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We would like to congratulate the authors for this highly motivating work on
prediction of stationary time series. This paper does an excellent job addressing
the relationship between the problems of estimating high dimensional covari-
ance matrices and finding best linear predictors, and systematizing the current
approaches to regularization in time series. Several regularization procedures are
proposed, tackling the issue of calculating optimal predictors in the case that
p-order dependence approaches the sample size n. The proposed techniques are
validated by extensive Monte Carlo simulations and real-data applications.

It was nice to be asked to discuss such a stimulating paper. We divided
our comments into several sections, striving to target different strains of ideas
presented in the paper and future research directions motivated by these strains.

Offline vs. online prediction problem The current paper focuses on the
utility of regularization procedures for time series in a prediction framework. In
contrast to (auto)covariance matrix estimation, one of the primary motivations
behind using regularization in forecasting time series is to improve a prediction
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performance by incorporating more historical data than it is suggested by the
Akaike Information criteria and other classical model selection procedures. We
can further segment the prediction problem into two major cases:

1) Offline Problem. Let us consider a sample of T observations where T is
fixed. Our main goal is then to most effectively utilize the available T obser-
vations for different forecasting horizons, i.e. predicting ŷT+1, . . . , ŷT+h given
the previous history y1, . . . , yT . However, since T is fixed, we are not substan-
tially concerned about computational costs of model estimation and our focus
is primarily on the quality of the delivered forecasts.

2) Online Problem. The situation changes drastically if a number of obser-
vation T is (potentially indefinitely) increasing. Hence, the collected history of
previous time series data is rapidly expanding and model selection, model es-
timation and forecasting are to be performed in an online setting, or real time
mode. Obviously, under such conditions, not only the accuracy of the delivered
forecasts is of high importance but how fast and computationally efficient are
the methods that are being used to produce these forecasts. (Indeed, even in
1960–70s the reduced computational costs due to recursivity of a Kalman filter
were one of the main reasons for its high popularity in signal processing and
other related fields where online system identification and online forecasting are
widely spread (Ljung, 1999). Nowadays, online forecasting problems range from
finance to fMRI processing to astronomy and are rapidly evolving in a Big Data
paradigm.) In such an online framework, it is not clear whether it is worthwhile
to use a regularized T ×T -autocovariance matrix because at the next time point
T +1 we need to estimate a (T +1)× (T +1)-regularized autocovariance matrix
and a model of order T + 1 and so on, and to the best of our knowledge there
exists no reasonably fast method for scaling a T × T -sample autocovariance
matrix up to a (T +1)× (T +1)-sample autocovariance matrix. (The Levinson-
Durbin (LB) algorithm provides some paths in this direction but the sample
autocovariance matrix is only approximately Teoplitz and it also remains un-
clear how to combine the LB algorithm with the updates of a regularization
parameter.) Gel and Barabanov (2007) and Bickel and Gel (2011) addressed
this issue by estimating a pT × pT -sample regularized autocovariance matrix so
the update of an autocovariance matrix and the respective time series model are
performed in batches of observations rather than at each single newly arrived
observation.

In this light can the authors comment which of the forecasting problems, i.e.
offline or online, they envision to be the best fit for the proposed prediction
methodology? If it is an online problem, how the computational costs due to
non-recursivity of a sample autocovariance estimation could be addressed? If
it is an offline problem, are there any issues and limitations of an increasing
forecasting horizon h and what is the effect of different h on a regularization
procedure?

Assessing forecasting quality The set of Monte Carlo simulations for as-
sessing the prediction performance via RMSPE is very illustrative. Table 1 to
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Table 3 effectively illustrate the forecasting quality of the the twelve approaches.
At the first glance, all these methods exhibit comparable RMSPE values, how-
ever the standard errors evidenced by some of the techniques seem to be quite
different form others. For example, the FSO-Th-Raw method seems to exhibit
a lower relative performance, especially for high values of either the first order
autoregressive parameter |φ| or the first order moving average parameter |θ|,
respectively. It must be noticed though that these simulations involve only one-
step predictions. It would be interesting to evaluate these procedures in the
context of larger prediction horizons.

On the other hand, the real data experiments based on 105 times series
from the M3 competition are quite illustrative about the performance of the
different methods. Given the nonparametric nature of the prediction techniques
proposed in the paper, this study illuminates the forecasting performance in
a more realistic context. In this sense, Table 5 seems to suggest that all the
approaches seem to have a roughly similar prediction quality.

More generally, the comments above relate to a predictive performance met-
rics for the same-realization and independent-realization prediction. As noted
by Ing and Wei (2005) properties of the classical model selection criteria such as
the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
etc., are different for the same-realization and independent-realization prediction
of an infinite-order autoregressive AR(∞) process. This phenomenon is due to
the fact that for the same-realization prediction newly arrived observations are
no longer independent of the previous data. It appears that regularization proce-
dures particularly target the case of the same-realization prediction. While it is
conventional to use a root mean squared error (RMSE) for validating prediction
performance, i.e. a classical measure for the independent-realization prediction,
the current paper also considers standard deviation of RMSE and thus moti-
vates for a search of alternative measures for predictive performance that are
more suitable for the same-realization prediction.

A path long memory and other open issues The manuscript opens a
number of interesting venues for future research. For instance, it would be in-
teresting to further investigate the practical consequences of Theorem 2. The
optimal predictor coefficients φj(n) tend to zero as the lag j and n increase. In
this sense, it would be expected or desirable that the L2 norm of the vector of
the difference between the estimated coefficients and the true values converges to
zero. Another interesting issue is to establish the respective convergence rate for
a more general class of processes. In particular, the derived rate rn applies only
to the short memory case (or more generally to weakly dependent stationary
processes) but excludes long memory processes.

Along this interesting path, Ing et al. (2015) study the problem of estimating
inverse autocovariance matrices in the context of strongly dependent processes.
As pointed out by Palma and Pourahmadi (2012), consistent estimation of the
autocovariance matrices for stationary long-range dependent processes is a chal-
lenging task due to the fact that the off-diagonal elements do not tend to zero
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fast enough as compared to the short memory case. Nevertheless, the inverse
covariance matrix behaves much better. A mathematical explanation of this
phenomenon is as follows. Suppose that Γn(f) is the variance covariance matrix
of the stationary process with spectral density f . Thus, we can write

Γn(f) =

[
∫ π

−π

f(λ) exp(i λ (ℓ − j)dλ

]

ℓ,j=1,...,n

.

The inverse of the covariance matrix can be well approximated by

Γ−1
n (f) ≈ Γn({4π

2f}−1)

cf., Lemma 5.2 and Lemma 5.3 of Dahlhaus (1989). Even though the spectral
density of a long-memory process has a pole at zero, the inverse spectral density
behaves very well at the origin. This approximation allows to circumvent the
problem generated by the singularity of the spectrum at zero frequency by
considering the well-behaved inverse of the spectral density.
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