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Abstract: Inequalities are key tools to prove FDR control of a multiple
test. The present paper studies upper and lower bounds for the FDR under
various dependence structures of p-values, namely independence, reverse
martingale dependence and positive regression dependence on the subset
(PRDS) of true null hypotheses. The inequalities are based on exact finite
sample formulas which are also of interest for independent uniformly dis-
tributed p-values under the null. As applications the asymptotic worst case
FDR of step up and step down tests coming from an non-decreasing rejec-
tion curve is established. In addition, new step up tests are established and
necessary conditions for the FDR control are discussed. The reverse mar-
tingale models yield sharper FDR results than the PRDS models. Already
in certain multivariate normal dependence models the familywise error rate
of the Benjamini Hochberg step up test can be different from the desired
level . The second part of the paper is devoted to adaptive step up tests
under dependence. The well-known Storey estimator is modified so that the
corresponding step up test has finite sample control for various block wise
dependent p-values. These results may be applied to dependent genome
data. Within each chromosome the p-values may be reverse martingale de-
pendent while the chromosomes are independent.
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1. Introduction

High dimensional testing problems given by n hypotheses and corresponding or-
dered p-values p1., < -+ < pyp.p of the p-value vector (p1,...,p,) are frequently
judged by multiple tests, like step up and step down tests. These tests rely on
the component wise comparison of the ordered p-values with a family of critical
values (i )i<n, see [1-3, 7-11, 17, 23-25] for instance. The overall control of
the error probability of first kind is often too restrictive and leads to very con-
servative multiple tests. Therefore, Benjamini and Hochberg [1] promoted the
false discovery rate (FDR) as error measure to control. The FDR is the expected
ratio of the number of falsely rejected null hypotheses among the total number
of rejections.
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Starting with the famous choice of critical values a;., = %a by Benjamini
and Hochberg [1], quite a lot of authors studied finite sample or asymptotic FDR
control (by some given level 0 < o < 1) under various assumptions. Roughly
speaking the finite sample research can be derived in two categories. When the
critical values are deterministic, then different sufficient conditions and depen-
dence concepts for the p-values were established in order to ensure FDR control
at level a, i.e. FDR < «, see Benjamini and Hochberg [1], Benjamini and Yeku-
tieli [2], Blanchard and Roquain [5] and Finner et al. [9] among others. In case
of data dependent critical values &;.,, which lead to adaptive multiple tests,
typically the i.i.d. structure of the p-values of true null hypotheses is assumed
to achieve FDR control, see Storey et al. [24] and Sarkar [21] for instance. They
include an estimation of the number of true null hypotheses in the critical values
in order to exhaust the predetermined FDR level better. Another branch is the
asymptotic FDR control, where milder assumptions like weak dependency may
be considered.

In this paper we will again revisit FDR inequalities for step up and step
down tests. The results depend on three dependence structures for the p-values,
namely the most restrictive basic independence (BI) model, the reverse martin-
gale model and the positive regression dependence on a subset (PRDS) model,
respectively, which are introduced in Section 2 beside the basic notation. Mar-
tingale arguments were used in Chapter 3 of the dissertation of Scheer [22] for
the comparison of the FDR and the expected number of false rejections. Reverse
martingale models naturally show up for instance for measurements under re-
strictions or in multivariate extreme value theory, see Example 3.3 which include
a Marshall/Olkin type dependence structure. Section 3 gives some construction
methods of reverse martingales and it is pointed out that the FDR of the clas-
sical Benjamini Hochberg step up test can exactly be calculated for the reverse
martingale structure, whereas already strict inequalities hold under multivariate
normal PRDS models, see Example 3.1. Section 4 discusses FDR inequalities
for all these models which include inequalities for the FDR and inequalities for
the critical values of FDR controlling step up tests. New necessary and sufficient
conditions for finite sample FDR, control at level a are derived. In particular,
critical values considered earlier by Finner et al. [9] and Gavrilov et al. [11]
are discussed, see also Section 5.1. The inequalities can be used to modify the
critical values of Gavrilov et al. [11] for step up tests, confer Example 5.1 for
improved new tests. Theorem 5.1 establishes an exact asymptotic formula for
the worst case FDR of step up tests which come from an increasing rejection
curve. Observe that our inequalities allow to treat the difficult case when the
expected portion of true null hypotheses becomes maximal. That result can be
compared with the asymptotic optimal rejection curve (AORC) of Finner et al.
[9] which compares concave rejection curves. For concave rejection curves, it is
remarkable that the asymptotic worst case FDR value here is the same for the
corresponding step up and step down tests, see Section 5.2.

Section 6 deals with adaptive SU tests under dependence which has often
been neglected in the past. The adaptive step up tests rely on conservative es-
timators 7o of the expected number of true null hypotheses. Mostly the basic
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independence model is assumed in the literature when the FDR of the adaptive
test is shown to be controlled. We will point out that finite sample FDR control
of adaptive step up tests is a difficult affair and can not be expected in general
under dependence. Recall that the well-known Storey multiple test does not
work under positive regression dependence on the subset of true null hypothe-
ses, see Example 6.1 for instance. We will give a simple condition which ensures
asymptotic FDR control under different dependence structures, see Theorem
6.1 and 6.2. For fixed sequence of estimators these conditions may also be re-
garded as conditions for the possible dependence structures. Furthermore, finite
sample control can be obtained for various adaptive step up tests under the
reverse martingale model. Also necessary conditions for finite sample control
will be presented. It is shown that under additional conditions some modified
Storey estimators work for dependent but block wise independent p-values, see
Theorem 6.3. Under the general assumptions these results are sharp and can
not be improved, see Example 6.1. However, when all p-values are independent
then the new blockwise test is conservative.

Section 7 contains exact technical FDR formulas which are used in our proofs.
Some of them are of separate interest. Many statements of this paper are ap-
plications of our central Lemma 7.1. Furthermore, all proofs are outlined in
Section 7.

2. Basic notation and dependence models

Throughout, we investigate models with different dependence structures. All of
these models are based on the following basic model with random number of
true null hypotheses. Let (2, .A, P) be a probability space and let

(€1, Ui, &i)i<n = @ — ({0,1} x [0, 1])" (2.1)

be a multivariate random variable where ¢; = 0 codes the occurrence of a p-value
& of a false null hypothesis, for short false p-value, and ¢; = 1 the occurrence
of a p-value U; of a true null hypothesis, for short true p-value, whose marginal
distribution is the uniform distribution on (0, 1). Then the model of the p-values
is given by

pi = €;U; + (1 — 61')51', 1<i<n, and N := Zei, (22)
=1

where N is the random number of true p-values. This model includes the well
studied mixture model of Efron et al. [6], where (U;);, (&):, and (¢;); are i.i.d.
and jointly independent. Observe that here IV is naturally random. Throughout,
true or false null hypotheses are identified with their p-values and for short
the corresponding p-values are called “true” or “false”, respectively. Since our
multiple tests only rely on p-values this identification may be justified. Moreover,
we define p = (p1,...,pn) and € = (e1,...,€,). Below, further assumptions
about the dependence structure of the vector (2.1) are introduced. To avoid
trivial cases let F(IN) be always positive and let us assume that our observations
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are the order statistics of the p-values, which are introduced as
Pin S P2:n S e S Pnin- (23)

Moreover, let F), () = LS {pi < t}, 0 <t <1, be the empirical cumulative
distribution function of the p-values.
Let B([0,1]™) denote the Borel sets of [0,1]™. A set C' € B([0, 1]™) is said to

be decreasing iff, ¢’ € C' and ¢ < ¢’ component-by-component imply ¢ € C.

Definition 2.1 (Dependence structures).

(a) Let (€;,&)i<n, U1,...,U, be independent. Then we call this submodel for
the p-values (2.2) to be the basic independence (BI) model. Note that
(€i,&i)i<n is considered as one random variable whereas Uy, ..., U, are consid-
ered as individual random variables in terms of independence.
(b) Let

t— P(peClpi <te=¢ (2.4)

be non-increasing for every decreasing set C' € B([0,1])", € € {0,1}™ and all
i with ¢, = 1. Then p-value model (2.2) is called the PRDS model (positive
regression dependent on the subset of true null hypotheses).

(c) Conditioned under € let

Hp; <t}

t 3

be a reverse martingale with respect to the reverse filtration 7, = o((1{p; < s},

€;) : 1 <j<mn,s>t). Then p-value model (2.2) is called reverse martingale
model.

Remark 2.1. (a) The assumptions for the PRDS model in Definition 2.1 (b)
are a little bit weaker than the usual PRDS assumptions, see Finner et al. [9]
for instance. In the literature it is sometimes called weak PRDS. Nevertheless,
we will call it PRDS model for brevity.

(b) The BI model is a submodel of the PRDS and reverse martingale model.
Furthermore, the intersection of the PRDS and reverse martingale models is at
least greater than the BI model. To see this regard k independent disjoint blocks
of (Uy,...,U,) with maximal dependence in each block given here by the same
uniformly distributed random variable.

0<t<1, foralli withe =1 (2.5)

We will see that the reverse martingale models yield sharper FDR, results
than the PRDS concept. A comparison of these models is included in Section 3.

In the past literature usually conditional versions of the BI and PRDS model
with deterministic €y, ..., €, have been considered, see Benjamini and Hochberg
[1], Benjamini and Yekutieli [2], Blanchard and Roquain [5], Finner et al. [9] and
Finner and Roters [10] for instance. In all models defined above these conditional
versions are included as special case.

In this paper we mainly focus on step up tests (SU tests), which we briefly
recall. Suppose that

0< A1:n S Q2:p S e S Apin < 1 (26)
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denote possibly data dependent critical values and set «ag., = ag., for conve-
nience. The corresponding SU test is based on the number of rejections

R= maX{i * Din < ai:n} (27)

and rejects the null hypotheses corresponding to the set of p-values {p; : p; <
QR b When the condition in (2.7) is empty no hypothesis is rejected and R = 0
holds. Then equivalently all null hypotheses with p-values

are rejected. Let
V =4{i : pi < app, e =1} (2.9)

be the unobservable number of falsely rejected true null hypotheses. The judg-
ment of multiple tests is often done via the control of the celebrated “false
discovery rate” (FDR) which is given by FDR = E(%) (with 3 = 0). More
generally we introduce the conditional false discovery rate

FDR(ng) = E (%‘N - no) (2.10)

as conditional expectation given N = ng. The conditional quantity (2.10) is a
special case since constant N are included.

Benjamini and Hochberg [1] promoted the FDR as new error criterion com-
peting against the well known familywise error rate (FWER) and provided a
multiple test procedure controlling the FDR under certain assumptions. The
so-called Benjamini Hochberg test (BH test) is the linear SU test with fixed
critical values

iy = —, 1 <i<n. (2.11)
n

In our setting and notation it was shown by Benjamini and Yekutieli [2] and
Finner and Roters [10] that

n

FDR(no) = Zoa (2.12)

holds for the conditional expectation in the BI model. Benjamini and Hochberg
[1] previously showed that “<” holds in (2.12) for the BI model. Moreover,
Benjamini and Yekutieli [2] proved that “<” holds in (2.12) for the PRDS
model. In the same work, they also introduced a new SU test based on more
conservative critical values
i = —— (2.13)
i n2?:1 ]l . .

Benjamini and Yekutieli [2] pointed out that “<” again holds in (2.12) for
this SU test under the basic model with arbitrary dependence structure of
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(€i, Ui, &)i<n. Blanchard and Roquain [5] showed that the critical values (2.13)
may also be replaced by

Qi 1= g/ xdv(x), (2.14)
nJo

i=1 %)717

i =1,...,n, the critical values correspond to (2.13). Adaptive versions based

on (2.13) and (2.14) are presented in Theorem 6.2 under arbitrary dependence.

We will particularly focus on critical values coming from a continuous non-

decreasing function

f:10,1] = [0,00) with f(0) =0 and f(zo) =1 and f(1) > 1 (2.15)

where v is an arbitrary probability measure on (0, 00). For v({i}) = (i

for some zo < 1. We refer to f as rejection curve. Moreover, let f~! denote
the right continuous inverse of f and let the deterministic critical values be
generated via
Qi = fL (3) , 1<i<n. (2.16)
n

We refer to f~1 as critical value curve. Note that the BH test is based on the
Simes line f(t) =t/«, t € [0,1], see Finner et al. [9] for instance.

Finner et al. [9] introduced the Asymptotic Optimal Rejection Curve (AORC)
which is constructed to have FDR control by « in an asymptotic Dirac uniform
(DU) setting given by & = 0,4 =1,...,n. The AORC is given by

t
alt) = ————, tel0,1], 2.17
fa(t) M=o ta €[0,1] (2.17)
but since f(1) = an., = 1, the above assumptions for rejection curves for

SU tests are not fulfilled. There are several modifications of the AORC and
corresponding SU tests to overcome this problem. For further details we refer
to Finner et al. [9].

3. Examples of reverse martingale models and a comparison with
PRDS

At the beginning it is shown that there exist positive dependent multivariate
normal models which are PRDS without the martingale property. To prove this
we will consider the following example.

Example 3.1. Let X; and Y be i.i.d. standard normal random variables with
distribution function ®.

(a) Consider the PRDS model

1 1
X1, Xo) = [ Xy, —X; + —Y
%) = (20 75+ 57
and related p-values (p1,p2) = (®(X1), ®(X2)). Then the familywise error rate
of the BH step up test with critical values (2.11) at level « = 0.5 and n = ng = 2

is FWER = FDR(2) = %, cf. (2.12), i.e. less than a = 0.5.
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(b) For the negative dependence model

1 1
X1, Xo) = X1, —=X1 +—=Y
o (e )
the familywise error rate of the BH step up test is FWER = FDR(2) = < and
hence greater than o = 0.5.

The proof is given in Section 7. Note that Gavrilov et al. [11], p. 625, already
derived Monte Carlo results showing that the FWER of the BH step up test may
be strictly below o under PRDS. In contrast to PRDS the reverse martingale
models allow sharper FDR results, see Section 4 and Lemma 7.1. The next
remark summarizes this.

Remark 3.1. Proposition 4.1 always implies the formula FDR(ng) = "2 a, see
(2.12), for the BH step up test under the reverse martingale model, whereas only
“<” holds under PRDS. Since an strict inequality “<” shows up in the PRDS
Example 3.1 (a), that normal dependence model is no reverse martingale.

In conclusion we see that reverse martingale models allow sharper FDR for-
mulas as under PRDS. However, we do not know whether every reverse martin-
gale model is PRDS.

The reverse martingale structure yields a rich class of p-values. The next
example shows how to construct new reverse martingale models from known
ones. In particular, reverse martingale measures on product spaces of [0, 1] are
preserved under a lot of operations.

Example 3.2. Let e, I C {i : ¢, =1} and J C {i : ¢ = 0} be fixed with
|I| > 0. Define p-values via the canonical projections p; : [0, 1]/I+17I — [0,1].
Then

P distribution on [0, ]I+ ;
M(IUJ) =< P represents a reverse martingale model with true
p-values p;, i € I and false p-values p;, i € J

is the set of reverse martingale measures.

(a) M;(IUJ) is closed under mixtures including convex combinations.

(b) (Independent coupling of reverse martingale regimes) Suppose that there
are partitions {i: e, =1} =>"" [ and {i: ¢, =0} = >/, J; with I; # 0 for
all @ but J; is allowed to be empty. Whenever P; € My, (I; U J;) holds for all
i < r, then the product measure @._, P; belongs to Mie,=13(1, ..., n).

(c) (Optional switching of reverse martingales) It is well known that two inde-
pendent reverse martingale models given by Py and P, € My.,—13(1,...,n)
may be combined as follows. Let 7 : [0,1]" — (0, 1] denote a reverse stopping
time w.r.t. model P;. Whenever 1y -j(p;) = 0 holds, that p-value for the index
i comes from the P; model. In case 1jg ,(p;) = 1, consider the p-value p; of P»
and take the renormalized value p;7 as new p-value for these coordinates.

(d) Let p1,...,pn : @ = [0,1] be any random variables such that

_, 52z pa(Pi)
nt

¢ (3.1)
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is a reverse martingale. Suppose that ¢ — o(i) denotes a uniformly distributed
permutation of {1,...,n} jointly independent of the p;’s. Then the family of
p-values (po(1),---,Po(n)) has the reverse martingale property (2.5) for each
component.

Part (d) of that example is easy to prove and grew out of a discussion with
Julia Benditkis which is kindly acknowledged.

The subsequent example gives an explicit example which may have the fol-
lowing practical meaning. The statistician can only observe a concentration X;
above a joint random ground level Y. It also occurs in multivariate extreme
value theory and risk analysis when the Z; have a joint risk component Y.

Example 3.3 (Marshall and Olkin type dependence, see Marshall and
Olkin [18]). Let Xi,...,X,,Y denote continuous, independent, real random
variables, where X1, ..., X,, are i.i.d.. Consider Z; := max(X;,Y) for 1 < i < n.
The transformed true p-values p; := H(Z;), i = 1,...,n given by H(t) =
P(Z; < t) have the reverse martingale property, see Section 7 for a proof. It
is easy to verify, that the present model is also PRDS since it is based on a
comonotone transformation of the i.i.d. model Xy,...,X,,,Y. Notice that in

case n = 2 the negative variables (—Z, —Z5) correspond to the bivariate Mar-
shall and Olkin [18] model.

Reverse martingale models can also be obtained allowing some dependence
between “true and false” p-values.

Example 3.4 (Dependence between the null and alternatives). The following
models may be used as ingredients for Example 3.2 (b). Consider a distribution
Py on [0, 1)1 +171] where

(i) the marginal distribution of the “trues” (p;)icr, belongs to My, (I).
(if) Suppose min(p; : i € I;) > max(p; : ¢ € J1) holds P; almost everywhere.
Then P; € My, (I;UJ7) holds. The proof follows the same line as in Example 3.3.

4. Inequalities for the FDR

In this section new inequalities are derived which are used in the proceeding
chapters. We start with arbitrary non-decreasing deterministic critical values
0< i < < apqp <1 and the following question.

e What can be said about the FDR of the corresponding SU test given by
a fixed model (2.2)7

The next inequalities rely on more technical results given in Section 7, in
particular in Lemma 7.1.

Proposition 4.1. (a) Assume the reverse martingale model (including the BI
model) and consider the SU test with arbitrary deterministic critical values (2.6).
Then we have

E(N) (111%11111 w) <FDR< EW) (max %) . (4.1)

n n i<n )
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(b) Suppose that P(R = j) > 0 holds.

naj n

(i) The inequality ) implies the strict inequality

< maxX;<n ( na;-:n

FpR < EN) <max ”a”) . (4.2)

n i<n 7

naj n

(i1) Conversely, > ming<,, (%) implies

E(N) (min ”O‘—") < FDR. (4.3)
n i<n {2
(¢) Under the PRDS model we still obtain
Fpr < ZX) <max e ) (4.4)
n i<n 7

Observe that Example 3.1 gives a counterexample that the lower bound in
(4.1) does not hold under PRDS.

With different methods Guo and Rao [13] already showed that the upper
bound in (4.1) holds under the PRDS property. Moreover, Sarkar [20] derived
several inequalities and exact expressions for the FDR for so-called general-
ized step-up-down tests. These inequalities are then used as key tools to prove
FDR control of an step-up-down test basically with Benjamini Hochberg critical
values (2.11) under the PRDS assumption and a further step-down test under
multivariate total positivity of order 2 (MTP3).

Under regularity assumptions the inequalities are asymptotically sharp. We
refer to Section 7 and Lemma 7.4.

For deterministic critical values let us discuss the assumption

g a]—" is non-decreasing. (4.5)
J

It is easy to verify that (4.5) holds for the critical values (2.16) which come from
a concave rejection curve. Under (4.5) Benjamini and Yekutieli [2] showed that
Dirac uniform (DU) configurations (i.e. & = 0) are least favorable parameter
configurations for the FDR in the BI model for fixed N = ng. Let us assume
that the critical values with (4.5) lead to overall finite sample FDR control for
the BI model, the PRDS model or the martingale model, respectively. Then the
subsequent results investigate necessary conditions for the critical values «;.,
itself and the following question can be treated.

e What can be said about the critical values «;.,, when the FDR is controlled
by FDR < « for all distributions given by a specified class of submodels
for fixed n?

Lemma 4.1. Suppose that the SU test with deterministic critical values (2.6),

satisfying (4.5), always controls the FDR at level o (i.e. FDR < «) under all

distributions of the BI model.

(a) A necessary condition is then o, < +1 5 forall1 < j <n.

(b) Suppose that in addition to (4.5) we have “4= < SHEn for one k < n. Then
for all j <k.

we have . < ;7 — =
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Corollary 4.1. Consider the assumptions of Lemma 4.1.

(a) The inequality ay., < & always holds.

(b) If a1, = & then the SU test is already a BH test at level a. Otherwise,
. < 5 holds.

(c) If .y = g for some B < «, then always FDR > ﬁET(N) follows.

Remark 4.1. (a) Consider the Dirac uniform configuration DU(ng) with N =
ng and & = 0,4 = 1,...,n, for the reverse martingale model. Under (4.5) the
lower bound in (4.1) can then be improved following the lines of Proposition 4.1
for DU (ng) by

an-l—l—no:n
/" < FDR . 4.6
(e DU (no) (4.6)
(b) The statements of Lemma 4.1 and Corollary 4.1 naturally hold if FDR < «
holds for all szenarios described by the PRDS or reverse martingale model, since
the BI model is a submodel of both models.

The next example demonstrates an application of our inequalities.

Example 4.1 (About necessary conditions for the BI model).
(a) SU tests with critical values

Jin = Ja and non-negative a and b (4.7)

n+b—ja
are frequently discussed in the literature. The requirement ., < 1 for all n
implies 0 < a < 1 — a. A necessary condition for FDR < « is then by Lemma
4.1 the additional condition a < b. If a > 0 is positive then a < b is necessary.
(b) Consider some fixed integer 1 < k < n and the adjusted critical values

/9 j<k<n, (4.8)

T == a),
of the Asymptotic Optimal Rejection Curve (AORC) (2.17) of Finner et al.
[9] which are first only specified for j < k. There are several possibilities for
the choice of aj.,, k < j < n, for the extension of (4.8) such that (4.5) re-
mains true and ., < 1 holds, see (5.2) below and confer also Finner et al. [9]
and Gontscharuk [12]. It is well-known by Finner et al. [9] that the SU tests
with adjusted critical values (4.8) do not have finite sample FDR control but
asymptotic FDR control. Since a = 1 — « and b = 0 we directly observe by
(a) that finite sample FDR control can not hold. Even the first critical value
1. = m # o is too large to allow FDR control.

5. Applications under independence
5.1. FDR control

Our inequalities include a device for the choice of adequate parameters a, b for
the critical values (4.7). Below, we restrict ourselves to the FDR adjustment
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under the BI model. Some technical inequalities presented in Section 7 also
work under dependence.

Proposition 5.1. Consider SU tests with critical values (4.7) for 0 < a <'b
with fived value b and an adjustment of a. Let Ppr stand for all distributions
of the BI model and let FDR o) be linked to (4.7). There exists a unique
parameter ay € (0,b) with

sup FDRq,) = . (5.1)
PePp1

The worst case FDR, 4y is strictly smaller (larger) than o for a < ay
(a> ay).

Sharper inequalities for the range of the parameter a; of (5.1) are included
in Proposition 7.1 which may be of computational interest in practice. However,
the exact value a; should be calculated by numerical calculations, see Lemma
7.3 (a) of the proof section. For the step up test with critical values (4.7), b = 1,
a = 0.05 and n = 10 we have a1 =~ 0.92 for instance which is not far away from
the upper bound b = 1.

In the next step we establish another FDR adjustment as in (5.1) of crit-
ical values which may have some advantage in practice. The new proposal
relies on the following observation. Typically the largest coefficients of (2.6)
are responsible for a worst case FDR value with FDR > «, cf. Finner et al.
[7]. For these reasons we propose to bound the largest critical values as fol-
lows.

Proposition 5.2. Fiz ¢ > 0 which is typically small. Consider SU tests with
deterministic critical values (2.6) satisfying (4.5) and o1, < <. Introduce for
fized 1 < k < n the new coefficients

agkfl := min (aj;n, %ak:n> , j=1,...,n. (5.2)

If suppep,, FDR((j:n);) > o + € holds for the FDR of the corresponding SU
test, then there exists some 1 < kg < n with

sup FDR((ol%);) < sup FDR((a{i);) < a+e (5.3)
PePpr PePpr

for all k < ko and “>7 for all k > ky.

The modification (5.2) of the critical values has also been considered by
Finner et al. [9] Example 3.2 for the special case of critical values coming from
the AORC. Moreover, for this type of modification Finner et al. [7] propose to
increase the parameter b in a further step in order to decrease the FDR below
a. In contrast to earlier work Proposition 5.2 works for general critical values
with (4.5). In principal, Proposition 5.2 also works for ¢ = 0. For practical
purposes a choice of a very small value ¢ > 0 can be recommended, see Figure 1
in Example 5.1.
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Fic 1. SU FDR of the Gavrilov et al. [11] critical values (blue curve), critical values (5.2) for
k = 283,250,223 (black curves), BH SU FDR (lower red line), and lower bound (4.6) (green
curve).

Example 5.1 (Under the BI model).

(a) Let us consider the step down critical values
Jja

_ P < 5.4
o ji-a; =™ (5.4)

Qjip =

of Gavrilov et al. [11]. Tt is well-known that the corresponding SD test, see
Section 5.2 for the notation, yields finite sample FDR control, whereas the cor-
responding SU test has no finite sample FDR control. On the other hand the
necessary conditions for finite sample FDR control of Lemma 4.1 (a) are fulfilled.
In this case our results do not exclude this procedure but we get a meaningful
lower bound based on (4.6) for the worst case of FDR(ng) and a hint how the
critical values (5.4) can be modified.

(b) Figure 1 shows the FDR of the SU test for o = 0.05 and n = 300 for the least
favorable DU configurations for different values of N = ng with ng = 1,...,n,
given by the critical values (5.4). The lower bound in (4.1) is based on

NG @

i = — a. 5.5
[ (55)
Thus, this lower bound is close to the FDR for fixed N =~ n for this example.
Moreover, Figure 1 shows the FDR py plot for different choices k = 300, 283, 250,

223 given by (5.2) based on the critical values (5.4) with graphs decreasing in k.
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TABLE 1
Worst case FDR for different choices of k in (5.2) for the critical values (5.4)
k 300 283 250 223 2

suppep,, FDR 0.06165  0.05098  0.05020  0.05009  0.050006

argmaxp, FDR(ng) 32 43 74 100 300

The straight line represents the FDR of the BH test and the green curve is the
lower bound (4.6). Numerical results yield the value ko = 283 for ¢ = 1072 and
ko = 223 for e = 10~* given by (5.3), see Table 1. Here, k = 1 leads to a BH
test and is the only k& with FDR < a.

(c) In practice the statistician can accept the enlarged FDR value a + € or he
can reduce the critical values (5.4) by a minor reduction of .

The results given in Figure 1 are quite promising. A minor modification of
the critical values (5.4) exploits the FDR of the BH test. The value of FDR(ng)
is quite good for large ng, where the power of the multiple test is really needed.

5.2. Asymptotic worst FDR case

Our technique applies to the worst case FDR asymptotics for SU tests given by
rejection curves f.

Theorem 5.1. Let P,, be the set of all possible distributions of the BI model for
fized n. Consider a non-decreasing continuous rejection curve f :[0,20] — [0, 1]
for some 0 < xy < 1 with f(0) =0, f(xo) = 1. Assume also that f is left-sided
differentiable on (0,x0) and let f(x) > (14 €)x for all x and some € > 0. For
the sequence of SU tests based on the critical values (2.16) the asymptotic worst
SU case FDR is

1—
B :=limsup sup FDRp, = sup{ x M 0<x < xo} . (5.6)
n—oo P,eP, -z f(CL')

Moreover, 0 < 3 < 1 holds.
Remark 5.1. (a) Note that the AORC curve f, (2.17) yields

x 1= fo(x)

— " =

11—z  fo(2) ’

which again supports the optimality of f.

(b) Suppose that 5 < « < 1 holds for some rejection curve f treated in The-
orem 5.1. The proof of Theorem 5.1 implies f > f, on [0, x0] with the upper
bound f~1(L) < f (L) for the critical values of the SU tests.

(c) The question about the limiting FDR for Z= — 0 was addressed in Remark

5.1 of Finner et al. [9]. Our approach contributes to this open problem.

z€(0,1), (5.7)

For concave rejection curves we briefly point out that the asymptotic bound
B of Theorem 5.1 is the same for step down (SD) tests. Consider again the
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critical values (2.16). The step down critical index is given by the number of SD
rejections
Rsp :=max{i : pj., < oy forall 1 <j <i}. (5.8)

The modification of (2.7) and (2.8) for SD tests requires that all null hypotheses
with p-values

pi S aRSD:n (59)

are rejected. When the condition in (5.8) is empty no hypothesis is rejected and
Rgsp = 0 holds. Similarly to (2.9) put Vsp = #{true p; : p; < arsp:n} to be
the number of false positive rejections.

Theorem 5.2. Under the assumptions of Theorem 5.1, let us additionally as-
sume that f is a concave rejection curve. Then we obtain the same asymptotic
upper bound
limsup sup FDRp, sp =0 (5.10)
n—oo P,€P,
for the sequence of SD tests generated by (2.16) as for the corresponding sequence
of SU tests.

Remark 5.2. Consider a sequence of SD tests with critical values given by
(2.16) based on a concave rejection curve (2.15) and which has finite sample FDR
control by a for all n € N in the BI model. Then the same holds asymptotically
for the corresponding sequence of SU tests. This technique does not apply for
the sequence of SU tests based on the Gavrilov et al. [11] critical values (5.4),
since the critical values are not generated by one rejection curve, but by the
sequence of rejection curves (1 + %)f o based on the AORC.

6. Applications to adaptive control under dependence

In contrast to the preceding sections now data driven critical values are con-
sidered in order to exhaust the FDR level of given SU tests. Much effort was
done in order to establish adaptive SU tests which are based on the linear SU
test of Benjamini and Hochberg [1]. These tests are typically based on conser-
vatively biased estimators 79 of N in order to exploit the FDR level better. The
approach is motivated by the substitution of a by o/ = ﬁﬂoa which leads to the

heuristic FDR ~ aF (%) ~ « for consistent 7y and to data dependent BH type
critical values .
1

no

di:n = Q. (61)
We refer to the well-known and frequently applied so called Storey type estima-
tors given by the empirical distribution function F, of the p-values

fo(\) = n% Ko > 0, (6.2)

where X is often chosen to be close to 0.5, see Storey et al. [24] and Storey [23]
for the choice of x,, = % There are several estimators and conditions for FDR
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control in the literature, for example see Benjamini et al. [3], Sarkar [21] and
Zeisel et al. [25].

The finite sample FDR control of the adaptive SU test of Storey based on
the critical values (6.1) and estimator (6.2) with ,, = 1 seems to be restricted
to the BI model. Even for the reverse martingale model, which allows that some
p-values coincide, further assumptions are required, see Example 6.1 below for
instance.

The aim of this section is twofold for the reverse martingale model.

e In Section 6.1 sufficient conditions for estimators of N are introduced
which ensure asymptotic FDR control.

e In Section 6.3 modified Storey SU tests are introduced which have finite
sample FDR control for various block wise dependence models.

Moreover, we propose an adaptive multiple test for arbitrary dependent data and
we also give a sufficient condition for the estimator and dependence structure,
respectively, which again ensures asymptotic FDR control, compare with (2.13)
and (2.14).

The estimators and multiple tests are based on various assumptions. Let
0 < XA < 1 and divide [0,1] into two areas, the rejection area [0,\] and the
estimation area [\, 1]. Let us specify different assumptions.

(A1) The unknown value N is estimated by an estimator

fio = g((Fn(t))a<t<1) >0 almost surely (6.3)

via the empirical cumulative distribution function F), on the estimation
area [\, 1] and a measurable function g.
(A2) The unknown value N is estimated by

o = g((F,(t))o<i<1) > 0 almost surely. (6.4)
(A3) The multiple test is applied to the rejection area [0, A\] with data depen-
dent critical values

Qi = (#a) AN 1<i<n. (6.5)
no
(A4) The multiple test is applied to the rejection area [0, 1] with the following
data dependent critical values
o in/’flo
0

n
where v is an arbitrary probability measure on (0, co).

Taking the minimum in (6.5) goes back to Storey et al. [24] and ensures that
one does not reject p-values greater than A, therefore the name rejection area.
Statisticians often do not like to reject a hypothesis when the p-value is too
high. The estimated critical values (6.6) are based on the deterministic family
of critical values (2.14) of Blanchard and Roquain [5] which also include the
critical values (2.13) of Benjamini and Yekutieli [2].
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6.1. Asymptotic results

The central Lemma 7.1 now establishes sufficient conditions for asymptotic FDR
control of adaptive SU tests under different dependence structures.

Theorem 6.1. Let P, be the set of all possible distributions of the reverse
martingale models for fized n and let (P,), be a sequence of distributions with
P, € P,. Moreover, let ng, be a sequence of estimators for N, which ful-

fill (A1). If
P, <%<1—5) —0 (6.7)

holds for all § > 0, where § := oo for x >0, then

limsup FDRp, < « (6.8)

n—r00

holds for the sequence of adaptive SU tests given by (AS3).

Finner and Gontscharuk [8] and Gontscharuk [12] already used condition (6.7)
to show asymptotic FWER control of a specific sequence of adaptive Bonferroni
tests and adaptive SD tests, respectively. Under mild regularity assumptions,
Liang and Nettleton [17] showed that the FDR of the adaptive SU test of Storey
with altered estimator fig(\) = n%
asymptotically controlled at level a for every arbitrary and data dependent
selection of the tuning parameter A out of a candidate set {0 = Ao < -+ <
Am < 1}. This result may also be proved by application of Theorem 6.1, but
note that Theorem 6.1 works for a much broader class of estimators and also
under the reverse martingale model. The conservative consistency (6.7) is a very
weak condition. Under mild regularity assumptions the crucial assumption (6.7)
is also necessary for (6.8) for Storey type estimators (6.2).

and critical values &;.,, = #(A)O‘ is

Proposition 6.1. Let (P,), be a sequence of reverse martingale models with
either

(i) T2 =1 or
(ii) & < X for alli and 0 <n < % for some n and all n.

Consider the FDRp, of the sequence of SU tests based on (A3) and (6.2) so
that (6.8) holds. Let k, — 0 and suppose that P,({&r., = A\}) — 0 holds as

n — oo. Then the ratio % — 1 converges to one in P,-probability as n — oco.

Remark 6.1 (About asymptotic FDR of Storey type SU tests). Consider the
reverse martingale model. As long as enough variability of the variables (¢;1{p; <
A})i<n is present condition (6.7) can be verified. Let 79 be the estimator (6.2)
for some positive sequence k,,. Let

n

Fon(\) = Ni S el{p < A} (6.9)

=1
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be the cumulative distribution function of true p-values. Then a sufficient con-
dition to ensure (6.7) is (6.10), where the conditional variances

VCLTpn (Foyn (/\)

. 2
(e)i<n) = Er, <(F0,n(x) = (ei)m) ~0  (6.10)
tends to zero in probability as n — oo. The corresponding SU tests then have
asymptotic FDR control.

At this point, Theorem 6.1 can be extended to treat arbitrary p-values. Like
Benjamini and Yekutieli [2] and Blanchard and Roquain [5], who considered
non data dependent SU tests for arbitrary dependence structures. Therefore we
have to consider more conservative test procedures. The adaptive SU test (A4)
is based on the critical values (2.14) of Blanchard and Roquain [5] and yields
asymptotic FDR control if (6.7) is satisfied.

Theorem 6.2. Let P, be the set of all possible distributions of the p-value model
(2.2) for fized n, where each Uy, ..., U, is distributed according to the uniform
distribution on (0,1). No further distributional assumption and no dependence
structure is assumed. Again, let (P,)y, be a sequence of distributions with P, €
P, and flo.n be a sequence of estimators for N, which fulfill (A2). If (6.7) is
fulfilled, then (6.8) holds for the sequence of adaptive SU tests given by (A4).

6.2. Finite sample results

Let us now come back to finite sample FDR control. We will give a condition for
FDR control for the reverse martingale model and the next very useful Lemma
offers an exact formula for the FDR of our adaptive tests.

Lemma 6.1. Let V() := #{p; < \, p; true} denote the number of true null

hypotheses with p-values p; < A. Under the reverse martingale model, the adap-
tive SU test with critical values (A3) and estimator (A1) fulfills

E (%) =25 <V()\) min{ﬁlo, mb <$E (VTEOA)) . 611

This result generalizes Lemma 3.1 of Heesen and Janssen [15], where the BI
model is treated only. For the control of the FDR by « one merely has to show

E <V(A)) <A\ (6.12)

o
For example the benchmark result of Liang and Nettleton [17, Theorem 7] works
for estimators f(, with i, > fig(\) almost surely with 79(A) defined in (6.2) with
Kp = % and for some A € [0,1). In comparison to that, Lemma 6.1 works for
the class of estimators (A1) and also for the reverse martingale model. Some
interesting estimators which do not satisfy ny > fig(\) are given Heesen and
Janssen [15].
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The following negative result explains first that the use of adaptive SU tests
is limited under dependence and further results are needed for finite sample
FDR control.

Proposition 6.2. Consider an adaptive SU test based on (A1), (A3) and o < A.
Assume that the estimator p; — N is non-decreasing for each coordinate i. If
we have FDR < « for all reverse martingale models then ng > n holds and the
adaptive critical values &, < %a are dominated by the BH critical values.

The adaptive step up test of Storey does not yield FDR control in the reverse
martingale and PRDS model. For instance Blanchard and Roquain [4, Theorem
17] proved that in case of n = ng > 2 and p1 = -+ = p,, = U, for a uniform
distributed U on (0, 1),

E (%) = min (an(l — \), \)

holds for the Storey estimator (6.2) with ,, = % This result corresponds to
Lemma 6.1. Note that condition (6.7) is violated since n%) = 1— X holds on
{U < A} for the Storey estimator (6.2).

6.3. Case of a block model

Finally the following modified adaptive SU test is considered when mild addi-
tional dependence assumptions are present. Suppose that the p-values can be
divided by

k
@hume:LJGi (6.13)

in k disjoint blocks or groups G;. Suppose the reverse martingale condition
for (p1,...,pn). Assume in addition that for each group the subset G; C G;
corresponds to uniformly distributed p-values given by true null hypotheses.
Below let the groups G;, 1 < i < k, be conditionally independent given the
signs € whereas within group G; a reverse martingale dependence structure is
allowed.

Remark 6.2. In practice the model may have the following meaning for genome
data. G; may stand for independent portions of true p-values which may come
from different chromosomes. The p-values of G; may be reverse martingale de-
pendent, for instance some of them may be equal.

Consider the maximal size m of the groups

m:= m<a]§<|Gi| and n =mk —r (6.14)

with a remainder r > 0. Furthermore, let us assume that the number of true
p-values N is almost surely lower bounded by N,,;,. For the tuning parameters
0 < A< 1and k > 1 the modified Storey estimator

1_Fn()‘)+%

Y (6.15)

’fLQ(FL) =
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with s, = £ is introduced. Again (6.15) can be improved by the factor (1—\*),
i.e. also (1 — A*)fg(k) will work. We show that the step up test with estimated

critical values '
)

Qi = | ——a | A A 6.16

(e (6-16)

yields FDR control, FDR < «, under the present block wise dependence model
for all K > m+7+ (n— Nyp). If the groups are balanced, i.e. |Gi| = - = |G|
holds, then r vanishes and the best fit is expected. Of course ng(k) > n may
happen for large r in the unbalanced case and there would then be no advantage
in comparison with the BH test when the p-values are all independent.

Theorem 6.3. Consider the reverse martingale model for the p-values. Assume
that the p-values can be divided in k > 2 disjoint groups, see (6.13) and (6.14)
above. Moreover, assume that N > Ny holds almost surely for a lower bound
Npin > 0. Let conditionally on the signs € the groups Gy, ..., Gy of the true p-
values be independent. If k > m~+r+(n— Npn) holds, then the modified adaptive
SU test with critical values (6.16) and estimator (6.15) has finite sample FDR
control, i.e. FDR < «, and (6.12) holds.

Gontscharuk [12] considered a similar block model which leads to dependent
p-values and an adaptive Bonferroni type procedure with asymptotic FWER
control. Theorem 6.3 works for finite n.

If the group structure is known and balanced with |G1| = -+ = |G| = m,
then Guo and Sarkar [14] propose an adaptive multiple test with FDR control
under PRDS within each group. The ingredients are based on the Storey type
estimator (6.2), where A depends on the number of blocks and x = 2. However,

k

every rejected p-values has to be less than or equal to Ao & in comparison to

#(A)a for the adaptive SU test considered in Theorem 6.3.

As mentioned above the estimator (6.15) may produce very conservative SU
tests for independent p-values. However, Theorem 6.3 is designed for block de-
pendent p-values and we will see by the inspection of the FWER that this
procedure can not always be improved. The necessary calculations for Example
6.1 are included in the proof of Theorem 6.3.

Example 6.1. Consider k£ blocks of size m with N = n = mk true p-values.
Suppose that for each block all p-values coincide with the same uniformly dis-
tributed random variable whereas the blocks are independent. The model has
both the PRDS and the reverse martingale property. When o < ﬁ holds

then the choice kK = m for the procedures (6.15) and (6.16) yields
FDR=FWER = a(1 — \F), (6.17)

Here the modified estimator (1 — A*)fg (k) attains the FWER bound « and we
obtain a sharp result for the block model.

We conducted a small Monte-Carlo simulation with 100.000 repetitions to ex-
plore the situation beyond the case of Example 6.1 for the adaptive SU test with
critical values (6.16) and estimator (6.15) with o = 0.05 at size n = 100. All false
p-values are set to 0. Consider a setting of kK = 5 groups with m = 20 p-values and
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16 equal true p-values in each group. The choices of Kk = 1,16, 20 lead to FDR ~
0.0886,0.0476,0.0438. Furthermore, the group frequencies 25, 25, 20, 15, 15 with
20,20,16,12,12 equal true p-values within theses groups and the choices of
k = 1,12,20,25 lead to FDR ~ 0.0921,0.0567,0.0446, 0.0385. Since the num-
ber of true p-values within each group is unknown, the simulation and Exam-
ple 6.1 indicate that here x &~ m is an appropriate tuning parameter for the
adaptive SU test. Moreover, a simulation with equal group frequencies under
the global intersection hypothesis shows that « slightly smaller than m already
yields FDR > «a. For k = 10 groups of equal size with m = 100 and only true
p-values in each group, the choice of kK = 97 yields FDR ~ 0.051.

7. Technical results and proofs

Lemma 7.1. (a) Let 0 < G1.p < -+ < Gy < A < 1 be data dependent critical
values

Qi = gi(Fn())i>n), i=1,...,m, (7.1)

giwen by measurable functions g; and introduce &g., = Q1.,. Moreover define

(i) := nd.,. Then

B(-) = o (72)

V(R) n

holds for the corresponding adaptive SU tests under the reverse martingale model
(including the BI model).
(b) Let p(i) = p(i, (Fo(t))o<i<1) > 0,0 = 0,...,n, be non-decreasing in i and
let v(i) := ap(i). Moreover, assume that v is a probability measure on (0,00)
and define the data dependent critical values via

n

o [0
Gy, = —/ xdv(x). (7.3)
0

Then “<” holds in (7.2) for the corresponding adaptive SU test with critical
values (7.3) for arbitrary dependent variables (€;,U;, & )i<n,-

Remark 7.1. (a) Lemma 7.1 (a) also applies to deterministic critical values
0<arm <...anym < 1if we put A = .. In this case, the reverse martingale
assumption (2.5) can be weakened in order to prove (7.2). It is only necessary
to assume that (2.5) is a reverse martingale w.r.t. the discrete parameter set
I'={a1mn,...,nm, 1} and t € I.

(b) Storey et al. [24] already used martingale arguments which have been out-
lined by Scheer [22].

(¢) In case of deterministic critical values 0 < a1., < -+ < @p.p < 1 we obtain
the inequality “<” in (7.2) under the PRDS model. The proof follows straight-
forward classical lines, see Heesen [16] and Meskaldji et al. [19].

PROOF OF LEMMA 7.1. (a) Observe that the SU test can be represented by the
reverse stopping time

T = Sup{di:nai = 17 N A 23 < di:n} V CAVl:nu
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which is adapted to the reverse Filtration (F;)o<i<1 and where sup( := 0.
Then every p-value p; < 7 is rejected. For V(t) := #{p; < t, p; true} and

R(t) = nE,(t) for 0 < ¢ < 1 we have (‘%) = V(VBS(TT)) Conditioned under F the

critical values &1.y, . . ., Gy, are fixed and therefore, 7 is a discrete stopping time
w.r.t. the reverse martingale (2.5) for the periode &q., < ¢t < A. Furthermore,
observe that dp(r)., = 7 holds if R > 0 since R(7) = R. Thus by (2.5) and the
discrete version of the optional stopping theorem

E(%}ﬂ) - E< G }A>_ <%1{R( >0}’ﬂ>
— 25 ("o > 05 - 1 (2R
- ()

holds and integration yields

(i) 25 (15 - e (1) - 222

(b) Applying the technique of the proof of Lemma 3.2 of Blanchard and Roquain

[4] yields A
E(vg;f) 6) i;ﬁ(% 6) < %

There, the technique is formulated for deterministic critical values, but observe
that it also works for data dependent critical values. O

)
)4

When the proof was finished we came across the early paper of Meskaldji
et al. [19] which covers the special non-adaptive case of our technical Lemma
7.1 (b). For deterministic critical values their proof also follows the lines of
Blanchard and Roquain [5].

7.1. Proofs of Section 3

PROOF OF EXAMPLE 3.1. Below the proof of part (a) is sketched. The calcula-
tions for (b) are similar. Recall from Finner et al. [9], p. 604, the FDR formula
forn=ng=2

FWER = FDR(2)

:O‘[P (RZ Ip1 < %) —P(RZ2|p1 < %) +P(R>2p <a) (7.4)

since (X1, X5) = (XQ, X1) holds for the normal sample. For a = 3 we have by
conditioning w.r.t. X7 = a1

1 1 1
P(RZQ,Z)1§§> = P(p1_27p2 2)—P(X1§0,X2§0)
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= [ s,
0
where ¢ = ®’. Similarly,
1 o0
P (R >2,p1 < —) :/ ®(21)p(21)dz1. (7.5)
Sy
Notice that - ) )
O(z)p(x)dx = 5@(90)2}00 5[1 — @(a)2] (7.6)
follows. Thus, P(R > 2|p1 < 1) = 2 and P(R > 2|py < %) = Z holds which
implies the result. O

PROOF OF EXAMPLE 3.3. Part (b) and (c) are obvious. To prove (a) define
o _HZi<t}
M"Y = oD for t € {H > 0}.

In case n = 1 it is well known that M( )

is a reverse martingale w.r.t. Gy =
U(Ms(l) : s> t). In case n > 1 let us prove that M( ) is a reverse martingale
wrt. = o((MYP)ss4,1 < j < n). Obviously, E (M,S1 |F) = 0= MY holds
if Z1 > s. Otherwise, Z; < s implies X; < sand Y < s. Thus WHZ, <71} =
1{X; < 7} holds for i > 2 and all 7 > s. Let f; : [s,00) — {0,1}[*>) be a
possible path of 7 — 1{X; <7}, 7 > s. If 1{Z; < s} =1 holds we have

BV |F)
B(MO1{Z1 < s} = 1,(1{X; < 7})rss = (fi(T)r2sri = 2,...,n)
= E(M" {7 < s} =1)

1
B

Above we used that 1{Z; < s} and (X3, ..., X,,) are independent. Observe that
the time change
HH(Z:) <wu}
w T T u
by the inverse distribution function H ! preserves the reverse martingale. [

(1)
u— My~

7.2. Proofs of Section /4

Lemma 7.2. (a) Assume the PRDS model or reverse martingale model (which
include the BI model). Consider the SU test with deterministic critical values
(2.6) and suppose that there exist some k and 0 < ¢ < 1 with o, < 2% for all
i<k

(i) Then FDR < “EWN) 4 P(R > k) holds.
(ii) Suppose that the assumption holds for k = n. If in addition aj., < 2

holds for a fized j with P(R = j,V > 0) > 0, then FDR < @ follows
for the BI model.
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(b) Assume the reverse martingale model, consider the SU test with critical
values (2.6) and suppose that ., > L holds for all j < n.

(i) Then FDR > @ holds.
(it) If in addition c., > % holds for some j with P(R = j,V > 0) > 0, then
FDR > @ holds at least under the BI model.

Proof. (a) (i) Let (i) = noy., and observe that # < ¢ holds for all j < k.
Then Lemma 7.1 (a) and Remark 7.1 (¢) imply

V. y(R)
FDR < E<TR)T1{R§I<:})+P(R>I€)
< M+P(R>k)

n

for the PRDS and reverse martingale model, respectively.
(ii) By (i) we already know FDR < @ and in case of equality we have

0= E(VC(‘}/%) — ¥). But observe that WC(‘I/%) — ¥ >0 holds. Thus,

E(V(ﬁ—}%))z(ﬁ—%)-P(H:j,V>0) (7.7)

follows by our assumptions, a contradiction.
(b) (i) Observe that @ > ¢ holds for all j < n. Thus Lemma 7.1 implies

FDR=F (%@) 5 oE <72;)) N cEle)

for the reverse martingale model.

(ii) Observe that ,YC(‘I/%) — ¥ <0and Gy~ % < 0 hold and the assertion follows

in the same way as in (a) (ii). O

PROOF OF PROPOSITION 4.1. The proposition is a direct application of Lemma
7.1 (a) and Remark 7.1 (c) with deterministic critical values. Again let v(i) =
nay.,, 0 < i < n. For the reverse martingale and PRDS models we have

V ~v(R) \% nag., _ E(N) NGy,
= —_ ) < < .
ror=5 () <8 (s ) ma e < S ma e 0)

by Lemma 7.1 (a) and Remark 7.1 (c). Under the assumptions of (b) (i) the
first inequality in (7.8) is actually a strict inequality “<”. The other inequalities
follow analogously. O

Proor OF LEMMA 4.1. (a) In this proof we may always choose the Dirac
uniform case f = (p; : ¢, =0) = (0,...,0) for the false p-values. Let N =ng =
n + 1 — 7 be deterministic. Thus by Lemma 7.1 (a)

5 = 2wt r) - (Rsls)
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< (3her) s

since R > 7 holds when V is positive and j — ﬁ = ni < is non-increasing.
i

By our assumption the inequality E(%|no, f) < a proves the result.

(b) In tha_t case we have —1= > % > % for j < k. Obviously, P(R =

k + 1|ng, f) > 0 holds for N = ng = n + 1 — j with j < k. Thus we have strict
inequality in the proof of part (a) and =2 < % follows. O

PROOF OF COROLLARY 4.1. (a) is a special case of Lemma 4.1.
(b) Assume the multiple test is not a BH test. Take the first value k with

g O1:n I (0772973 Apt1:n
n

1 k E+1°

Then Lemma 4.1 (b) implies a1., < % which contradicts our assumption.
(c) On the other hand oy, = % implies & > % and FDR > BE(N) by Lemma

J n

7.2 (b). O

The following technical tools of Lemma 7.3 and Remark 7.2 supplement the
inequalities of Section 4.

Lemma 7.3. Consider SU tests based on the critical values (4.7) with 0 < a < b
with fized value b and an adjustment of a.

(a) Under the reverse martingale model and the Dirac uniform configuration
DU(ng) the FDR is given by

Qango aEDU(V|n0)

o = FDR = , 7.9
9ab(no) pu(no) A p—— (7.9)
with “<” under PRDS. Then
sup FDR@ ) = max ge(no) (7.10)
PePBr 1<no<n

holds.
(b) The following inequality holds for the expected number of false rejections
Epy(Ving) under DU(ng)

NoQn4+1—ng:n S EDU(V|7’LQ).

Note that this statement holds without any dependence assumption on Uy, ..., U,.

Proof. Part (a) follows from (7.2) which reads under DU with n; = n — ng as

no 1 <V(n+b) —(m +V)aV> |

N _ " E
n no n+V

Equation (7.10) holds since the DU configuration is least favorable.
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(b) Without restrictions we assume that the true p-values are given by py, ...,
Dno- Then we obtain

no

EDU(V|TL()) = ZEDU(l{piSOZR:anO)

=1

no
Z EDU(l{pz S an+1fno:n}|n0) = No&n+1—ng:n
1=1

Y

since R > n+ 1 — ng holds on {p; < ap.,} for the DU configuration for all
true p;. (I

By different methods Scheer [22] obtained (7.9) for a =1 — a.

Remark 7.2. The expected number of false rejections h(ng,a) =
Epy(VBH:2|ng) is easy to compute by the following recursion h(1,a) = « and

nox

h(ng,a) = T[h(no—l,a)—i—n—no—i-l] (7.11)

for the BH SU test which equals by induction

no! I N T .
h(no, @) = nTO_la o+ Y J_f: (E) (n— j). (7.12)
j=1 7

Formula (7.12) is due to Finner and Roters [10, p. 991] which is now a direct
consequence of our equalities, see (7.14).

PROOF OF THE RECURSION (7.11) oF REMARK 7.2. Consider a true p-value,

say p1, of p = (p1,...,pn). Put p( = (0,ps,...,pn) and let R(p), R(p™")) be
the number of rejections. Simple calculations show that R(p) = R(p(")) holds
on the set {p1 < ag(p)m}- Observe, when p; is rejected, then p; could also be
zero. Moreover, we have {p1 < agy)m} = {P1 < @), } in any case for SU
tests which implies

o
E(1{p1 < argyn}no) = Bagp ynlno) = —E(R(pM)[no) (7.13)

by Fubini’s theorem and E(V|ng) = Q%E(R(p(l))|no). Under DU(ng) we ob-

tain

Epu(R(p™)Ino) = Epu(V(p'") +n—nolne) = Epu(V(p) +n —no+ 1|ng — 1)
(7.14)

and the recursion. Formula (7.12) follows by induction. O

Remark 7.3. Under the BI model the proof of statement (7.2) can be simplified
as follows. Consider deterministic critical values. Using the proof of Remark 7.2
above we may again conclude by Fubini’s Theorem

€1 = 1)

Hpr < apin} o B Hp1 < agpayn )
b ( ~(B) 1‘1> - F ( S RED))
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QAR(p()in ) 1
= E|—————leg=1) =—.
(7(R(p(1>)) n

The method of proof can be used to prove the discussion about least favorable
“false p-values” given by Benjamini and Yekutieli [2] Theorem 5.3.

7.3. Proofs of Section 5.1

PROOF OF PROPOSITION 5.1. By (7.10) we may concentrate on the DU case
for the BI model. Note also that g, ,(no) is strictly increasing in a since the
critical values are ordered. On the other hand expression (7.10) converges to
iy = a’ < afor a ™, 0. Thus, the solution a; of (5.1) is unique and it is easy
to see that 0 < a1 < b holds. O

Lemma 7.3 leads to a new upper bound for the crucial parameter a; estab-
lished in Proposition 5.1.

Proposition 7.1. Consider the assumptions of Proposition 5.1. Introduce ag
as the unique positive solution of

ang  ah(ng,a’) )

a:1§i§)§n<n+b n+b (7.15)

where o = %. Then the crucial parameter ag satisfies 0 < a1 < ag.

Proof. Observe first, that the coefficients «a;.,, > O‘T/l dominate the BH critical
values for the choice of . Thus we have Epy(V|ng) > h(ng,a’) and

anyg h(ng, )

>
ga’b(no)_ n+b+a n+b

Hence, it is easy to see that the solution a1 of (5.1) satisfies 0 < a1 < ao. O

PROOF OF PROPOSITION 5.2. The requirements (4.5) remain true for the new
coefficients (5.2) and we may restrict ourselves to the worst DU case. Here we
have
Vv
FDRDU(TLO) =F <m> .

We see that FDRpy(ng) is ordered by “<” when the critical values and thus
the V'’s are ordered since x +— Py increases. Observe that k£ = 1 yield a BH
test with FDR < «a and the proof is finished. O

7.4. Proofs of Section 5.2

In regular cases the inequalities (4.1) are asymptotically sharp. For this purpose
assume that the critical values are generated by a function h via

am_h<3), 1<i<n. (7.16)

n
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At this stage we require that h : [0,1] — [0, 1] is a non-decreasing function with
Rh(0) =0, h(1) <1 and 0 < ¢1 = infpeger @, SUP)<pe1 @ = ¢y < 1. Then
under regularity assumptions these bounds (4.1) are asymptotically sharp in the
sense that for ¢ € {¢1,ca} there exist sequences of BI distributions P, so that

lim FDRp, = lim E(N») c.

n— 00 n— 00 n

(7.17)

Lemma 7.4. Consider the SU test with critical values (7.16) given by a con-
tinuous function h. Suppose that B2 — K converges in probability for some 0 <

E(N) < 1 exists. Then lim,, ,oo FDR,, =

n

K < 1 and suppose that 0 < lim,,

% lim,, oo %

Suppose that ¢; = as well as ¢, = %:) are attained for some 1,29 €

(0,1). Furthermore, assume that there exist sequences of distributions with

Bu 5 21, 2o, in probability, respectively, and 0 < lim,_ o % < 1. Then

n

Lemma 7.4 can be applied in order to get sharp bounds in (4.1).

h(wl)

h(x)

x

PROOF OF LEMMA 7.4. Let A(K) be an open neighborhood of K with
d >0 on A(K). Then

>

lim FDR, = lim E (E—H {& € A(K)})

n— 00 n— 00 n n

holds. Introduce

0< 2, = %1{% eA(K)} _ nh(V;;Tn)1{% eA(K)} <1

which is a tight sequence of random variables. On the other hand the bounded
sequence of random variables

nh( =) N h(K)

W, =
R, K

converges in probability. Turning to distributional convergent subsequences of
Zyp, we finally obtain

n h(K E(N,,
lim E (V—) — lim Bz, = M gy, EQVn)
n—00 R, n—00 n—00 n
since limy, 00 E(Z,) = limy, 00 % holds by Lemma 7.1. O

PrROOF OF THEOREM 5.1. The present proof is given by several steps. Below
the following elementary geometric property of the AORC is used. Consider for

0 < o < 1 the function A(z,y) := ﬁl_Ty for (z,y) € (0,1)? in the plain. Then

1. A(z,y) = « iff (x,y) belongs to the graph of f,, i.e. fo(x)=1y.
2. A(z,y) > a iff (x,y) is below the graph of f,, i.e. fo(z) > y.
3. A(z,y) < a iff (x,y) lies above the graph of f,, i.e. fo(z) < y.
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(I) We claim 0 < 8 < 1. We first show 3 > 0. Therefore, choose ng = |§] and
a Dirac uniform DU (n,ng) configuration. Then % > % holds. Hence every p-
value p; < f1 (%) will be rejected and in particular every p-value p; < f~1 (%)
Thus

Vi 1 1
B > liminf FDRpy(nne) = iminf E (=) > =f71 (=) >0
n— 00 ’ n— 00 n 2 2
for this sequence of Dirac uniform models. Let us next show 5 < 1. Therefore, let
ng be arbitrary and observe that f lies above the Benjamini Hochberg rejection
curve fpp(xz) = (1 + €)x of the BH test. By Lemma 7.2 (a) (i) we always have

1
FDRp, < :
=14

(ITI) The statement (5.6) of the Theorem is first proved for concave rejection
curves f. Therefore, observe that under the distribution PN+ of N,

FDRp, = /FDan (ng)PN» (dng) < sup FDRp, (ng) < sup FDRpy(nn,)
no<n no<n

for all P, € P,, since the Dirac uniform configuration is least favorable for the

FDR for SU tests with critical values fulfilling (4.5). Hence we get

B = limsup sup FDRpy(n,ne) (7.18)

n—oo no<n

since DU (n,ng) belongs to P,, and thus there exists a subsequence (n,ng) =
(s 0,m )n, again denoted by n, with

FDRpynmne) — B and % —1—y forn— o0 (7.19)

and some 1 —y € [0,1]. Now we determine the limit of FDRpy(y,n,) for every
sequence 22 — 1 —y € [0,1].
1. For 22 — 0 observe that

n

Vi n
FDRDU(n,ng) =F (m> < 0 — 0
and by a similar argument it follows that the limit of FDRpy(y n,) 18 continuous
inl—yat0.
2. Let us consider ¢ — 1 —y € (0,1) with positive y and introduce the
straight line g(¢) = y + (1 — y)t which runs through the points (0,y) and (1,1)
and has the unique crossing point (z, K), 0 < K < 1, with f. Observe that

Fn(aRn:n) = f(aRn:n)

holds; Now let Z be a weak accumulation point of ag,,.,,. Since f is continuous
and F,, converges uniformly to g with probability 1 the equation

9(Z)=y+ (1 -y)Z = f(Z)
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follows. There is only one crossing point and thus Z = z is constant for each
weak accumulation point. From f~'(£2) = ap, ., we now deduce

at least along subsequences. Similar arguments were used by Scheer [22], Lemma
2.9, in his set up in order to prove that ap., converges to the crossing point x.
A simple geometric argument for the gradient of ¢ yields

-y  flx)—y

1 T

and hence fa) |- @)

r)—x — f(z
= 1l—y=—". 7.21
Y= y=1 (7.21)

By Lemma 7.4 and subsequence arguments
. _fTHE) _x 1-f(=)

Jim FDRpy(nng = (1 -y) = @) 1-z (7.22)

holds for all sequences 2 — 1 —y € (0,1).
3. Now consider ~¢ — 1. Again % — 0 in distribution. This follows from
(7.20) by the monotonicity of R, in ng since K — 0 holds for y — 0. Observe

next that for every z > 0 we have z := f(x) > 0 and hence by (4.5)
nog.n < N nz|:n _ nf_l(%)
i T (nz [nz]
holds for j < |nz|. By Lemma 7.2 (a) (i)

<1

h(12d) g ')
FDR < - — + PR, = —
DU (n,ng) = U:LZJ n + ( > LTLZJ) — > f(x)
holds and hence
, .o z 1- f(z)
limsup FDRpyinngy < lm —— = lim —— ————~=
P bU(n.mo) = o flz) o0 f(z) 1—=x

when 72 — 1 since limg\ o %(;) =1.

Altogether, by subsequence arguments and (7.18) we directly obtain (5.6)
(IIT) Let now f be the general rejection curve of Theorem 5.1. Introduce 7 :=

sup{ 1;(7;(;) 10 <z <z}

(a) Claim: 8 < «. The geometric arguments 1.-3. at the beginning of the proof
imply f > f, for the AORC with parameter v. Next f, is modified as follows. Let
x — r(x) be the tangent straight line attached at f, at the point (xo, fy(z0)).

Then
fla) = {f”(x) v (7.23)

r(z) x>0
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defines a concave rejection curve f < f with f(z1) =1 for some 2y < #; < 1. By
Lemma 7.5, given below, the FDR(f) is always an upper bound of the FDR(f).

By step (IT) the asymptotic worst case FDR of FDR(f) equals

sup{ 3: LM:nggxl}zﬂ. (7.24)

1—2 f

It is easy to see that the left hand side is just ~.

(b) The proof will be completed by showing 58 > ~. The inequality follows
from the next special construction of mixture models, where now in contrast to
part (IT) of this proof the DU configuration is no longer least favorable. Introduce
for each 0 < § < 1 the straight line gs(t) = 1 — § + t0 and the intersection set
Ds = {z € (0,z0) : gs(x) = f(x)}. Note that Ds is a compact set bounded
away from 0 and z¢ with Ds # () and

U Ds=(0,20). (7.25)

0<o<1

Thus, there exists some maximal element x5 € Dy with x < x5 for all x € Ds. In
the next step we will introduce for each set Ds a mixture model with appropriate
distribution function
F5(t) =0t + (1 — 0)G5(t). (7.26)

The non-uniform part GGs will have the following properties:

(i) Gs(zs) =1, which implies F5(t) = gs(t) for all t > x5 and Fs(z5) = f(xs).

(il) Fs(t) < f(t) for all t < 5.
In order to do so, let h be a straight line through (x5, f(xs)) with sufficiently

large slope such that h(t) < f(t) for all 0 < t < xs. Here the left-sided differen-
tiability of f is used. Put now

Fs5(t) = max(dt, h(t)), fort < xs. (7.27)

This x5 is the only cut point of Fs and f. Consider now a mixture model P,
with distribution function fs. Similarly as in (II) we have &= — § and via the
cut point consideration we arrive at

x5 1— f(xs)
1—as  f(xs)

at least along suitable subsequences. A comparison of the line segment {(z,

gs(x)) : @ € Ds} with the AORC fg, yields ﬁl;(—fz()m) < Bs for each x € Ds

if we take 1.-3. into account. This construction can be done for each set Dy.
Thus, the proof of the inequality g > ~ is complete. O

FDRp, —»

=: B (7.28)

The next lemma is used in the last proof and may be of separate interest.

Lemma 7.5. Let f : [0,1] — R be a non-decreasing rejection curve with
f(0) =0, f(zo) =1 for some xy < 1 and f(z) > (1 + €)x for some ¢ > 0.
Moreover, let ro : [0,1] — R be a concave rejection curve and a lower bound
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of f. Under the BI Model for fized n and N = ng we have
FDR(f) < FDR(ro) < FDRpu (n,n,) (o) (7.29)
for the FDR of the SU tests based on f and ro via (2.16).

Proof. Let o;., and 041(';012 be the critical values of the rejection curves f and ro,
respectively, defined by (2.16). Define R and Ry as the number of rejections of
the SU test based on «;.,, and ag;og, respectively. It is easy to see that ., < aggz
and hence R < Ry almost surely holds. Using the technique of Remark 7.3 we

obtain
(0)

_ QR(pW)m | YRpW)m |
FDR(f) = noE (7R(p(1)) € = 1) < ngk W € =
(0) (0)
@ «

Ro(pM)):n Ro(pM):n
< E|————le1=1| <noEpumn _Lolp g
= P TRy My 17 = M0EDUno) | TR My |
= FDRDU(n,nO)(To).

0)
since ¢ — al" is non-decreasing and the DU (n, ny) configuration is least favor-

able for the FDR, cf. Benjamini and Yekutieli [2]. O

Remark 7.4. Consider the BI Model and let the false p-values be independent
and stochastically smaller than the uniform distribution. Let F'D Ry (g,1) denote
the FDR under uniformly distributed false p-values. If we replace o in Lemma
7.5 by a convex rejection curve rg which is a upper bound of f, it is easy to see
by similar arguments that

FDR(f) =2 FDRy(,1(r0) (7.30)

)
holds for the FDR of the SU tests based on f and rg, since ¢ — QT" is non-
increasing for the critical values 041(';012 corresponding to the rejection curve ry.
According to Benjamini and Yekutieli [2], here the uniform distribution is least

favorable for the FDR under stochastically smaller p-values.

If (2.4) is non-increasing, then the p-values are called to be negative regression
dependent on the subset of true null hypotheses (NRDS). Under this assumption
the lower bound in (4.1) and Lemma 7.2 (b) (i) stay true, see Heesen [16] for
instance.

PROOF OF THEOREM 5.2. By Gontscharuk [12, Theorem 3.10] it is well known

that v "
SD a SU a
E( 2200, F) < E(Z2Y |n,
(RSD 0 f) (RSU 0 f)

holds for tests with critical values (4.5), see also Heesen [16] Lemma 2.29. The
inequality also follows from the technique used in Remark 7.3. Hence

limsup sup FDRp, sp <limsup sup FDRp, =:[. (7.31)

n—oo P,eP, n—00  Pp&Pp
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In the proof of Theorem 5.1 we already showed that 3 is attained by %= 1}{1(;” )

for some x. Thus, to show “=" on the left hand side in (7.31) it suffices to
show that for all such x there is some sequence of distributions (P, ), so that

FDRp, sp converges to 17— 1;(7;():” ), Therefore, let us now consider sequences of

DU (n, ng) configurations with ¢ — 1 —y € (0,1). Along the lines of the proof
of Theorem 5.1 we have

RSD,n
n

=K as with0< K <1. (7.32)

Observe that 0 < K holds since 252 > 1= 7= — gy > 0. Moreover, K < 1 holds
since f(x) = 1 for all g < z for some xo "< 1. Now with x, f(x ) and y as in
(7.20) and (7.21) in the proof of Theorem 5.1 we have

VSD RSD,n __ n—ng
FDRpummne),sp =  Ebummne) (RSD)n> = Eputmmo) | ~ Repa
K — _
. y oz 1-f(x)
by dominated convergence. Hence we have “=” in (7.31) since the above formula
holds for all 1 —y € (0,1) and the representation (5.6). O

7.5. Proofs of Section 6

PRrROOF OF THEOREM 6.1. First observe that FDRp, = 0 < « obviously holds
if N, = 0. Thus, without loss of generality let N,, > 0 almost surely for all n.
Conditioned under € = (ey,...,€,) we obtain by Lemma 7.1 (a) and (6.5)

&zE( V >>E("2"}‘;ae) (7.33)

n NAR:n
for the reverse martingale model since the conditional case is also included. Thus
by integration

’ﬁon \%4 14 no,n
> > —0)— —
“ = (N R> i ((1 ‘”Rl{Nn -1 5})
\%4 \%4 no,n
= (1- —)-@1- — <
1o (D) - -am (a2 <1 51)
> (1-6)E v —(1-9)P, Ron g
= P, R n Nn
holds for every § > 0 and the statement follows by (6.7). O

PROOF OF PROPOSITION 6.1. Introduce the set A,, = {&g., < A}. An inspec-
tion of the proof of Lemma 6.1 (given below) yields

v, a V(A
Ep, (214, ) =%E 1
o (Rn A") A P"( fig A")
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restricted on A,,. Define S, () := > (1 — ¢)1{p; < A}, then
. (1-X Va(M)
>1
T P V) = 8 () +

follows. First, let us consider case (ii). For each 6 > 0 we have

1= Vo (A)/Ny

1>—1 E 1 . 7.34
. DS B\ TSV 0N+ N 73 (73

Observe next that 0 < V,,(\)/N,, < 1 is tight and we consider an arbitrary
distributional cluster point Z of V,,(\)/N,,. The appertaining subsequence is for
convenience also denoted by {n}, i.e. V,,(A\)/N,, = Z in distribution. Note that

E(Z) = X and
1-A A
>
=52 ()

hold. Now Jensen’s inequality implies

A Z A
> N [ G
l—A_E(l—Z)_l—A

when § ™\ 0. Since z +— 17— is strictly convex we have Z = A a.e. Since Z was
an arbitrary cluster point we conclude V;,(\)/N,, — A in P,-probability. This
statement implies the result

Ao N = Va(A) +nsp
N, (1-MN,

— 1.

In case (i) the proof is similar. Note that the assumption then implies

(n = Nyp) = Su(N)

— 0
Np

and we may proceed as in (7.34) O
Proor oF REMARK 6.1. Observe that
o Na= S al{pi < A}

N, — N,p(1=2X)
- =57 el{p; <A}
N, i=1 € >
> n 1
= - -
holds, where the right hand side converges by (6.10) in probability w.r.t. the
conditional convergence. Il
PROOF OF THEOREM 6.2. Conditioned under € = (eq, . .., €,) we directly obtain
by Lemma 7.1 (b) and (6.6) that
N, Non V
—>F|——— 7.35
n - ( n Ra E) ( )

holds and the statement follows by the same arguments as in the proof of The-
orem 6.1. O
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PROOF OF LEMMA 6.1. Conditioned under (¢;);<n, = ¢, (p; : ¢ = 0) = f and
(nF,(1))i>2) = (n(t))i>x we have exactly V() true p-values smaller or equal to
A where V() is a fixed number. Without restriction we assume N > V(\) > 0
since everything is obviously fine for the excluded cases. Let us now consider
new rescaled p-values ¢;, i = 1,...,n()\) defined by
qi:n()\) = 1%, i=1,...,n()\).

When a new p-values ¢; corresponds to a true null hypothesis it is again uni-
formly distributed on (0,1) and L{qi—tgt} is a reverse martingale with respect
to the reverse filtration 7! = o(1{¢q; < s} : 1 < j < n(\),s > t) under the
above conditional assumption. The exact positions of the V(\) true p-values in
(q1,- -+, qn(n)) does not matter for our considerations. We now apply Lemma 7.1
(a) for the SU multiple test with critical values

@ ._ L r_ )
Qin(n) = n(/\)a and o = o Q@
on the ¢’s. The data dependent level o’ only depends by assumption (A1) on
the information given by JFy. Conditionally under F) we have a regular non
data dependent SU procedure on the ¢’s. Let R, and V; denote the number of

rejections and false rejections respectively by the above SU test. Observe that
(Ve ey
Ry

e F(n(0)ezn ) = £ minfa’, 1) (7.36)
holds by Lemma 7.1 (a). Obviously (7.36) is w in case o/ > 1.

n(A)
[0))
Now observe that
R, = max{i <n(A) : gy < 041(-32@)}

. Pin S 1

max{iﬁn()\)' N S ay AE%)O‘}

= max{ign D Pin < (;a> /\)\} =R
L)

and hence V, = V since both tests, belonging to & and R,, are rejecting the
same hypotheses. Thus by (7.36) we get

E <%) = E <E (% e f, (n(t))t»))
B (B (2] ] 001 ) )

= Mmin o =< min J — A
- (5 i) AE<V“) {ﬁo’np,,@)a})' .

PROOF OF PROPOSITION 6.2. Choose N =n and p; = U for all ¢ < n. Thus
V(A) =nl{U < A} and nF,(\) = n1{U < A}. The exact FDR formula (6.11)

3




Inequalities for the false discovery rate (FDR) under dependence 713

yields

a> FDR = gn)\min <L_,, i)
A no(1l) no

where 79(1) stands for the value of the estimator when E,(p) =1 for all p > \.

Thus - ’ET) < 1 holds. By our assumption we have 7y > ﬁo(f) O
Ao

We need the following “balayage” lemma for the proof of Theorem 6.3.

Lemma 7.6. Let f : {0,1,...,m} — R be a convexr function and let P =
E;n:lpjej be a distribution on {0,1,...,m}, where ¢; denotes the Dirac dis-
tribution on {j}. Then Ep(id) = Ep/(id) and Ep(f) < Ep/(f) hold for the

distribution
P = 1—5—'6—{-5—'6.
s mpj 0 s mp; m

Proof. Ep(id) = Ep/(id) obviously holds by the definition of P’. Then by the
convexity of f we have

E(f) = Y _flp < (M (0)pg+%f(m)pg)
7=0 7=0
= (130 | FO)+ 3 i fm) = Bp () O

PROOF OF THEOREM 6.3. Throughout the condition (6.12) will be verified. For
the portion G; of true p-values introduce the quantities

Vi) = Y. p; <AL Ni= Gl (7.37)

jiijéi

with V() = Zle Vi(\). Whenever G; # () holds select one true p-value p; € G;.
Observe that the p; are conditionally independent given e. Under that condition

we have for (6.14)
k
e) = (1-NE <M‘e>
n—nkF,(\) + &k

. <V(/\)
(1= NE < Ty Vi) - K‘e) — ().

IN

no(k)
N =Y, Vi)

In the next step we are going to condition under a = 2522 Vi(A). Note that
then V4 (\) is a B(Np, A) distributed random variable. By Lemma 7.6, V4 (\) can
be substituted by the worst case random variable N11{p1 < A}, i.e.

€, a) .

D1 <
p( At 1) g NMR =t
N-Vi(A)—a+k N-NU{pi <A} —a+k
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If we proceed k times we arrive at the upper bound
k ~
Yoim1 Nil{p; < A} ‘6
N — Zle Nl{pi <A} + &
k ~
Zi:1 ml{p; < A} ‘6
S ml{pi <A+
6)

o S m <A
- ME(%—E?@{@@H%
(1—)\)E Zz ll{ng)‘} ‘ </\
k+1—2_11{p1§/\}

(x) < @ —/\)E<

< (1—)\)E<N_

IN

since © — {——o. is increasing for x € [0, N + ) and me JHp < A} <
km < km+m~+ N — N,,;n < N + & holds. Moreover, N*’”" > M =
NNomimtmbmk > ;1 holds and the last inequality follows by the Well known
result for Binomial variables

Zf:l Hpi <A} A o
’ <k+1—zf_11{@» < A}’E> UG

PrROOF OF EXAMPLE 6.1. The proof for the FWER is mostly included in the
proof of Theorem 6.3. Notice first that

V(A a(l=2XN) X
PP R W S e (7.39)

> Q

always holds under our assumptions, where X = Zle 1{p; < A} is a binomial
variable. Thus, we have equality in (6.11). By an inspection of the proof above
we arrive at a sequence of equality with

all = X) X
FWER = E A
WER A <k +1-X > (7.40)
and (7.38) can be applied. O
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