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Abstract: Conventional principal component analysis is highly suscepti-
ble to outliers. In particular, a sufficiently outlying single data point, can
draw the leading principal component toward itself. In this paper, we study
the effects of outliers for high dimension and low sample size data, using
asymptotics. The non-robust nature of conventional principal component
analysis is verified through inconsistency under multivariate Gaussian as-
sumptions with a single spike in the covariance structure, in the presence of
a contaminating outlier. In the same setting, the robust method of spherical
principal components is consistent with the population eigenvector for the
spike model, even in the presence of contamination.
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1. Introduction

Principal components analysis (PCA) is widely used for high dimensional data
(Jolliffe [1]), including high dimension, low sample size (HDLSS) data. Classical
PCA represents the data using orthogonal components that are ordered accord-
ing to maximum successive explained variability in the data. For mean-centered
data, the principal components can be derived from a spectral decomposition of
the sample covariance matrix. Both the sample mean and covariance are sensi-
tive to outlying observations, and so classical PCA tends to be unreliable in the
presence of outliers.

There are two viewpoints which give close understanding of conventional
PCA. A simple view is eigen analysis of the covariance matrix; a second view
is finding directions of maximal variation. For conventional PCA, those two
approaches give the same solution. To develop approaches to robust PCA, each
viewpoins has led to useful methods which are quite different in nature.

Using the first idea, Devlin and Gnanadesikan [2] did an eigen analysis of a
robust estimate of the covariance matrix to develop a robust version of PCA.
Their proposed robust covariance was based on robust location and scale es-
timators, which replaced the usual sample means and covariances. A problem
with eigen analysis of such a robust covariance matrix is it is very challenging
to get non-negative definite covariance matrix estimates, especially in HDLSS
contexts. An interesting solution to that problem is called “minimum volume
ellipsoid” (Rousseeuw [3, 4]) that is a multivariate extension of the least median
of squares. However this method required d < n, again rendering it useless for
HDLSS data.

Li and Chen [5] used the second viewpoint of PCA focussing on the notion of
direction of maximal variation. They proposed searching directly for the optimal
direction to maximize an M -estimator of scale which is called projection pursuit.
To find more than the first component, they subtract the projected residuals
from the data, and apply projection pursuit again. While their method is well
defined, i.e. exists, it is computationally intractable in high dimensions.

Locantore et al. [6] proposed a simple robust alternative to PCA. The idea
is to first project the data onto a sphere, which will reduce the influence of the
outliers. Then classical PCA is performed on the transformed data, resulting in
Spherical PCA (SPCA). When the data follows a Gaussian distribution, with
a single large eigenvalue, the many data points in the stretched ellipsoid will
project to ice caps on the sphere, so SPCA will find essentially the same direction
of maximal variation. SPCA has a close relationship to the idea of “multivariate
signs”, see Oja [7] for a good introduction to this area. In particular, the good
robustness properties of SPCA are not surprising, because it is just the PCA of
the sign representations of the data.

The asymptotic behavior of classical PCA for HDLSS data has been estab-
lished by Jung and Marron [8] under various versions of the spike eigenvalue
model, with one or only a few large eigenvalues (Johnstone and Silverman [9]).
They explored conditions under which the conventional PCA was consistent in
terms of the spike parameter α.
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The major contributions of this manuscript are as follows. SPCA is shown to
be consistent under the HDLSS asymptotic regime, under the same conditions
as PCA. In the presence of a Gaussian outlier, conventional PCA is shown to
be inconsistent. However, SPCA is shown to still be consistent in the presence
of the outlier. The implications of these results are important, as they establish
SPCA as an important and robust tool and an attractive alternative to PCA.
Here, robustness with respect to outliers and SPCA are for the first time studied
rigorously in the HDLSS asymptotic context.

1.1. Notation

Let A = [X1, X2, . . . , Xn] be a d × n data matrix, with fixed sample size n
and large dimension d → ∞, where the samples Xj = (X1j , . . . , Xdj)

T , j =
1, 2, . . . , n are independent identically distributed (i.i.d.) random vectors with
mean zero and unknown population covariance matrix Σ, i.e. Xj ∼ N(0,Σ).
PCA is essentially equivalent to singular value decomposition (SVD) on the
mean centered data matrix. The left population eigenvector matrix U is the
population eigenvector matrix of Σ. The first column of U is µ1. The SVD of A
is

A = Û ŜV̂ T ,

where Û is the left sample eigenvector matrix, V̂ is the right sample eigen-
vector matrix. The diagonal entries of Ŝ are the square roots of the non-zero
eigenvalues of both AAT and ATA. The sample covariance matrix is Σ̂. We use

“f(d) ∼ g(d)” to denote limd→∞
f(d)
g(d) = 1 and “f(d) → constant” to denote

limd→∞ f(d) = constant. We also use “=L” to mean equal in law. The symbol
“≫” is used for an approximation of the much greater than sign.

1.2. Spiked covariance model

One challenge of HDLSS data is that conventional principal component analysis
may give inaccurate estimation of the population eigenvalues and eigenvectors.
For example, all but n of the eignvalues of Σ̂ must be 0. HDLSS asymptotics
have provided many useful insights through studying the case where a small
subset of the eigenvalues are much larger than the rest (Jung and Marron [8]).
This is called the spiked covariance model. The spiked covariance model assumes
a covariance matrix of the type Σ = UΛUT , Λ = diag(τ1, τ2, . . . , τp, σ, . . . , σ),
τ1 ≥ τ2 ≥ · · · ≥ τp > σ > 0, for some 1 ≤ p < d, where U is a d× d orthogonal
matrix. In this manuscript, we consider the informative simple case where Σ =
diag(dα, 1, . . . , 1), for α > 0. After understanding this simple scenario, it is
easier to extend the result to the full multi-spike model (Jung and Marron [8]).

1.3. Spherical PCA

The Spherical Principal Components Analysis (SPCA) procedure was derived
by Locantore et al. [6] as a robust functional data analysis method. The idea
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is to perform classical PCA on the data, projected onto a unit sphere. Let c be
the L1 median and Yi = (Xi − c)/||Xi − c|| be the projected data. Locantore’s
procedure consists of using the eigenvectors of the covariance matrix of Yi.

Let Ã be A’s projection on the sphere. Correspondingly, the SVD of Ã is

Ã =
̂̃
U
̂̃
S
̂̃
V

T

, (1.1)

where we use ̂̃∗ to denote the estimation on the sphere. For example, let ̂̃µ1 be

the first column of
̂̃
U which is the left sample eigenvector matrix of Ã.

A simple example to illustrate how SPCA, i.e. projection onto a sphere, leads
to robust PCA. A two dimensional dataset is simulated from the multivariate
normal distribution with Σ =

(
1 0.9
0.9 1

)
. Among the 100 samples, 2 are outliers

(big solid dots in Figure 1). The direction of sample PC1 (dashed line) is influ-
enced by the extreme outliers, so it has a large angle with the population PC1
(thin solid line). After projecting the data on the sphere, the outliers (triangle
symbol) did not show much influence of the sample eigenvectors which overlay
with population PC1. This example motivates handling outliers by using SPCA
for HDLSS data (Locantore et al. [6]). In this manuscript, we assume the data
has been centered, i.e. c = 0.

1.4. Consistency and strong inconsistency

In our HDLSS study of the impact of outliers on PCA and the usefulness of
SPCA in countering that, we use the definition of HDLSS consistency and strong
inconsistency (Jung and Marron [8]).

• Consistency: The direction ̂̃µ1 is consistent with its population counter

part µ1 if Angle(̂̃µ1, µ1) →p 0◦ or 180◦ as d → ∞. Note that 180◦ is
included because the sign of the eigen direction µ1 is arbitrary.

• Strong inconsistency: The direction ̂̃µ1 is said to be strongly inconsistent

with its population counter part µ1 if Angle(̂̃µ1, µ1) →p 90◦ as d → ∞.

2. Underlying Gaussian model

In this section, we investigate the behavior of the first SPCA component com-
puted from Gaussian distributed data when d → ∞ and n is fixed.

Theorem 2.1. Given a Gaussian HDLSS data set A, where the jth sample
Xj ∼ Nd(0,Σ) with Σ = diag(dα, 1, . . . , 1), where α ∈ R+ with n fixed and
d → ∞, there are two important cases

• for α > 1, Angle(̂̃µ1, µ1) →p 0◦ or 180◦, i.e. the spherical PC1 direction,
̂̃µ1, is consistent to µ1;

• for 0 < α < 1, Angle(̂̃µ1, µ1) →p 90◦, i.e. the spherical PC1 direction, ̂̃µ1

is strongly inconsistent.
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This shows that SPCA provide us the same consistency properties as con-
ventional PCA.

Proof. In the limit as d → ∞, χ2
d−1 ∼ d− 1+

√
2(d− 1)N(0, 1) ∼ d+Op(d

1/2)
For samples j = 1, 2, . . . , n, let Zj1, Zj2, . . . , Zjn have the standard normal dis-
tribution. It follows that

||Xj || =L

√√√√dαZ2
j1 +

d∑

l=2

Z2
jl (2.1)

=
√
dαZ2

j1 +Op(d), (2.2)

XT
j Xk =L dαZj1Zk1 +

d∑

l=2

ZjlZkl. (2.3)

For the assumed form of Σ, the population eigenvector with respect to the
largest eigenvalue is µ1 = (1, 0, . . . , 0)T .

For, the n = 1, i.e. one sample case, the spherical sample eigenvector ̂̃µ1

is X1

||X1|| . Therefore the inner product of the spherical sample and population

eigenvectors, 〈̂̃µ1, µ1〉 = (X11,X12,...,X1m)
||X1|| (1, 0, . . . , 0)T = X11

||X1|| .

When α > 1, Op(d
α) ≫ d in the sense that

Op(d
α)

d → ∞, so by (2.2)

X11

||X1||
=L dα/2Z11√

dαZ2
11 +Op(d)

→d B,

where

B =

{
1 w.p.1/2
−1 w.p.1/2

i.e. Angle(̂̃µ1, µ1) −→d 90◦+B90◦, i.e. 0◦ or 180◦ w.p. 1/2, and this is consistent.
When 0 < α < 1, d ≫ Op(d

α), for large d, so we have

X11

||X1||
=

Op(d
α/2)√

Op(d)
= Op(d

α−1

2 ) −→ 0.

i.e. Angle(̂̃µ1, µ1) −→p 90◦.
For n ≥ 2, in the case of α > 1, we have dα ≫ d, and by (2.2) and (2.3) the

(j, k)th entry of the matrix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
=

dαZj1Zk1 +
∑d

l=2 ZjlZkl√
dαZ2

j1 +Op(d)
√
dαZ2

k1 +Op(d)
=

Zj1Zk1

|Zj1||Zk1|
+Op(d

1−α).

(2.4)

So in the limit ÃT Ã is the rank 1 matrix which is the outer product of the
vector [ Z11

|Z11| ,
Z21

|Z21| , . . . ,
Zn1

|Zn1| ]. The maximum eigenvalue for ÃT Ã can be derived
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as ( Z11

|Z11| )
2+( Z21

|Z21| )
2+ · · ·+( Zn1

|Zn1| )
2 = n and its corresponding right eigenvector

is
Ṽ1 = [sign(Z11)/

√
n, sign(Z21)/

√
n, . . . , sign(Zn1)/

√
n]T .

Using the notation (1.1),
̂̃
U =

̂̃
A
̂̃
V
̂̃
S
−1

. In particular, the first element of ̂̃µ1 is

[
Z11

|Z11|
,
Z21

|Z21|
, . . . ,

Zn1

|Zn1|

]



sign(Z11)/
√
n

sign(Z21)/
√
n

...
sign(Zn1)/

√
n




1√
n
= 1.

Hence 〈̂̃µ1, µ1〉 = 〈(1, . . .), (1, 0, . . . , 0)〉 = 1. We conclude that the dominant
sample eigenvector points in the same direction as the corresponding population
eigenvector when α > 1, i.e. Spherical PCA is consistent.

In the case of 0 < α < 1, for j 6= k, by the Law of Large Numbers∑d

l=2
ZjlZkl

d →p 0, and by (4.4), it follows that the (j, k)th entry of the ma-

trix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
=

dα

d Zj1Zk1 +

∑
d

l=2
ZjlZkl

d
||Xj ||√

d

||Xk||√
d

(2.5)

→ 0 + 0

1× 1
→p 0.

i.e. ÃT Ã ∼ In×n, with the largest sample eigenvalue 1 and an arbitrary set

of eigenvectors. Therefore the first element of Ũ is a random direction. Thus,
using HDLSS results from Hall, Marron and Neeman [10], the angle between the
SPCA eigenvector and the dominant population eigenvector tends to 90◦.

3. Impact of outliers

All the properties mentioned before are based on the assumption that the data
follow a Gaussian distribution. In practice, real data often violate that assump-
tion. This happens when there are large outliers, which may not be easily distin-
guishable, which can severely impact conventional PCA as shown in Figure 1.

When we encounter a potential outlier, one natural viewpoint is that the
observation resulted from a mistake or other extraneous effect, and should be
discarded (Hampel et al. [11]). In other situations (Huber and Ronchetti [12]),
outliers can have useful information, and should be only downweighted, not
deleted. In the HDLSS study of Locantore et al. [6], the second view point was
particularly relevant. Outliers conveyed important information about the under-
lying population, which would have been lost by just dropping the observations.

To model a scenario with outliers, we assume the data come from a contami-
nated normal distribution in which the majority of samples are from a specified
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multivariate Gaussian distribution, but a small proportion are from a multivari-
ate Gaussian distribution with much higher variance. In particular, we assume
the first n − 1 samples come from the spiked normal model of section 1.2 and
the last sample Xn ∼ N(0,Σ2), where Σ2 = dβIn×n. i.e. For β large, there will
be a distinct outlier coming from a random direction.

Theorem 3.1. Given a Gaussian HDLSS data set A, where the first n−1 sam-
ples Xj ∼ Nd(0,Σ) with Σ = diag(dα, 1, . . . , 1), the nth sample Xn ∼ N(0,Σ2),
with Σ2 = dβIn×n, where α, β ∈ R+ with n fixed and d → ∞, it follows that

• when 1 < α and β < α, Angle(µ̂1, µ1) →p 0◦ or 180◦, i.e. the direction of
µ̂1 is consistent to µ1;

• for α < 1 or α < β, Angle(µ̂1, µ1) →p 90◦, i.e. the direction of µ̂1 is
asymptotically perpendicular to µ1, i.e. is strongly inconsistent.

Theorem 3.1 mathematically quantifies the extent to which µ̂1 is severely
influenced by outliers.

Proof. For the nth sample,

||Xn|| =L

√
dβ/2χ2

d (3.1)

In the conventional principal component analysis, the sample covariance ma-
trix of A is

1

n
AAT =

1

n

n−1∑

i=1

XiX
T
i +

1

n
XnX

T
n

• For the case of 1 < α and β < α, by (2.2) and (3.1),

AAT

dα
∼




(n−1)dα+dβ

dα . . 0

0 (n−1)+dβ

dα . 0
. . . .

. . . (n−1)+dβ

dα


 .

i.e. AAT ∼ diag((n− 1)dα, 0, . . . , 0), where the symbol ∼ means element-
wise approximation asymptotically with d → ∞. By eigen analysis, there

is only one dominant eigenvalue of AAT

n and µ̂1 is consistent with µ1.
• For the case of α < β with fixed n and d → ∞, since (n− 1)dα+ dβ ∼ dβ ,

in the sense that (n−1)dα+dβ

dβ → 1

AAT

dβ
=




(n−1)dα+dβ

dβ . . 0

0 (n−1)+dβ

dβ . 0
. . . .

. . . (n−1)+dβ

dβ


 ∼ Id.

Therefore the sample covariance matrix of A approximates Σ2 as d → ∞.
Thus the first sample eigen vector has a random direction.
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Fig 1. Two dimensional example showing how outliers (red dots) can strongly impact the
conventional PC1 direction (red dashed vector) and how spherical PCA downweights the
influence of outliers (blue triangles), giving an SPC1 direction (green vector) which is a
much better estimate of the true first population eigen direction (black line).

• In the case of α < 1, if α < 1 < β, then it belongs to the case with α < β;

if α, β < 1, by (2.2), for any j < n, we have
||Xj ||2

d → 1.

||Xn||2
d

→p 0.

For any j < n,

XT
j Xn

d
∼ dα/2+β/2Zj1Zn1 + dβ/2

∑d
l=2 ZjlZnl

d
→p 0.

Similarly, for any j < n, k < n, j 6= k,

XT
j Xk

d
=

dαZj1Zk1 +
∑d

l=2 ZjlZkl

d
→p 0.

Hence the dual sample covariate matrix satisfies ATA
d ∼

(
In−1 0
0 0

)
. Based

on proposition 1 (Jung and Marron [8]), λ1

d → constant which is greater
than 0 and Angle(µ̂1, µ1) →p 90◦ as d → ∞.

From the above, we conclude that conventional PCA is very sensitive to an
outlier. However, as shown in Figure 1, if we project the data on the sphere,
SPCA can be very robust to outliers. This direction is asymptotically studied
in the next theorem.

Theorem 3.2. Given a Gaussian HDLSS data set A (the same as the data set
A in Theorem 3.1), we have
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• for α > 1, Angle(̂̃µ1, µ1) →p 0◦ or 180◦, i.e. the direction of ̂̃µ1 is consis-
tent to µ1;

• for 0 < α < 1, Angle(̂̃µ1, µ1) →p 90◦, i.e. the direction of ̂̃µ1 is strongly
inconsistent.

Note that this result is independent of β which can be arbitrarily large and
still not affect the consistency of SPCA.

Proof. In the case of α > 1, the (j, n)th entry of the matrix ÃT Ã (j 6= n) is

XT
j Xn

||Xj||||Xn||
=

d
α+β

2 Zj1Zn1 + d
β
2

∑d
l=2 ZjlZnl

||Xj ||||Xn||

=
dα/2Zj1Zn1 +

∑d
l=2 ZjlZnl

||Xj || ||Xn||
dβ/2

→p dα/2Zj1Zn1 +
∑d

l=2 ZjlZnl

||Xj ||
. (3.2)

Using (2.2)

XT
j Xn

||Xj ||||Xn||
=

dα/2Zj1Zn1 +
∑d

l=2 ZjlZnl√
dαZ2

j1 +Op(d)

=
Zj1Zn1 +

∑
d

l=2
ZjlZnl

dα/2√
dαZ2

j1
+Op(d)

dα/2

→p Zj1Zn1

|Zj1|
in probability.

The (j, k)th (j 6= n, k 6= n, j 6= k) entry of the matrix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
∼ Zj1Zk1

|Zj1||Zk1|
, j 6= k.

Thus in the case of α > 1, where dα ≫ d, the (j, k)th entry of the matrix

ÃT Ã is

XT
j Xk

||Xj ||||Xk||
=




XT
j Xk

||Xj ||||Xk|| , j 6= k, j, k 6= n
Zj1Zn1

|Zj1| , j 6= n

1, j = k, j 6= n


 .

In another words, ÃT Ã is the rank 1 matrix which is the outer product of
the vector [ Z11

|Z11| ,
Z21

|Z21| , . . . ,
Zn−11

|Zn−11| , Zn1]. The maximum eigenvalue for ÃT Ã can

be derived as ( Z11

|Z11| )
2 + ( Z21

|Z21|)
2 + · · ·+ ( Zn−11

|Zn−11| )
2 + Z2

n1 = n− 1 + Z2
n1 and its
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corresponding eigenvector Ṽ1 is



Z11

|Z11|/
√
n− 1 + Z2

n1

...
Zn−11

|Zn−11|/
√
n− 1 + Z2

n1

Zn1/
√
n− 1 + Z2

n1




.

Following the same argument as in the proof of Theorem 2.1, the first element

of ̂̃µ1 is
[
Z11

|Z11|
,
Z21

|Z21|
, . . . ,

Zn−11

|Zn−11|
, Zn1

]

×




sign(Z11)/
√
n− 1 + Z2

n1

...

sign(Zn−11)/
√
n− 1 + Z2

n1

Zn1/
√
n− 1 + Z2

n1




1√
n− 1 + Z2

n1

= 1.

Hence 〈̂̃µ1, µ1〉 = 1. We conclude that SPCA is consistent when α > 1 with
an outlier sample.

In the case of 0 < α < 1, 0 < β < 1, for j 6= n, by (4.7) and the same logic

as in (4.6), it follows that the (j, k)th entry of the matrix ÃT Ã is

XT
j Xn

||Xj ||||Xn||
→p dα/2Zj1Zn1 +

∑d
l=2 ZjlZnl

||Xj ||
→ 0 in probability. (3.3)

For j 6= k, j, k 6= n, the (j, k)th entry of ÃT Ã is the same as (4.8). Thus

ÃT Ã ∼ In×n, with the largest sample eigenvalue 1 and no-fixed eigenvector

corresponding to it. Therefore the first element of Ũ is random. On the high
dimensional sphere, the angle between the sample eigenvector and the dominant
population eigenvector tends to 90◦.

In robust statistics, distributions containing outliers are commonly modeled
by the contaminated normal model:

(1− ǫ)N(0,Σ) + ǫN(0,Σ2).

Good overview of these ideas and their historical background can be found in
Huber [13]. The model with a single outlier in Theorems 3.1, 3.2, 4.2, 4.3 is
slightly different from this because the number of outliers are not random. This
was done to give simpler and more revealing insights. We conjecture that entirely
parallel results can be derivied for the contaminated normal model.

4. Muti-spike model

The following three theorems extend the results of Section 2 and 3 to the multi-
spike case. Here the single spike large eigenvalue from Section 3 is replaced by
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several large eigenvalues of the form λ1 = dα1 , . . . , λm = dαm , where α1 > α2 >
· · · > αm > 0. The remaining eigenvalues are assumed to be λm+1 = 1, . . . ,
λd = 1. From Theorem 2.1, it is not surprising that an important threshold is t
where αt > 1 > αt+1.

As in section 2, first the performance of SPCA in the non-outlier case is
considered. As there SPCA has asymptotic properties that are very similar to
PCA.

Theorem 4.1. Given a Gaussian HDLSS data set A, where the jth sample
Xj ∼ Nd(0,Σ) with Σ = diag(dα1 , dα2 , . . . , dαm , 1, . . . , 1), with n > t fixed in
the limit as d → ∞, there are two groups of eigenvalues

• Angle( ̂̃µl, µl) →p 0◦ or 180◦, for l = 1, 2, . . . , t, i.e. the spherical PC l

direction, ̂̃µl, is consistent to µl;

• Angle( ̂̃µl, µl) →p 90◦, i.e. the spherical PC l direction, ̂̃µl is strongly in-
consistent for l = t+ 1, . . . ,m.

Proof. As in the proof of Theorem 2.1

||Xj || =L

√√√√
m∑

l=1

dαlZ2
jl +

d∑

l=m+1

Z2
jl (4.1)

=

√√√√
m∑

l=1

dαlZ2
jl +Op(d), (4.2)

XT
j Xk =L

m∑

l=1

dαlZjlZkl +

d∑

l=m+1

ZjlZkl. (4.3)

For l = 1, . . . , t, we have dα1 ≫ dα2 ≫ · · · ≫ dαt ≫ d, and by (4.2) and (4.3)

the (j, k)th entry of the matrix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
=

∑m
l=1 d

αlZjlZkl +
∑d

l=m+1 ZjlZkl√∑m
l=1 d

αlZ2
jl +Op(d)

√∑m
l=1 d

αlZ2
kl +Op(d)

(4.4)

Now we focus on the case l = 1,

XT
j Xk

||Xj ||||Xk||
=

∑m
l=1 d

αlZjlZkl/d
α1 +

∑d
l=m+1 ZjlZkl/d

α1

√∑m
l=1 d

αlZ2
jl/d

α1 +Op(d)
√∑m

l=1 d
αlZ2

kl/d
α1 +Op(d)

(4.5)

∼ Zj1Zk1

|Zj1||Zk1|
.

So in the limit ÃT Ã is the rank 1 matrix and the rest proof is very similar to

Theorem 2.1. In particular 〈̂̃µ1, µ1〉 = 〈(1, . . .), (1, 0, . . . , 0)〉 = 1, which shows

that Angle(̂̃µ1, µ1) →p 0◦ or 180◦.
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On the case l = 2, we move away the first PC direction, Ã − Pµ1
Ã ∼

N(0,Σl=2), where Σl=2 = diag(dα2 , dα3 , . . . , dαm , 1, . . . , 1). Similarly, we can

prove that(Ã − Pµ1
Ã)T (Ã − Pµ1

Ã) is the rank 1 matrix. Following the same

proof above, we get Angle(̂̃µ2, µ2) →p 0◦ or 180◦.

Iteratively, for l = 3, . . . , t, we look at Ã− Pµ1,µ2,...,µl−1
Ã ∼ N(0,Σl), where

Σl = diag(dαl , . . . , dαm , 1, . . . , 1). Using the similar arguments, we conclude that

Angle( ̂̃µl, µl) →p 0◦ or 180◦ for l = 3, . . . , t.
In the case of 0 < αm < · · · < αt+1 < 1, for j 6= k, by the Law of Large

Numbers

∑
d

l=2
ZjlZkl

d →p 0, and by (4.4), it follows that the (j, k)th entry of the

matrix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
=

dα

d Zj1Zk1 +

∑
d

l=2
ZjlZkl

d
||Xj||√

d

||Xk||√
d

(4.6)

→ 0 + 0

1× 1
→ 0 in probability.

i.e. ÃT Ã ∼ In×n, with the largest sample eigenvalue 1 and an arbitrary set of

eigenvectors. Therefore the first element of Ũ is a random direction. Therefore

the spherical PC l direction, ̂̃µl is strongly inconsistent for l = t+1, . . . ,m.

However conventional PCA is not robust to outliers.

Theorem 4.2. Given a Gaussian HDLSS data set A, where the first n−1 sam-
ples Xj ∼ Nd(0,Σ) with Σ = diag(dα1 , dα2 , . . . , dαm , 1, . . . , 1), the nth sample
Xn ∼ N(0,Σ2), with Σ2 = dβIn×n, where α1 > α2 > · · · > αt > 1 > αt+1 >
· · · > αm > 0, β ∈ R+ with n fixed and d → ∞, it follows that

• when 1 < αl and β < αl, l = 1, 2, . . . , t, Angle(µ̂l, µl) →p 0◦ or 180◦, i.e.
the direction of µ̂l is consistent to µl;

• for αi < 1 or αl < β, for l = t + 1, . . . ,m, Angle(µ̂l, µl) →p 90◦, i.e.
the direction of µ̂l is asymptotically perpendicular to µl, i.e. is strongly
inconsistent.

Proof. Similar to the proof in Theorem 3.1

• For the case of 1 < αl and β < αl,

AAT

dαl
∼




(n−1)dα1+dβ

dαl
. . 0

0 (n−1)dα2+dβ

dαl
. 0

. . . .

. . . (n−1)+dβ

dαl


 .

i.e. AAT ∼ diag((n− 1)dα1 , (n− 1)dα2 , (n− 1)dα3 , . . . , (n− 1)dαt , . . . , 0),
where the symbol ∼ means element-wise approximation asymptotically

with d → ∞. By eigen analysis, there are t dominant eigenvalue of AAT

n
and µ̂l is consistent with µl, for l = 1, 2, . . . t.
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• For the case of αl < β with fixed n and d → ∞, since (n−1)dαl +dβ ∼ dβ ,

in the sense that (n−1)dαl+dβ

dβ → 1

AAT

dβ
∼ Id.

Therefore the sample covariance matrix of A approximates Σ2 as d → ∞.
Thus the first sample eigen vector has a random direction.

• The proof of the case of αl < 1 is very similar to that in Theorem 3.1. In
particular, for any j < n, k < n, j 6= k,

XT
j Xk

d
=

∑m
l=t+1 d

αlZjlZkl +
∑d

l=m+1 ZjlZkl

d
→p 0

We can easily show that ATA
d ∼

(
In−1 0
0 0

)
. Therefore Angle(µ̂l, µl) →p 90◦

as d → ∞ for l = t+ 1, . . . ,m.

Spherical PCA gives the same clean asymptotic properties as in Theorem 4.1
when we have contaminated samples.

Theorem 4.3. Given a Gaussian HDLSS data set A (the same as the data set
A in Theorem 4.2), we have

• Angle( ̂̃µl, µl) →p 0◦ or 180◦, for l = 1, 2, . . . , t, i.e. the spherical PC l

direction, ̂̃µl, is consistent to µl;

• Angle( ̂̃µl, µl) →p 90◦, i.e. the spherical PC l direction, ̂̃µl is strongly in-
consistent for l = t+ 1, . . . ,m.

Proof. The main proof is very similar to the proof of Theorem 4.1. Here we only
show the case with α1 > 1. In the case of αl > 1, the (j, n)th entry of the matrix

ÃT Ã (j 6= n) is

XT
j Xn

||Xj ||||Xn||
=

∑m
l=1 d

αl+β

2 ZjlZnl + d
β
2

∑d
l=m+1 ZjlZnl

||Xj ||||Xn||

=

∑m
l=1 d

αl/2ZjlZnl +
∑d

l=m+1 ZjlZnl

||Xj || ||Xn||
dβ/2

→p

∑m
l=1 d

αl/2ZjlZnl +
∑d

l=m+1 ZjlZnl

||Xj ||
. (4.7)

Using (4.2)

XT
j Xn

||Xj ||||Xn||
=

∑m
l=1 d

αl/2ZjlZnl +
∑d

l=m+1 ZjlZnl√∑m
l=1 d

αlZ2
jl +Op(d)

=
Zj1Zn1 +

∑d

l=2
ZjlZnl

dα/2√∑
m

l=1
dαlZ2

jl
+Op(d)

dα/2
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→ Zj1Zn1

|Zj1|
in probability.

The (j, k)th (j 6= n, k 6= n, j 6= k) entry of the matrix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
∼ Zj1Zk1

|Zj1||Zk1|
, j 6= k.

The (j, k)th entry of the matrix ÃT Ã is

XT
j Xk

||Xj ||||Xk||
=




XT
j Xk

||Xj ||||Xk|| , j 6= k, j, k 6= n
Zj1Zn1

|Zj1| , j 6= n

1, j = k, j 6= n


 .

We can easily show that 〈̂̃µ1, µ1〉 = 1. Iteratively, for l = 2, . . . , t, (Ã −
Pµ1,...,µl−1Ã)

T (Ã − Pµ1,...,µl−1Ã) is a rank 1 matrix. Using arguments as in

Theorem 3.2, we get 〈 ̂̃µl, µl〉 = 1, therefore Angle( ̂̃µl, µl) →p 0◦ or 180◦, for

l = 1, 2, . . . , t, i.e. the spherical PC l direction, ̂̃µl, is consistent to µl.

5. Discussion

A key assumption of this paper made to give direct access to the critical robust-
ness insights is that the data are properly centered. In practice, the centering
can be an important issue. Centering using the L1 M-estimate is recommended
(Locantore et al. [6]), because that is intuitively consistent with spherical PCA.
An interesting potential approach suggested by a reviewer, is to tackle the cen-
tering issue by applying SPCA to the pairwise differences of the data. An inter-
esting open problem is the impact of the estimation on the asymptotics, which
we conjecture will be negligible. Detailed investigation of this can be done essen-
tially using Taylor expansion methods on (ĉ− c), where ĉ is the sample version
of the L1 M-estimate and c is the true popoulation center. This is not pursued
here for two reasons. First the asymptotic behavior of (ĉ− c) needs to be ana-
lyzed, and to our knowledge this does not appear in the literature. Second, the
relatively streamlined and insightful (about the robustness of the PCA direc-
tion, which is the point of this paper) proofs we currently have will tend to be
obscured having by (ĉ− c) terms appearing in the analysis.

Also worthwhile would be extension of the theory in other directions, includ-
ing more general distributional assumptions and outlier configurations. Another
challenge for future work is the special case at the boundary α = 1, where con-
ventional PCA was explored in Jung, Sen and Marron [14]. We believe that
parallel results can also be established under appropriate non-Gaussian models,
using e.g. sufficient moment conditions, based on ideas from Yata and Aoshima
[15]. Theorems 3.2 and 4.3 suggest good breakdown properties of SPCAs. An-
other interesting open problem is precise quantification of breakdown (Hampel
et al. [11]).
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