion [31]. We refer to Appendix A for the bivariate expressions
and spectral measures of these models.

Max-stable processes are characterized by finite-dimensional max-stable dis-
tributions, also known as multivariate extreme value distributions (MEVD) G.
Max-stability means that vector sequences αn > 0 and βn exist satisfying
Gn(αnz+ βn) = G(z). In particular, univariate marginal distributions Gj of a
max-stable process are generalized extreme value distributions (GEV):

Gj(z) = GEVξj ,νj ,σj
(z) = exp

[

−
{

1 + ξjσ
−1
j (z − νj)

}−1/ξj

+

]

, (2.3)
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with three parameters: ξj for shape, νj for position and σj > 0 for scale. The
case ξj = 0 corresponds to Gj(z) = exp[− exp{−(z − νj)/σj}]. It is convenient
to assume univariate marginal distributions given by the unit Fréchet distri-
bution G∗

j (z) = exp(−1/z)χ(0,∞)(z). The transformation −1/ logGj(Zj) can
be applied to all margins Zj of Z, which yields a multivariate extreme value
distribution G∗ with unit Fréchet marginal distributions G∗

j .
Balkema and Resnick [4] showed that any MEVD G can be represented

through an exponent measure µ as G(z) = exp(−µ(−∞, z]C). For G∗, the expo-
nent measure µ∗ can be defined on the punctured cone E = [0,∞) \ {0} ⊂ R

m

and satisfies the following property of homogeneity of order −1:

µ∗(tB) = t−1µ∗(B), t > 0, (2.4)

for Borel sets B ⊂ E = [0,∞] \ {0} [36]. The marginal tail mass of µ∗ is
µ∗{z : zj > z0} = 1/z0 for z0 > 0. The exponent function V is often used
to write a MEVD G∗(z) as exp(−V (z)), where V (z) = µ∗([0, z]C). We can
standardize the margins Xj of X to assure convergence of pointwise max-
ima towards G∗. Therefore, we use a probability integral transform to trans-
form Xj to a nonnegative variable X∗

j with standard Pareto tail behavior such
that xP (X∗

j > x) → 1 as x tends to infinity. Then (2.1) is true for X∗

with an = n, bn = 0 and limit distribution G∗. There is no unique choice
for the ∗-transformation; common choices in the literature are to use either
X∗

j = −1/ logFj(Xj) or X∗
j = 1/(1 − Fj(Xj)), leading respectively to unit

Fréchet or standard Pareto target distributions when Fj is continuous.
The convergence and estimation of univariate extreme value behavior has

been extensively studied, see the introductory presentation in Coles [11], for in-
stance. After standardizing the marginal distributions with the ∗-transformation,
it is convenient to focus on the dependence structure. The representation through
the exponent measure µ∗ allows us to formulate convergence not in terms of max-
ima, but in a more general way based on the original data through the concept
of multivariate regular variation, see Chapter 6 in Resnick [37]. The following
vague convergence property is satisfied on E:

µ∗
n(·) = n pr(n−1X∗ ∈ ·) → µ∗(·), n→ ∞. (2.5)

Vague convergence is equivalent to the convergence µ∗
n(K) → µ∗(K) for all sets

K relatively compact in E for which µ∗(∂K) = 0.

2.2. Pseudo-polar representations and spectral measures

We now introduce the notion of radial aggregation and the resulting spectral
measures. A sizeable amount of literature on spectral measures exists; we refer
the reader to Section 8.2.3 in [5] for a presentation of the usual approach with
the aggregation of a vector defined as a norm of the vector. In the following,
this framework is slightly generalized to 1-homogeneous functions, allowing us
to apply useful aggregation functions that are not norms.
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2.2.1. Radial aggregation

The homogeneity (2.4) allows us to factorize µ∗ in pseudo-polar coordinate
systems with a radial and an angular component. If the radial component is
typically chosen as a norm of a vector x ∈ E in the literature, other choices will
be meaningful for our purposes. Therefore, we propose the more general concept
of an aggregation function, which aggregates a vector x ∈ E into a scalar value.

Definition 2.1 (Aggregation function). A non-null and measurable function

rad : [0,∞) → [0,∞) (2.6)

is called aggregation function if it is continuous and verifies the following 1-
homogeneity condition:

rad(tx) = t rad(x), t > 0.

An aggregation function defines the radius r = rad(x) of x ∈ E.

Due to the continuity and the homogeneity of rad, the unit sphere Srad =
{x ∈ [0,∞) | rad(x) = 1} associated to rad is relatively compact in the space
E. To introduce a pseudo-polar transformation T , we choose a norm ‖ ·‖ on R

m,
called angular norm, and write S = {x ∈ [0,∞) | ‖x‖ = 1} for the intersection
of the first quadrant and the unit sphere with respect to ‖ · ‖. We define

T : E → [0,∞)× S, (r,w) = T (x) = (rad(x),x/‖x‖) . (2.7)

The mth coordinate of the angle w is determined by the remaining ones and can
thus be suppressed. We can now represent the limit measure µ∗ and the vague
convergence (2.5) in pseudo-polar coordinates. In general, difficulties in proving
convergence with respect to pseudo-polar coordinates arise from the fact that rad
and T are not defined for the values at infinity, whereas the vague convergence
in (2.5) is stated with respect to the “compactified” space [0,∞] punctured at
the origin (cf. the proof of Theorem 6.1 in Resnick [37], for instance).

The spectral measure ρrad associated with T and µ∗ is defined on S by
ρrad(B) = µ∗({x ∈ E | rad(x) ≥ 1, x/‖x‖ ∈ B}) for measurable sets B ⊂ S
and gives rise to a product representation of µ∗:

µ∗ ◦ T−1(d(r,w)) = r−2dr × ρrad(dw) (2.8)

on (0,∞)×{w ∈ S : rad(w) > 0}, with an invariant radial component showing
a standard Pareto tail and the spectral measure ρrad as the angular component
that captures the extremal dependence structure. In the case where ρrad(S) >
0, the normalized measure ρrad(·)/ρrad(S) is called spectral distribution. When
there is no risk of confusion, we will use the simpler notation ρ instead of ρrad.

Proposition 2.1 (Convergence in pseudo-polar coordinates). If the random
vector X∗ with standardized margins verifies the convergence (2.5), then R =
rad(X∗) is univariate regularly varying such that

n pr(n−1R ≥ r) → ρ(S) r−1, n→ ∞. (2.9)
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More generally, vague convergence holds in pseudo-polar coordinates:

n pr(T (X∗/n) ∈ ·) → µ∗ ◦ T−1(·), n→ ∞, (2.10)

on (0,∞]× S.
To simplify the proof of Proposition 2.1, we first provide a useful lemma.

Lemma 2.1. Set Ar1,r2 = {x ∈ E | r1 ≤ rad(x) ≤ r2} for 0 < r1 ≤ r2 ≤ ∞,
and denote by ∂Ar1,r2 its boundary with respect to the space E. Then

• Ar1,r2 is relatively compact in E and
• µ∗(∂Ar1,r2) = 0.

Proof of Lemma 2.1. First, we remark that µ∗(rSrad) = 0 for 0 < r <∞. Oth-
erwise, the homogeneity property of µ∗ would lead to a contradiction concerning
the Radon property of µ∗. For r2 <∞, the set Ar1,r2 = {rSrad | r1 ≤ r ≤ r2} is
compact in E due to the compactness of Srad. Then ∂Ar1,r2 = r1Srad ∪ r2Srad

such that µ∗(∂Ar1,r2) = 0.
For r2 = ∞, it is easy to see that Ar1,∞ ∪ ∂Ar1,∞ is closed in [0,∞]. Due to

the continuity of rad at 0 and rad(0) = 0 we have 0 6∈ ∂Ar1,∞. From Proposition
6.1 of [37], we conclude that Ar1,∞ is relatively compact in E. Since ∂Ar1,∞ =
r1Srad, we observe µ∗(∂Ar1,∞) = 0, which finishes the proof.

Proof of Proposition 2.1. Using the technical properties concerning the region
of radial exceedances detailed in Lemma 2.1, the proof is straightforward. The
convergences (2.9) and (2.10) are obtained from the convergence (2.5) by using
certain relatively compact sets.

With (R,W) = T (X∗), the inferential approaches worked out in the following
rely upon the approximation

pr(R ≥ r, W ∈ B) ≈ r−1ρ(B) (2.11)

for a high radial threshold r.

2.2.2. Properties of the spectral measure

The choice of angular norm is a choice of convenience since convergence results
do not depend on it. In the following, we focus on the angular L1-norm ‖x‖ =
∑m

j=1 xj onE. In the bivariate case, the first angle componentw = w1 designates
an angle (w1, 1−w1), so we can identify S with [0, 1]. If rad(w) > 0 for allw ∈ S,
then µ∗ is uniquely determined by the spectral measure ρ which is only subject
to the moment constraints

∫

S

wj

rad(w)
ρ(dw) = 1, j = 1, . . . ,m. (2.12)

Denote by ej the canonical vector with j-th component 1 and 0 elsewhere.
If rad(·) = ‖ · ‖rad is a norm such that ‖ej‖rad = 1 for j = 1, . . . ,m, then
1 ≤ ρ(S) ≤ m. With extremal independence, we observe ρ({ej}) = 1; with full
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extremal dependence, we observe ρ(S) = ρ({1/‖1‖}) = ‖1‖rad. We can switch
between two spectral measures ρ1 and ρ2 associated to aggregation functions
rad1 and rad2 respectively, given that {w ∈ S : rad2(w) > 0} ⊂ {w ∈ S :
rad1(w) > 0}, via the transformation formula

ρ2(dw) =
rad2(w)

rad1(w)
ρ1(dw), (2.13)

which holds on {w ∈ S : rad1(w) > 0}. In Section 3.1, we discuss a variance
reduction technique based on (2.13).

2.2.3. Empirical estimation of spectral measures

Given data vectors xi, i = 1, . . . , n, we can define an empirical spectral measure
based on the tail approximation (2.11). The set of atoms of the empirical mea-
sure is given by the angles that are associated to radii exceeding a high radial
threshold r0 (see Beirlant et al. [5], Section 9.4.1). In practice, we first have to
apply a probability integral transform for standardizing xi to x∗

i . This requires
knowledge or estimation of marginal data distributions Fj and the choice of a
marginal target distribution with support in [0,∞) and tail asymptotics accord-
ing to the standard Pareto distribution. We can estimate marginal distributions
either nonparametrically via the empirical distribution function [22, 23] or via
some other adequate marginal distribution, for instance with its tail behavior
estimated according to the parametric tail model (2.3) from univariate extreme
value theory [21]. The commonly used target is the unit Fréchet distribution.
Then we fix a high radial threshold r0 > 0 and define the empirical spectral
measure

ρ̂n(·) = r0n
−1

n
∑

i=1

χ[r0,∞)(rad(x
∗
i ))χ‖x∗

i
‖−1x∗

i
(·). (2.14)

When the number of radial exceedances N =
∑n

i=1 χ[r0,∞)(rad(x
∗
i )) is at least

1, we can directly estimate the empirical spectral distribution ρp,n by replac-
ing the weight r0n

−1 in (2.14) by N−1. In some cases, the enforcement of the
moment constraints (2.12) upon the empirical spectral measure may be desir-
able for reasons of theoretical coherence. Therefore, we can wiggle atom weights
by applying either an empirical likelihood procedure [23] or a Euclidean likeli-
hood procedure [18]. The choice of r0 is important, yet rarely straightforward.
It should take into account bias and variance according to convergence in the
domain of attraction setting. In practice, it is based on exploratory analyses,
see also the remarks in Section 3.1 and in the application in Section 5.

The convergence rate in data towards the asymptotic distribution may sug-
gest an aggregation function rad to use for the empirical estimator. Aggregations
like the maximum, which retain many of the extreme observations outside the
joint bivariate tail, might be advised against in case of slow convergence. On
the other hand, aggregations like the minimum use only a limited amount of
information about extreme value behavior by focusing on observations falling
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into the joint tail. Convenient choices are the mean rad(x1, x2) = 0.5(x1+x2) or
one of the marginal components such that rad(x1, x2) = x1 or rad(x1, x2) = x2,
leading to ρ(S) = 1 being invariant to the dependence structure; in such cases,
the number of exceedances N carries no information about ρrad.

2.3. Related bivariate dependence measures

Alternative characterizations of bivariate extremal dependence are obtained as
transformations of the spectral measure. Since the exponent function V (u) is
defined as µ∗([0,u]C) for u > 0, the choice rad(x1, x2) = max(x1/u1, x2/u2)
yields ρrad(S) = V (u). The extremal coefficient, given as V (1, 1), is a commonly
used tool to quantify the extremal dependence. It satisfies V (1, 1) ∈ [1, 2] with
1 corresponding to full asymptotic dependence and 2 corresponding to asymp-
totic independence. It is equal to ρrad(S) with rad = max. The two following
approaches are also often used.

2.3.1. Pickands dependence function

Pickands [35] showed that a bivariate distribution G∗ is a MEVD if and only if
there exists a convex function A(·) such that

G∗(x, y) = exp (−(1/x+ 1/y)A(x/(x+ y))) , (2.15)

with A(·) : [0, 1] → [1/2, 1] satisfying the following property: min(t, 1 − t) ≤
A(t) ≤ 1 for t ∈ [0, 1]. The lower and upper bounds correspond to complete
dependence and independence, respectively. The Pickands dependence function
A(·) can be related to the spectral measure ρrad [5]:

A(t) =

∫

[0,1]

max {(1− t)w, t(1 − w)}
rad(w, 1− w)

ρrad(dw). (2.16)

2.3.2. Extremogram function

When (X1, X2) is in a maximum domain of attraction, the (upper) tail coef-
ficient λ, defined as the conditional limit limu→∞ pr(X∗

2 > u | X∗
1 > u) =

limu→∞ pr(X∗
1 > u | X∗

2 > u), is often used to measure the extremal depen-
dence. It is related to the extremal coefficient, V (1, 1) = 2− λ. This coefficient
λ can be defined as µ∗([1,∞]) and is equal to ρrad(S) for rad = min.

For stationary stochastic processes, functional dependence summaries based
on the extremal coefficient or the tail coefficient can be considered. Given a
space-time lag ∆s and the aggregation function rad = max, the extremal co-
efficient function is ∆s 7→ V (1, 1;∆s) = ρmax(S; ∆s). For the tail coefficient,
we obtain the tail correlation function (see Strokorb, Ballani and Schlather
[46, 45], Fiebig, Strokorb and Schlather [27] for some theoretical characteriza-
tions)

∆s 7→ ρmin(S; ∆s), (2.17)
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which is a variant of the so-called spatial extremogram [10] originally defined in
the time series context [14]. The extremogram (2.17) has a simple interpreta-
tion as a correlation function. More generally, [14] have coined the term “ex-
tremogram” for not necessarily standardized data and expressions like µ(A×B)
or µ(A×B)/µ(A) with limit measures µ that are (−α)-homogeneous with some
α > 0, where A and B are Borel sets that must be bounded away from 0. In
our space-time setting with a univariate random field and marginally standard-
ized data, it is most useful to specify A = B = [u,∞] with u > 0, leading to
ρmin(S; ∆s) = µ∗(A × B)/µ∗(A) = uµ∗([(u, u), (∞,∞)]) = µ∗([(1, 1), (∞,∞)])
as in the definition (2.17) that we will use in what follows.

3. The spectrogram

In this section, the extremal dependence structure of a stationarity process in a
maximum domain of attraction is considered, leading to invariance with respect
to space-time shifts. We apply the angular L1-norm such that we can identify
S = {(w, 1 − w) | w ∈ [0, 1]} with the unit interval [0, 1]. Given a space-time
lag ∆s and an aggregation function rad, we denote by ρrad( · ; ∆s) the bivariate
spectral measure of the limit process in (2.1).

Definition 3.1 (Spectrogram). We call spectrogram the collection of spectral
measures {ρrad(dw; ∆s) | ∆s ∈ ∆K} for point pairs in K, with ∆K = {x− y |
x, y ∈ K}. Using the notation ρrad(w; ∆s) = ρrad([0, w]; ∆s) for the cumula-
tive spectral measure function, we define the cumulative spectrogram as the set
{ρrad(w; ∆s) | w ∈ S,∆s ∈ ∆K}.

Examples of isotropic spatial spectrograms are shown in Figure 1 for the mean
aggregation rad(x1, x2) = 0.5(x1+x2). For small distances, densities concentrate
close to 0.5 since x1 and x2 tend to be close. At distance 0, there is discrete mass
1 in 0.5. If there is asymptotic independence when distances increase to infinity,
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Fig 1. Spectrogram densities. With respect to angle (horizontal axis) and distance (vertical
axis) in isotropic models for the mean aggregation function rad(x1, x2) = 0.5(x1 + x2); from
left to right: Gaussian extreme value model (σ11 = σ22 = 1, σ12 = 0); Brown–Resnick model
(shape = 1, scale = 1); the continuous part of the extremal Gaussian model (stable correlation,
shape = 2, scale = 1).
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a very high value arises only in either x1 or x2, whereas the other component
remains relatively small. Then, the mass of the spectral measures concentrates
closer and closer to 0 or 1. The extremal Gaussian process stands apart since it
is not mixing and always exhibits long-range dependence. Moreover, in addition
to the density displayed in Fig. 1, discrete mass arises in the spectral measure for
the angles 0 and 1: ρ({0}; ∆s) = 0.25 (1−Cor(∆s)), where Cor is the correlation
function of the Gaussian field Q in the construction (2.2), cf. Appendix A.

3.1. Empirical estimators and variance reduction

In the sequel, we will shortly write ρ instead of ρrad when there is no con-
fusion. Given a sample of observations of a space-time process, an empirical
spectrogram consists of a collection of empirical spectral measures for a selec-
tion of lags in space-time obtained according to the estimators presented in
Section 2.2.3. Typically, we assume temporal stationarity of marginal distribu-
tions, which may require some pretransformation. Using a mixing assumption
[28], we can then apply the empirical transform to standardize margins accord-
ing to the ∗-transformation. Moreover, we can estimate univariate marginal tail
parameters with procedures for dependent samples as for instance the composite
likelihood of univariate margins.

Statements on the consistency and asymptotic normality of cumulative em-
pirical spectral measures in the bivariate case have been deduced in the lit-
erature mentioned in Section 2.2.3 [21, 22, 23, 18], but they depend on the
nature of marginal data transformations and the rate of convergence towards
the asymptotic dependence structure. When margins are standardized based on
the marginal empirical distribution functions, consistency is obtained when (2.5)
holds and both r0 and r−1

0 n tend to infinity. Strong consistency further neces-
sitates that r−1

0 n/(log logn) tends to infinity [22, Theorem 1]. For asymptotic
normality, more involved conditions are necessary to control the second-order
behavior in convergence (2.5) [22, Theorem 2].

For an assessment of some important aspects of estimation variance, we here
propose to work in a simplified setting where marginal distributions are as-
sumed to be standardized and the limiting independence of the angular and
the radial component is satisfied at finite levels. In practice, the standardization
of margins based on some estimator of marginal distribution functions could
induce additional bias and variance. In practical modeling, we must fix r0 to
define radial exceedance observations. When we do not have equality in the tail
approximation (2.11) for a finite threshold r0, we must consider how bias and
variance depend on r0. In the following, we look at variance from a more theo-
retical stance. Providing a general theory for bias terms is more involved since
it would need assumptions on the second-order behavior in convergence (2.10).
In practice, it is useful to check if estimated dependence structures change in
a systematic way when we move r0 to more or less extreme levels. Denote by
(X∗

i (s0), X
∗
i (s0 +∆s))T (i = 1, . . . , n) the normalized sample for a space-time

lag ∆s obtained from the marginal standardization of data. Assume that the cor-
responding pseudo-polar sample (Ri,Wi) with Ri = rad(X∗

i (s0), X
∗
i (s0 +∆s))
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and Wi = X∗
i (s0)/(X

∗
i (s0) + X∗

i (s0 + ∆s)) contains 0 ≤ N ≤ n radial ex-
ceedances, indexed for N ≥ 1 without loss of generality by 1, . . . , N such that
Ri ≥ r0 (i = 1, . . . , N). We assign the dummy value Wi = −1 to the censored
observations below the radial threshold with Ri < r0, i = N + 1, . . . , n. We
make two assumptions:

(A1) The angles {Wi, i = 1, . . . , n} are independent and identically distributed
according to a density f̃(w; ∆s).

(A2) The homogeneity property (2.8) holds exactly above the fixed radial thresh-
old r0 > 0 such that

pr((R1,W1) ∈ d(r, w)) = r−2dr × ρ(dw; ∆s) for r ≥ r0. (3.1)

Hence we can write

f̃(w; ∆s) = (1− r−1
0 ρ(S; ∆s))χ{−1}(w) + r−1

0 f(w; ∆s)χ[0,1](w) (3.2)

with f( · ; ∆s) the density of ρ( · ; ∆s) and r−1
0 ρ(S; ∆s) the exceedance proba-

bility for the threshold r0. Then N ∼ Bin(n, r−1
0 ρ(S; ∆s)). For convenience of

notation, we suppress the index ∆s in the following.

Definition 3.2 (Empirical spectral measures). Define the empirical (cumula-
tive) spectral measure

ρ̂(w) = ρ̂(w; rad, r0, n) = n−1r0

N
∑

i=1

χ[0,w](wi) (3.3)

according to an aggregation function rad (cf. (2.14)). Further denote f ′ the
density of a spectral measure ρ′ according to another aggregation rad′. If {w ∈
S : rad′(w) > 0} ⊂ {w ∈ S : rad(w) > 0}, we use the transformation formula
(2.13) to define an empirical spectral measure according to rad′ by

ρ̆′(w) = ρ̆(w; rad, rad′, r0, n) = n−1r0

N
∑

i=1

rad(wi)
−1rad′(wi)χ[0,w](wi). (3.4)

We remark that ρ̆′ uses inhomogeneous angle weights

n−1r0
rad′(wi)

rad(wi)
, i = 1, . . . , N.

We further define N(w) = card{Wi ∈ [0, w]} for w ∈ [0, 1] such that ρ̂(w) =
n−1r0N(w).

Proposition 3.1 (Estimator properties). Under Assumptions (A1) and (A2),
we have N(w) ∼ Bin(n, r−1

0 ρ(w)). The standard estimator ρ̂ in (3.3) satisfies

Eρ̂(w) = ρ(w), var(ρ̂(w)) = n−1[r0ρ(w) − ρ(w)2]. (3.5)
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The transformation estimator ρ̆′ in (3.4) satisfies Eρ̆′(w) = ρ′(w) and

var(ρ̆′(w)) = n−1

(

r0

∫ w

0

[rad(v)−1rad′(v)]2f(v)dv − ρ′(w)2
)

= n−1

(

r0

∫ w

0

rad(v)−1rad′(v)ρ′(dv) − ρ′(w)2
)

. (3.6)

Due to Proposition 3.1, the estimators ρ̂ and ρ̂′ are (weakly) consistent.

Proof. The properties (3.5) of the standard estimator follow from those of
the binomial distribution of N(w). The transformation estimator (3.4) is di-
rectly related to the idea of importance sampling: based on the proposal dis-

tribution with density f̃ , we estimate the moment ρ′(w) =
∫ 1

0 g(v)dv with
g(v) = rad(v)−1rad′(v)χ[0,w](v)f(v). The unbiasedness of ρ̆′ and the variance
formula (3.6) follow from the standard results of the related theory, cf. Section
3.3 of [38].

In comparison to the variance of the standard estimator ρ̂′ of ρ′ in (3.5), the
variance of ρ̆′(B) for a measurable set B ⊂ S can increase if rad(v)−1rad′(v) ≥ 1
for v ∈ B or can decrease if rad(v)−1rad′(v) ≤ 1 for v ∈ B. The latter case
allows for variance reduction. For instance, we can estimate the extremogram
associated to rad′ = min by transforming empirical estimators obtained for the
mean rad(x1, x2) = 0.5(x1 + x2) or for some other appropriate aggregation.
Moreover, the well-known Capéraà-Fougères estimator of Pickands’ dependence
function A in (2.16) can be represented as a transformation estimator ρ̆′.

Example 3.1 (Capéraà-Fougères estimator of A). We can write A(t) =
t(1−t)V (t, 1−t) = V (1/(1−t), 1/t). Hence by defining rad′(w) = max((1−t)w,
t(1 − w)) and using the mean aggregation for rad, we obtain a transformation
estimator of A given by

Â(t) = ρ̆′(1) = 2r0n
−1

N
∑

i=1

max{(1− t)Wi, t(1−Wi)}.

The estimator Â(t) satisfies convexity and is known as the Capéraà-Fougères
estimator (Capéraà and Fougères [8], Beirlant et al. [5], p. 331).

When the spectral measure ρ is equal to the spectral distribution ρp, i.e.
ρ([0, 1]) = 1, the distribution of N is independent of the dependence structure
in ρ. This is the case for the mean aggregation and the marginal exceedance
aggregation. It is then convenient to condition on the value of N and work
with the density f̃(w) = f(w) for Wi (i = 1, . . . , N) and replace n−1r0 by
N−1 in the direct estimator (3.3) and the subsequent calculations. This yields
ρ̂(w) = N−1N(w) with N(w) ∼ Bin(N, ρ(w)). The properties of the binomial
distribution yield Eρ̂(w) = ρ(w) and Var(ρ̂(w)) = N−1(ρ(w) − ρ(w)2). The
corresponding variance of the transformation estimator (3.6) becomes

var (ρ̆′(w)) = N−1

(
∫ w

0

[

rad(v)−1rad′(v)
]2
f(v)dv − ρ′(w)2

)
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= N−1

(
∫ w

0

rad(v)−1rad′(v)ρ′(dv)− ρ′(w)2
)

. (3.7)

Since actually N ∼ Bin(n, r−1
0 ) under the standing assumptions, we get

Evar (ρ̆′(w)) = var (ρ̆(w)) − n−1(r0 − 1)ρ′(w)2.

Example 3.2 (Extremogram estimation). Estimation of the extremogram de-
fined in (2.17) requires estimates of ρmin(S). The estimator given by the standard
empirical spectral measure ρ̂min has variance n−1r0ρmin(S)(1 − r−1

0 ρmin(S)).
Similar to replacing nr−1

0 by the binomial variable N when ρ(S) = 1, we can im-
prove this estimator by replacing nr−1

0 by the binomial variable Nmarg, the num-
ber of marginal exceedances above r0 such that Nmarg =

∑n
i=1 χ(r0,∞)(X

∗(s0))

and ENmarg = nr−1
0 . The resulting new estimator, written ρ(S), corresponds to

a slightly adapted version of the empirical extremogram as proposed by Davis
and Mikosch [14], Section 3.3. Conditional on Nmarg, its variance under the
standing assumptions is Var(ρ̂(w)) = N−1

margρmin(S)(1 − ρmin(S)).
Using the transformation approach, we can define an interesting alternative

based on rad(x1, x2) = 0.5(x1 + x2) and rad′(x1, x2) = min(x1, x2). Then, con-
ditional on N , the variance of the transformation estimator is

varρ̆min(S) = N−1

(
∫ 1

0

2min(v, 1− v)ρmin(dv)− ρmin(S)2
)

. (3.8)

We remark that 2min(v, 1− v) < 1 almost everywhere, such that the integral in
(3.8) is smaller than ρmin when ρmin 6≡ 0 has a continuous density.

3.2. Parametric minimum composite distance estimation

Current standard methods for inferring models in geostatistics of extremes focus
on the information from the observed point pairs. In many cases, either ana-
lytical expressions of the likelihood cannot be calculated for higher dimensions
or the application of multivariate estimation methods is impeded by the curse
of dimensionality. We propose to perform minimum distance estimation of pa-
rameters by minimizing a distance measure between the empirical spectrogram
and a family of theoretical spectrograms according to a parametric dependence
structure of a max-stable process. Such distance measures can also serve for
model selection and goodness-of-fit procedures, see the application in Section 5
for an example.

Definition 3.3 (Composite distance). For ∆ks, k = 1, . . . , k0, a collection
of observed lags with nk ≥ 1 observed data pairs respectively, we use some
distance metric dist(ρk,nk

, ρk,θ) between the empirical spectral measure and
a and parametric family of spectral measures to define a composite distance
D(θ) =

∑

k dist(ρk,nk
, ρk,θ).

The vector of unknown parameters θ0 characterizes the true asymptotic ex-
treme value dependence structure in the data. Appendix A recalls some common
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extreme value dependence models. Minimizing D(θ) yields the parameter esti-

mate θ̂. Given a fixed radial threshold r0,k leading to 0 ≤ Nk ≤ nk radial
exceedances among the nk data pairs, we calculate an empirical spectral mea-
sure ρk,nk

(·) = r0,kn
−1
k

∑Nk

ℓ=1 ωk,ℓχWk,ℓ
(·) from the observed angles Wk,ℓ with

possibly inhomogeneous weights ωk,ℓ. Inhomogeneous weights could be used to
improve estimation efficiency and to reduce the computational burden of mini-
mizing D(θ), for instance, by giving weight 0 to distant site pairs (“tapering”,
see Sang and Genton [39]). The exceedance probability pk,θ = r−1

0,kρk,θ(S) is
associated to the threshold r0,k.

3.2.1. Examples of composite distances

Example 3.3 (Pairwise likelihood). The pairwise censored log-likelihood −D(θ)
obtained from

dist(ρk,nk
, ρk,θ) = −(nk −Nk) log(1− pk,θ)−

Nk
∑

ℓ=1

ωk,ℓ log(ρk,θ(dWk,ℓ)) (3.9)

can be interpreted as the result of applying the Kullback-Leibler divergence for
dist. When parameters to estimate are identifiable from pairwise information,
pairwike likelihood estimators have asymptotic properties similar to those for the
full likelihood under the usual regularity assumptions. An overview of asymp-
totic consistency and normality, tests and information criteria in the pair-
wise likelihood approach is given in [49] and the references therein. In Section
3.2.2, the expression of asymptotic variance and its estimation will be clari-
fied.

The pairwise likelihood approach has been used for the special case of mean
aggregation and the Brown–Resnick model by Engelke et al. [24].

In geostatistics of extremes, relatively simple yet robust estimation approaches
based on an L2-distance between a theoretical and an empirical version of sum-
mary statistics like the extremogram (or equivalently, the extremal coefficient
function) have been applied and can be interpreted as a composite distance in
our sense. Since such summary estimators of dependence are statistics that are
not sufficient, these approaches use only partial information of the data. Instead,
we here propose an L2-distance between the cumulative measures ρk,nk

and ρk,θ
using the full information from observed angles.

Example 3.4 (Pairwise L2-distance). Assume that ρk,θ(S) = 1 is invariant

with respect to the dependence structure and that
∑Nk

ℓ=1 ωk,ℓ = 1. Failing this, if
minkNk ≥ 1 and mink ρk,θ(S) > 0, we could instead use the spectral distribution
ρk,θ(·)/ρk,θ(S) and substitute

(

Nk
∑

ℓ=1

ωk,ℓ

)−1 Nk
∑

ℓ=1

ωk,ℓχWk,ℓ
(·)
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for ρk,nk
(·). We apply the statistic

Nk

∫ 1

0

(ρk,nk
(w) − ρk,θ(w))

2ρk,nk
(dw) =

Nk
∑

ℓ=1

ωk,ℓ [ρk,nk
(Wk,ℓ)− ρk,θ(Wk,ℓ)]

2

(3.10)
for dist(ρk,nk

, ρk,θ).

Whereas the likelihood-based distance (3.9) is related to the density rep-
resentation of the spectrogram, the focus of the L2-distance (3.10) is on the
cumulative spectrogram.

3.2.2. Asymptotic properties of composite distance estimators

For the asymptotic variance and consistency in the general context of so-called
extremum estimators, here obtained by minimizing the composite distance, we
refer to Chapter 4 in Amemiya [1]. The following proposition states sufficient
conditions for weak consistency of the minimum composite distance estimator.
We denote n the sample size, for instance given as the number of observed
temporal replications on a fixed configuration of spatial sites, and Dn(θ) the
composite distance for a sample of size n.

Proposition 3.2 (Weak consistency). Let Θ be the compact parameter space,
and assume that the asymptotic dependence structure of the data distribution
is characterized by the true parameter vector θ0 ∈ Θ. Assume that there ex-
ists a sequence d(n) such that n−1d(n)Dn(θ) is continuous in θ ∈ Θ and con-
verges in probability to a non-stochastic limit D∞(θ), uniformly for θ ∈ Θ. If
D∞(θ0) < D∞(θ) for all θ different from the actual value θ0, then any estima-

tor θ̂n satisfying Dn(θ̂n) = minθ∈ΘDn(θ) is weakly consistent, i.e. converges
to θ0 in probability.

Proof. The assumptions made in Proposition 3.2 allow us to directly apply
Theorem 4.1.1 of Amemiya [1].

Example 3.5 (Weak consistency of the L2 estimator). Assume that we have n
independent and identically distributed temporal replications of spatial observa-
tion vectors xi, i = 1, . . . , n, for a fixed spatial design with m sites s1, . . . , sm.
We can fix a radial aggregation and use a standard empirical estimator of the
pairwise spectral measures, indexed by k = 1, . . . ,m(m − 1)/2 and defined as
in (3.3). The pairwise estimators (3.3) are weakly consistent if the domain of
attraction condition (2.5) holds and d(n) = r0(n) → ∞ as n → ∞ (cf. Sec-
tion 3.1). Then, r0(n)Nk/n→ ρk,θ(S) in probability and

D∞(θ) =
∑

k

ρk,θ(S)
∫ 1

0

(ρk,θ(w)− ρk,θ0
(w))

2
ρk,θ(dw).

If ρk,θ(S) 6= 0 and ρk,θ(w) 6= ρk,θ0
(w) for at least one k and values w in a

neighborhood (w0 − ε, w0 + ε) of w0 ∈ (0, 1) with ε > 0, then Proposition 3.2

establishes the weak consistency of the estimator θ̂n.
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Moreover, under regularity conditions necessary for asymptotic normality
(which are not made explicit here due to their quite technical nature) the
asymptotic variance is given by the information sandwich Mθ0

= I−1
θ0

Jθ0
I−1
θ0

[1, Theorem 4.1.3]. The information matrix Iθ0
can be estimated by the nu-

merically observed Hessian. The matrix Jθ0
= EU(θ0)U(θ0)

T captures the

(co)variance structure of the score vector U = (∂D(θ)/∂θj)j . Since U(θ̂) = 0

for the estimation θ̂ of the true parameter θ0, estimating Jθ0
is more intri-

cate. Based on the assumption of temporal mixing, we can compute an estimate
of the variance Jθ0

or directly of Mθ0
with subsampling techniques like the

jackknife or the bootstrap (see Shao and Tu [43], Davison and Hinkley [16],
Carlstein et al. [9]).

4. Simulation results for parametric estimation

We illustrate numerically the estimation efficiency of the parametric estimation
approaches from Section 3.2 with respect to the number of exceedances when
the excursion stability (3.1) is satisfied above the fixed radial threshold r0. The
radial mean aggregation rad(x1, x2) = 0.5(x1 + x2) is applied. We focus on the
Gaussian extreme value process as an easily interpretable benchmark process,
for which exact simulation of an excursion-stable version is possible (cf. Ferreira
and de Haan [26]): for the sample region K = [−3.5, a+ 3.5]2 with a > 0, we
simulate realizations from the field (a + 2 × 3.5)2Y f((·) − S) with standard
Pareto distributed Y , storm centers S ∼ Unif(K) and the isotropic identity
covariance matrix Σ = diag(1, 1) of the Gaussian density f . Neglecting storm
centers outside K leads to edge effects which we reduce by using sample points
sj (j = 1, . . . , 25) from a uniform distribution on [0, a]2 for estimation. For the
sake of simpler exposition, we investigate only the case of simulating an isotropic
model, and we study estimates σ̂11 of σ11 = 1 and σ̂12 of σ12 = 0. Results for
σ̂22 are not reported since they are similar to those for σ̂11. Unreported results
show that estimator performances in the case of geometric anisotropy allow us
to draw the same conclusions on comparative estimator performance.

We choose a ∈ {1, 3, 5} corresponding to strong, middle and weak spatial
dependence and nr−1

0 ∈ {10, 20, 40, 200} expected radial exceedances for bi-

variate spectral measures. We use the estimator ρ̂(w) = N−1
∑N

j=1 χ[0,w](Wj)
with ρ̂(S) = 1 for estimating the empirical spectral measures and then apply
the composite log-likelihood distance (CL) from (3.9) and the composite L2-
distance (L2) from (3.10). We further study the behavior of jackknife estimates
of the standard errors based on 20 blocks each consisting of n/20 realizations

of the process, i.e. s.e. jackknife =
√

19/20×∑20
i=1(σ̂−i − σ̂)2 with σ = σ11 or

σ = σ12 and σ̂−i the estimator obtained from removing block i.

For comparative purposes, we also report estimates from a standard esti-
mation procedure consisting of the (composite) bivariate partially censored log-
likelihood (CPCL): for a standard-scale threshold u and bivariate standard-scale
data (x1, x2), we use the bivariate likelihood contribution calculated from the
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Table 1

Mean and standard errors of composite distance estimators (CL – likelihood distance (3.9),
L2 – L2-distance (3.10), CPCL – composite partially censored likelihood (4.1)) for σ11 = 1
in the Gaussian extreme value model, based on 500 simulations; for CL and L2 with mean
and standard deviation of the jackknife estimate of the standard estimation errors calculated

with 20 blocks

nr
−1

0
a CL L2 CPCL

10
1 1.32(0.72; 0.73(0.48)) 1.06(0.65; 0.70(0.52)) 1.28(0.62)
3 1.07(0.24; 0.24(0.16)) 0.90(0.20; 0.22(0.14)) 1.11(0.33)
5 1.02(0.12; 0.12(0.07)) 0.91(0.12; 0.12(0.07)) 1.03(0.21)

20
1 1.13(0.31; 0.34(0.25)) 1.12(0.37; 0.39(0.28)) 1.10(0.36)
3 1.04(0.15; 0.15(0.10)) 0.95(0.15; 0.16(0.10)) 1.07(0.22)
5 1.02(0.08; 0.08(0.05)) 1.01(0.09; 0.08(0.05)) 1.02(0.15)

40
1 1.04(0.21; 0.22(0.15)) 0.98(0.25; 0.26(0.18)) 1.05(0.22)
3 1.02(0.10; 0.10(0.07)) 0.97(0.10; 0.11(0.07)) 1.02(0.14)
5 1.01(0.06; 0.05(0.03)) 0.98(0.06; 0.06(0.03)) 1.02(0.10)

200
1 1.01(0.09; 0.08(0.06)) 0.99(0.10; 0.10(0.07)) 1.02(0.09)
3 1.00(0.04; 0.04(0.03)) 1.00(0.05; 0.05(0.03)) 1.01(0.06)
5 1.00(0.02; 0.02(0.02)) 1.00(0.03; 0.03(0.02)) 1.01(0.05)

bivariate exponent function V as follows,























1− V (u, u) if max(x1, x2) ≤ u,

− ∂
∂x1

V (x1, u) if x1 > u, x2 ≤ u,

− ∂
∂x2

V (u, x2) if x1 ≤ u, x2 > u,

− ∂2

∂x1∂x2

V (x1, x2) if min(x1, x2) > u,

(4.1)

see, for instance, [30] and the references therein and [15]. The latter approach
focuses on the behavior of exceedances with respect to a constant thresholding
field u and uses only partial information for simple exceedances outside the joint
tail. We set u = r0.

The results in Table 1 for σ11 and in Table 2 for σ12 show a slight tendency
of CL to overestimate and of L2 to underestimate spatial dependence. The
estimators appear robust over the range of chosen parameters. Bias and variance
tend to 0 when the number of exceedances increases (nr−1

0 : 10 → 200) or when
spatial mixing improves (a : 1 → 5). The jackknife estimates of the standard
error behave similarly for both of the approaches CL and L2. In general, they are
close to the actually observed estimation error and appear reliable. Throughout,
estimation via CL or L2 tends to be (slightly) more efficient than via CPCL,
particularly for moderate spatial dependence with a = 3 and a = 5, where fewer
bivariate observations fall into the joint tail region.

5. Application to precipitation in the Cévennes region

We analyze spatial dependence among extremes in daily precipitation data for
21 gauge stations in the French Cévennes region with observations from 1959
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Table 2

Mean and standard error of composite distance estimators (CL – likelihood distance (3.9),
L2 – L2-distance (3.10), CPCL – composite partially censored likelihood (4.1)) for σ12 = 0
in the Gaussian extreme value model, based on 500 simulations; for CL and L2 with mean
and standard deviation of the jackknife estimate of standard estimation errors calculated

with 20 blocks

nr
−1

0
a CL L2 CPCL

10
1 0.02(0.43; 0.71(0.36)) 0.01(0.37; 0.70(0.43)) 0.02(0.48)
3 −0.01(0.15; 0.11(0.08)) 0.00(0.12; 0.09(0.05)) 0.00(0.23)
5 0.00(0.07; 0.04(0.02)) 0.00(0.06; 0.04(0.03)) 0.00(0.13)

20
1 0.00(0.21; 0.17(0.12)) 0.00(0.26; 0.22(0.12)) 0.00(0.24)
3 −0.01(0.10; 0.06(0.03)) −0.01(0.09; 0.05(0.03)) 0.00(0.15)
5 0.00(0.05; 0.02(0.01)) 0.00(0.05; 0.02(0.01)) 0.00(0.09)

40
1 0.00(0.14; 0.07(0.05)) 0.00(0.17; 0.10(0.05)) 0.01(0.15)
3 0.00(0.07; 0.03(0.02)) 0.00(0.07; 0.03(0.02)) 0.00(0.10)
5 0.00(0.04; 0.01(0.01)) 0.00(0.03; 0.01(0.01)) 0.00(0.07)

200
1 0.00(0.06; 0.02(0.01)) 0.00(0.07; 0.02(0.01)) 0.00(0.06)
3 0.00(0.03; 0.01(0.01)) 0.00(0.03; 0.01(0.01)) 0.00(0.04)
5 0.00(0.02; 0.00(0.00)) 0.00(0.02; 0.00(0.00)) 0.00(0.03)
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Fig 2. The geographic setup of Cévennes gauge stations and temporal extreme value depen-
dence in the Cévennes precipitaton data. Left: Elevation map with Cévennes stations; right:
boxplots of extremogram values for the time series of the 21 stations with respect to temporal
lag and nr

−1

0
= 100 expected marginal exceedances.

to 2003 (data are available from Météo France). The elevation map on the
left in Fig. 2 shows the spatial setup of stations and the surrounding region
which is close to the Mediterranean sea. The Cévennes region is known for vi-
olent thunderstorms during autumn which often lead to inundations. We limit
modeling to the spatial extremal dependence structure between the intra-day
cumulated precipitation amounts at each site for the period from September 1
to January 31, leaving marginal behavior and temporal clustering out of con-
sideration and assuming stationary seasonal behavior. Removing days without
precipitation at any of the stations and days with missing data records, we
keep n = 4193 days. On average, 45.3% of the sites are affected by precipi-
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Fig 3. Exploratory plots for modeling spatial extremes in the Cévennes precipitation data.
Left: estimated extremal coefficient for the 21 stations with respect to number of expected
marginal exceedances; middle: p-values of a homogeneity test with respect to number of ex-
pected marginal exceedances; right: the extremogram, transformed from the mean aggregation
spectrogram with nr

−1

0
= 20, with pins indicating the orientation of the space lag.

tation. In order to take into account the presence or absence of precipitation,
we modify the standard marginal empirical probability transform to the unit
Fréchet distribution, leading to atomic mass at 0. Denote by f̂0 the observed
proportion of 0-values at site sj and write n 6=0 = (1 − f̂0)n for the number of
nonzero observations. We transform a nonzero observation Xi(sj) (i = 1, . . . , n
and j = 1, . . . , 21) with rank rani among all n 6=0 nonzero observations at sj to

X∗
i (sj) = −(1 − f̂0)

−1{log[rani/(n 6=0 + 1)]}−1. The factor (1 − f̂0)
−1 stretches

the transformed nonzero data distribution such that xpr(X∗(sj) > x) → 1 as x
tends to infinity. In X∗

i (sj), we keep the value 0 for the absence of precipitation.
On the right in Fig. 2, the extremogram values with respect to temporal lags
for the time series of each of the stations indicate little temporal extremal de-
pendence. Estimation was achieved by the transformation estimator ρ̆min with
rad′ = min and the mean aggregation rad(x1, x2) = 0.5(x1 + x2), as proposed
in Example 3.2.

We apply a check for the homogeneity property (2.11), based on the tail be-
havior of the maximum component of a multivariate random vector, which has
been proposed by [25] and [2]. If the domain of attraction condition (2.1) is satis-
fied, we observe xpr(maxj=1,...,21X

∗(sj) > x) ≈ Vs1,...,s21(1) for large enough x,
where Vs1,...,s21(1) is the extremal coefficient for all 21 sites. We therefore have
to check if xpr(maxj=1,...,21(X

∗(sj) > x) is approximately constant for large
x. We find that the homogeneity assumption is realistic for our data only at
very extreme levels. For illustration, the display on the left of Fig. 3 shows esti-
mates n−1r0 × card{R̃i | R̃i > r0} with R̃i = maxj=1,...,21X

∗
i (sj) (i = 1, . . . , n)

of Vs1,...,s21(1) with respect to the expected number of marginal exceedances
nr−1

0 . As r−1
0 tends to 0 in Fig. 3, the estimates seem to stabilize only very

close to 0. The p-values reported on the middle display in Fig. 3 for the test
procedure in [2] confirm this finding.

We now focus on the pairwise mean aggregation with rad(x1, x2) = 0.5(x1 +
x2). Based on the preceding findings, we fix the radial threshold r0 correspond-
ing to nr−1

0 = 20 expected radial exceedances. The right-hand display in Fig. 3
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Table 3

Comparison of estimated extremal dependence models for the Cévennes precipitation data.
BR – Brown–Resnick model with power variogram; evt – extremal-t model with either the
stable or the Cauchy correlation model; CL – likelihood distance (3.9); L2 – L2-distance

(3.10); standard error in parentheses (estimated by the jackknife technique); within-sample
and cross-validation mean absolute errors (err1 and errcv1) and mean squared errors (err2

and errcv2) for the extremogram

BR evt (stable) evt (Cauchy)
CL L2 CL L2 CL L2

m22 0.45(0.12) 0.43(0.09) 0.43(0.10) 0.42(0.08) 0.47(0.13) 0.46(0.10)
m12 −0.37(0.05) −0.28(0.06) −0.32(0.05) −0.28(0.06) −0.3(0.05) −0.28(0.07)
η — ( — ) — ( — ) 9.6(2.2) 10(3.5) 9.5(2.2) 16(9.1)
scale 5.8(0.79) 7.1(1.1) 230(87) 210(72) 8.5(1.1) 10(1.4)
shape 0.80(0.05) 0.90(0.05) 0.88(0.05) 0.91(0.05) 0.07(0.02) 0.05(0.03)
err1 231 220 239 217 248 225
errcv1 241 233 248 229 257 237
err2 404 370 418 358 444 395
errcv2 437 411 449 394 482 440

shows the empirical extremogram, again estimated by the transformation es-
timator from Example 3.2. The display further presents the orientation of the
spatial lag for each of the station pairs, suggesting an anisotropic dependence
structure with vertically oriented lags taking higher values. Therefore we replace
distances

√

(∆s)T (∆s) by
√

(∆s)TM(∆s), whereM is a symmetric matrix with
diagonal elements 1, m22 and non-diagonal element m12. We apply the mini-
mum composite distance estimators to fit three parametric dependence struc-
tures, notably the Brown–Resnick model with power semi-variogram (“BR”;
for the composite likelihood distance (3.9) and the L2-distance(3.10)) and the
extremal-t model with correlation of the stable or the Cauchy type (“evt”; for
the composite likelihood (3.9) and the L2-distance); see Appendix A for the de-
scription of correlation models. Since 0-observations arise with probability 0 in
the Brown–Resnick model, we transform them to [log(n+1)]−1 > 0 for the com-
posite likelihood estimation of this model via (3.9); i.e., they are assigned rank 1.

As in the simulation study, we use the estimator ρ̂(w) = N−1
∑N

j=1 1(Wj ≤ w)
with ρ̂(S) = 1 for estimating empirical spectral measures. Estimates of the
parameter vector θ (see Appendix A for details on the parametrization) are
summarized in Table 3. The reported jackknife estimates of the standard er-
rors are based on a reorganisation of the data into 41 blocks that we consider
independent. Finally, we assess the goodness-of-fit by measuring the mean er-
ror between the empirical extremogram ρ̆min(S; ∆s) obtained from the mean
aggregation empirical spectrogram and the fitted extremogram ρmin,θ̂(S; ∆s).
Therefore, define

erri =
∑

∆s

[∣

∣

∣
ρ̆min(S; ∆s)− ρmin,θ̂(S)

∣

∣

∣
/
√

var(ρ̆min(S; ∆s))
]i

(i = 1, 2), (5.1)

with the variance formula var(ρ̆min(S; ∆s)) from (3.8) to take into account the
variability of ρ̆min(S; ∆s). Then erri (i = 1, 2) are composite distances as de-
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Fig 4. The selected extremal-t model with stable correlation. Left: empirical and fitted ex-
tremogram (“+” indicates a binned empirical extremogram with bin size 10 km); middle:
fitted spectrogram density for mean aggregation; right: fitted discrete mass ρ({0}; ∆s). The

distances are corrected for anisotropy by using
√

(∆s)′M(∆s) instead of
√

(∆s)′(∆s).

scribed in Section 3.2. They quantify the mean absolute error (i = 1) or the
mean squared error (i = 2) and further allow for a cross-validation procedure to
check the predictive quality of a model: for each site, we remove the correspond-
ing observations from the data set to create the training set consisting of 20
sites, we fit the model to the training set and we use the fitted model to predict
the sum terms in (5.1) associated to distances ∆s between the removed site and
the 20 other sites. Finally, we sum up all these terms to obtain the corresponding
cross-validation error errcvi. The resulting error statistics reported in Table 3
are unanimously in favor of the extremal-t model with the stable correlation,
estimated by minimizing the L2-distance; see Figure 4 for a visual presentation
of the fitted model. Fitted discrete masses ρmean({0}; ∆s) = ρmean({1}; ∆s) are
small, which adequately reflects the situation for the data where less than 0.7%
of angles take one of the values 0 or 1 corresponding to extreme rainfall in one
site and no rainfall in the other site.

6. Conclusion and perspectives

Representing multivariate limit distributions for threshold exceedances with the
spectral measure opens a versatile toolbox for statistical analysis with both
formal and visual tools. Further investigation could be dedicated to how we best
include temporal dependence, which plays a more prominent role when switching
from block maxima to exceedances in the original process. Some max-stable
space-time process models are introduced in [13]. Moreover, current research
efforts are directed towards estimation methods capable to exploit more than
only bivariate information.
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Appendix A: Bivariate spectral measures for a selection of models

A general fomula to calculate spectral measure densities from the exponent
function V was given by Coles and Tawn [12]. We use their Theorem 1 or a link
to Pickands’ dependence function [35] to calculate the expressions of measure
functions, densities and discrete atoms in bivariate spectral measures. The sum-
norm ‖x‖ = x1+x2 shall apply for the angle and the radius in the pseudo-polar
transformation (2.7). We further assume that Pickands’ dependence function
A(w) = w(1 − w)V (w, 1 − w) is twice differentiable on (0, 1). Then A′(w) =
ρ([0, w])−1. Discrete mass at 0 is equal to 1+A′(0+); at 1 it is equal to 1−A′(1−).
More generally, discrete mass at w ∈ (0, 1) is equal to A′(w+) − A′(w−) when
A is at least once differentiable.

For the standard normal distribution, the symbols Φ and ϕ shall denote the
distribution function and the density respectively.

A.1. The extremal t process

Denote by Cor the correlation function of the underlying Gaussian process
Qgauss in the construction (2.2) and by η the power in Q = cη(Qgauss

+)η. We

use the notations c =
√
η + 1/

√

1− Cor(∆s)2 and u(z1, z2) = c((z1/z2)
1/η −

Cor(∆s)). For student’s t distribution, we denote the cumulative distribution
function for df degrees of freedom by tdf and its density by fdf . The standard-
scale exponent function is given as

V (z1, z2; η,Cor(∆s)) = z−1
1 tη+1(u(z2, z1)) + z−1

2 tη+1(u(z1, z2)).

For ρ(w) = ρ([0, w]; η,Cor(∆s)), we obtain

ρ(w) = 1 + tη+1(u(w, 1− w)) +
c

η(1 − w)

(

w

1− w

)1/η

fη+1(u(w, 1− w))

− tη+1(u(1− w,w)) − c

ηw

(

1− w

w

)1/η

fη+1(u(1− w,w))

for w ∈ (0, 1), and we notice a discrete mass for the angles w = 0 and w = 1
on the axes: ρ({0}; η,Cor(∆s)) = ρ({1}; η,Cor(∆s)) = tη+1(−cCor(∆s)). The
spectral density f(w) = f(w; η,Cor(∆s)) on (0, 1) can be written

f(w) = cη
[

1− Cor(∆s)2
]0.5(η+1)

[w(1 − w)]1/η−1

×
[

w2/η + (1− w)2/η − 2Cor(∆s)w1/η(1 − w)1/η
]−0.5(2+η)

,

with cη = Γ(0.5(η+2))
η2π1.5Γ(0.5(η+1)) [33, page 114].
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A.2. The Gaussian extreme value process

With Σ =
(

σ11 σ12

σ12 σ22

)

and c2 = (∆s)TΣ−1(∆s), we have

V (z1, z2; c) = z−1
1 Φ

(

0.5c+ c−1 log
z2
z1

)

+ z−1
2 Φ

(

0.5c+ c−1 log
z1
z2

)

.

Setting v1(w) = 0.5c+c−1 log((1−w)/w) and v2(w) = 0.5c+c−1 log(w/(1−w))
yields

ρ([0, w]; c) = Φ(−v1(w))+Φ(v2(w))+c
−1
{

−w−1ϕ(v1(w))+(1−w)−1ϕ(v2(w))
}

and, using the the notation w̃ = 1− w, the spectral measure density

f(w; c) =
1

cww̃

(

1

w
ϕ(v1(w)) +

1

w̃
ϕ(v2(w))−

v1(w)

cw
ϕ(v1(w))−

v2(w)

cw̃
ϕ(v2(w))

)

.

A.3. The Brown–Resnick process

A Brown–Resnick type process [29] is characterized by a semi-variogram γ.
Often, the semi-variogram of fractional Brownian motion γ(∆s) = ‖ψ−1∆s‖α
with the shape α ∈ (0, 2] and the scale ψ > 0 (power semi-variogram) is used,
leading to the classical Brown–Resnick process [6]. Then

V (z1, z2; ∆s) =z
−1
1 Φ

(

0.5
√

γ(∆s) +
√

γ(∆s)
−1

log
z2
z1

)

+ z−1
2 Φ

(

0.5
√

γ(∆s) +
√

γ(∆s)
−1

log
z1
z2

)

.

The Gaussian extreme value process arises as special case for α = 2. Conse-
quently, the respective expressions carry over after replacing c by

√

γ(∆s).

A.4. Correlation models

• stable: Cor(∆s) = exp(−‖scale−1∆s‖shape) with scale > 0, 0 < shape ≤ 2,
• Cauchy: Cor(∆s) = [1+(‖scale−1∆s‖)2]−shape with scale > 0, shape > 0.

For more details, see [40].
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