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Abstract: In this paper, we study theoretical properties of the non-para-
metric Cox proportional hazards model in a high dimensional non-asymp-
totic setting. We establish the finite sample oracle l2 bounds for a general
class of group penalties that allow possible hierarchical and overlapping
structures. We approximate the log partial likelihood with a quadratic
functional and use truncation arguments to reduce the error. Unlike the
existing literature, we exemplify differences between bounded and possibly
unbounded non-parametric covariate effects. In particular, we show that
bounded effects can lead to prediction bounds similar to the simple linear
models, whereas unbounded effects can lead to larger prediction bounds.
In both situations we do not assume that the true parameter is neces-
sarily sparse. Lastly, we present new theoretical results for hierarchical and
smoothed estimation in the non-parametric Cox model. We provide two ex-
amples of the proposed general framework: a Cox model with interactions
and an ANOVA type Cox model.
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1. Introduction

Prediction of an instantaneous rate of occurrence of events when covariates are
high dimensional plays a critical role in contemporary genetics studies underly-
ing the causes of many incurable diseases. The challenge of high-dimensionality
and arrival of high throughput bioinformatics data give rise to the surge of
interest in the statistical literature.

Ever since Cox’s seminal work on proportional hazards models [9, 10] many
significant steps have been taken toward analyzing and quantifying regression
estimators with censored data – notably the work of [33, 1] and [35], among oth-
ers. [2]’s seminal work established asymptotic properties of a class of estimators
maximizing partial likelihood. It also introduced a martingale decomposition of
the score vector of Cox’s partial likelihood. Such martingale techniques were
then further developed for a class of truncated regression models [18], additive
risk models [22] and competing risks models [25]. Despite the substantial body
of existing work on proportional hazards estimators, research on high dimen-
sional proportional hazards estimators has mostly been limited to completely
specified models and exactly sparse estimators [5, 15]. Several recent papers
have shed new light on high dimensional, but not-necessarily, sparse estimators
[14, 21, 17], by presenting a finite sample framework for the statistical analysis
when p ≫ n. The partial likelihoods studied in those papers are assumed to be
finite sample versions of global convex and quadratic functions. When p ≫ n,
many instances of such likelihoods will only possess quadratic curvature over
small, local and dimensionality independent regions. In this paper, we present
new theory that does not rely on such an assumption and we exemplify differ-
ences between the two regimes, strongly quadratic curvature and local quadratic
curvature. Broadly, we are interested in allowing model-misspecification and in
allowing covariates whose dimension grows together with p and n.

We consider the following nonparametric Cox model. Conditional on the
p-dimensional covariate x, the hazard function is modeled as

λ(t|x) = λ0(t) exp{g(x)}, (1)

for a baseline hazard function λ0(t) and the relative risk function g(x). In order
to estimate g when the dimensionality of the covariates p is much greater than
the number of samples n, it is commonly assumed that function g(x) exhibits

some form of sparsity. In the Cox model g(x) = β∗Tx for an exactly sparse
vector. However, the linear modeling assumption on the log hazard ratio does
not admit a good interpretation when g(x) is nonlinear in nature.
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To handle this challenge, we divide the function g(x) into an additive and non-
additive component, where the additive component can be well approximated
through a sparse structured additive function. We aim to solve the following
problem

min
β∈B

‖fβ − g‖2, (2)

where B is a convex set, fβ is a parametric approximation of g. To the best
of our knowledge, previous literature on the proportional hazards regression all
focused on bounded sets B. On the contrary, we consider a convex set B that
has diameter dependent on the dimensionality p, which grows exponentially with
the sample size n. In practice, the relative risk function g is unknown and it is
impossible to perfectly solve (2). Our goal is therefore to recover an approximate

solution to this problem. That is, we wish to construct an estimator β̂ such that

‖f
β̂
− g‖2 −Kmin

β∈B
‖fβ − g‖2 (3)

with a constant K ≥ 1 that does not depend on p and is as small as possible. An
inequality that provides an upper bound on the (random) quantity in the above
display, in a certain probabilistic sense, is referred as an oracle inequality later
on. Observe that this is not an additive model since we do not assume that the
risk function g is of the form fβ for some β ∈ B. Consequently, the bias term
minβ∈B ‖fβ−g‖2 may not vanish and the goal is to approximate the structured
combination with the smallest possible bias.

There is a vast literature on establishing oracle inequalities for (3). Optimal
rates of estimation for Gaussian linear regression can be found in [36]. Approx-
imate sparse models, can be handled for both the linear and generalized linear
case [38]. Lack of unique sparse modeling of the relative risk in our setting, poses
unique theoretical challenges. Both the gradient and the Hessian of the partial
likelihood of model (1) are indexed by β. As the true relative risk does not
have parametric form, both the score and the Hessian lose its martingale struc-
ture. Such problems are similar in nature to model misspecification. When the
baseline hazard is known, the covariates are fixed and bounded; [21] developed
bounds using the additive Lasso penalty. Existing literature on the theoretical
analysis of the proportional hazards model (1), does not address model misspec-
ification that can be structured in nature, or that can allow random designs of
size that depend on p. We approach this problem by introducing a very general
class of penalty functions.

Existing literature that establishes oracle inequalities for (3), typically as-
sumes that the loss function satisfies a quadratic margin behavior (see Assump-
tion B of [38] or Condition 2 of [32]). Such an assumption is related to the strong
convexity of the likelihood function. Using the same assumption, [17] showed
oracle inequalities using Kullback-Leibler loss for the additive Cox model. In
context of additive hazards models, [14] designed a loss function that satisfies
quadratic margin and use fixed, bounded design to establish oracle inequalities.
However, in proportional hazards models (1), when the diameter of the set B
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grows with p, such quadratic margin assumption can be easily violated. More-
over, new theoretical challenges arise when departing from the quadratic margin;
the flat geometry of the loss function prevents the access to the informative or-
acle bounds. In the context of linear models, [31] developed restricted strong
convexity arguments. For the nonparametric Cox model (1), we develop con-
centration arguments, to show that the geometry of the loss does play a signifi-
cant role only in small, ellipsoidal neighborhoods of the sparse, non-degenerate
models. Within such neighborhoods, we sandwich the loss function with two
quadratic losses and analyze the two losses independently.

When p ≫ n, it has been established [20, 7, 24] that vectors that maximize
the likelihood over either a finite, sparse set or its convex hull can achieve or-
acle inequalities (3). Censored high dimensional data are often collected from
clinical studies where genomic formations are highly complex with a large num-
ber of possible interactions. Despite its importance, the structured sparsity is
rarely studied in the context of censored observations. [40] gave an interesting
empirical study in the cases of p ≤ n. This article focuses on censored data
with structured (group or hierarchical) sparsity. In particular, our results easily
extend to situations where group LASSO, hierarchical LASSO, group Ridge,
Elastic Net and block l1/l∞ penalty are employed.

The contributions of our paper are three fold. First, we establish two new ora-
cle inequalities (OI) for the high-dimensional nonparametric Cox model (1) that
explicitly bound the squared estimation error under a random design. Second,
we develop techniques that allow deviations from the exact sparsity and that
introduce model misspecification. Third, we show new bounds for hierarchical
and smooth selection in the context of additive Cox models. In particular we
discuss the complete CAP family as introduced in [43] and penalties based both
on sparsity and smoothness constraints, the elastic net penalty [45], for example.

The rest of the paper is organized as follows. In Section 2, we define a new
class of group penalty functions. Section 3 contains our theoretical results. New
bounds on the distance between the least squares and the partial likelihood loss
function are presented in Section 4. Section 5 is left for two examples of the
Hierarchical Lasso and the Elastic Net penalties used in the Cox model with
interactions and an ANOVA Cox model, respectively.

We use the following notation. A pd dimensional vector x is represented as
x = (xT

1 , . . . ,x
T
p )

T with xj = (xj1, . . . , xjp)
T . For a d dimensional vector x,

norm ‖x‖γj = (
∑d

k=1 |xk|γj )1/γj , with γj ≥ 1. The Höelder conjugate of γj is
denoted by γ∗

j and satisfies 1/γj + 1/γ∗
j = 1. The Euclidean functional norm,

‖ · ‖2, is defined as ‖f(X)‖2 = 1
n

∑n
i=1 f

2(Xi). Throughout the paper, we use ⊗
to denote the outer product between vectors, that is x⊗2 denotes xxT , for any
vector x.

2. Convex group selection

We begin by setting up the notation behind point process models. Let T denote
the event time, let D denote the censoring time, and X = (XT

1 , . . . ,X
T
p )

T de-
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note the pd-dimensional covariate vector with Xj = (Xj1, . . . , Xjd). Define Z =
min(T,D) and δ = 1{T ≤ D} as the observed event time and censoring indica-
tor, respectively. We consider an i.i.d sample {(Xi, Zi, δi) : i = 1, . . . , n} from the
population (X, Z, δ), whereXi = (XT

i1, . . . ,X
T
ip)

T andXij = (Xij,1, . . . , Xij,d)
T .

Let the event time, T , and the censoring time, D, be independent conditional on
the covariates. We denote with t1 < · · · < tN the ordered failure times and with
Rq = {i ∈ {1, . . . , n} : Zi ≥ tq} at risk set at each failure time tq. We define
counting processes Ni(t) = 1 {Zi ≤ t, δi = 1}, N̄(t) = n−1

∑n
i=1 Ni(t) and pre-

dictable processes Yi = 1{Zi ≥ t} ∈ [0, 1]. It holds that dNi(t) = dMi(t)+dΛi(t)
with a martingale sequence Mi and a compensator

dΛi(t) = λ0(t) exp{g(Xi)}dYi(t), (4)

where g(x) is the unknown function of interest. Moreover, we use Λ0(τ) =∫ τ

0 λ0(t)dt to denote the integrated baseline function.
To approximate g(X), we define two collections of functions, the first includes

univariate functions {f1(x), . . . , fp(x)} whereas the second includes a collection
of candidate dictionary functions {Ψ1(x), . . . ,Ψd(x)}. Examples of dictionary
functions include wavelets, splines, step functions, frames etc. We aim to ap-
proximate g(X) with a linear combination of univariate functions fj , each of
which we approximate with a linear combination of dictionary functions Ψk(x).
Specifically, we approximate g(X) with

fb(Xi) =

p∑

j=1

fj(Xij) =

p∑

j=1

d∑

k=1

bjkΨk(Xij) = bTΨ(Xi),

where similarly as before we used Ψ(Xi) =
(
Ψ(Xi1)

T , . . . ,Ψ(Xip)
T
)T

with
Ψ(Xij) = (Ψ1(Xij), . . . ,Ψd(Xij))

T . The candidate functions are known a priori
with |Ψk(x)| ≤ C < ∞, but need not be orthogonal. Note that we do not make
assumptions on the number of candidate functions d or p and we allow both to
grow and be much larger than n.

Let τ denote the end of the study time, we define the empirical risk function
Rn(b) = −Ln(b, τ) and Ln(b, τ) denotes the log partial likelihood associated
to the additive component using the counting process notation:

Ln(b, τ) =
1

n

n∑

i=1

∫ τ

0

fb(Xi)dNi(t)−
∫ τ

0

logS(0)
n (b, t)dN̄(t), (5)

with

S(l)
n (b, t) =

1

n

n∑

i=1

Yi(t)Ψ
⊗l(Xi) exp{fb(Xi)}, l = 0, 1, 2.

We denote population equivalents of S(l)
n (b, t) with s(l)(b, t) = EY,XS(l)

n (b, t).

We also define S(0)
n (g, t) = 1

n

∑n
i=1 Yi(t) exp{g(Xi)} to denote the censored em-

pirical average of the unknown hazard function. Later on we denote Ln(b, τ) as
Ln(b) for simplicity.
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We fix some vector β∗ ∈ B such that β∗ = (β∗
1,β

∗
2, . . . ,β

∗
p)

T , β∗
j ∈ Rd and

are such that β∗
j 6= 0, for j ∈ M∗, ‖β∗

j‖γj = 0, j ∈ Mc
∗. The set M∗ is any

subset of {1, . . . , p} that has at most s elements, i.e., |M∗| ≤ s. Such a vector
β
∗ possesses structured or grouped sparsity. We choose vector β

∗ among all
structured-sparse vectors, such that fβ∗ is the closest, in the Euclidean distance,
from the unknown function g, i.e. such that ‖fβ∗ −g‖2 = minb ‖fb−g‖2. Notice
that ‖fβ∗ − g‖2 = 0 if and only if fβ∗ = g, i.e. if the hazard risk has additive
structure. In general the bias term minβ∈B ‖fβ − g‖2 does not vanish, and our
goal is to imitate the structured vector β∗.

The Cox regression model is a very flexible tool when analyzing the effect
of several “risk” factors on time to event problems. Very frequently a “risk”
factor may have several levels and can be expressed via a number of dummy
variables [26]. The dummy variables corresponding to the same factor form a
natural group that we would like to preserve at estimation. If a parameter of one
of the factor levels enters a model, we would like to encourage other associated
factors to enter the model. Additionally, it is of interest to determine the role of
the interactions between various “risk” factors on the outcome of the patients
with familiar event of interest [19]. Such studies require hierarchical models
with multiple interaction terms. If a parameter of one of the interactions enters
the model, then it does not force the main effects to be present in the model.
Hierachical penalties have a more suitable format that forces main effects to be
present in the model if the interactions are.

With this in mind, we consider a class of estimators β̂ that solve the following
penalized problem

β̂ = argmin
b∈Rpd

{−Ln(b) + λnP (b)} , (6)

where we define the group penalty function (GPF) as

P (b) =

p∑

j=1

d1/γ
∗
j · ρ

(
‖bj‖γj

)
, (7)

with a convex function ρ. We consider convex functions ρ that are sparsity
encouraging and that satisfy ρ′(0+) > 0. The scaling, d1/γ

∗
j , ensures that the

penalty term and the number of parameters within each group are of the same
order. The GPF includes a wide variety of grouping and hierarchical structures:
ρ determines how groups relate to one another, while {lγj}pj=1 norms dictate
the relationship of the coefficients among each group, j. For ρ = l1 and any γj ,
the penalty function reduces to the CAP family of [43]; for ρ = l1 and γj = 2,
it becomes the group Lasso penalty of [42]; for ρ = l1 and γj = ∞ it reduces to
the block l1/l∞ penalty of [30]. The problem can be reparametrized to include
a variety of scaling factors in the penalty function. For example,

ρ
(
‖bT

j Rj‖γj

)
,
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with proper weights Rj , or

ρ

(
‖Rjbj‖γj +

√
bT
j Mjbj

)
,

with smoothing matrix {Mj}kl =
∫
Ψ

′′

k (xj)Ψ
′′

l (xj)dxj [27]. In section 5, we
discuss these cases in details.

The following property of the introduced GPF is important in establishing
finite sample bounds. We leave the proof to the Appendix.

Lemma 1. Let v denote a vector in R
pd decomposed as (vT

1 , . . . ,v
T
p )

T ∈, with
vn,j ∈ Rd. Let En,j = {‖vj‖γ∗

j
≤ λnd

1/γ∗
j ρ′(0+)}.

Then, if all the events En,j hold with j = 1, . . . , p, we have that the GPF
family (7) with convex functions ρ satisfies

β∗Tv = min
x∈Rpd

{
λnP (x)− (x− β∗)Tv

}
(8)

|β∗Tv| = min
x∈Rpd

{
λnP (x)− |(x− β∗)Tv|

}
.

3. Main results

In this section, we present the main results and establish the non-asymptotic
oracle inequalities of β̂ in terms of the l2 prediction error. Our results differ
from the previous literature in terms of the penalty function and the measure
of prediction error. We present non-asymptotic prediction properties that allow
the number of covariates to diverge with n while allowing complicated group
structures in the model. Most of existing theoretical derivations in literature
are based on the assumption of bounded covariates. More precisely, we define a
constant Mp such that

Mp := sup
b∈B

exp{fb(Xi)}. (9)

We note that Mp is often bounded random quantity, especially in studies where
the dimension of the covariates is considered as fixed, or the function fb is
bounded. In high dimensional settings where p ≥ n, Mp could diverge with
p and n and should be carefully considered. For example in cases where B is
a p-dimensional ball of diameter r and Xis are i.i.d. standard Gaussian, then
logMp = r2

√
log p/n and is unbounded for all r such that n1/4 = o(r). More-

over, most of finite sample studies rest on a fixed design setup, a condition rarely
satisfied in large genomics studies in the presence of censoring. Most of this pa-
per is dedicated to develop theory that allows Mp in equation (9) to diverge
with p in a random design setting. We present two finite sample results, where
the first is rested on assuming bounding Mp (Theorem 1) whereas, the second
isn’t requiring such a condition (Theorem 2).

To present the results we define

En(b, t) = S(1)
n (b, t)/S(0)

n (b, t),Vn(b, t) = S(2)
n (b, t)/S(0)

n (b, t)−
(
En(b, t)

)⊗2

.
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The gradient and the Hessian of the log partial likelihood are of the form:

▽Ln(b) = −n−1
n∑

i=1

∫ τ

0

(En(b, t)−Ψ(Xi)) dNi(t),

−▽2 Ln(b) = n−1
n∑

i=1

∫ τ

0

Vn(b, t)dNi(t).

Remark 1. We note that ▽Ln(β
∗) can be decomposed as

▽Ln(β
∗) = hn(β

∗)− n−1
n∑

i=1

∫ τ

0

(En(b, t)−Ψ(Xi))λ0(t) exp{g(Xi)}dYi(t),

where hn(β
∗) = −n−1

∑n
i=1

∫ τ

0
(En(b, t)−Ψ(Xi)) dMi(t). In the Cox models

where there is a unique true parameter β∗, the last term in the above display
is zero. In our case, however, that term does not disappear as the compensator
does not vanish.

The following condition replaces the conditions used in the asymptotic anal-
ysis of the estimation properties of the Cox model in [11], where p < n, and
those presented in Condition 2 of [5], where p > n.

Condition 1. The random variables X1, . . . ,Xn are independent, identically
distributed random variables such that

(i) the nonparametric function of interest satisfies E exp{g(Xi)} < ∞,

(ii) the process Y (t) is left continuous with right hand limits and such that
D := P (Y (τ) = 1) > 0 and Λ0(τ) < ∞.

Before we state the main oracle inequality, we provide concentration of mea-
sure for the gradient of the log partial likelihood at the sparse vector β∗. To
that end, we need a preliminary result providing concentration of measure for
the vector En(β

∗, t).This is summarized in the following Lemma.

Lemma 2. If Condition 1 is satisfied, then there exists a constant W > 0
independent of p, n, and d, such that for every sequence of positive numbers rn,

P

(
sup

0≤t≤τ

∥∥∥∥En(β
∗, t)− s(1)(β∗, t)

s0(β∗, t)

∥∥∥∥
∞

≥ crn +

√
log 2d

nu2

)

≤ 3

8ed
W 2e−nr2nD

2/u2e2m
∗C

+ e−nD2/2,

for log u = ‖β∗‖1 and c = 1+ 2 exp{m∗C − logD+C log u}, with m∗ being the
minimal signal strength defined as m∗ = min{‖β∗

j‖γj : j ∈ M∗}. Recall that,
functions Ψk are such that |Ψk(x)| ≤ C, for a positive constant C < ∞.

Remark 2. For fixed dimension p, it is typically assumed in the literature
(see [11]) that there exist population functions s(l)(β, t), l = 0, 1, 2 such that

sup
β∈B

∣∣∣S(l)
n (β, t)− s(l)(β, t)

∣∣∣ P→ 0, l = 0, 1, 2, (10)
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when n → ∞. For growing dimension p, [5], take on a relation of the previ-
ous condition and only assume the convergence to hold for the true parame-
ter β∗. Since we deal with diverging p, s, and aim to provide finite sample
bounds, conditions of [5] are unsatisfactory in our case. Lemma 2 proves an
exact rate of convergence without imposing any of the asymptotic conditions
like (10).

The next result gives tail probabilities that will be used to control the ap-
proximation error. They both depend on the GPF and require nontrivial proofs.
Our theoretical derivations are further complicated due to the lack of martingale
structure in the score vector ▽Ln(β

∗). We have the following result:

Lemma 3. If Condition 1 is satisfied, then for a constantM = 1/(τλ0(τ)Λ0(τ)C)
and a sequence of positive numbers λn and all j = 1, . . . , p,

P

(
λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣ ‖Ψ(Xij)‖γ∗
j
≥ λnd

1/γ∗
j ρ′(0+)

)
(11)

≤ e
− n2M2λ2

nρ′(0+)2

2θ2+2M
√

nλnρ′(0+)y/3 + P ( max
1≤i≤n

exp{g(Xi)} > y),

for a truncation value y such that θ2 ≥∑n
i=1 Eexp{2g(Xi)}1{exp{2g(Xi)} ≤ y}.

Moreover, there exists a constant W > 0 independent of p, n, and d, such that
for Cλn,n,p,d defined as

min

{
Cλnρ

′(0+)

2λ0(τ)
,
Cλ0(τ)D

2d2/γ
∗
j log d

u4e2m∗C
,
D2

2n
,

M2λ2
nρ

′(0+)2

2θ2 + 2M
√
nλnρ′(0+)y/3

}
,

(12)
we have

P
(
‖hn,j(β

∗)‖∞ ≥ λnd
1/γ∗

j ρ′(0+)
)

(13)

≤ 2pd

(
max

{(
3 +

3W 2

8ed

)
e−n2Cλn,n,p,d , e

−n
λ2
nd

2/γ∗
j ρ′2(0+)

16c2
1
C2u2

}

+ P ( max
1≤i≤n

exp{g(Xi)} > y)

)
.

For clarity of exposition, the proof is relegated to the Appendix B.

Remark 3. The result of (11) shows that the penalty term absorbs the mis-
specification term that emerges due to lack of a unique model. Additionally, the
result (12) controls the martingale part of the score vector ▽Ln(β

∗). The proof
is challenged by the lack of typical assumption (10) and Mp < C0, with Mp

defined in equation (9), that is used to control the jump size and variation of
the martingale. Instead, we develop finite sample tail bounds for both the jump
sizes and predictable variation of the martingale hn(β

∗).
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Let A denote a pd× pd matrix. To establish the sparse oracle inequality, we
define the Restricted Eigenvalue constant RE(µ, s, ρ,γ,A) as follows:

RE(µ, s, ρ,γ,A) := min
x∈Cµ,ρ,x 6=0

xTAx∑
j∈M∗

ρ(‖xj‖γj)
2
, (14)

where
Cµ,ρ =

{
b ∈ R

pd : P (bMc
∗) ≤ µP (bM∗)

}
, (15)

for M∗ = {j ∈ {1, . . . , p} : ‖β∗
j‖γj 6= 0}, |{M∗}| ≤ s.

The set Cµ,ρ consists of all vectors that have support similar to the sparse
vector, β∗. In particular, vectors with more than s non-zero elements also belong
to the cone Cµ,ρ. We only require that their components positioned outside
of M∗ are smaller in size than their components positioned inside M∗. For
example, if ρ = l1 the set Cµ,ρ is a cone formed by all vectors b satisfying
‖bMc

∗‖1 ≤ µ‖bM∗‖1 as defined in [4]. For ρ = l1 and γj = 2, Cµ,ρ is the cone
formed by all vectors b satisfying ‖bMc

∗‖2 ≤ µ‖bM∗‖2 as defined in [24]. Its
geometry changes with the penalty function, ρ, and the chosen γ′

js.
Thus, we use the notation RE(µ, s, ρ,γ,A) to describe its dependence on

the sparsity size, s, the choice γ = (γ1, . . . , γp)
T , the vector of norms used

to describe the “smoothness” of each fj and the choice of the matrix A. For

the linear models, A takes the form of XTX for fixed designs [4] and Σ for
random Gaussian designs with covariance matrix Σ [8]. For the parametric Cox

model where g(Xi) = β
∗TXi, [15] consider the case of A = − ▽2 Ln(β

∗) =
n−1

∑n
i=1

∫ τ

0
Vn(β

∗, t)dMi(t) for both fixed and random designs. We postpone
further discussion of this constant to the Appendix A.

Let us introduce two constants 0 ≤ υ1 ≤ 1 and 0 ≤ υ2 ≤ 1 satisfying

υ1 exp{−2Cυ1} ≤ 16λ2
nρ

′(0+)
d̄

ζ2
, (16)

υ2 exp{−2Cυ2} − 4λn
d̄

ζ2ρ′2(0+)

√
υ2 ≤ 16λ2

n

d̄3/2

ζ3ρ′3/2(0+)
,

where d̄ =
∑

j∈M∗
d2/γ

∗
j . These constants are used to bound the size of the GPF

functions.

Lemma 4. Let β̂ be defined as in (6) with penalty function GPF defined in (7).
Let Condition 1 hold and let ζ = ζ(s) be a positive constant. Then, with proba-
bility 1− δ, for δ in (19) and all b ∈ B,

2λn

∑

j∈M∗

d1/γ
∗
j ρ(‖β̂j − bj‖γj ) ≤ 64λ2

n

d̄

ζ2
exp{2Cυ1}+ 32λ2

n

d̄

ζ2
exp{2Cυ2},

for 0 ≤ υ1, υ2 ≤ 1 satisfying (16).

We also define a sequence of weight vectors ω(b) = (ω1(b), . . . , ωn(b))
T as

follows,

ωi(b) =

N∑

q=1

exp{bTΨ(Xi)}1{i ∈ Rq}∑
l∈Rq

exp{bTΨ(Xl)}
. (17)
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With these preparations we are ready to state the main result for the case
of bounded covariate effects. Let Mp be defined in (9) and let E0 be the event
such that Mp < C0, for a constant C0 independent of p or n.

Theorem 1. Let β̂ be defined as in (6) and penalty function P (b) defined
in (7). Let ζ = ζ(s) be a positive constant. Then, for any non-negative constant
A > 0 and log u = ‖β∗‖1, with

λn ≥ 8Aun1/4λ0(τ)

dρ′(0+)

√
log pd

n
,

‖f
β̂
−g‖2 ≤ min

b∈B

{
(1 + ω−1)‖fb − g‖2 + 32λ2

n

d̄

ζ2ω

(
2 exp{2Cυ1} exp{2Cυ2}

)}
,

(18)
with probability no less than 1− δ − P (Ec

0), δ > 0, where

δ = 2pdmax

{(
3 +

3W 2

8ed

)
exp

{
−n2Cλn,n,p,d

}
, exp

{
−n

λ2
nd

2/γ∗
j ρ′2(0+)

16c21C
2u2

}
,

(19)

exp

{
−n2 M2λ2

nρ
′(0+)2

2θ2 + 2M
√
nλnρ′(0+)y/3

}}
+ 4pdP

(
max
1≤i≤n

exp{g(Xi)} > y

)

+ P

(
RE(7, s, ρ,γ,−▽2 Ln(β

∗)) ≤ ζ2
)
,

for θ, y,M, u,m∗ as in Lemma 3, and d̄ =
∑

j∈M∗
d2/γ

∗
j , 0 ≤ υ1 ≤ 1 and

0 ≤ υ2 ≤ 1 satisfying (16) and

ω = min {ωi(β
∗ + c(b− β∗)) : b∈C7,ρ, c ∈ (0, 1), i ∈ 1, . . . , n}

for ω(b) in (17), C7,ρ in (15).

Proof of Theorem 1. This proof requires careful analysis of the possible model
misspecification and uses results from Propositions 2 and 3 stated in Section 4.
To that end, we define an empirical functional norm ‖ · ‖n,b∗ for functions
fb : Rpd → R, b ∈ Rpd with a fixed c ∈ (0, 1) and b∗ = cb+ (1− c)β∗ ∈ Rpd,

‖fb‖2n,b∗ =
1

n

n∑

i=1

∫ τ

0

Yi(t)ωi(b
∗, t)f2

b(Xi)dN̄(t) (20)

−
[ 1
n

n∑

i=1

∫ τ

0

Yi(t)ωi(b
∗, t)fb(Xi)dN̄(t)

]2
,

for nonnegative weight process

ωi(b
∗, t) = exp{fb∗(Xi)}/S(0)

n (b∗, t), (21)
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and M̄(t) = n−1
∑n

i=1 Mi(t). This norm is connected to the curvature of the
partial likelihood and is further discussed in Section 4. From the Taylor ex-
pansion and some algebra, we have that the following representation holds for
all b:

− Ln(β̂) + Ln(b) =
1

2
‖f

β̂
− fβ∗‖2n,b

β̂
− 1

2
‖fb − fβ∗‖2n,b∗

+ (b− β̂)Thn(β
∗) + νn(β̂,b, g),

for b
β̂
= cβ̂ + (1 − c)β∗ and b∗ = c̃b + (1 − c̃)β∗ with a particular choice of

c ∈ (0, 1) and c̃ = c̃(b) ∈ (0, 1), hn(β
∗) as in Lemma 3 and

νn(β̂,b, g) (22)

= − 1

n

n∑

i=1

∫ τ

0

λ0(t)Yi(t) exp{g(Xi)}
(
logS(0)

n (β̂, t)− logS(0)
n (b, t)

)
dt

+
1

n

n∑

i=1

∫ τ

0

λ0(t)Yi(t) exp{g(Xi)}
(
β̂
T
Ψ(Xi)− bTΨ(Xi)

)
dt.

where in the last expression we used the Doob Mayer decomposition dNi =
dMi + dΛi with dΛi = λ0(t)Yi(t) exp{g(Xi)}dt.

From the definition of the penalized estimator as the minimizer of penalized
empirical risk in (6), we obtain −Ln(β̂) + λnP (β̂) ≤ −Ln(b) + λnP (b), i.e.

‖f
β̂
− fβ∗‖2n,b

β̂
≤ ‖fb − fβ∗‖2n,b∗ + 2(b− β̂)Thn(β

∗) + 2νn(β̂,b, g)

+ 2λn(P (b)− P (β̂)). (23)

According to (22) we decompose νn(b, β̂, g) in two parts, one that can be
tied up with the estimation error and another that can be tied up with the
penalty term. To that end, we observe that

νn(β̂,b, g) ≤ λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣×
(

sup
t∈[0,τ ]

∣∣∣logS(0)
n (β̂, t)− logS(0)

n (b, t)
∣∣∣+ (β̂ − b)T max

1≤i≤n
Ψ(Xi)

)
.

We denote S(0)
n (g, t) = 1

n

∑n
i=1 Yi(t) exp{g(Xi)}, equivalent of S(0)

n (b, t) at the
true, unknown function g(x) and with λ0(τ) denoting the value of the baseline

hazard function at the end of the study time τ . Observe that logS(0)
n (b, t) is

a positively weighted log-sum-exp function for any value of b, therefore it is
Lipschitz continuous (with constant 1 with respect to the l∞ norm),

sup
t∈[0,τ ]

∣∣∣logS(0)
n (β̂, t)− logS(0)

n (b, t)
∣∣∣ ≤ max

1≤i≤n
|β̂T

Ψ(Xi)− bTΨ(Xi)|.
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Furthermore, utilizing Condition 1 we obtain

νn(β̂,b, g) ≤ 2λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣ max
1≤i≤n

∣∣∣(β̂ − b)TΨ(Xi)
∣∣∣ .

Combining with the previous result, we get

‖f
β̂
− fβ∗‖2n,b

β̂
≤ ‖fb − fβ∗‖2n,b∗ + 2(b− β̂)Thn(β

∗) (24)

+ 2λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣ max
1≤i≤n

|(β̂ − b)TΨ(Xi)|+ 2λn(P (b)− P (β̂)),

for any b and b∗,b
β̂
fixed and defined as before. To establish oracle inequality we

need to tightly control the last three terms on the right hand side of the previous
inequality. The first of those is a martingale score vector at the additive part,
the second measures model misspecification, whereas the third quantifies the
size of the penalty function. Model misspecification is controlled by the penalty
term. To that end we use the result of Lemma 1.

Utilizing Lemma 1 with ∆ = β̂ − b and vn = 2hn(β
∗), the following holds

from the first equality in (8)

β∗Thn(β
∗) ≤ −(∆− β∗)Thn(β

∗) + λnP (∆),

that is

4∆Thn(β
∗) ≤ λnP (∆), (25)

on the event En defined as

En =

p⋂

j=1

{
2‖hn,j(β

∗)‖γ∗
j
≤ λnd

1/γ∗
j ρ′(0+)

}
. (26)

Moreover, utilizing Lemma 1 again, but now with ∆ = β̂ − b and vn =
4γnΨ(Xi), the following holds from the second equality in (8)

|β∗T 4γnΨ(Xi)| ≤ −|(∆− β∗)T 4γnΨ(Xi)|+ λnP (∆),

on the event Dn,i defined as

Dn,i =

p⋂

j=1

{
4λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣ ‖Ψ(Xij)‖γ∗
j
≤ λnd

1/γ∗
j ρ′(0+)

}
. (27)

After rearranging the terms and noticing that |∆TΨ(Xi)| ≤ |β∗TΨ(Xi)| +
|(∆− β∗)TΨ(Xi)|, we get

4γn|∆TΨ(Xi)| ≤ λnP (∆), (28)

and with it that 4γn max1≤i≤n |∆TΨ(Xi)| ≤ λnP (∆), on the event Dn,i.
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Recall that E0 is the event that MP < C0 for a random element Mp defined
in (9) and a constant C0 independent of p. Therefore, we can combine (24) with
(25) and (28), to obtain that for all b, conditionally on the event

E0 ∩ En ∩
n⋂

i=1

Dn,i,

the following inequality holds

‖f
β̂
− fβ∗‖2n,b

β̂
≤ ‖fb − fβ∗‖2n,b∗

+ 2λn

∑

j∈M∗

d1/γ
∗
j

(
ρ(‖β̂j − bj‖γj ) + ρ(‖b‖γj )− ρ(‖β̂j‖γj )

)
,

for all b
β̂

= cβ̂ + (1 − c)β∗ and b∗ = c̃b + (1 − c̃)β∗. Let us fix b
β̂
and b∗

henceforth. From the triangular inequality for the GPF, we have ρ(‖bj‖γj) ≤
ρ(‖β̂j − bj‖γj ) + ρ(‖β̂j‖γj ) leading to

‖f
β̂
− fβ∗‖2n,b

β̂
≤ ‖fb − fβ∗‖2n,b∗ + 2λn

∑

j∈M∗

d1/γ
∗
j ρ(‖∆j‖γj ). (29)

Secondly, we control the penalty term in (29) in Lemma 4 whose proof is
presented in Appendix D.

Utilizing further the bound between the norms ‖fb−fβ∗‖2n,b∗ ≤ ‖fb−fβ∗‖2n
(proved in Proposition 3 in Section 4) in combination to (29), we obtain

ω‖f
β̂
− fβ∗‖2 ≤ ‖fβ∗ − fb‖2 + 64λ2

n

d̄

ζ2
exp{2Cυ1}+ 32λ2

n

d̄

ζ2
exp{2Cυ2},

with υ1, υ2 defined above in (16). Moreover, from the definition of the vector β∗

and the triangular inequality we have

‖f
β̂
− g‖2 ≤ ‖f

β̂
− fβ∗‖2 +min

b∈B
‖fb − g‖2,

which in combination to the previous inequality provides

‖f
β̂
−g‖2 ≤ (1+

1

ω
)min
b∈B

‖fb−g‖2+64λ2
n

d̄

ζ2ω
exp{2Cυ1}+32λ2

n

d̄

ζ2ω
exp{2Cυ2}.

The theorem follows easily if we bound the probability of the event E0 ∩En ∩⋂n
i=1 Dn,i, which is given in Lemma 3. Hence, the proof is completed.

Remark 4. A typical assumption in the literature of oracle inequalities of
the type (18) requires profile likelihood to be bounded below with a quadratic
function (see quadratic margin condition of Assumption B of [38]). Instead of
assuming such a margin, we directly derive lower and upper quadratic processes
that sandwich the partial likelihood process. In case of Gaussian linear models,
these two quadratic processes equal to the typical l2 loss function.
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Theorem 1 establishes new finite sample oracle inequality with possible devi-
ations from exact sparsity. The first term on the right hand side of (18) measures
how far is the true function of interest g(x) from the sparse additive approxi-
mation fβ∗ and is only equal to zero if g = fβ∗ almost surely. Typically, similar
results appeared in problems with fixed design [17] or if one considers estimation
errors related to the Kullback-Leibler divergence that are quadratic in nature
[14, 21]. In contrast, our results hold for a log partial likelihood of non-quadratic
type and a class of general random designs and general group penalties. The
last two quantities of the RHS of (18) represent the convergence rate for the
appropriate choices of λn.

We now comment on the size of the constant ω−1 appearing in the bound (18).
Each weight, ωi(b), is a sum of the conditional probabilities that observation i
had an event at time tq, given that at least one event occurred at time tq.

Proposition 1. Let η > 0 and c2 ∈ R be constants such that for all q =
1, . . . , N,

λmin

( ∑
l∈Rq

Ψ⊗2(Xl) + ηIpd
∑

l∈Rq
Ψ(Xl)

∑
l∈Rq

ΨT (Xl) c2 − ηbn

)
= δ⋆, (30)

where Ipd is a unit matrix. Then, for all i ∈ {1, . . . , n} and bn > 0, the solution
to the optimization problem

minb∈Rpd

{
ωi(b) : ‖b‖22 ≤ bn

}
(31)

is attained and the minimum ωmin satisfies

ωminδ
⋆ =

N∑

q=1

min
{
0, λmin

(
Ψ(Xi)

⊗2
)
1(i ∈ Rq)

}
.

The conditions of Proposition 1 are not restrictive and are easily verifiable
for well posed problems. For κi = min{vΨ⊗(Xi)v

T , ‖v‖2 ≤ 1,v ∈ C7,ρ} and by
Cauchy’s interlacing theorem of Hermitian matrices, for Propositon 1 to hold it
suffices that the random covariates Xi satisfy mini∈Rq κi > 0. In that case, we
conclude that ω satisfies

δ⋆ω ≥
N∑

q=1

min
{
0,min

i∈Rq

κi

}
.

For κq = min{∑i∈Rq
vΨ⊗(Xi)v

T , ‖v‖2 ≤ 1,v ∈ C7,ρ} we obtain an upper
bound on the leading constant of Theorem 1,

1 + ε ≤
( N∑

q=1

κi

κq
1(i ∈ Rq)

)−1

, (32)

with the right-hand side bounded away from infinity almost surely.
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Remark 5. Note that if P (Mp < C0) → 1, the proposed estimator achieves
Gaussian-like oracle rates similar to those of penalized least squares methods
used in Gaussian linear models (see further discussion in Section 5). In other
words, the first term in (18) is negligible and the rate is driven by the last two
terms.

In the next result, we take a novel approach and establish high-dimensional
sparse oracle results for possible unbounded covariate effect, i.e. without requir-
ing Condition 9.

Remark 6. The proof of the rest of the section consists of two parts. First, we
localize our penalized estimator to a small elliptical neighborhood around β∗.
With an appropriate choice of the tuning parameter, λn, we show that the
diameter of the convex neighborhood becomes independent of the dimensionality
and it shrinks to zero asymptotically (see Lemma 5). Second, using such local
neighborhood structure, we sandwich the partial likelihood process with a lower
and upper quadratic processes as in Theorem 1. The proof is completed by the
analysis of those lower and upper bounds.

The localization step is presented in the following Lemma 5.

Lemma 5. For log p ≤ n and s ≤ logn, let β̂ be defined as in (6) with penalty
function P (b) defined in (7) and β

∗ the true sparse parameter. Let Condition 1
hold and let ζ = ζ(s) be a positive constant. If λn satisfies

λn

∑

j∈M∗

d1+2/γ∗
j ≥ cζ4,

then with probability 1− δ, for δ in (19),

p∑

j=1

d1/γ
∗
j ‖β̂j − β∗

j‖γj ≤ 16
√
2CeC+υ1rn, (33)

for rn = λn

ζ2

∑
j∈M∗

d2/γ
∗
j and 0 ≤ υ1 ≤ 1 satisfying (16).

Next, we present the main result of this section.

Theorem 2. For log(pd) ≤ n let β̂ be defined as in (6) and penalty function
P (b) defined in (7). Let Condition 1 hold and let ζ = ζ(s) be a positive constant.
Then, for non-negative constant A > 0 and u defined in Theorem 1,

λn ≥ 8Aun1/4

dρ′(0+)

√
log pd

n
and λn

∑

j∈M∗

d1+2/γ∗
j ≥ cζ4, (34)

with probability no less than 1− δ, δ > 0 and satisfying (19), there exists ε > 1
such that,

‖f
β̂
− g‖2 ≤ min

b∈B

{
(1 + ε)‖fb − g‖2 + 32λ2

nε
d̄

ζ2

(
2 exp{2Cυ1} exp{2Cυ2}

)}
,

(35)
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with d̄ =
∑

j∈M∗
d2/γ

∗
j , 0 ≤ υ1 ≤ 1 and 0 ≤ υ2 ≤ 1 satisfying (16) and

ω = mini ωi(β
∗) with

ε = ω−1 exp



CeC26

λn

ζ2

∑

j∈M∗

d2/γ
∗
j



 .

Proof. We proceed by first restricting the parameter space to an elliptical neigh-
borhood that is not expanding with dimensionality p. Then, we apply Lemma 4
(stated in the Proof of Theorem 1) and Proposition 3 (stated and proved in
Section 4) to finalize the proof.

From Proposition 2, we have that

‖f
β̂
− fβ∗‖2

n,β̂
∗ ≥ e−2a

β̂−β∗‖f
β̂
− fβ∗‖2n,β∗ , (36)

with β̂
∗
= cβ̂ + (1 − c)β∗, some c ∈ (0, 1) and a

β̂−β∗ = 2max1≤i≤n |(β̂ −
β∗)TΨ(Xi)|. The exponential term in the previous equation needs to be tightly
controlled for p ≫ n. The proof of the theorem is then finalized by finding
nontrivial bounds for the empirical norms, ‖ · ‖n,· as defined in (20), while
allowing p ≫ n. Let p ≥ n and log p ≤ n. We establish that by bounding the

appropriate norm of the error vector β̂ − β∗ and obtaining the bound, which
is log linear in dimensionality p. The result is summarized in Lemma 5, whose
proof is given in Appendix D.

Consequently we have

a
β̂−β∗ ≤ 2

p∑

j=1

‖β̂j − β
∗
j‖γj max

1≤i≤n

(
d∑

k=1

(Ψk(Xij))
γ∗
j

)1/γ∗
j

≤ 32
√
2CeC

λn

ζ2

∑

j∈M∗

d2/γ
∗
j .

Remember that C ≥ maxk,i,j |Ψk(Xij)|. Hence, we have successfully localized

the error vector β̂−β
∗ in a convex neighborhood whose diameter is not increas-

ing with the dimensionality p.
Utilizing further Lemma 4 and Proposition 3 with equation (29), we obtain

ω‖f
β̂
− fβ∗‖2n

≤ e32
√
2CeCrn

{
min
b∈B

‖g − fb‖2 + 64λ2
n

d̄

ζ2
exp{2Cυ1}+ 32λ2

n

d̄

ζ2
exp{2Cυ2}

}
,

with υ1, υ2 defined above in Lemma 4. The proof is completed by applying the
triangle inequality.

Let us comment on the size of ε appearing on the RHS in Theorem 2. If
s ≤ logn, with the help of Proposition 1, we can conclude that ε ≥ 0 and

ε ≤ exp
{
32

√
2CeCrn

}
,

where rn → 0 and is such that rnζ
2 = λn

∑
j∈M∗

d2/γ
∗
j with the constant C

defined as the upper bound on the dictionary functions Ψ.
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Remark 7. The difference in the rates of convergence between Theorems 1
and 2 reflects the dimensionality and geometry of the problem. In comparison
to Theorem 1, Theorem 2 differs in the presence of the exponential term of
the order of ern . This additional term is coming from the complex likelihood
structure for possibly unbounded covariate effects for which we establish that
local Lipchitz constant is proportional to ern .

Results of (34) and (35) imply dimensionality restrictions on the hazard
regression problem (6). Results of Theorem 2, rely on the choice of the number
of basis functions, d, and it requires d−1log(pd) <

√
ne−‖β∗‖1/s. This on the

other hand, implies certain bound on s, p, n and d. In the case of d = O(n1/2)
we have

s log p

n
e‖β

∗‖1 +
s logn

2n
e‖β

∗‖1 < 1,

which is more restrictive than the bound appearing in linear regression models
with s log p/n < 1[4].

We also note that previous results do not require exact sparsity to hold, that
is, they do not assume β

∗ is the true underlying parameter. In summary, the
results of Theorems 1 and 2 are quite general. They cover a wide range of penalty
functions with a choice of γj ’s and are applicable to Lasso, group Lasso, group
ridge, CAP penalty, elastic net and many more. Two specific examples will be
discussed in Section 5.

4. Sandwich bounds for the log partial likelihood

This section gathers some results that were crucial in obtaining Theorems 1
and 2. The novel ideas of the major results are to quantify the distance between
the log partial likelihood −Ln(b) and the approximate quadratic expansion of
the log partial likelihood.

Without loss of generality, −Ln(b) can be written as Rn(b) = −Ln(b) +
Ln(β

∗)− Ln(β
∗). By Taylor expansion around β∗, we have that there exists a

c ∈ (0, 1) and b∗ = cb+ (1− c)β∗ such that

Rn(b) = − (b− β∗)
T {▽Ln(β

∗)}−1

2
(b− β∗)

T {▽2Ln(b
∗)} (b− β∗)−Ln(β

∗).

Together with the previous Taylor expansion, the empirical risk function can
be decomposed as follows. For every b, there exists a c ∈ (0, 1) and b∗ =
cb+ (1− c)β∗ such that Rn(b) admits the following quadratic representation:

Rn(b) = − (b− β∗)T {▽Ln(β
∗)}+ 1

2
‖fb − fβ∗‖2n,b∗ − Ln(β

∗).

Because no two counting processes, Ni(t) and Nj(t), jump at the same time,
the following holds:

‖fb‖2n,b∗ =
1

n

n∑

i=1

∫ τ

0

Yi(t)ωi(b
∗, t)(fb(Xi)− f̄∗

b
(t))2dN̄(t), (37)
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where f̄∗
b
(t) = 1

n

∑n
i=1 Yi(t)ωi(b

∗, t)fb(Xi) can be understood as a process of
empirical weighted averages of fb. If Condition 1 is satisfied, then, there exists
a c ∈ (0, 1) such that the introduced empirical norm is a proper norm. To
be specific, the norm is nonnegative, ‖fb‖2n,b∗ = 0 for every such b∗ if and
only if b = 0. In addition, the norm satisfies the triangular inequality that
‖fb1 − fb2‖n,b∗ ≤ ‖fb1‖n,b∗ + ‖fb2‖n,b∗ for every b1,b2 and fixed b∗.

Since the squared Euclidean norm ‖ · ‖ represents a natural benchmark, we
seek to understand the lower and upper bounds of the ‖ · ‖n,· norm using the l2
empirical norm ‖ · ‖ in the next result.

Proposition 2. Let ω be defined as in Theorem 2. For any vector v define

av = max
1≤i,q≤n

|vT [Ψ(Xi)− Ψ(Xq)]|.

Then, the following sandwich bound holds almost surely for every vector b and
corresponding vector b∗ = cb+ (1 − c)β∗,

ωe−2ab−β∗ ‖fb − fβ∗‖2 ≤ ‖fb − fβ∗‖2n,b∗ ≤ e2ab−β∗ ‖fb − fβ∗‖2, (38)

uniformly for every c ∈ (0, 1).

A similar result appeared independently in the recent work of [15] (see Lem-
ma 4.3). Such a result shares similarities to self-concordant arguments of [3],
but the last arguments do not cover cases of p ≫ n.

Proposition 3. Let N represent the number of distinct events. Then, uniformly
for every b ∈ [−bn, bn], with bn > 0 satisfying the condition of Proposition 1,
and b∗ = cb+ (1 − c)β∗, with c ∈ (0, 1), the following holds almost surely:

n−1
N∑

q=1

min
{
0,mini∈Rq λmin

(
Ψ(Xi)Ψ

T (Xi)
)}

λmin

(∑
l∈Rq

Ψ(Xl)Ψ
T (Xl)

) ‖fb‖2 ≤ ‖fb‖2n,b∗ ≤ ‖fb‖2,

(39)
Moreover, if bn is bounded and min1≤i≤n λmin

(
Ψ(Xi)Ψ

T (Xi)
)
> 0, then the

left-hand bound in (6) is strictly positive almost surely.

Propositions 1–3 are critical in establishing the main result in terms of non-
trivial lower and upper bounds. We utilize Propositions 1 & 3 for low- and 2 for
high-dimensional problems, respectively. With the help of all four results, we
are able to obtain the main results in Section 3.

5. Examples

In this section, we present two examples of GPFs (7) (that allows hierarchical
structures within and among groups) and establish their theoretical properties
in the Cox model setup. To the best of our knowledge, similar results do not
exist in the current literature. For simplicity in the presentation, the results of
this section focus on the exact sparse models with β∗ representing the unknown
true parameter.
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5.1. Hierarchical selection and CAP

Our results apply to a general class of additive models, where the groups in
the additive Cox model may share some, but not necessarily all features across
groups. For example, the effect of one gene can be shared by many different
pathways, and thus studying hierarchical gene selection is of significant impor-
tance.

One model that has very specific hierarchical structure is a Cox model with
pairwise interaction terms. Given the covariates, the hazard rate function λ(t|X)
of each patient is related to the covariates X1, . . . ,Xp and their cross products
XjXk with the following model

λi(t|X) = λ0(t) exp





p∑

j=1

βjXij +
∑

j 6=k

ΘjkXijXik



 ,

where Θ = ΘT ∈ Rp×p. In the display above, we refer to the additive part
as the main effect terms and the quadratic part as the “interaction” terms.
In this model, the total number of parameters is 1/2(p2 + 3p) and each fj
takes on a bilinear form βjXij +

∑p
k=1 ΘjkXijXik with bj = (βj ,Θ

T
j ) and

Ψ(Xij) = (Xij , XijXi).

More generally, going back to the notation of previous chapters, let all co-
variates be decomposed into G possibly overlapping groups {Γj}Gj=1 in such a
way that

⋃
j Γj = {1, . . . , p} and Γj ∩ Γk 6= ∅, for j 6= k. Then, each fj can

be approximated by bT
Γj
ΨΓj , where Γj is a set of covariates that belongs to

group j. In previous example the set Γj was {j, 1, . . . , p}.
The regularized estimator, β̂, is then defined as the minimizer of penalized

partial likelihood PLn(b) + P (b), where

PLn(b) = − 1

n

n∑

i=1

∫ τ

0

[
G∑

j=1

bT
Γj
ΨΓj+log

( 1
n

n∑

i=1

Yi(t) exp

{ G∑

j=1

bT
Γj
ΨΓj

})]
dNi(t)

with the penalty function P (b) defined as

P (b) =
G∑

j=1

λn,j |Γj |1/γ
∗
j ‖bΓj‖γj ,

where |Γj | denotes for the cardinality of that set. Note that this penalty includes
the classical group Lasso penalty, where one would select all γj = 2.

Corollary 1. Let conditions of Theorem 2 be satisfied. Then, for some constant
A > 4 and the choice of the tuning parameters

√
dλn,j ≥ Amin

{
ζ2,

√
logG

n
|Γj |−2/γ∗

j

}
,
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we have

P

(
‖f

β̂
− fβ∗‖2 ≤ ω−1eC(rne

C+2υ1)26

∑
j∈M∗

λ2
n,j |Γj |2/γ

∗
j

ζ2

)

≥ 1− 6{Gd}1−A − P

(
RE(7, s, ρ,γ,−▽2 PLn(β

∗)) ≤ ζ2
)

(40)

− 4pdP

(
max
1≤i≤n

exp{g(Xi)} > y

)
,

for rn = ζ−2
∑

j∈M∗
λn,j |Γj |2/γ

∗
j , and 0 ≤ υ1 ≤ 1 satisfying

υ1e
−2Cυ1 ≤ 16ρ′(0+)

∑
j∈M∗

λ2
n,j |Γj|2/γ

∗
j

ζ2
. (41)

The proof of this result is omitted because it is a simple modification of that
of Theorem 2 with λn being adaptive to each group Γj . The oracle inequality of
Corollary 1 discusses finite-sample properties of the whole CAP family proposed
in the seminal work of [43]. In particular, the block l1/l∞ penalty introduced
in [30] is a member of the CAP family. [30] present l∞ bounds on the estima-
tion error of block l1/l∞ penalty in the linear models. Corollary 1 provides its
finite sample l2 error bounds for the sparse additive Cox model with possibly
overlapping groups.

In more details, we obtain with high probability

‖f
β̂l1/l∞

− fβ∗‖2 ≤ 26eC(rne
C+2υ1)

∑
j∈M∗

λ2
n,j |Γj |2

ζ2
,

for the block l1/l∞ penalty, 0 ≤ υ1 ≤ 1 satisfying

υ1e
−2Cυ1 ≤ 16ρ′(0+)

∑

j∈M∗

λ2
n,j |Γj |2/ζ2,

and rn = ζ−2
∑

j∈M∗
λn,j |Γj |2. In case of a parametric model with g(Xi) =

XT
i β

∗, or the interaction model discussed in the example above, we observe
that Gaussian random designs with Σ such that λmin(Σ) > 0 will make the last
two terms in (40) negligible.

Moreover, non-overlapping groups gained significant attention with impor-
tance of multi-task learning [24]. Similar setup has not been investigated in
models related to (1). Corollary 1, provides a finite sample bound for the multi-
task learning i.e. l1/l2 penalty as well. In more details, we obtain with high
probability

‖f
β̂l1/l2

− fβ∗‖2 ≤ 26eC(rne
C+2υ1)

d
∑

j∈M∗
λ2
n,j

ζ2

with 0 ≤ υ1 ≤ 1 satisfying

υ1e
−2Cυ1 ≤ 16dρ′(0+)

∑

j∈M∗

λ2
n,j/ζ

2
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and rn = dζ−2
∑

j∈M∗
λn,j . If in addition P (E0) → 1, the upper bound above,

up to a constant, matches the minimax rate of [24] developed for high dimen-
sional linear models.

5.2. Smooth selection

Throughout the previous sections, we simplified the technical details and left
out the smoothing component of the penalty. Although selection of groups of
features is important, smoothing splines become of interest when considering
non-parametric estimation. Because of knot selection, there are potential ques-
tions of stability of estimation. Adding pre-described smoothing requirements
for the choice of Ψ has become a standard technique for avoiding instability.

Next we present one example of the ANOVA Cox model where the hazard
rate function of interest is a nonparametric function of covariates. Consider the
multivariate nonparametric regression problem

λ(t|X) = λ0(t) exp {f(X)} ,

where f is the function of estimation interest. A popular model for high dimen-
sional problems above is a smoothing spline analysis of variance model

λi(t|X) = λ0(t) exp

{ p∑

j=1

gj(Xij) +

p∑

j=1

p∑

k=1,j<k

gjk(Xij , Xik)

+

p∑

j=1

p∑

k=1,j<k

p∑

l=1,j<k<l

gjkl(Xij , Xik, Xil) + · · ·
}
,

and in particular its truncated version

λi(t|X) = λ0(t) exp





p∑

j=1

gj(Xij) +
∑

j<k

gjk(Xij , Xik) + r



 ,

where r is the truncation term. The identifiability of the terms is assured by the
side conditions through averaging operators [23]. The form of FGP penalty is
similar to the common smoothing spline and allows multiple smoothing parame-
ters for each function fjk independently. With the notation of previous chapters,
in this model gj can be approximated using a set of basis functions {Bq}dq=1,

as gj =
∑d

q=1 βjqBq(Xij) and similarly gjk =
∑d

q=1 ΘjkqBq(Xij)Bq(Xik), with
βjk and Θjkq as the unknown parameters. In this model, the total number of
unknown parameters is 1/2(p2 + 3p)d and each fj takes on a bilinear form∑d

q=1 βjqBq(Xij)+
∑d

q=1

∑p
k=1 ΘjkqBq(Xij)Bq(Xik). Hence, in notation of the

previous chapters, bjk is now a vector bj = vec(βjk, (Θj1k, . . . ,Θjpk)
T ) and

Ψk(Xij) = vec(Bk(Xij), Bk(Xij)(Bk(Xi1), . . . , Bk(Xip))
T ). In the display above,

vec(A) = (A11, . . . , A1p, . . . , Ak1, . . . , Akp), for a matrix A.
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Let the smoothing matrix, Mj ∈ Rd×d, contain the inner products of the
second derivatives of the B-spline basis functions, i.e.,

{Mj}kl =
∫

Ψ
′′

k (xj)Ψ
′′

l (xj)dxj , Mj = RT
j Rj ,

k, l = 1, . . . , d, and Rj ∈ Rd×d is a matrix obtained from Cholesky decompo-
sition of Mj . More generally, we show that the work of the previous sections
extends to this situation with only a few adaptations. Let us define the penalized
smoothed estimator as

β̂S = argmin
b

{
−Ln(b)+λn

p∑

j=1

√
dρ

(
‖bT

j Rj‖γj +
√
bT
j Mjbj

)}
, for γj ≥ 2,

for a convex and subadditive choice of ρ. Then, we can rewrite the problem as

β̂
s
= argmin

b̃

{
−Ln(b̃) + λn

p∑

j=1

√
dρ
(
‖b̃j‖γj + ‖b̃j‖2

)}
,

with b̃j = Rjbj and

L̃n(b̃) =
1

n

n∑

i=1

∫ τ

0

[
p∑

j=1

b̃j
T
R−1

j Ψ(Xij)

− log
( 1
n

n∑

i=1

Yi(t) exp

{ p∑

j=1

b̃j
T
R−1

j Ψ(Xij)

})]
dNi(t).

A crucial part of extending the previous results to this novel setting requires
extending the results of Lemma 1 and Propositions 2 and 3 to the new penalty
structure. Details of the proof are presented in the Appendix D. To state the
results we define a set

Tn =

{
‖h̃n,j(β

∗)‖γ∗
j
≤ 2λn max

j
{d1/γ∗

j

√
d}min

j
λmin(Rj)ρ

′(0+), ∀j ∈ {1, . . . , p}
}

for a new score vector h̃n,j(β
∗) = − 1

n

∑n
i=1

∫ τ

0
(Ẽn,j(β

∗, t)−R−1
j Ψ(Xij))dMi(t)

and

Ẽn,j(β
∗, t) =

1

n

n∑

i=1

Yi(t)R
−1
j Ψ(Xij)

1
n

∑n
l=1 Yl(t) exp

{∑p
j=1 β

∗
j
T
R−1

j Ψ(Xlj)
}

× exp





p∑

j=1

β∗
j
T
R−1

j Ψ(Xij)



 . (42)

Let N represent the number of distinct events and let

ω
S
:= min

i∈{1,...,n},i∈∪n
q=1Rq

{∑N
q=1 exp{

∑p
j=1 β

∗
j
T
R−1

j Ψ(Xij)}1{i ∈ Rq}}
∑

l∈Rq
exp{∑p

j=1 β
∗
j
T
R−1

j Ψ(Xlj)}

}
.
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Lemma 6. Let v = (vT
1 , . . . ,v

T
p )

T ∈ Rpd, with vn,j ∈ Rd. Then, on the event

Tn, the penalty function P (b̃) =
∑p

j=1

√
dρ(‖b̃j‖γj +‖b̃j‖2) satisfies (8). More-

over, the following two statements hold almost surely:

(i) Let ‖fb‖2n,ω
S
,b∗ be defined in the same way as ‖fb‖2n,b∗ is (37) and replace

ω with ω
S
. Then, uniformly for every b ∈ [−bn, bn], with bn > 0 and

b∗ = cb+ (1 − c)β∗, with c ∈ (0, 1),

ω
S
‖fb‖2 ≤ ‖fb‖2n,ω

S
,b∗ ≤ ‖fb‖2.

(ii) Let av be a constant defined in Proposition 2. Then, the following sandwich
bound holds almost surely for every vector b and corresponding vector
b∗ = cb+ (1 − c)β∗,

ωe−2ab−β∗ max1≤j≤p λ−1
min(Rj) ‖fb − fβ∗‖2

≤ ‖fb − fβ∗‖2n,ω
S
,b∗

≤ e2ab−β∗ max1≤j≤p λ−1
min(Rj) ‖fb − fβ∗‖2,

uniformly for every c ∈ (0, 1).

With the help of the results presented in earlier sections and this Lemma, we
have the following Corollary.

Corollary 2. Let conditions of Theorem 2 be satisfied. Let Mj be well defined
with λ = min1≤j≤p λmin(Rj) > 0. Then, for some constant A > 4 and the choice
of the tuning parameters

λnd
2 ≥ Amin

{
ζ2,

√
log(pd)

n

}
,

we have

P


‖f

β̂
S

− fβ∗‖2 ≤ ω−1eC(rne
C+2υ1)32

√
2
sλ2

nd

ζ2

∑

j∈M∗

RjR
T
j


 (43)

≥ 1− 6{pd}1−A − P

(
RE(7, s, ρ,γ,−▽2 L̃n(β

∗)) ≤ ζ2
)

− 4pdP

(
max
1≤i≤n

exp{g(Xi)} > y

)
,

for rn = ζ−2sλnd, and 0 ≤ υ1 ≤ 1 satisfying

υ1e
−2Cυ1 ≤ 16λ2

nλ
sd

ζ2
ρ′(0+).

The result above is a finite sample one on prediction properties of a non-
parametric smoothing estimator for the high-dimensional Cox model. A partic-
ular example of a smooth selection is the Elastic net penalty [45]. Although our
previous results easily apply to this penalty (by specifying γj = 1 and ρ = l1),
its efficient implementation in the Cox model was only recently proposed in [41],
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but its theoretical properties have not been previously studied. Although tack-
led as the last problem, the importance of the obtained finite sample bounds for
smooth selection lies in the inadmissibility of such results with techniques that
already exist in the literature. In particular, in the case of Elastic-Net penalty
we obtain with high probability

‖f
β̂elastic net

− fβ∗‖2 ≤ ω−1eC(rne
C+2υ1)32

√
2
s2λ2

n

ζ2

for rn = ζ−2sλn, and 0 ≤ υ1 ≤ 1 satisfying υ1e
−2Cυ1 ≤ 16λ2

n
s
ζ2 ρ

′(0+). Such a
result holds under the assumption that the random design X is such that last
two terms of the equation (41) are negligible.

Discussion

In this paper, we propose a new method for analyzing the theoretical oracle
risk properties of likelihood functions that are not necessarily of a quadratic
nature. By sandwiching the likelihood with two other processes, we establish
that it is sufficient to analyze the risk properties of the bounding processes
alone. To the best of our knowledge, minimax rates, have not been established
for any survival model so far despite their importance. Equivalents of traditional
information theoretic tools, such as Fano’s lemma, are not easy to understand
in the Cox model setup. Our proposed method of sandwiching the likelihood
with two quadratic likelihoods may be useful in establishing minimax rates.

Appendix A: The restricted eigenvalue condition

The restricted eigenvalue condition, RE(µ, s, ρ,γ,A), defined in (12) represents
a generalization of the cone constraint condition that appears in work on Lasso
problems [4]. Equivalent definitions were proposed for various hazard rate mod-
els [21, 14, 17, 15]. We refer to [6] for comparisons of different kinds of com-
patibility and restricted eigenvalue conditions and their relationships for sparse
linear models. The usual scaling factor of

√
n disappears in the definition of the

restricted eigenvalue condition because it is included in the definition of the em-
pirical norm, ‖f(·)‖2n,·. Compared to the RE condition in [4], the denominators
differ in that the l2 norm is replaced with an l1,γ norm. In the least squares

procedures, ▽2Ln(β
∗) = −XTX and the restricted eigenvalue conditions are

defined on the eigenvalues of XTX. Condition (14) can be seen as a rescaling of
the minimum eigenvalue problem in the classical RE condition needed for the
complex likelihood structures.

Determining the class of matrices that satisfy the RE(µ, s, ρ,γ,−▽2Ln(β
∗))

condition is an important open question. Heuristically we can argue in the fol-
lowing manner. First, we observe that with respect to time,

∫ τ

0 Vn(0, t)dN̄(t)
has a martingale structure. With respect to β∗, it is a function of the matrix∑n

i=1

∑n
q=1 Ψ

T (Xi)Ψ(Xq). Using Condition 1 and the boundedness of the Ψ

functions, matrix
∫ τ

0 Vn(0, t)dN̄(t) will belong to a random matrix ensemble
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with sub-Gaussian tails, studied in [44]. Dependence through time was estab-
lished not to be essential in [15], where a lower bound for RE was shown to be
independent of time. Moreover, we can combine both results to conclude that
for large enough sample size, there exists a positive constant ζ1 such that with
overwhelming probability

min
∆∈Cµ,ρ,∆6=0

‖∆T {−▽2 Ln(β
∗)}∆‖2

‖∆M∗‖21,γ
≥ ζ2,

for all random designs X with bounded moments.

Appendix B: Preliminary lemmas

The following lemma provided exponential inequality for a martingale sequence
and can be found in [37] as Lemma 2.1

Lemma 7. Let (Ω,F , P ) be a probability triple and let Mt be a sequence of
locally square integrable martingales w.r.t. the filtration Ft. Suppose that |Mt −
Mt−| ≤ K for all t > 0 and some 0 < K < ∞. Then, for each a > 0, b > 0.

P
(
Mt ≥ a and 〈M,M〉t ≤ b2 for some t

)
≤ exp

{
− a2

2(aK + b2)

}
,

where 〈M,M〉t denotes predictable variation of the martingale sequence Mt.

The following lemma provides an exponential inequality for a unbounded
supermartingale sequence and can be found in [13] as Corollary 2.3.

Lemma 8. Let (Ω,F , P ) be a probability triple. Assume that (ξi,Fi)i=1,...,n are
supermartingale differences i.e. E(ξi|Fi−1) ≤ 0. Let b > 0 and

V 2
k (b) =

k∑

i=1

E
(
ξ2i 1{ξi ≤ b}|Fi−1

)
, k = 1, . . . , n.

Then, for any a ≥ 0, b > 0 and c > 0

P

(
k∑

i=1

ξi ≥ a and V 2
k (b) ≤ c2 for some k

)

≤ exp

{
− a2

2(c2 + 1
3ab)

}
+ P ( max

1≤i≤n
ξi > b).

Appendix C: Proofs of propositions

Proof of Proposition 1. Without loss of generality, let us represent the optimiza-
tion problem (31) as a quadratically constrained minimum of the ratio of two
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quadratic functions of the following form

minb
∑N

q=1
(bTAi

1b+2ai
1
Tb+c1)1(i∈Rq)

bTA2b+2aT
2 b+c2

,

s.t ‖b‖22 ≤ rn,
b ∈ Rpd,

(44)

where Ai
1 = Ψ(Xi)Ψ(Xi)

T , A2 =
∑

l∈Rq
Ψ(Xl)Ψ

T (Xl) and ai1 = Ψ(Xi),

a2 =
∑

l∈Rq
Ψ(Xl). Constants c1 and c2 are residuals of the Maclaurin series

expansions of the functions exp{bTΨ(Xi)} and
∑

l∈Rq
exp{bTΨ(Xl)}. This

makesAi
1 and ai1 second order and first order approximations of exp{bTΨ(Xi)},

around 0.
Condition (30) implies that for any feasible point b, the above optimization

problem is well defined. Multiplying (30) by (bT , 1) from the left and (bT , 1)T

from the right results in
∑

l∈Rq

exp{bTΨ(Xl)}+ η(‖b‖22 − rn) ≥ δ(‖b‖22) + 1,

which implies that
∑

l∈Rq
exp{bTΨ(Xl)} ≥ δ(‖b‖22) + 1 ≥ δ > 0.

Let us fix an i ∈ Rq for some q. Now, let us define

d1 = inf
{
f(b) : ‖b‖ ≤ rn,b

TAi
1b+ 2ai1

T
b+ c1 ≥ 0

}
, (45)

d2 = inf
{
f(b) : ‖b‖ ≤ rn,b

TAi
1b+ 2ai1

T
b+ c1 ≤ 0

}
, (46)

with f(b) = (bTAi
1b+ 2ai1

T
b+ c1)/(b

TA2b+ 2aT2 b+ c2). Then using the re-
lation that

inf{f(b) : b ∈ C1 ∪ C2} = min
{
inf
b∈C1

f(b), inf
b∈C2

f(b)
}
,

we have that the optimal solution to (44) is equal to min{d1, d2}. By definition,
d1 is nonnegative. It remains to establish that d2 is finite. Indeed, for every b

satisfying ‖b‖22 ≤ rn and bTAi
1b+ 2ai1

T
b+ c1 ≤ 0, we have

d2 ≥ f(b) ≥ bTAi
1b+ 2ai1

T
b+ c1

δ(‖b‖22) + 1
≥ 1

δ
λmin

(
Ai

1 a1
aT1 c1

)
.

Proof of Proposition 2. To see that the equation (38) is correct, we adopt the
following reasoning. First, note that ‖fb − fβ∗‖2n,b∗ is equal to

n−1

∫ τ

0

∑n
i,q=1 wiwq(ai − aq)

⊗2e(1−c)ai−c̄e(1−c)aq−c̄

∑n
i,q=1 2wiwqe(1−c)ai−c̄e(1−c)aq−c̄

dN̄(t),

with ai = (b − β∗)T (Ψ(Xi) − En(β
∗, t)) and wi = Yi(t) exp{β∗TΨ(Xi)} and

c̄ = (1− c)(maxi ai+mini ai)/2. If we let η = ab−β∗ , we can see that maxi |(1−
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c)ai − c̄| ≤ η/2. Using this notation, e(1−c)ai−c̄ ≥ e−η/2 and e(1−c)ai−c̄ ≤ eη/2

leading to

‖fb − fβ∗‖2n,b∗ ≥ exp{−2η}n−1

∫ τ

0

∑n
i,q=1 wiwq(ai − aq)

⊗2

∑n
i,q=1 2wiwq

dN̄(t)

= exp{−2η} ‖fb − fβ∗‖2n,β∗ .

The upper bound follows the same reasoning, and thus it is omitted. The lower
bound of the RHS of previous inequality follows by repeating the same steps as
in Proposition 3 and the definition of the weight vectors, ωi(β

∗), in (17),

‖fb − fβ∗‖2n,b∗ ≥ ω exp{−2η} ‖fb − fβ∗‖2n.

The upper bound follows directly from Proposition 3 by taking b∗ = β∗ to
obtain

‖fb − fβ∗‖2n,b∗ ≤ exp{−2η} ‖fb − fβ∗‖2n.

Proof of Proposition 3. Let N denote the cardinality of the set {i = 1, . . . , n :
Ni(τ) = 1}. The weight process, ωi(b, t) as defined in (21), satisfies the following
normalization uniformly over b and t,

1

n

n∑

i=1

Yi(t)ωi(b, t) = 1.

For each b, there exists at least one i ∈ {1, . . . , n} such that ωi(b, t) > 0 and
that for all i, for which ∃t ∈ [0, τ ], Yi(t) = 1, we have that ωi(b, t) ≤ n, for all t.

Let us denote

ωi(b) =

∫ τ

0

Yi(t)ωi(b, t)dN̄(t),

with ωi(b, t) defined as in (21). If t1 < · · · < tN are ordered failure times and
Rj = {i ∈ {1, . . . , n} : Zi ≥ tj} is at risk set, then ωi(b) has the following
representation:

ωi(b) =

N∑

j=1

exp{bTΨ(Xi)}1{i ∈ Rj}∑
l∈Rj

exp{bTΨ(Xl)}
,

which matches the definition provided in Theorem 1 equation (17). Note that
ωi ≥ 0 and ωi > 0 for i ∈ {1, . . . , n}. Using the previous notation, we have

‖fb‖2n,b∗ =
1

n

n∑

i=1

f2
b(Xi)ωi(b

∗)−
(
1

n

n∑

i=1

fb(Xi)ωi(b
∗)

)2

,

With this notation at hand, we have that

1

n

n∑

i=1

ωi(b
∗) =

1

n

N∑

j=1

∑

i∈Rj

exp{bTΨ(Xi)}∑
l∈Rj

exp{bTΨ(Xl)}
=

N

n
.
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Since ωi(b
∗) ≥ 0, and are defined as conditional probabilities we have ω =

max{ωi(b) : i ∈ {1, . . . , n},b ∈ Rpd} ≤ 1. We are then able to conclude that
1 ≥ ω̄ = max{ωi(b) : i ∈ {1, . . . , n},b ∈ Rpd} ≥ 1/n ≥ ω = min{ωi(b) : i ∈
{1, . . . , n},b ∈ Rpd}. Hence,

‖fb‖2n,b∗ ≤ ω̄‖fb‖2n − ω

(
1

n

∑

i∈I

fb(Xi)

)2

≤ ‖fb‖2n.

To obtain the left-hand side of (6), remember from previous exposition we have

‖fb‖2n,b∗ =
1

n

n∑

i=1

ωi(bb)(fb(Xi)− f̄∗
b
)2

with f̄∗
b

= 1
n

∑n
i=1 ωi(bb)fb(Xi) and ωi(bb) following the definition in (17).

Hence, by centering the data so that the sample mean is equal to zero, i.e.,
1
n

∑n
i=1 fb(Xi) = 0, we have

‖fb‖2n,b∗ ≥ ω
1

n

∑

i∈I

(
f2
b(Xi) + {f̄∗

b}2
)
+ 2ω f̄∗

b

(
1

n

n∑

i=1

fb(Xi)

)

≥ ω
1

n

n∑

i=1

f2
b(Xi) = ω‖fb‖2n.

The result of the Proposition 3 follows easily after applying Proposition 1 on
the interval [−bn, bn] and following discussion after Proposition 1.

Appendix D: Proofs of lemmas

Proof of Lemma 1. Let us first concentrate on the first statement of (8). This
can be seen from the following reasoning. Let us define a function

f(b) := −(b− β∗)Tvn + λnP (b)− Ln(β
∗),

where vn ∈ Rpd. First, we establish that zero is a local minimum of function
f(b) for all b such that ‖bj‖1 ≤ 1. Note that

f(b)− f(0) =

p∑

j=1

(
−bT

j vn,j + λnd
1/γ∗

j ρ(‖bj‖γj)

)
,

and conditional on the event En,j = {‖vn,j‖γ∗
j
≤ λnd

1/γ∗
j ρ′(0+)},

−bT
j vn,j + λnd

1/γ∗
j ρ(‖bj‖γj) ≥ ‖bj‖γj

(
−‖vn,j‖γ∗

j
+ λnd

1/γ∗
j ρ′(0+)

)
≥ 0,

where we have utilized the Höelder inequality. Therefore, we can conclude that
f(b)− f(0) ≥ 0 if the event En = ∩p

j=1En,j. Because f is a convex function, we
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can conclude that 0 is a global minimum as well. Note that we don’t require
unicity of minimum.

We are left to prove the second statement of (8). We proceed in the similar
way by first defining an appropriate function to minimize over. To that end, let
us define

f(b) := −|(β∗ − b)Tvn|+ λnP (b)− Ln(β
∗),

where vn ∈ Rpd. By the same reasoning as above, it suffices to notice that

−
(
|(β∗ − b)Tvn,j| − |β∗Tvn,j |

)
+ λnd

1/γ∗
j ρ(‖bj‖γj )

≥ −|bTvn,j |+ λnd
1/γ∗

j ρ(‖bj‖γj)

≥ ‖bj‖γj

(
−‖vn,j‖γ∗

j
+ λnd

1/γ∗
j ρ′(0+)

)
≥ 0,

by first using |x− y| ≥ ||x| − |y|| and then Höelder inequality.

Proof of Lemma 2. We make use of the following decomposition

‖En(β
∗, t)− e(β∗, t)‖∞ =

≤ max1≤j≤p,1≤k≤d
|{S(1)

n }jk(β
∗
,t)−{s(1)}jk(β

∗
,t)|

|s(0)(β∗
,t)|

+ max1≤j≤p,1≤k≤d

∣∣{s(1)}jk(β∗, t)
∣∣
∣∣∣ 1

S
(0)
n (β∗

,t)
− 1

s(0)(β∗
,t)

∣∣∣
:= I1 + I2

(47)

We will prove maximal inequalities for each of the two terms in the above
inequality.

First, consider classes of functions indexed by t:

F = {1{z > t} exp{fβ∗(x)}/u : t ∈ [0, τ ]},

and
Gk = {1{z > t}Ψk(x) exp{fβ∗(x)}/u : t ∈ [0, τ ]}.

Since β∗ is a s-sparse vector we have that u = exp{∑j∈M∗
‖β∗

j‖1}. We
proceed by calculating theirs bracketing number. Noticing that previous classes
are products of a class of indicator functions and a class of bounded functions
we have that

N[](ǫ,F , L2) ≤ 2/ǫ2, N[](ǫ,Gk, L2) ≤ 2/ǫ2,

By direct consequence of Theorem 2.14.9 of [39] we obtain that there exists a
constant W such that

P

(√
n sup

t∈[0,τ ]

∣∣∣∣
1

n

n∑

i=1

Yi(t) exp{fβ∗(Xi)}/u

− EY,XYi(t) exp{fβ∗(Xi)}/u}
∣∣∣∣≥ r

)
≤ 1

2e
W 2e−r2
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and

P

(√
n sup

t∈[0,τ ]

∣∣∣∣
1

n

n∑

i=1

Yi(t)Ψk(Xi) exp{fβ∗(Xi)}/u

− EY,XYi(t)Ψk(Xi) exp{fβ∗(Xi)}/u}
∣∣∣∣≥ r

)
≤ 1

2e
W 2e−r2 ,

for every fixed k ∈ {1, . . . , d}. By replacing r with
√
nrn in the first and utilizing

union bound and replacing r with
√
nr2n + log 2d in the second we obtain

P

(
sup

t∈[0,τ ]

∣∣∣S(0)
n (β∗, t)− s(0)(β∗, t)

∣∣∣ ≥ urn

)
≤ 1

2e
W 2e−nr2n , (48)

P

(
sup

t∈[0,τ ]

‖S(1)
n (β∗, t)− s(1)(β∗, t)‖∞ ≥ u

(√
r2n +

log 2d

n

))
≤ 1

4de
W 2e−nr2n ,

(49)
Second, from the definition of s(0)(β∗, t) and Condition 1 (iii) we observe that

there exists a constant 0 < D < 1 with D = P (Y (τ) = 1) and

inf
t∈[0,τ ]

1

n

n∑

i=1

EY,XYi(t) exp{fβ∗(Xi)} ≥ exp{−m∗C}P (Y (t) = 1)

> D exp{−m∗C}

with C being an upper bound on |Ψk(x)| and m∗ defined as minimum signal
strength in the additive component of the hazards model (1).

According to (47) and (48) we have

I2 ≤
supt∈[0,τ ]

∥∥s(1)(β∗, t)
∥∥
∞

D exp{−m∗C}
urn

inft∈[0,τ ] S
(0)
n (β∗, t)

with probability 1
2edW

2e−r2n , and according to (47) and (49) we have

I1 ≤
u

(√
r2n + log 2d

n

)
exp{m∗C}

D
≤

u

(
rn +

√
log 2d

n

)
exp{m∗C}

D
,

with probability no smaller than 1− 1
4eW

2e−nr2n . To further bound I2 we show

that |S(0)
n (β∗, t)| is bounded away from zero with high probability. To that end,

we employ Massart’s Dvoretzky-Kiefer-Wolfowitz inequality bounding how close
an empirically determined distribution function is to the distribution function
from which the empirical samples are drawn. Hence,

P

(
1

n

n∑

i=1

1(Zi ≥ τ) ≥ 1

2
P (Z1 ≥ τ)

)
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≥ P

(
sup

t∈[0,τ ]

√
n

∣∣∣∣∣
1

n

n∑

i=1

1(Zi ≥ t)− P (Z1 ≥ τ)

∣∣∣∣∣ ≤
√
n/2 P (Z1 ≥ τ)

)

≥ 1− 2e−nD2/2. (50)

Remeber that S
(0)
n (β∗, t) = 1

n

∑n
i=1 1{Zi ≥ t} exp{fβ∗(Xi)} and observe

that for all t ≤ τ we have {Zi ≥ t} ⊃ {Zi ≥ τ}. Hence,

S(0)
n (β∗, t) ≥ exp{−m∗C} 1

n

n∑

i=1

1{Zi ≥ τ}, for all t ≤ τ.

Together with (50) we have

P

(
inf

t∈[0,τ ]
S(0)
n (β∗, t) ≥ exp{−m∗C}D/2

)
≥
(
1

n

n∑

i=1

1(Zi ≥ τ) ≥ D/2

)

≥ 1− 2e−nD2/2.

Next, we bound supt∈[0,τ ] ‖s(1)(β∗, t)‖∞. Observe that

sup
t∈[0,τ ]

‖s(1)(β∗, t)‖∞ ≤ sup
t∈[0,τ ]

EX(P{Z1 ≥ t|X1} exp{f(β∗(X1))})

≤ EX(exp{β∗TΨ(X1)}) ≤ exp{C log u}

With all of the above notice that

I2 ≤ 2urn exp{2m∗C} exp{C log u}
D2

with probability no smaller than 1− 1
2edW

2e−nr2n−2e−nD2/2. Hence, we conclude
that

‖En(β
∗, t)− e(β∗, t)‖∞ ≤

u

(
rn +

√
log 2d

n

)
exp{m∗C}

D

+
2urn exp{2m∗C} exp{C log u}

D2
,

with probability no smaller than 1− 3
8edW

2e−nr2n − e−nD2/2.

Proof of Lemma 3.

Bounding Dc
n,i

Recall that

Dn,i =

p⋂

j=1

{
4λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣ ‖Ψ(Xij)‖γ∗
j
≤ λnd

1/γ∗
j ρ′(0+)

}
.
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By simple union bound we see that

P (Dc
n,i) ≤

p∑

j=1

P

(
λ0(τ)

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dt

∣∣∣∣ ‖Ψ(Xij)‖γ∗
j
≥ λnd

1/γ∗
j ρ′(0+)

)
. (51)

First, observe that the definition of S
(0)
n (g, t) allows the following bound

∣∣∣∣
∫ τ

0

S(0)
n (g, t)dΛ0(t)

∣∣∣∣ ≤ Λ0(τ)
1

n

n∑

i=1

exp{g(Xi)}
∫ τ

0

Yi(t)dt

≤ τΛ0(τ)
1

n

n∑

i=1

exp{g(Xi)},

whereas the boundedness of Ψk allows ‖Ψ(Xij)‖γ∗
j
= (
∑d

k=1 Ψ
γ∗
j

k (Xij))
1/γ∗

j ≤
d1/γ

∗
j C to hold. With this in mind, we observe that

P (Dc
n,i) ≤

p∑

j=1

P

(
τΛ0(τ)λ0(τ)C

1/γ∗
j
1

n

n∑

i=1

exp{g(Xi)} ≥ λnρ
′(0+)

)
. (52)

Previous inequality is a tail probability of a sum of i.i.d.positive random variables
where g is the unknown function of interest.By large-deviation inequality of non-
negative random variables (Lemma 8 in the Appendix B), we obtain

P

(
n∑

i=1

exp{g(Xi)} ≥ √
nγn

)
≤ e

− nγ2
n

2θ2+2γny/3 + P ( max
1≤i≤n

exp{g(Xi)} > y), (53)

for a sequence of non-negative numbers γn and a truncation value y such that

θ2 ≥
n∑

i=1

Eexp{2g(Xi)}1{exp{2g(Xi)} ≤ y}. (54)

By choosing γn = M
√
nλnρ

′(0+) with M = 1/(τλ0(τ)Λ0(τ)C), we obtain that

P (Dc
n,i) ≤ e

− n2M2λ2
nρ′(0+)2

2θ2+2M
√

nλnρ′(0+)y/3 + P ( max
1≤i≤n

exp{g(Xi)} > y).

Bounding Ec
n

Notice that the set of interest, Ec
n, is a subset of

p⋃

j=1

{
‖hn,j(β

∗)‖∞ ≥ λnd
1/γ∗

j ρ′(0+)
}
,

where ‖hn,j(β
∗)‖∞ = max1≤k≤d |{hn}jk(β∗)|. According to the definition of

hn(β
∗)

hn(β
∗) = −n−1

n∑

i=1

∫ τ

0

(En(β
∗, t)−Ψ(Xi)) dMi(t), (55)
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we decompose hn(β
∗) as follows

hn(β
∗) := υ + ν (56)

=
1

n

n∑

i=1

∫ τ

0

(En(β
∗)− e(β∗, t)) dMi(t) +

1

n

n∑

i=1

∫ τ

0

(e(β∗, t)−Ψ(Xi)) dMi(t).

We will consider each term separately. First, to control υjk’s we develop a finite
sample result in Lemma 2 whose proof can be found in the Appendix D.

Next, we bound |∆υjk| and the predictable variation of the martingale υjk.
By Lemma 2, with high probability, the jumps are bounded by

|∆υjk| =
1

n
|{En(β

∗)}jk − {e(β∗)}jk| (57)

≤ 1

n
sup

0≤t≤τ
‖{En(β

∗, t)} − {e(β∗, t)}‖∞

≤ wn

n
,

with wn = crn +
√

log d
nu2 . The predictable variation process can be bounded as

follows

〈∆υjk〉2 =
1

n2

∫ τ

0

[{En(β
∗, t)}jk − {e(β∗, t)}jk]2 d〈M̄(t)〉

≤ 1

n
sup

0≤t≤τ
‖{En(β

∗, t)} − {e(β∗, t)}‖2∞
∫ τ

0

S(0)
n (g, t)dΛ0(t).

The first term on the RHS of the above equation can be bounded above with
high probability using Lemma 2 with wn. For the last term we use the result in
(53) to conclude that

〈∆υjk〉2 ≤ τΛ0(τ)

n
√
n

w2
nγn, (58)

for a sequence of non-negative numbers γn, with probability larger than or equal
to

1− e
− nγ2

n
2θ2+2γny/3 − P ( max

1≤i≤n
exp{g(Xi)} > y)

for any truncation value y satisfying (54).

Then, observe that for any three events A1, A2, A3,

P (A1) = P (A1 ∩ A2) + P (A1|Ac
2)P (Ac

2) ≤ P (A1 ∩A2) + P (Ac
2)

and similarly P (A1 ∩ A2) ≤ P (A1 ∩ A2 ∩ A3) + P (Ac
3), leading to

P (A1) ≤ P (A1 ∩ A2 ∩ A3) + P (Ac
2) + P (Ac

3).
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LetA1 = {|υjk| ≥ qn},A2 = {|∆υjk| ≤ wn

n } andA3 = {〈∆υjk〉2 ≤ τΛ0(τ)
n
√
n

w2
nγn}.

By large deviation inequality for martingales of bounded jumps and variation
in Lemma 7, there exists a sequence of positive numbers qn such that

P (|υjk| ≥ qn) ≤ 2e
− nq2n

Kqn+K2
1 +P

(
|∆υjk| ≥

wn

n

)
+P
(
〈∆υjk〉2 ≥ τΛ0(τ)

n
√
n

w2
nγn

)
.

By Lemma 2 and equations (57) and (58) we have

P (|υjk| ≥ qn) ≤ 2e
− nq2n

Kqn+K2
1 +

3W 2

8ed
e
− nr2nD2

u2e2m
∗C + e−

nD2

2

+ e
− nγ2

n
2θ2+2γny/3 + P ( max

1≤i≤n
exp{g(Xi)} > y)).

for K = wn/n and K2
1 = γnw

2
nτΛ0(τ)/n

√
n. The choice of γn is driven by (53)

where we considered γn = M
√
nλnρ

′(0+) with M = 1/(τλ0(τ)Λ0(τ)C). For a
qn = 1

2λnd
1/γ∗

j ρ′(0+), Kqn ≤ K2
1 as long as

2ωn ≥ Cλ0(τ)d
1/γ∗

j .

With wn = crn +
√

log d
nu2 the choice of rn = Cλ0(τ)

√
nd1/γ

∗
j

√
log d
u2 , suffices to

guarantee the above inequality. For such choices of ωn, γn and qn we have

P

(
|υjk| ≥

1

2
λnd

1/γ∗
j ρ′(0+)

)
≤ 2e

− nq2n
2K2

1 +
3W 2

8ed
e
− nr2nD2

u2e2m
∗C (59)

+ e−
nD2

2 + e
− nγ2

n
2θ2+2γny/3 + P ( max

1≤i≤n
exp{g(Xi)} > y)).

The right-hand-side of (59) can be simplified to

e
−n2Cλnρ′(0+)

2λ0(τ) +
3W 2

8ed
e
−n2Cλ0(τ)D2d

2/γ∗
j log d

u4e2m
∗C + e−

nD2

2

+ e
− n2M2λ2

nρ′(0+)2

2θ2+2M
√

nλnρ′(0+)y/3 + P ( max
1≤i≤n

exp{g(Xi)} > y)),

which can be further bounded by

≤
(
3 +

3W 2

8ed

)
e−n2Cλn,n,p,d + P ( max

1≤i≤n
exp{g(Xi)} > y)),

for a constant Cλn,n,p,d defined as

min

{
Cλnρ

′(0+)

2λ0(τ)
,
Cλ0(τ)D

2d2/γ
∗
j log d

u4e2m∗C
,
D2

2n
,

M2λ2
nρ

′(0+)2

2θ2 + 2M
√
nλnρ′(0+)y/3

}

Second, to control the ν term in (56), we observe that according to Lemma 2,
there exists a constant 0 < D = P (Y (τ) = 1) ≤ 1 such that for the u as defined
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in Condition 1 (iii) we have

sup
t∈[0,τ ]

‖e(β∗, t)‖∞ ≤
C supt∈[0,τ ] s

(0)(β∗, t)

D exp{−m∗C} ≤ Cu.

Thus, each νjk/u is a sum of a sequence of i.i.d bounded random variables.
However, across k’s, i.e., group elements, νjk/u are not independent random
variables. By Hoeffding’s inequality,

P

(
max
1≤k≤d

|νjk| ≥ 2‖M‖nCutn

)
≤ 2e−nt2n ,

where ‖M‖n is proportional to E
√

1
n

∑n
i=1 M

2
i (τ). Because M̄ is a bounded

martingale, we can conclude that there exists a constant c1 > 0 such that
‖M‖n ≤ c1.

Hence, for tn = λnd
1/γ∗

j ρ′(0+)/4c1Cu we obtain

P

(
max
1≤k≤d

|νjk| ≥
1

2
λnd

1/γ∗
j ρ′(0+)

)
≤ 2e

−n
λ2
nd

2/γ∗
j ρ′2(0+)

16c2
1
C2u2

. (60)

Utilizing (59) and (60) we obtain a bound on the size of the set Ec
n as follows,

P (Ec
n) ≤ 2pd


max

{(
3 +

3W 2

8ed

)
e−n2Cλn,n,p,d , e

−n
λ2
nd

2/γ∗
j ρ′2(0+)

16c2
1
C2u2

}

+ P ( max
1≤i≤n

exp{g(Xi)} > y)

)
.

Proof of Lemma 4. Let ∆ = β̂ − b.
We consider two cases: (i) 4λn

∑
j∈M∗

d1/γ
∗
j ρ(‖∆j‖γj) ≥ ‖fb−fβ∗‖2n,b∗ , and

(ii) 4λn

∑
j∈M∗

d1/γ
∗
j ρ(‖∆j‖γj ) ≤ ‖fb − fβ∗‖2n,b∗ .

Case (i) From (29), we have

‖f
β̂
− fβ∗‖2n,b

β̂
+ λn

p∑

j=1

d1/γ
∗
j ρ(‖∆j‖γj ) ≤ 8λn

∑

j∈M∗

d1/γ
∗
j ρ(‖∆j‖γj).

This implies that
∑

j∈Mc
∗
d1/γ

∗
j ρ(‖∆j‖γj ) < 7

∑
j∈M∗

d1/γ
∗
j ρ(‖∆j‖γj) or that

∆ = β̂−b ∈ C7,ρ as defined in RE condition. For such∆, from the RE condition
in (14) we have with

d̄ =
∑

j∈M∗

d2/γ
∗
j ,

‖f
β̂
− fβ∗‖2n,b

β̂
≤ 8λn

√
d̄

√ ∑

j∈M∗

ρ2(‖∆j‖γj) ≤ 8λn

√
d̄

ζ

√
∆T ▽2 Ln(β

∗)∆.

The left hand side can be further bounded using Proposition 2 and triangle
inequality with
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8λn

√
d̄

ζ

(
exp{a

β̂−β∗}‖fβ∗ − f
β̂
‖n,b

β̂
+ exp{ab−β∗}‖fb − fβ∗‖n,b∗

)
.

Furthermore, with the simple inequality ab ≤ b2/2+a2/2, we can further upper
bound the left hand side above, to obtain

‖f
β̂
− fβ∗‖2n,b

β̂
≤ 16λ2

n

d̄

ζ2
exp{2ab−β∗}+ ‖fb − fβ∗‖2n,b∗

+ 32λ2
n

d̄

ζ2
exp{2a

β̂−β∗}+ 1

2
‖fβ∗ − f

β̂
‖2n,b

β̂
.

Combining all of the above we obtain

‖f
β̂
− fβ∗‖2n,b

β̂
≤ 2‖fb − fβ∗‖2n,b∗

+ 64λ2
n

d̄

ζ2
exp{2a

β̂−β∗}+ 32λ2
n

d̄

ζ2
exp{2ab−β∗}.

To upper bound the LHS of the previous inequality we bound the two expo-
nential terms independently.

First: let b = β∗ in (29). Then, by using the RE condition and all equa-

tions above we obtain that y1 =
∑

j∈M∗ d
1/γ∗

j ρ(‖β̂j − β∗
j‖γj ) ≥ 0 and υ1 =

∑
j∈M∗ ‖β̂j − β∗

j‖γj ≥ 0 are such that a
β̂−β∗ ≤ Cυ1 and

y1 exp{−2Cυ1} ≤ 16λ2
n

d̄

ζ2
.

From convexity of ρ we know that ρ(‖β̂j − β∗
j‖γj) ≥ ρ′(0+)‖β̂j − β∗

j‖γj , hence
υ1, υ2 satisfy υ1 ≥ ρ′(0+)υ2. Combining all the above, υ1 solves

υ1 exp{−2Cυ1} ≤ 16λ2
nρ

′(0+)
d̄

ζ2
. (61)

Second, we consider the case of general b possibly different from β∗. In such
cases,

‖fb−fβ∗‖2n,b∗ ≤ 4λn

∑

j∈M∗

d1/γ
∗
j ρ(‖β̂j −β∗

j‖γj )+4λn

∑

j∈M∗

d1/γ
∗
j ρ(‖bj −β∗

j‖γj )

Then, by utilizing Proposition 2 on the left and Caushy-Shwarz inequality to
the right, we notice that

exp{−2ab−β∗}ζ2
∑

j∈M∗

ρ2(‖bj − β∗
j‖γj )

≤ ‖fb − fβ∗‖2n,b∗

≤ 4λnd̄
√
υ2 + 4λnd̄

√ ∑

j∈M∗

ρ2(‖bj − β∗
j‖γj).
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To that end, let us denote with y2 =
∑

j∈M∗
ρ2(‖bj − β∗

j‖γj ) ≥ 0 and υ2 =∑
j∈M∗

‖bj − β∗
j‖2γj

≥ 0 and observe that ab−β∗ ≤ Cυ2

ζ2y2 exp{−2Cυ2} − 4λnd̄
√
y2 ≤ 4λnd̄

√
υ1.

Utilizing the equation υ1 satisfies and the convexity of ρ we have

υ2 exp{−2Cυ2} − 4λn
d̄

ζ2ρ′2(0+)

√
υ2 ≤ 16λ2

n

d̄3/2

ρ′3/2(0+)ζ3
. (62)

Although υ2 depends on b, we observe that the previous inequality holds uni-
formly over b hence we have suppressed the dependence on b in the notation
of υ2.

Case (ii) From (29), we have

‖f
β̂
− fβ∗‖2n,b

β̂
≤ 2‖fb − fβ∗‖2n,b∗

≤ 64λ2
n

d̄

ζ2
exp{2Cυ1}+ 32λ2

n

d̄

ζ2
exp{2Cυ2}+ 2min

b∈B
‖g − fb‖2.

Proof of Lemma 5. Following the same steps as in the proof of Lemma 4, we
obtain easily that ∆ ∈ C3 for ∆ = β̂−β

∗ (exact steps are omitted). Combined
with assumption RE(7, s,γ) (14), it leads to

‖f
β̂
− fβ∗‖2

n,β̂
∗ ≤ 32

λ2
n

ζ2
e2υ1

∑

j∈M∗

d2/γ
∗
j , (63)

for 0 ≤ υ1 ≤ 1 satisfying (16). This result gives a preliminary step towards the
final statement. The right- hand side is a complicated random norm (introduced
in (20)). The rest of the proof establishes tight non-trivial lower bounds on its
size. Together with Proposition 2, we have

32
λ2
n

ζ2
e2υ1

∑

j∈M∗

d2/γ
∗
j ≥ ‖f

β̂
− fβ∗‖2

n,β̂
∗

=

∫ τ

0
(β̂ − β∗)TVn(bβ̂

, t)(β̂ − β∗)dN̄(t)

‖β̂M∗ − β∗
M∗‖21,γ

‖β̂M∗ − β∗
M∗‖21,γ

≥ e−2a
β̂−β∗ ζ2‖β̂M∗ − β∗

M∗‖21,γ , (64)

where we used the notation ‖β̂M∗ − β∗
M∗‖21,γ =

∑
j∈M∗

‖β̂j − β∗
j‖2γj

, and

a
β̂−β∗ = max

1≤q,i≤n
|(β̂ − β∗)TΨ(Xi)−Ψ(Xq)| ≤ 2C‖β̂ − β∗‖1.

The rest of the proof is based on the analysis of the upper bound for the norm
‖β̂−β∗‖1. The goal is to first find the worst case upper bound that satisfies (64).
Therefore, the desired upper bound is the optimal solution of the following
optimization problem
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max ‖x‖1
s.t. e−‖x‖1‖x‖1,γ ≤ z,

for z = 16
λ2
n

ζ4 e
2υ1
∑

j∈M∗
d2/γ

∗
j . Because ‖x‖1,γ ≥ d−1‖x‖1, the optimal value

of the previous problem is upper bounded by the optimal value of the following
problem

max u

s.t. e−uu ≤ zd,
u ≥ 0.

Function e−uu is neither convex nor concave. It is concave up to u = 2 and then
convex with exponentially rate of convergence towards zero. When zd > 1/e,
the optima is reached at u = 1. When zd < 2e−2, u → ∞ exponentially fast.
Thus, for λn satisfying

e−1ζ4 ≤ 32λ2
ne

2υ1d
∑

j∈M∗

d2/γ
∗
j ,

we have ‖β̂ − β∗‖1 ≤ 1. Under such conditions for some constant c0 > 1,
a
β̂−β∗ ≤ 2C, and we utilize (64) to conclude

‖β̂M∗ − β∗
M∗‖21,γ ≤ 32e2C+2υ1

λ2
n

ζ4

∑

j∈M∗

d2/γ
∗
j .

From Cauchy Schwartz inequality, we have that
∑

j∈M∗
d1/γ

∗
j ‖β̂j − β∗

j‖γj is

less than or equal to
√∑

j∈M∗
d2/γ

∗
j

√∑
j∈M∗

‖β̂j − β∗
j‖2γj

which is according

to inequality above upper bounded with 4eC λn

ζ2

∑
j∈M∗

d2/γ
∗
j . Knowing that

β̂ − β∗ ∈ C3 and using the convexity of ρ, we have ‖ρ(β̂Mc
∗
− β∗

Mc
∗
)‖1 ≤

3‖ρ(β̂M∗ − β∗
M∗)‖1 and thus

p∑

j=1

d1/γ
∗
j ‖β̂j − β∗

j‖γj ≤ 16
√
2eC+υ1

λn

ζ2

∑

j∈M∗

d2/γ
∗
j .

Proof of Lemma 6. Let the event Tn be defined as

{‖h̃n,j(β
∗)‖γ∗

j
≤ 2λn max{d1/γ∗

j

√
d} min

1≤j≤p
λmin(Rj)ρ

′(0+), ∀j ∈ {1, . . . , p}},

with h̃n,j(β
∗) = − 1

n

∑n
i=1

∫ τ

0
(Ẽn,j(β

∗, t)−R−1
j Ψ(Xij))dMi(t),

Ẽn,j(β
∗, t)

=
1

n

n∑

i=1

Yi(t)R
−1
j Ψ(Xij)

1
n

∑n
l=1 Yl(t) exp{

∑p
j=1 β

∗
j
T
R−1

j Ψ(Xlj)}
exp{

p∑

j=1

β∗
j
T
R−1

j Ψ(Xij)}
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We first adapt the results of Lemma 1 with the following few steps

−bT
j h̃n,j(β

∗) + λn

√
dρ
(
‖bj‖γj + ‖bj‖2

)

≥ ‖bj‖γj

(
−‖h̃n,j(β

∗)‖γ∗
j
+ λn

√
dρ′(0+)

(
1 +

‖bj‖2
‖bj‖γj

))
.

For γj ≥ 2, we know that ‖bj‖γj ≤ ‖bj‖2. This relation leads to the conclusion
that previous quantity is lower bounded with

≥ ‖bj‖γj

(
−‖hn,j(β

∗)‖γ∗
j
+ 2λn

√
dρ′(0+)

)
,

which leads us to conclude that the results of Lemma 1 hold for this particular
penalty. Size of the set Tn is easily deducible by adapting the very last proof of
Theorem 1 (exact details are omitted).

To prove equivalent results to those of Section 4, we need to define new
constants corresponding to av and ω. First, the equivalent of Vn(b) has ex-

tra R−1
j terms, which will factor into f ai terms (of Proposition 2) as (b −

β∗)(R−1Ψ(Xi)−En(β
∗, t)). R is a diagonal block matrix

R =




R1 0 · · · 0
0 R2 · · · 0
...
0 0 · · · Rp


 .

Second, as v̄j = vjR
−1
j

āv = max
1≤i,q≤n

∣∣∣∣v̄
T (Ψ(Xi)−Ψ(Xq))

∣∣∣∣≤ max
1≤j≤p

r(R−1
j )av

with spectral radius

r(R−1
j ) = max

k=1,...,d
|λk(R

−1
j )| = max

k=1,...,d
|λk(Rj)|−1 = λ−1

min(Rj).

Then, āv ≤ max1≤j≤p λ
−1
min(Rj)av. Thus, the result of Proposition 2 follows

with η equal to max1≤j≤p λ
−1
min(Rj)av.

The definition of the weights, ωi(b), in the proof of Proposition 3 will be
changed to address the new weighting matrix, Rj ,. Once they are redefined
with

ω
S
:= min

i∈{1,...,n},i∈∪n
q=1Rq

{∑N
q=1 exp{

∑p
j=1 β

∗
j
T
R−1

j Ψ(Xij)}1{i ∈ Rq}}
∑

l∈Rq
exp{∑p

j=1 β
∗
j
T
R−1

j Ψ(Xlj)}

}
,

the exact steps of the proof of Proposition 3 will follow easily, and thus we omit
the details here.
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