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Abstract: This study is devoted to comparing the most popular circle fits
(the geometric fit, Pratt’s, Taubin’s, K̊asa’s) and the most recently devel-
oped algebraic circle fits: hyperaccurate fit and HyperLS fit. Even though
hyperaccurate fit has zero essential bias and HyperLS fit is unbiased up to
order σ4, the geometric fit still outperforms them in some circumstances.
Since the first-order leading term of the MSE for all fits are equal, we go
one step further and derive all terms of order σ4, which come from essential
bias, as well as all terms of order σ4/n, which come from two sources: the
variance and the outer product of the essential bias and the nonessential
bias.

Our analysis shows that when data are distributed along a short circular
arc, the covariance part is the dominant part of the second-order term in
the MSE. Accordingly, the geometric fit outperforms all existing methods.
However, for a long circular arc, the bias becomes the most dominant part
of the second-order term, and as such, hyperaccurate fit and HyperLS fit
outperform the geometric fit. We finally propose a ‘bias correction’ version
of the geometric fit, which in turn, outperforms all existing methods. The
new method has two features. Its variance is the smallest and has zero bias
up to order σ4. Our numerical tests confirm the superiority of the proposed
fit over the existing fits.
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1. Introduction

Circle fitting is one of the most fundamental tasks in computer vision, image
processing, and pattern recognition [15, 24, 26, 27, 31], as well as other sciences
such as biology, nuclear physics, archaeology, and industry [13, 38, 30]. Sup-
pose that n experimental observations (i.e., mi = (xi, yi)

T , i = 1, . . . , n) are
recorded. Our goal is to estimate the coordinates of the circle center c = (a, b)T

and the radius R that describe the best fit for the experimental observations.
Many algorithms were developed to fit circles to the data, but geometric fit is
one of the most accurate ones. It is also called “orthogonal distance regression
(ODR)”, because it is based on the orthogonal least squares, and it minimizes
the objective function

G(a, b, R) =
n
∑

i=1

d2i , (1.1)

where di stands for the signed distance from mi to the circle

di = ri −R, ri =
√

(xi − a)2 + (yi − b)2. (1.2)

This is a nonlinear minimization problem, so it has no-closed form solution.
All practical algorithms that minimize G are iterative; some implement general
Gauss-Newton [8, 17] or Levenberg-Marquardt (LM) [12] schemes. Others use
circle-specific methods proposed by Landau [26] and Späth [29]. All are compu-
tationally intensive and subject to occasional divergence, and their performances
heavily depend on the choices of the initial guesses.

Consequently, alternative methods can be used to obtain accurate estima-
tors. Usually, instead of computing and minimizing geometric distances, one
minimizes various ‘algebraic’ distances, and as such, this type of fits is known
as algebraic fits. Such fits are non-iterative. They are simpler and faster, but usu-
ally, all of them are less accurate than the geometric fit(this issue will be fully
discussed later). In this paper, we will discuss the most popular fits: the Kåsa
fit, the Taubin fit, the Pratt fit, hyper fit, and HyperLS fit. Indeed, algebraic
fits use the standard form of the circle

A(x2 + y2) +Bx+ Cy +D = 0. (1.3)

If we denote z = x2 + y2, z = (z, x, y, 1)T , and denote the vector of algebraic
parameters by A = (A,B,C,D)T , then Eq. (1.3) can be written as zTA = 0.
Thus, all algebraic fits minimize the objective function

F(A) =
1

n

n
∑

i=1

[

Azi +Bxi + Cyi +D
]2

:= ATMA (1.4)

but with different constraints imposed. The matrix of the moments M is a
positive semidefinite matrix defined as

M = 1
n

n
∑

i=1

Mi, where Mi = ziz
T
i . (1.5)
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Since M is positive semidefinite, the minimum of F occurs at A = 0. To re-
move the trivial solution, one must impose the constraint ATNA = 1 on the
parametric space for the symmetric matrix N.

K̊asa fit. The simplest and fastest method was introduced in the 1970s by
Delogne [15] and Kåsa [24]. This method is one of the most beloved popular
methods. Intuitively, it minimizes

FK(A) =
1

n

n
∑

i=1

(zi +Bxi + Cyi +D)2. (1.6)

In other words, Kåsa’s fit minimizes F in Eq. (1.4) but is subject to the con-
straint A = 1, which can be written as ATNKA = 1, where NK = ě1ě

T
1 with

ě1 = (1, 0, 0, 0)T . The Kåsa method is perhaps the fastest circle fit, but its
accuracy suffers when one observes incomplete circular arcs (partially occluded
circles); then the Kåsa fit is known to be heavily biased toward small circles [12].

Pratt’s fit. Pratt [27] proposed a clever fit based on a simple algebraic relation
between circle’s parameters. Pratt noticed that the radius of the circle R is
related to the algebraic circle parameter A. By completing the square, we can
write Eq. (1.3) as

(

x− B

2A

)2

+
(

y − C

2A

)2

=
B2 + C2 − 4AD

4A2
, (1.7)

which represents a circle with center (a, b) and radius R =
√

B2+C2−4AD
4A2 . Thus,

it is natural to impose the constraint B2 + C2 − 4AD > 0. However, multiply-
ing this constraint by a nonzero constant does not change the circle that it
represents. As such, Pratt minimized F subject to the constraint

1 = B2 + C2 − 4AD = ATNPA (1.8)

where

NP
def
=









0 0 0 −2
0 1 0 0
0 0 1 0

−2 0 0 0









. (1.9)

Taubin’s fit. The Taubin fit [31] is even more accurate than Pratt’s fit, though
both fall behind the geometric fit. Expressing FT in terms of A,B,C,D shows
that

FT(A) =
1

n

n
∑

j=1

[Azj +Bxj + Cyj +D]2

n−1
∑n

i=1[4A
2zi + 4ABxi + 4ACyi +B2 + C2]

. (1.10)

Equivalently, one can minimize F subject to a new constraint

4A2z̄ + 4ABx̄+ 4ACȳ +B2 + C2 = 1, (1.11)
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where x̄ = 1
n

∑n

i=1 xi. Again, the latter constraint can be written as ATNTA =
1, where

NT =
1

n

n
∑

i=1

Ti, (1.12)

and

Ti =









4zi 2xi 2yi 0
2xi 1 0 0
2yi 0 1 0
0 0 0 0









. (1.13)

Hyperaccurate fit. In an attempt to compare between the above algebraic
fits and the geometric fit through higher order error analysis, we found [1] an
algebraic fit that outperforms other algebraic fits and sometimes outperforms
the geometric fit! The new ‘non-iterative’ algebraic fit is obtained by minimizing
F subject to ATNHA = 1, where NH = 2NT − NP. We called this novel
algebraic fit ‘hyperaccurate fit’ or hyper fit for short.

Hyper fit and other previously mentioned fits have an important property.
They are independent of the choice of the coordinate system (i.e., their results
are invariant under translations and rotations; see a proof in [10]). Therefore, we
will study them, even though there are many other approaches in the modern
literature discussing circle fitting problem [7, 13, 35, 28, 30, 36, 38]. However,
most of them are either quite slow or can be reduced to one of the algebraic fits
[10, Chapter 8].

Hyper least squares fit (HyperLS). Motivated by our findings, Kanatani
and Rangarajan [23] recently developed another fit that outperforms our fit
when the sample size is small (but both fits are identical when n is large). Their
fit minimizes F subject to ATNIA, where

NI = NH − 1

n2

n
∑

i=1

trace(M−Vi)Mi + (zTi M
−zi)Vi + 2S

[

ViM
−Mi

]

,

where we denote the symmetrization operator by S, i.e. S(·) = (·)+(·)T

2 , while
( )− denotes the Moore-Penrose pseudo-inverse matrix and Vi is the first-order
covariance matrix of zi (will be stated precisely later).

All previously mentioned algebraic fits can be obtained by solving the gener-
alized eigenvector problem

MA = λNA. (1.14)

Eq. (1.14) determines A up to a scalar multiple (i.e., multiplying A by a nonzero
scalar does not change the circle it represents), so we can set ‖A‖2 = 1. Then we
can convert the algebraic circle parameters A,B,C,D to the natural parameters
via the relationships

a = − B

2A
, b = − C

2A
, R2 =

B2 + C2 − 4AD

4A2
. (1.15)
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In [1], we studied some of previously mentioned algebraic circle methods (Kåsa’s
fit, Taubin’s fit, and Pratt’s fit) and the geometric fit by applying error analysis
in order to compare them. Our study allowed us to propose a new fit (hyper fit)
that outperforms other algebraic fits and the geometric fit. Based on our results,
Kanatani and Rangarajan [23] have proposed another algebraic fit that outper-
forms ours and the geometric fit (in some cases). Our results led to significant
contributions to other curve fitting problems, such as conic fitting [3], and other
applications in computer vision, such as ‘Fundamental Matrix computation [4].
Moreover, their influences have appeared in research areas such as electrical and
petroleum engineering [25], medical imaging [39], mechatronics, and automation
(i.e., LED chip sorting process) [33], remote sensing [32], and others [14, 34].

On other hand, we noticed in some situations that the geometric fit still
practically performs better than hyper and HyperLS. Of course, our conclusions
in [1, 2] are solely based on first-order error terms of the variances and the first-
order of the bias for each algebraic fits, while the second-order term of the
variance dropped. Therefore, we believe that our findings in [1] do not reveal
the whole picture about the performance of circle fits. This paper is devoted to
studying circle fits further through computing the mean square errors (MSE) up
to the third leading term, and as such, we can compare between them. To our
knowledge, until now, no one has performed a detailed theoretical comparison
of the accuracy of various circle fits (or even computed the second-order error
terms of MSE). All studies in literature are based on the empirical MSE obtained
by Monte Carol simulation. In this paper, we will show when the geometric fit
outperforms the new novel algebraic fits, and we will propose a new fit that
outperforms all existing fits.

Our paper is organized as follows. Section 2 is devoted to introducing nota-
tions, some statistical assumptions, and some related results. In Section 3, we
conduct a detailed error analysis for geometric fit and algebraic fits. We will see
when the geometric fit outperforms other fits. This rigorous analysis involves
many lengthy derivations that are moved to Appendix. Section 4 presents a new
fit and some numerical experiments that validate our findings.

2. Notations, assumptions, and previous results

For a more general consideration, suppose that a family of curves depend on
p parameters, say θ1, . . . , θp. Our goal is to estimate the parameter vector θ =
(θ1, . . . , θp)

T that corresponds to the best fitting curve. Let us assume that

the ‘true parameter vector’ θ̃ = (θ̃1, . . . , θ̃p)
T corresponds to the ‘true curve’.

Also, we will assume that the true points m̃i = (x̃i, ỹi)
T lie in the true curve.

Mathematically, the true point satisfies the implicit equation

P (m̃i; θ̃) = 0, i = 1, . . . , n. (2.1)

In the circular regression, which is our model in this paper, the true points
satisfy

(x̃i − ã)2 + (ỹi − b̃)2 = R̃2, i = 1, . . . , n, (2.2)
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where (ã, b̃, R̃) denote the ‘true’ (unknown) parameters. Therefore

x̃i = ã+ R̃ cosϕi, ỹi = b̃+ R̃ sinϕi, (2.3)

where ϕ1, . . . , ϕn specifies the locations of the true points on the true circle.
We denote cosϕi and sinϕi by ũi and ṽi, respectively. Also, we consider mi =
(xi, yi)

T as an ‘inaccurate measurement ’ of the true point m̃i, i.e. mi = m̃i+ei,
where ei is the error vector. This means that this model assumes all variables
are subject to errors and it is known in the literature as Errors-In-Variables
(EIV) model, which is much more difficult than and different from the classical
regression.

To understand the statistical properties of any estimator of θ, one should
adopt realistic assumptions about the true points and the probability distribu-
tion of the observations. We assume here that the true points (x̃i, ỹi)

′s are fixed
(but unknown), so they are treated as nuisance parameters. In EIV models, this
model is known as a functional model, which is widely adopted in the applied
community, especially in computer vision sciences.

On the other hand, we assume that the error vector ei = (δi, εi)
T ∼ N(0, σ2I2)

and I2 is an identity matrix of size 2 for each i = 1, . . . , n. The isotropic assump-
tion about the noise is intuitively realistic for computer vision applications. For
edge detection, in pattern recognition and computer vision, detecting (observ-
ing) any point mi = (xi, yi)

T does not give any information about other points,
and hence, the errors are independent. It is also reasonable to assume that the
errors ei’s have the same covariance matrix for all points because we use the
same algorithm for edge detection. With these statistical assumptions, the ge-
ometric fit returns the ‘Maximum Likelihood Estimator’ (MLE) for a circle’s

parameters [8], i.e. θ̂ = (âMLE, b̂MLE, R̂MLE) = argminG(a, b, R). To distinguish
between estimates of the natural circle parameters (a, b, R) obtained by alge-

braic fits and geometric fit, we will generally denote by θ̂
a
= (âa, b̂a, R̂a) the

estimates obtained by algebraic fits.

Small-noise assumption. We assume that σ ≪ 1 is known. The sample size
n is fixed, though it is not very small. This approach refers back to Kadane [18]
and was employed by Anderson [5] and other statisticians [6]. More recently, it
was used by Kanatani [20, 22] in image processing applications, and Kanatani
argued that the ‘small noise’ model, where σ → 0 while the sample size n
is kept fixed, is more appropriate than the traditional statistical ‘large sample’
approach, where n→ ∞ while σ > 0 is kept fixed. We use a combination of these
two models. Our main assumption is that σ → 0, but n is regarded as a slowly
increasing parameter; more precisely, we assume that n≪ σ−2. Therefore, it is
convenient to assume that

θ̂(X̃ ) = θ̃. (2.4)

Precisely, Eq. (2.4) means that when σ = 0 (i.e., when the true points are
observed without noise), then the estimator returns the true parameter vector
(i.e., finds the true curve). Geometrically, this means that if there is a model
curve that interpolates the data points, then the algorithm finds it. With some
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degree of informality, one can assert that when Eq. (2.4) holds, the estimator θ̂ is
consistent in the limit σ → 0. Thus, we call this property geometric consistency.
This is regarded as a minimal requirement for any sensible fitting algorithm. For
example, if the observed points lie on one circle, then every circle fitting algo-
rithm finds that circle uniquely. Kanatani [21] remarks that algorithms which
fail to follow this property “are not worth considering”.

Kanatani-Cramèr-Rao bound (KCR). As a standard measure in statis-
tics, the efficiency of any unbiased estimator can be determined by Cramèr-Rao
lower bound (CRB) obtained by taking the inverse of Fisher information matrix
(FIM). Evaluating the constrained CRB for circles or other general geometric
fittings has long history. For circle fitting problem, the CRB was derived in
1995 by Chan-Thomas [9], Kanatani [19] derived a general CRB for arbitrary
curves for any unbiased estimators. Then, independently, Zelniker and Clarkson
presented another proof in 2006 (see [37] for more details). That is, let θ̂ be an
unbiased estimator of θ satisfying Eq. (2.1). Then, there is a symmetric positive
semi-definite matrix Ṽmin

cov(θ̂) ≥ σ2Vmin = σ2

( n
∑

i=1

Pθi P
T
θi

‖Pmi‖2
)−

, (2.5)

where the notation A ≥ B means that A − B is positive semidefinite matrix
and

Pθi =
(

∂P (m̃i; θ̃)/∂θ1, . . . , ∂P (m̃i; θ̃)/∂θp

)T

(2.6)

Pmi =
(

∂P (m̃i; θ̃)/∂x, ∂P (m̃i; θ̃)/∂y
)T

(2.7)

stand for the gradient of P with respect to the model parameters θ1, . . . , θp and
for the gradient with respect to the planar variables x and y, respectively; both
gradients are taken at the true point m̃i = (x̃i, ỹi)

T . In terms of the natural
parameter θ = (a, b, R)T , a circle is defined by P = (x − a)2 + (y − b)2 − R2.
Thus,

Pθi = −2
(

(x̃i − ã), (ỹi − b̃), R̃
)T
, Pmi = 2

(

(x̃i − ã), (ỹi − b̃)
)T
. (2.8)

Therefore,

Ṽmin =
1

n





ũũ ũṽ ũ
ũṽ ṽṽ ¯̃v
¯̃u ¯̃v 1





−1

:= (W̃TW̃)−1, (2.9)

where we use standard notation for sample means ũũ = 1
n

∑

ũ2i , and ũṽ =
1
n

∑

ũiṽi, etc. And

W̃ =







ũ1 ṽ1 1
...

...
...

ũn ṽn 1






. (2.10)
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Similarly, the lower bound of the algebraic parameters is simply

Ṽa
min =

ζ̃

n
M̃−, (2.11)

where M̃ is the noiseless version of M, and

ζ̃ = B̃2 + C̃2 − 4ÃD̃, (2.12)

One obvious disadvantage of this lower bound is that it can be applied only
to unbiased estimators! However, all estimators in EIV models are, roughly
speaking, biased. In the early 2000’s, Chernov and Lesort [11] realized that
Kanatani’s formula does not work for any (practical) geometrically consistent
estimator in circle or other curve fitting problems because all existing estimators
are biased. To overcome of this situation, they [11] employed first-order analysis
for any geometrically consistent estimators and derived the minimal possible
lower bound, to the first leading term. That is, there is a positive semi-definite
matrix Ṽmin, such that the leading term of the variance matrix, say V, of any
geometrically consistent estimator θ̂ satisfying Eq.(2.4) has a natural bound
σ2Ṽmin, i.e. V ≥ σ2Ṽmin. This bound of the leading term of variance coincides
with Kanatani’s formula (this is applied only to unbiased estimators). Therefore,
they called this bound the Kanatani-Cramér-Rao lower bound (KCR).

2.1. Previous results

Our main goal in [1, 2] was to compare the most popular circle fits (geometric fit
and other various algebraic fits such as Kåsa’s fit, Pratt’s fit, and Taubin’s fit).
We characterized the accuracy of estimators based on (Total) Mean Squared
Error (MSE):

E
[

(θ̂ − θ̃)(θ̂ − θ̃)T
]

= b(θ̂)b(θ̂)T + cov(θ̂),

where b(θ̂) is the bias of θ̂, i.e. b(θ̂) = E(θ̂)−θ̃. We used Taylor series expansion

and geometric consistency (i.e. θ̂(X̃ ) = θ̃) to derive the quadratic approximation

of θ̂. i.e.,
θ̂Q = θ̃ +∆1θ̂ +∆2θ̂,

where the first-order error term is denoted by ∆1θ̂ = (∆1â,∆1b̂,∆1R̂)
T . Its

components form linear combinations of εi’s and δi’s, while the second-order
error term is denoted by ∆2θ̂ = (∆2â,∆2b̂,∆2R̂)

T , where∆2â, ∆2b̂, and ∆2R̂
are quadratic forms of εi’s and δi’s. Therefore,

MSE(θ̂Q) = MSE(∆1θ̂) +MSE(∆2θ̂). (2.13)

Then, we classified each term in Eq. (2.13) based on its order of magnitude.
The most significant term is the leading term of order O(σ2/n) that comes from

MSE(∆1θ̂) = cov(∆1θ̂), which is of order O(σ2/n). A precise expression for the
geometric fit is given in the following theorem (its proof is moved to appendix).
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Theorem 2.1 ([1]). Let θ̂ = (â, b̂, R̂)T be the geometric fit and θ̂L = θ̃ +∆1θ̂

be its linear approximation. Then, ∆1θ̂ = K̃f1 and the linear approximation of
θ̂ is θ̂L ∼ N(θ̃, σ2(W̃TW̃)−1), where

K̃ = (W̃TW̃)−1W̃T , f1 = Ũδ + Ṽε, (2.14)

and δ = (δ1, . . . , δn)
T and ε = (ε1, . . . , εn)

T , while Ũ = diag(ũ1, . . . , ũn) and
Ṽ = diag(ṽ1, . . . , ṽn).

This means that if we restricted our error analysis to the first leading term,
then the geometric fit would be an unbiased and efficient estimator of θ in the
sense that the variance of its linear approximation achieves its minimal possible
bound σ2Ṽmin in the small-noise limit; this was proven by Fuller (Theorem 3.2.1
in [16]) for the geometric fit and independently by Chernov and Lesort [11]. In
fact, the same property holds for all algebraic fits. That is, since zi is a quadratic
form of the random vector (xi, yi), it can be written as

zi = z̃i +∆1zi +∆2zi, (2.15)

where the first-order error ∆1zi is a linear combination of (δi, εi), for each
i = 1, . . . , n. That is,

∆1zi =

[

2x̃i 1 0 0
2ỹi 0 1 0

]T [

δi
εi

]

:= ãiδi + b̃iεi, (2.16)

where ãi = (2x̃i, 1, 0, 0)
T and b̃i = (2ỹi, 0, 1, 0)

T , while the second-order er-
ror term is ∆2zi = (δ2i + ε2i , 0, 0, 0)

T . Accordingly, for each i = 1, . . . , n, the
covariance matrix of ∆1zi (i.e., cov(∆1zi)) is equal to σ

2Ṽi, where

Ṽi = ãiã
T
i + b̃ib̃

T
i = T̃i. (2.17)

Also, for each i 6= j, cov(∆1zi,∆1zj) = 0 (a zero matrix of size 4) and E(∆2zi) =

2σ2ě1. Let us write ∆A = A− Ã. We can decompose ∆A by Taylor expansion
as

∆A = ∆1A+∆2A+OP(σ
3),

where ∆1A is the linear combination of δi’s and εi’s, ∆2A is a quadratic form
of δi’s and εi’s, and all other higher order terms are represented by OP (σ

3).
Next, if we apply matrix perturbation to λ, A, M and N, then we get

λ = λ̃+∆1λ+∆2λ+OP(σ
3),

M = M̃+∆1M+∆2M+OP(σ
3),

N = Ñ+∆1N+∆2N+OP(σ
3).

(2.18)

Hence, MA = λNA becomes

(M̃ +∆1M+ · · · )(Ã+∆1A+ · · · ) = (λ̃+∆1λ+ · · · )
(Ñ+∆1N+ · · · )(Ã+∆1A+ · · · ).

(2.19)
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Equating terms of the same order from both sides implies that M̃Ã = λ̃ ÑÃ.
However, λ̃ = 0 because of the fact that

ÃT M̃Ã =
1

n

∑

(z̃Ti Ã)2 = 0,

which follows from ÃT zi = 0 for all i = 1, . . . , n. In the same manner, we can
show that ∆1λ = 0. That is, equating all terms of order OP(σ) in Eq. (2.19)
and using λ̃ = 0, we obtain

M̃∆1A+∆1MÃ = ∆1λÑÃ. (2.20)

Premultiplying Eq. (2.20) by Ã makes the left-hand side of the resulting equa-
tion equal to zero. This follows immediately from the formal expression of M
defined in Eq. (1.5). Thus,

∆1M =
1

n

n
∑

i=1

∆1Mi, ∆1Mi = z̃i ∆1z
T
i +∆1z z̃

T
i . (2.21)

Since ÃT z̃i = 0, one notices that ÃT∆1MÃ = 0, and as such, ∆1λ = 0.
Therefore,

∆1A = −M̃−∆1MÃ. (2.22)

Our general error analysis in [1] shows that the most important part of MSE
comes from the variance and has the order of magnitude O(σ2/n). Namely,
E(∆1A∆1A

T ). This term has the form

E(∆1A∆1A
T ) = M̃−

E(∆1MÃÃT∆1M)M̃−.

Using ∆1MÃ = 1
n

∑n

i=1(Ã
T∆1zi)z̃i and ζ̃ = B̃2 + C̃2 − 4ÃD̃ gives

E(∆1A∆1A
T ) =

1

n2

n
∑

i,j=1

M̃−
E
(

(ÃT∆1zi)(Ã
T∆1zj)z̃iz̃

T
j

)

M̃−

=
1

n2

n
∑

i=1

M̃−
E
(

(ÃT∆1zi)
2z̃iz̃

T
i

)

M̃−.

But
E((ÃT∆1zi)

2) = σ2(ÃT ṼiÃ) = ζ̃σ2.

As a standard fact in matrix theory, M̃−M̃M̃− = M̃−, where M̃ = 1
n

∑n

i=1 z̃iz̃
T
i .

Thus

E(∆1A∆1A
T ) =

σ2ζ̃

n
M̃−

[ 1

n

n
∑

i=1

z̃iz̃
T
i

]

M̃− =
σ2ζ̃

n
M̃− = σ2Ṽa

min.

Furthermore, to express the covariance matrix of algebraic circle fits in terms of
the natural parameters θ = (a, b, R)T , we need to write ∆1A in terms of ∆1θ̂.



Further statistical analysis of circle fitting 2751

Taking partial derivatives in Eq. (1.15) gives a 3× 4 ‘Jacobian’ matrix

J
def
=







B
2A2 − 1

2A 0 0
C

2A2 0 − 1
2A 0

−R
A
− D

2A2R
B

4A2R
C

4A2R
− 1

2AR






. (2.23)

Thus we have

∆1θ̂
a
= J̃∆1A+OP (σ/

√
n),

∆2θ̂
a
= J̃∆2A+OP (σ

2/n),

∆3θ̂
a
= J̃∆3A+OP (σ

3/n)

(2.24)

where the superscript here is used to distinguish the estimate of the algebraic
fits from the geometric fit when the algebraic fits are expressed in terms of
(a, b, R). The matrix J̃ is J evaluated at the true parameters (Ã, B̃, C̃, D̃).

It is remarkable to note that the leading term of the covariance matrix of
any algebraic fit does not depend on the constraint matrix N, and as such, all
algebraic circle fits have the same variances (to the leading order). Moreover, the
first-order approximation of their variances coincides with that of the geometric
circle fit (see [1]). Thus, the geometric fitand all algebraic fits return estimators
of (a, b, R) that attain KCR (i.e., σ2Ṽmin). Thus, they are all optimal in this
sense.

However, they behave differently in practice. In order to distinguish among
them, one should adopt the following strategy. Since all fits attain KCR bound,
one should employ the quadratic approximation θ̂Q (or even the third-order

approximation, say θ̂C). Then one should compare between fits by considering
their quadratic or cubic approximations.

Our goal in [1] was to do so. We developed an unconventional approach
that works for general curve fitting. Then, we applied it to circle fitting. We
studied MSE(∆2θ̂), which has terms of order σ4 that involve complicated for-
mulas. Excluding n from the picture makes all terms of order σ4 contribute
equally. Our general analysis, however, distinguishes between them based on
their dependence on n. Terms of order σ4 are more significant than terms of or-
der σ4/n, and so on. Terms of order O(σ4) in MSE come from different sources:

b(∆2θ̂)b(∆2θ̂)
T and cov(∆2θ̂). Our analysis showed that var(∆2θ̂) ∼ O(σ4/n).

We also decomposed the bias into two parts: (1) the essential bias, say b1(θ̂Q)

of order of magnitude σ2 and (2) the nonessential bias b2(θ̂Q) with its order of
magnitude σ2/n.

Since all fits are optimal in the sense that their variances, to leading term,
attain KCR, we went one step further and compared the second significant terms
in the MSE. b1b

T
1 comes from the essential bias (our analysis in [1] discarded all

terms of order σ4/n and σ4/n2). The goal in this paper is to refine our analysis
by including terms of order σ4/n.

The next theorem summarizes one of our findings [1] in the context of the
geometric fit. Its proof is important in our sequel analysis. However, it involves
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many useful details, which are summarized in the following two lemmas (see their
proofs in the appendix).

Lemma 2.1. For each i, j = 1, . . . , n, define

t̃i = (−ṽi, ũi, 0)T , si,j = t̃Ti (W̃
TW̃)−1t̃j , ňi = (δi, εi, 0)

T .

Also, let τi = t̃Ti ∆1θ and ρi = t̃Ti ňi. Then, for all i, j = 1, . . . , n, one has

E(τiτj) = σ2si,j , E(τiρj) = 0, E(ρiρj) = σ2δi,j ,

where δij is the Kronecker Delta function.

Lemma 2.2. Define ai = ρ2i , bi = −2τiρi, and ci = τ2i . Let s̃ = (s̃1,1, . . . , s̃n,n)
T ,

and similarly, define the n−dimensional vectors a, b, and c. Then,

E(a) = σ21, E(b) = 0, E(c) = σ2s̃.

Moreover,

E(aaT ) = σ4
(

1n1
T
n + 2 In

)

, E(bcT ) = E(abT ) = 0, E(acT ) = σ4s̃1T ,

and
E(bbT ) = 4σ4Diag

(

s̃1,1, s̃2,2, . . . , s̃n,n
)

, E(ccT ) = σ4S̃,

where In is an identity matrix of size n, 1n = (1, 1, . . . , 1)T , and S̃ is a square
matrix of size n with an entry at the ijth position equals to s̃i,is̃j,j + 2s̃2i,j.

Next, we present the following theorem, and its proof is moved to the appendix.

Theorem 2.2. Let θ̂ = (â, b̂, R̂)T be the geometric circle fit, and denote its

quadratic approximation by θ̂Q, then θ̂Q = θ̃ + K̃f2, where the components of
the n−dimensional vector f2 is given by

f2,i =
1
2R̃

(

t̃Ti ňi − t̃Ti ∆1θ̂
)2

=
1

2R̃
(ρi − τi)

2.

Moreover,

bias(θ̂Q) = E(∆2θ̂) =
σ2

2R̃

(

ê3 + K̃s̃
)

,

where ê3 = (0, 0, 1)T .

In other words, the estimators of the circle’s center, â and b̂, have no essential
bias, while the estimator of the radius R̂ has essential bias, which is independent
on n and the true points. In fact, we derived in [1] the bias of other algebraic
fits as well. Then, we compared between fits based on their essential biases.
Overall, a better estimator should have smaller essential bias. This strategy
allowed us to compare between fits, and we showed why and by how much each
estimator performs better than others. This explains a poor performance of the
Kåsa fit, a moderate performance of the Pratt’s fit, and a good performance of
the Taubin fit and the geometric fit (in this order). Accordingly, we developed a
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new non-iterative algebraic fit, called hyperaccurate fit (HF) or hyper for short,
which eliminates the essential bias. Therefore, HF was a doubly optimal fit in
the sense: its variance attains KCR bound and has zero essential bias.

On the other hand, the ‘nonessential bias’, which is of order O(σ2/n), was
ignored in our study. Kanatani and Rangarajan [23] argued about the impor-
tance of the nonessential bias in such a case that n is relatively small (say n
varies from 20 to 50). This means that terms of orders O(σ2/n) is not negligible
anymore. Therefore, they developed a new (efficient) algebraic fit (called hyper
Least Square, or ‘HyperLS’ for short) that has zero bias up to O(σ4).

Consequently, these two fits are supposed to perform much better than MLE
(which has nonzero essential bias), especially that all of them are optimal in
the sense that their covariance matrices attain KCR. Practically, however, the
situation is still different. We observed that MLE is practically unbeatable in
some cases, while hyper or HyperLs are unbeatable in other cases. Therefore,
we go one step further by studying more terms in their MSE.

3. Third-order error analysis

It is quite interesting to find the MSE of geometric circle fit and other algebraic
fits to the higher orders with the aid of their Taylor expansions up to the order
OP(σ

4).

3.1. The error analysis of the geometric fit

Starting with the geometric fit, one can write θ̂ as θ̂ = θ̂C +OP(σ
4), where its

cubic approximation is decomposed into

θ̂C = θ̃ +∆1θ̂ +∆2θ̂ +∆3θ̂,

and as such,

MSE(θ̂C) = E(∆1θ̂∆1θ̂
T
) +E(∆2θ̂∆2θ̂

T
) + 2S(E(∆3θ̂∆1θ̂

T
)) +E(∆3θ̂∆3θ̂

T
).

Including all terms of order σ4, however, is difficult. Instead, we restrict our
analysis to compute all terms of order σ4 and σ4/n, while other less important
terms with order of magnitudes σ4/n2 and σ6 will be discarded in our analysis.
This means that

MSE(θ̂) = MSE(∆1θ̂) +MSE(∆2θ̂) + 2S
(

cov(∆1θ̂,∆3θ̂)
)

+O(σ4/n2). (3.1)

In the following theorem, we state the formal expression of the MSE of ∆2θ̂

and cov(∆3θ̂,∆1θ̂). The theorem also characterizes the terms of MSE(∆2θ̂)

according to their origins: the bias E(∆2θ̂) and the covariance matrix var(∆2θ̂).
Its derivation is quite lengthy, so it is moved to the appendix.

Theorem 3.1. The MSE of ∆2θ̂ is given by

E(∆2θ̂∆2θ̂
T
) =

σ4

4R̃2

(

ê3ê
T
3 + 2Ṽmin + 2S(K̃s̃êT3 )

)

+O(σ4/n2). (3.2)
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The terms in Eq. (3.2) come from different origins:

bias(∆2θ̂) bias(∆2θ̂)
T =

σ4

4R̃2

(

ê3ê
T
3 + 2S(K̃s̃êT3 )

)

+O(σ4/n2), (3.3)

var(∆2θ̂) =
σ4

2R̃2
Ṽmin +O(σ4/n2). (3.4)

Moreover,

cov(∆1θ̂,∆3θ̂) = E
(

∆3θ̂∆1θ̂
T )

= − σ4

2R̃2
Ṽmin +O(σ4/n2). (3.5)

Final formula for the mean squared error. Combining the resulting for-
mulas obtained in Theorems 2.1, 2.2, and 3.1 yields

E(∆θ̂∆θ̂
T
) = σ2

(

1− σ4

2R̃2

)

Ṽmin+
σ4

4R̃2

(

ê3ê
T
3 +2S(K̃s̃êT3 )

)

+O(σ4/n2), (3.6)

where Ṽmin = (W̃TW̃)−1. The MSE can be decomposed into:

bias(∆θ̂) bias(∆θ̂)T =
σ4

4R̃2

(

ê3ê
T
3 + 2S

(

K̃s̃êT3
))

+O(σ4/n2) (3.7)

cov(∆θ̂) = σ2
(

1− σ2

2R̃2

)

Ṽmin +O(σ4/n2). (3.8)

Remarkably, cov(∆1θ̂,∆3θ̂) = −Var(∆2θ̂), and as a result, the second-order

term of the covariance of θ̂ is negative. Besides, the bias of the center ĉ = (â, b̂)
does not contribute to MSE because b(ĉ)b(ĉ)T = 02×2 +O(σ4/n2). On other
hand, the bias of R̂ is significant, and it contributes negatively to the MSE in
the sense that it increases MSE.

To understand these results, we will consider two special configurations. We
positioned n equally spaced true points on (1) full circle and (2) semi-circle.
Since the geometric fit is invariant under translations, rotations, and scaling, it
is enough to set ã = b̃ = 0 and R̃ = 1. Thus, ũi = x̃i and ṽi = ỹi. In sequel
analysis we will use the standard statistical notations

Sx̃x̃ =

n
∑

i=1

x̃2i − n¯̃x2, Sỹỹ =

n
∑

i=1

ỹ2i − n¯̃y2, Sx̃ỹ =

n
∑

i=1

x̃iỹi − n¯̃x¯̃y.

Full circle. In this case, ¯̃x = ¯̃y = x̃ỹ = 0, so

Sx̃x̃ = Sỹỹ =

n
∑

i=1

x̃2i =

n
∑

i=1

cos2 φi =
n

2
,

and as such,

Ṽmin = Diag(
1

Sx̃x̃

,
1

Sỹỹ

,
1

n
) =

1

n
Diag(2, 2, 1), s̃ =

2

n
1n, K̃s̃ =

2

n
ê3.
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Then, up to the second leading term, we have

cov(∆θ̂) =
σ2

n
(1 − σ2

2
)Diag(2, 2, 1), bias(∆θ̂) bias(∆θ̂)T =

σ4

4
ê3ê

T
3

(

1 +
4

n

)

.

It is clear that both essential and nonessential biases of the center ĉ = (â, b̂)T

have no contributions to the MSE. The second leading term of the MSE of R̂
comes from the essential bias (= σ4/4) and nonessential bias (= σ4/n) and

var(R̂) = −σ4

2n . This shows that b1(R̂)
2 is much more important than other

terms of order σ4/n.

Semi-circle. In this case, we have ¯̃x = x̃ỹ = 0. Thus, Sx̃x̃ =
∑n

i=1 x̃
2
i = n+1

2
and

∑n

i=1 ỹ
2
i = n−1

2 . Using Lagrange’s trigonometric identities and small angle
approximation gives

n
∑

i=1

ỹi =

n−2
∑

i=1

sin iω =
1

2
cot

ω

2
− cos(n− 1/2)ω

2 sin ω
2

= cot
ω

2
∼ 2

ω
− 1

4
ω,

where ω = π
n−1 . Thus

¯̃y ∼ 2
nω

. Consequently, Sỹỹ = n−1
2 − 1

n
cot2 ω

2 ∼ 1
2 (n−1)κ,

where κ = 1 − 8
nπω

+ 2ω
nπ

. Thus, the contribution of the variance in the MSE is

given by σ2(1 − σ2

2 )Ṽmin, where

Ṽmin =
1

Sỹỹ







Sỹỹ

Sx̃x̃
0 0

0 1 − ¯̃y

0 − ¯̃y ỹỹ






=

1

Sỹỹ







2Sỹỹ

n+1 0 0

0 1 − 1
n
cot ω

2

0 − 1
n
cot ω

2
n−1
2n







∼ 1

Sỹỹ







2Sỹỹ

n+1 0 0

0 1 − 2
ωn

0 − 2
ωn

n−1
2n






.

Next, we find how the bias contributes to MSE. First, note that

si =
2ỹ2i
n+ 1

+
x̃2i
Sỹỹ

,

n
∑

i=1

ỹ3i ∼ 4

3ω
,

n
∑

i=1

x̃2i ỹi ∼
2

3ω
.

Therefore,

n
∑

i=1

si ∼
n− 1

n+ 1
+

(n+ 1)nω2

nπωκ
,

n
∑

i=1

siyi =
8

3ω(n+ 1)
+

4

3πκ
.

Thus, W̃T s ∼ (0,
∑n

i=1 siyi,
∑n

i=1 si)
T , and as such, the contribution of the bias

in the MSE is b1b
T
1 + 2S(b1b

T
2 ), which is equal to







0 0 0

0 0 1
Sỹỹ

(
∑n

i=1 siỹi − 2
nω

∑n
i=1 si

0 1
Sỹỹ

(
∑n

i=1 siỹi − 2
nω

∑n
i=1 si 1− 4

nωSỹỹ

∑n
i=1 siỹi + n−1

nSỹỹ

∑n
i=1 si






.
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Combining previous results gives us

bias(R̂)2 =
σ4(1 + χ)

4
,

var(R̂) =
σ2

(

1− σ2

2

)

n− 8
πω

+ 2ω
π

=
σ2

(

1− σ2

2

)

(n− 1)π2

(π2 − 8)n2 − (π2 − 16)n+ 2π2 − 8
,

where

χ =
2

nκ

( −32

3(n− 1)(n+ 1)ω2
+
n− 1

n+ 1

)

+
2

nπκ2

( −16

3(n− 1)ω
+ (n+ 1)ω

)

.

Thus, for large n

bias(R̂)2 =
σ4

4

(

1+
(256− 72π2 + 9π4)n3

3(−1 + n2)(8 + n(−8 + π2))2

)

, var(R̂) =
π2σ2

(

1− σ2

2

)

8 + n(−8 + π2)
.

The ratio of b1(R̂)b2(R̂) to var(R̂) is approximately −2.1 to −2.5 for all
values of n for not only long arcs but also for short arc as well. The ratio of
b1(R̂)

2 to b1(R̂)b2(R̂) is inversely proportional to n. This ratio varies from .5
to 1 when n is in the range 6–20. If n ∈ (20, 50), the ratio will be between 1 to
2.2, and for n ∈ (100, 200) the ratio lies between 2.2 and 8, etc. Therefore, it is
clear that terms of order σ4 will be more important than terms of order σ4/n
for moderately large values of n, say 150 or 200. The contribution of b2(R̂)

2 is
quite small even for small values of n.

For shorter arcs, such as a quadrant of a circle, all of these three parts are
important, while the discarded terms of order σ4/n2 are substantially small.
This, in fact, supports our approach that keeps terms up to order σ4/n and
ignores the σ4/n2 terms in the MSE.

3.2. General error analysis of algebraic fits

Computing the MSE of algebraic fits is much more complicated than the error
analysis of geometric fit. We will compute the MSE of algebraic fits, in a general
context, up to order σ4/n and discard all other terms of order σ4/n2, σ6, etc.
Namely,

E(∆A∆AT ) = MSE(∆1A) +E(∆2A∆2A
T ) + 2S

[

E(∆3A∆1A
T )

]

+O(σ4/n2).

Based on Eq. (2.19), we have

M̃∆2A = −(∆1M∆1A+∆2MÃ) + ∆2λÑÃ. (3.9)

Next, we find ∆2λ. Premultiplying Eq. (3.9) and using Eq. (2.22) give us

∆2λ =
ÃTRÃ

ÃT ÑÃ
where R = ∆2M−∆1MM̃−∆1M. (3.10)

The most important term of R is R1 = ∆2M, which has a key role in our
analysis, while R2 = ∆1MM̃−∆1M has a less significant contribution to the
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MSE. Accordingly, ∆2λ can be decomposed into two components. Namely,

∆2λ = ∆2,1λ−∆2,2λ, where ∆2,kλ =
ÃTRkÃ

ÃT ÑÃ
, k = 1, 2 . (3.11)

Based on Eqs. (3.9) and (3.10),

∆2A = M̃−
( ÃTRÃ

ÃT ÑÃ
ÑÃ−RÃ

)

= M̃−SÑ RÃ (3.12)

with

SÑ =
ÑÃÃT

ÃT ÑÃ
− I4. (3.13)

Finally, our analysis needs ∆3A. Combining all terms of order OP (σ
3) in Eq.

(2.19) gives

∆3MÃ+∆2M∆1A+∆1M∆2A+ M̃∆3A

= ∆3λÑÃ+∆2λ(∆1NÃ+ Ñ∆1A),
(3.14)

from which

∆3A = M̃−SÑ

(

J1 +∆2,1λ
(

J2 −∆1NÃ
)

)

+R, (3.15)

where ∆3M = 2
n

∑n
i=1 S(∆2zi∆1z

T
i ). Vectors J1 and J2 are defined by

J1 = ∆3MÃ+∆2M∆1A−∆1MM̃−∆2MÃ

=
(

∆3M− 2S[∆1MM̃−∆2M]
)

Ã,

J2 = ∆1MM̃−ÑÃ− Ñ∆1A = 2S
[

ÑM̃−∆1M
]

Ã.

(3.16)

The complete analysis of the lengthy derivations of ∆3A is in the appendix.
It is remarkable to note that we expressed ∆3A as ∆3A = ∆3,1A +R, where
the random vector R satisfies E(R∆1A

T ) ∼ O(σ4/n2), and as such, it will be
dropped in our analysis. Next, two theorems summarize cov(∆3A,∆1A) and
MSE(∆2A) up to order O(σ4/n2) (see their proofs in the appendix).

Theorem 3.2. For each i = 1, . . . , n, define

α̃i = ãTi Ã = 2x̃iÃ+ B̃, β̃i = b̃T
i Ã = 2ỹiÃ+ C̃, (3.17)

and

Ỹj =









8x̃j 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0









(3.18)

and

P̃j =









8ỹj 0 2 0
0 0 0 0
2 0 0 0
0 0 0 0









. (3.19)
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Also, define Q̃i = α̃jỸi + β̃iP̃i and Π̃i = z̃iě
T
1 , where ěT1 = (1, 0, 0, 0). Then,

cov(∆1A,∆3A) = E(∆3A∆1A
T ) = Λ1 +Λ2 +Λ3 +Λ4 +O(σ4/n2),

where

Λ1 = −4σ4

n2
M̃−SÑ

n
∑

i=1

(

(ṼiÃ)(Π̃iÃ)T + ζ̃Π̃
T

i

)

M̃−,

Λ2 =
σ4

n3
M̃−SÑ

n
∑

i6=j

(

2S
[

VjÃz̃Tj
]

M̃−
(

ViÃz̃Tj + 2ÃM̃ij

)

+ ζ̃
((

Ṽi + 4S[Π̃i]
)

M̃−M̃j

)

)

M̃−,

Λ3 = − (n− 1)σ4ζ̃2M̃−SÑ ÑM̃−

n2(ÃT ÑÃ)

− 2σ4ζ̃M̃−SÑ

n3(ÃT ÑÃ)

n
∑

i6=j

[

S(ṼjÃz̃Tj )M̃
−ÑÃz̃Tj M̃

−
]

.

Moreover, Λ4 = 0 for the K̊asa and the Pratt fits. On the other hand,

Λ4,T =
(n− 1)σ4

n3
M̃−SÑT

(

n
∑

j=1

Q̃jÃz̃Tj

)

M̃−,

Λ4,H =
2(n− 1)σ4

n3
M̃−SÑH

(

n
∑

j=1

Q̃jÃz̃Tj

)

M̃−,

Λ4,I =
(n− 1)σ4

n3
(

1− 3
n2 )

M̃−SÑI

n
∑

j=1

[

2Q̃jÃz̃Tj − ζ̃trace(M̃−Ṽj)

n
M̃j

]

M̃−,

(3.20)

for Taubin’s, Hyper, and HyperLS fits, respectively.

Theorem 3.3. For each i = 1, . . . , n, define the scalars ψ̃i = z̃Ti M̃
−z̃i and

η̃i = ÃT ṼiM̃
−z̃i and the vector Ψ̃i = 2Π̃i + Ṽi. Then

E(∆2A∆2A
T ) = M̃− SÑΦST

Ñ
M̃−,

where

Φ =
σ4

n2

n
∑

i=1

(

(Ψ̃iÃ)(Ψ̃iÃ)T + ζ̃Ṽi +

n
∑

j=1

(Ψ̃iÃ)(Ψ̃jÃ)T
)

− σ4

n3

n
∑

i6=j

2S
(

(Ψ̃iÃ)
(

η̃j z̃j + ψ̃jṼjÃ
)T )

.

(3.21)

Moreover, cov(∆2A) = M̃− SÑΦ2S
T

Ñ
M̃−, where

Φ2 =
σ4

n2

n
∑

i=1

(

(Ψ̃iÃ)(Ψ̃iÃ)T + ζ̃Ṽi

)

(3.22)
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Fig 1. The theoretical fourth order term of MSE for five fits: Pratt’s fit, Taubin’s fit, hyper
fit, HyperLS fit, and geometric fit respectively. The MSE decomposed into its origin: Variance
(red) and the biased squared (blue).

and

Bias(∆2A) =
σ2

n
M̃−SÑ

n
∑

i=1

[

(

Ψ̃i −
ψ̃i

n
Ṽi

)

Ã− η̃i
n
z̃i

]

.

Since hyper and HyperLS fits have zero bias up to order σ2/n and σ4, re-

spectively, their MSEs are only controlled by cov(∆θ̂
a
) = J̃cov(∆A)J̃T , which

turn to be roughly equal as Figure 1 shows.
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Figure 1 exhibits the contribution of the second order terms of the bias and
the variance of the estimate of R when n = 100 true points are distributed
along circular arcs of sizes: 90◦ (Fig. 1(a)), 180◦ (Fig. 1(b)), 270◦ (Fig. 1(c)),
and 360◦ (Fig. 1(d)). The fourth order term of MSE(black-colored bar) were
compared for five fits: Pratt’s fit, Taubin’s fit, hyper fit, HyperLS fit, and the
geometric fit, respectively. These terms are decomposed into their origins, the
bias (blue-colored bars) and the second terms of the variance (red-colored).

When true points are distributed along a long circular arc, such as a semi-
circle (Figures 1(d)), three quadrants of a circle, and a full circle, the covariance
of R̂ for all fits are quite smaller than their squared biases. Thus the dominant
part in the MSE is the bias. Therefore, the mean square error of HyperLS fit is
smaller than that of hyper fit, which is smaller than geometric fit, and so one.
This validates our conclusions in [1, 2].

The short circular arcs, such as a quadrant of a circle (Fig. 1(a)), reveals
interesting results. The covariance of R̂ for each algebraic fit becomes quite
bigger than the bias, and as such, it becomes the dominant part in the MSE for
each algebraic fit. On other hand, the covariance of R̂ obtained by the geometric
fit is much smaller than that for algebraic fits (if fact it is negative and close
to 0). Therefore, in total the geometric fit is the best in this case. Theen HyperLS
has the second smallest MSE, and as such it is the second most accurate fit.
Then hyper fit is the third most accurate fit, followed by Taubin’s fit and Pratt’s
fit (in this order).

4. Adjusted maximum likelihood estimator

The MLE itself has bias up to the leading term. Thus, one can obtain a better
estimate based on the MLE by using ‘unbiasing’ schemes, and as such, the bias
(up to the second leading term) vanishes. The new estimator has the formal
expression

Γ̂ = θ̂ − σ̂2

2R̂

[

ê3 + (ŴTŴ)−1ŴT ŝ
]

, (4.1)

where ŝ = (ŝ1,1, ŝ2,2 . . . , ŝn,n)
T . Here ŝi,i is the random estimate of s̃i,i, i.e.

ŝi,i = [−v̂i, ûi, 0](ŴTŴ)−1[−v̂i, ûi, 0]T ,

ûi, v̂i, and Ŵ are regarded as estimates of ũi, ṽi, and W̃, which are calculated
after computing the MLE. i.e.,

ûi =
xi − â

R̂
, v̂i =

yi − â

R̂
,

and

Ŵ =







û1 v̂1 1
...

...
...

ûn v̂n 1






.
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Also, we estimate σ2 by

σ̂2 =
1

n− 3

n
∑

i=1

(

√

(xi − â)2 + (yi − b̂)2 − R̂
)2

. (4.2)

Next, we need to show that the quadratic approximation of Γ̂, say Γ̂Q, is an

unbiased estimator of θ̃ (up to the leading term). This follows immediately if we

verify that E(σ̂2) = σ2 (up to the leading term), and as such, E(Γ̂Q) = θ̃+O(σ4).

Indeed, let us define P̃ = W̃(W̃TW̃)−1W̃T , which acts as a projection matrix
onto the column space of W̃, and as such, I − P̃ is another projection matrix.
Thus, both of them are idempotent and symmetric matrices. Since

σ̂2 =
1

n− 3
‖W̃θ̂ − (Ũδ + Ṽε)‖22 =

1

n− 3
‖(I− P̃)(Ũδ + Ṽε)‖22 +OP(σ

4)

and Ũδ + Ṽε ∼ N(0, σ2In), then

1

σ2
‖(I− P̃)(Ũδ + Ṽε)‖22

has a chi-square distribution with a degree of freedom df = tr(In − P̃) = n− 3.
Thus,

E
(

σ̂2
)

= σ2 +O(σ4).

Therefore, the new estimator is an unbiased estimator of θ. Because this tech-
nique is an adjustment version of geometric fit, we call this estimator ‘Adjusted
Maximum Likelihood Estimator’ (AMLE).

5. Numerical experiments

To demonstrate the superiority of AMLE, we turn our attention to some numer-
ical experiments. We firstly positioned 100 equally spaced true points on an arc
of size: (1) 90◦ (Fig. 2(a), (2) 180◦ (Fig. 2(b)), (3) 270◦ (Fig. 2(c)), and (4) 360◦

(Fig. 2(d)). For each case, we generated N random samples by adding Gaussian
noise at level σ to each true point. For each sample, we applied various circle
fits to estimate the parameters (a; b;R). Then the Root Means Square Error
(RMSE) for each fit is measured by computing

RMSE(R̂) = E(R̂2) ≈

√

√

√

√

1

N

N
∑

i=1

(R̂ − 1)2, where N = 106. (5.1)

Since RMSE is asymptotically proportional to σ, we plotted the ratio RMSE /σ
against the noise level σ which varies from 0 up to the point at which the value
of RMSE becomes large. We compared five fits : AMLE, MLE, hyper fit (HF),
HyperLS fit (HLSF), and Taubin’s fit (Tau). These fits depend on (i) the true
values of the circle parameters, (ii) the number and location of the true points,
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Fig 2. The simulated RMSE-to-noise ratio for five fits when 100 observations are distributed
along arcs of lengths: 90◦ (Fig. 2(a)), 180◦ (Fig. 2(b)), 270◦ (Fig. 2(c)), and 360◦ (Fig.2(d)).

and (iii) the noise level σ. Since Taubin’s fit, hyper fit, and the geometric fit
(and as such AMLE) are invariant under translations, rotations, and scaling, it
is enough to set ã = b̃ = 0 and R̃ = 1.
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As can be seen in Figures 2(a)–2(d), as σ takes small values, all estimators
approach KCR, which is the first leading term in MSE. As σ increases and
reaches its typical values, AMLE exhibits a superior performance over other fits
in all cases. The comparisons of other fits however depend on the circular arc.
For long arcs, the second most accurate fits are HyperLS and hyper fits which
perform better than MLE, followed by Taubin’s fit at last (see Figs. 2(b)–2(d)).
For short arcs, the geometric fit, however performs better than all other algebraic
fits. This supports our theoretical results in this article.

In the second experimental setting, 20 points are positioned on the four cir-
cular arcs, as set previously (see Figs. 3(a)–3(d)). The results confirm the su-
periority of AMLE over all other fits. Also, the same conclusions have been
reached regarding the performance of other fits when data are sampled along
long arcs (Figs. 3(b)–3(d)). That is, HyperLS is more accurate than hyper which
is more accurate MLE and Taubins’ fit (in this order). However, for shorter arcs
(Figure 3(a)) the numerical results reveals an interesting observation. While
the Taubin’s fit and hyper fit have the same performance and both work bet-
ter than MLE, HyperLS becomes unpredictability the least accurate fits. This
turnaround in their behaviors for small values of n and short circular arc is left
as future work.

6. Conclusion

In [1], we adopted an unconventional approach to study circle fittings by deriving
the MSEs for the most important fits: algebraic fits (Kåsa’s, Pratt’s, Taubin’s)
and the geometric fit. We kept all terms of order σ4, while other terms were
discarded. We showed that the MSEs for all fits have a common leading term
that coincides with KCR. Thus, we traced the second leading term of their MSE
(partially) by tracking only terms of order σ4 and discarding the others. This
term comes from the essential bias. Based on that, we showed why and by how
much the geometric fit performs betters than the Taubin fit, which is twice more
accurate than Pratt’s fit. We also developed the new algebraic fit (hyper fit) that
has zero essential bias. Kanatani and Rangarajan immediately developed a new
fit that removes both of the essential and the nonessential biases.

However the geometric fit still practically works better than the hyper fits in
some cases. Apparently, other terms in the MSE have key roles on this aspect.
We investigated this issue in this paper by deriving their MSE up to order σ4/n
and discarding σ4/n2. Terms of order σ4/n come from the variance, and the
product of the nonessential bias and the essential bias.

Our analysis shows that when data are sampled along short circular arcs,
the second-order covariance parts in all algebraic fits become much larger than
other parts in their second-order term in MSEs’ expressions. The second-order
covariance part for the geometric fit is negative though it is close to zero. This
shows why the geometric fit is superior to all other algebraic fits when data are
sampled along short arcs. On the other hand, if data are sampled along long cir-
cular arcs, the bias becomes the most dominant part among other second-order
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Fig 3. The simulated RMSE-to-noise ratio for five fits when 20 observations are distributed
along arcs of lengths: 90◦ (Fig. 3(a)), 180◦ (Fig. 3(b)), 270◦ (Fig. 3(c)), and 360◦ (Fig.3(d)).

parts in the MSE, and as such hyperaccurate fit and HyperLS fit outperform
the geometric fit which in turn outperforms Taubin’s fit, followed by Pratt’s fit
(in this order). These conclusions are based on our assumptions that n is limited
but fairly large, say n > 70. Special further investigations are needed in the case
of small values of n and short circular arcs are chosen.

Our second contribution in this paper is proposing a bias-correction version
of the geometric fit, which in turn, outperforms all existing methods in all cases
whatever sample size n and the length of the circular arc are chosen. The new
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method has two features. Its variance is the smallest and has zero bias up to
order σ4. Our numerical tests confirm the superiority of the proposed fit over
the existing fits.

Appendix

Proof of Theorem 2.1. The distance di = ri −R can be expanded as

di =

√

[

(x̃i + δi)− (ã+∆1a)]2 +
[

(ỹi + εi)− (b̃ +∆1b)]2 − R̃−∆1R,

=

√

R̃2 + 2R̃ũi(δi −∆1a) + 2R̃ṽi(εi −∆1b) +OP (σ2)− R̃−∆1R

= ũi(δi −∆1a) + ṽi(εi −∆1b)−∆1R+OP (σ
2).

Minimizing
∑

d2i to the first order is equivalent to minimizing ‖W̃∆1θ̂ − f1‖22,
where the vector f1 = (f1,1, . . . , f1,n)

T is the vector whose components are f1,i =
ũiδi + ṽiεi. The previous problem is a classical least squares problem that can
also be written as W̃∆1θ̂ = Ũδ+Ṽε. If it is multiplied by K̃ = (W̃TW̃)−1W̃T ,

then we get ∆1θ̂ ≈ K̃f1. Next, one can find the variance of θ̂, to the leading
order. i.e.

E
(

∆1θ̂∆1θ̂
T )

= K̃E
[

(Ũδ + Ṽε)(ŨδT + Ṽε
T )

]

K̃T .

Now observe that E(δεT ) = E(εδT ) = 0, as well as E(δδT ) = E(εεT ) = σ2In,
and we have Ũ2 + Ṽ2 = In, where In is identity matrix of size n. Thus

cov(θ̂L) = E
[

(∆1θ̂)(∆1θ̂)
T
]

= σ2K̃K̃T = σ2(W̃TW̃)−1 = σ2Ṽmin,

Proof of Lemma 2.1. Using Theorem 2.1, E(τiτj) = t̃Ti E(∆1θ∆1θ
T )t̃j = σ2s̃i,j .

Next, we compute E(τiρj). Recall the definition of ∆1θ = K̃f1, which can be

written as (W̃TW̃)−1g, where

g =
(

n
∑

k=1

ũkf1,k,

n
∑

k=1

ṽkf1,k,

n
∑

k=1

f1,k

)T

, f1,k = ũkδk + ṽkεk

It also is remarkable notice that for each j, E(f1,k(ň
T
j t̃j)) = 0 for all k = 1, . . . , n.

Thus E(g(ňT
j t̃j)) = 0, and as such E(τiρj) = 0. Finally, we simply observe

E(ρiρj) = t̃Ti E(ňiň
T
j )t̃j = δi,jσ

2 since we have ‖t̃i‖22 = ũ2i + ṽ2i = 1. This
completes the proof of the lemma.

Proof of Lemma 2.2. The first three assertions follow immediately from Lemma
2.1. Next we compute E(aaT ), E(abT ), and E(acT ) starting with the former.
Using Isserlis’ Theorem, then for each i, j = 1, . . . , n, we get

E(aiaj) = E(ρ2i ρ
2
j) = E(ρ2i )E(ρ

2
j ) + 2(E(ρiρj))

2 = σ4(1 + 2δi,j),
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where δij is the Kronecker Delta function. Therefore E(aaT ) = σ4(2In + 1n).
To prove E(baT ) = E(bcT ) = 0, we use

E(aibj) = −2E(ρ2i ρjτj) = −2
(

E(ρ2i )E(ρjτj) + 2E(ρiρj)E(ρiτj)
)

= 0

E(bicj) = E(ρiτiτ
2
j ) = E(ρiτi)E(τ

2
j ) + 2E(ρiτj)E(τiτj) = 0

since E(ρiτj) = 0 for all i and j. For the same reason

E(aicj) = E(τ2i ρ
2
j) = E(τ2i )E(ρ

2
j ) + 2E(τiρj)

2 = σ4s̃j,j ,

which depends only on j regardless of i, thus E(acT ) = σ41ns
T . Similarly, for

each i, j = 1, . . . , n, we have

E(bibj) = 4E(τiρiτjρj) = 4E(τiτj)E(ρiρj) = 4σ4δi,j s̃i,j .

This means that E(bbT ) is an diagonal matrix whose ith diagonal entity equals
to 4σ4s̃i,i. To end up, we prove

E(cicj) = E(τ2i τ
2
j ) =

(

E(τ2i )E(τ
2
j ) + 2(E(τiτj))

2
)

= σ4
(

s̃i,is̃j,j + 2s̃2i,j
)

.

That is, E(ccT ) = σ4S̃, where S̃ is a square matrix of size n whose entries at
the ijth position is s̃i,is̃j,j + 2s̃2i,j.

Proof of Theorem 2.2. Expanding the distance di to the second order terms
gives

di = qi − ũi∆2a− ṽi ∆2b −∆2R+OP(σ
3)

qi = ũi(δi −∆1a) + ṽi(εi −∆1b)−∆1R+
ṽ2

i

2R̃
(δi −∆1a)

2

+
ũ2

i

2R̃
(εi −∆1b)

2 − ũiṽi
R̃

(δi −∆1a)(εi −∆1b).
(A.1)

Next, we calculate ∆2θ̂ = (∆2a,∆2b,∆2R)
T . From the definition of ňi =

(δi, εi, 0)
T and t̃i = (−ṽi, ũi, 0)T and revoke Theorem 2.2, then we have qi =

li + f2,i with li = f1,i − (ũi∆1a + ṽi∆1b + ∆1R). Now, let us write q = l + f2,
f2 = (f2,1, . . . , f2,n)

T , l = (l1, . . . , ln)
T , and q = (q1, . . . , qn)

T . Thus minimizing
∑

d2i is now equivalent to minimizing

n
∑

i=1

(

qi − (ũi∆2a+ ṽi∆2b+∆2R)
)2
,

from which we get another least squares problem, and its solution is ∆2θ̂ ≈ K̃q.
In fact, the contribution from the linear terms, li, vanishes, quite predictably;
thus only the quadratic terms f2,i matter. That is, since K̃W̃ = I3, K̃l =

K̃f1 − K̃W̃∆1θ̂ = 0, and as such ∆2θ̂ ≈ K̃f2.
Next, we find the bias of θ̂Q. Since E(∆1θ̂) = 0, we need only to compute

K̃E(f2), where 2R̃f2 = a + b + c. Therefore, E(f2) = 1
2R̃
σ2(1n + s̃), which is

an immediately consequence of Lemma 2.2. Since the last column of the matrix
W̃TW̃ coincides with the vector W̃T1n, we have K̃1n = (0, 0, 1)T = ê3. Thus
pre-multiply E(f2) by K̃ gives the desired result.
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Proof of Theorem 3.1. Let us write f2 = 1
2R̃

(a + b + c) and use the results of
Lemma 2.2 to show

E(∆2θ̂∆2θ̂
T
) = (W̃TW̃)−1W̃T

E(f2f
T
2 )W̃(W̃TW̃)−1 (A.2)

=
1

4R̃2
K̃E

(

(a+ b+ c)(a + b+ c)T
)

K̃T (A.3)

The expected values of aaT , abT , . . . , ccT are already found in Lemma 2.1, but
not all terms will be kept in the MSE, if we take in our consideration their
significant contribution to the MSE. That is, only E(aaT +acT + caT ) is of our
interest as being the important part of MSE. Now

K̃E
(

aaT + acT + caT
)

K̃T = σ4K̃
(

1n1
T
n + 2 In + 2S(s̃1T

n )
)

K̃T ∼ σ4 + σ4/n,

while the other terms, i.e. K̃E[(b + c)(b + c)T ]K̃T , will be dropped from the
MSE because their orders of magnitude are O(σ4/n2). Accordingly,

E(∆2θ̂∆2θ̂
T
) =

σ4

4R̃2
K̃

(

1n1
T
n + 2In + 2S(s̃1T

n )
)

K̃T +O(σ4/n2).

Since W̃T1n coincides with the third column of W̃TW̃, then K̃1n = ê3, from
which we have

E(∆2θ̂∆2θ̂
T
) =

σ4

4R̃2

(

ê3ê
T
3 + 2(W̃TW̃)−1 + 2S(K̃s̃êT3 )

)

+O(σ4/n2). (A.4)

Next step is to classify terms according to their origins. Recall that bias(∆2θ̂) =
σ2

2R̃
(ê3 + K̃s̃), thus

bias(∆2θ̂) bias(∆2θ̂)
T =

σ4

4R̃2

(

ê3ê
T
3 + 2S(K̃s̃êT3 )

)

+O(σ4/n2). (A.5)

Finally, subtracting (A.5) from (A.4) gives (3.4).

Now we find cov(∆1θ̂,∆3θ̂), where the third-order error term ∆3θ̂. Expand-
ing the distances di to the third order error terms gives

di = ti − (ũi∆3a+ ṽi ∆3b+∆3R) +OP(σ
4),

where
ti = li + f2,i − (ũi∆2a+ ṽi∆2b+∆2R) + f3,i, (A.6)

f3,i is the cubic function of ei = (δi, εi) for each i = 1, . . . , n and has a com-
plicated expression, however, we are interested only in E(f3f

T
1 ) up to order

O(σ4/n), thus

f3,i = − 1

2R̃2

(

ũiδi + ṽiεi
)(

ũiεi − ṽiδi
)2

+R,

where R is a random vector such that E(RfT3 ) ∼ O(σ4/n). Thus minimizing
∑

d2i is now equivalent to minimizing
∑

(ti − (ũi∆3a+ ṽi∆3b+∆3R))
2,
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Similarly, one can prove that ∆3θ̂ ≈ K̃f3, where f3 = (f3,1, . . . , f3,n)
T . Thus up

to the leading term ∆3θ̂∆1θ̂
T
= K̃f3f

T
1 K̃T +R1 (Again R1 is a random matrix

whose entities have typical values of order O(σ4/n2)). Since f1,i = ũiδi + ṽiεi,

then after simple algebra we find E(f1,if3,j) = − σ4

2R̃2
if i = j and 0 otherwise

and hence E(f3f
T
1 ) = − σ4

2R̃2
In +O(σ4/n2). Therefore

cov(∆3θ̂,∆1θ̂) = − σ4

2R̃2
K̃InK̃ = − σ4

2R̃2
Ṽmin.

Derivation of Equation (3.15). All terms of (3.15) are already computed except
∆3λ. Pre-multiplying (3.14) by Ã gives

∆3λ =
1

(ÃT ÑÃ)

[

ÃT∆3MÃ+ ÃT∆2M∆1A+ ÃT∆1M∆2A

−∆2λ
(

(ÃT∆1NÃ) + (ÃT Ñ∆1A)
)]

,

(A.7)

In the process of finding ∆3λ, we keep in our minds that we are interested
only in all terms in ∆3A whose contributions to the MSE (represented by
2S(E(∆3A∆1A

T ))) are of order O(σ4/n), and we discard other less impor-
tant terms. If we would multiply (3.14) by ∆1A

T = −ÃT∆1MM̃−, and then
find the expected value of the equation, we find several terms with different
magnitudes. For example, E(∆3MÃ∆1A

T ), E(∆2M∆1A∆1A
T ) are of order

σ4/n, while

E
(

(∆1M∆2A)∆1A
T
)

= E

(

(∆2,1λ−∆2,2λ)∆1MM̃−ÑÃ∆1A
T−∆1MM̃−(R1−R2)Ã∆1A

T
)

involves terms with different magnitudes. The less important part is

E
(

∆2,2λ∆1MM̃−ÑÃ∆1A
T
)

and E
(

∆1MM̃−R2Ã∆1A
T
)

,

which are of order σ4/n2 (the expected value of the products of four averages,

each of which is a linear combinations of h, i.e. E(
∏4

i=1 q
T
i h)). The significant

part is

E
(

∆2,1λ∆1MM̃−ÑÃ∆1A
T
)

and E
(

∆1MM̃−R1Ã∆1A
T
)

,

each of which has order of magnitude σ4/n. Based on that, instead of using the
complete expressions of ∆2λ and ∆2A we use ∆2,1λ and

∆2,1A = M̃−SÑ R1Ã =
(

∆2,1λM̃
−Ñ− M̃−∆2M

)

Ã,

and as such ∆3λ = ∆3,1λ +∆3,2λ, where the contribution of ∆3,2λ is of order
σ4/n2, while the most important part is

∆3,1λ =
1

(ÃT ÑÃ)

[

ÃT∆3MÃ+ ÃT∆2M∆1A+ ÃT∆1M∆2,1A

−∆2,1λ
(

(ÃT∆1NÃ) + (ÃT Ñ∆1A)
)]

,

(A.8)
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and further
∆3,1λ = χ1 + (χ2 − χ3)∆2,1λ. (A.9)

The scalars χ1, χ2, and χ3 are defined as

χ1 =
(ÃTJ 1)

ÃT ÑÃ
, χ2 =

(ÃTJ 2)

ÃT ÑÃ
, and χ3 =

(ÃT∆1NÃ)

ÃT ÑÃ
, (A.10)

where the vectors J1 and J2 are defined in (3.16). Replace ∆3λ by ∆3,1λ in
(3.14) gives ∆3A = ∆3,1A + R, where the random vector R ∼ OP(σ

3) such
that E(R∆1A

T ) ∼ O(σ4/n2). Thus

∆3,1A = M̃−
[

−
(

∆3MÃ+∆2M∆1A+∆1M∆2,1A
)

+∆3,1λÑÃ

+∆2,1λ(∆1NÃ+ Ñ∆1A)
]

and further it becomes

∆3,1A = M̃−
[

−J1 −∆2,1λ∆1MM̃−ÑÃ+
(

χ1 + (χ2 − χ3)∆2,1λ
)

ÑÃ

+∆2,1λ(∆1NÃ+ Ñ∆1A)
]

Rearranging terms, after substituting the formal expressions of χ1, χ2, and χ3,
gives

∆3,1A = M̃−
[

∆2,1λ
(

−∆1MM̃−ÑÃ+
(ÃTJ 2)

ÃT ÑÃ
ÑÃ+ Ñ∆1A

)

− J1

+
(ÃTJ 1)

ÃT ÑÃ
ÑÃ+∆2,1λ

(

− (ÃT∆1NÃ)

ÃT ÑÃ
ÑÃ+∆1NÃ

)]

which can be simply written as

M̃−
[

−J1+
(ÃTJ 1)

ÃT ÑÃ
ÑÃ+∆2,1λ

( (ÃTJ2)

ÃT ÑÃ
ÑÃ−J2

)

+∆2,1λ
(

−
(ÃT∆1NÃ)

ÃT ÑÃ
ÑÃ+∆1NÃ

)

]

which reduces to M̃−SÑ[J1 +∆2,1λ(J2 −∆1NÃ)] after using the defintion of

the operator SN = NÃÃT

ÃT ÑÃ
.

Proof of Theorem 3.2. First let us state and prove the following lemma

Lemma A.1. For each i = 1, . . . , n, define Π̃i = z̃ie
T
1 , and

Bi = (∆2z
T
i Ã)2M̃i, Ci = (ÃT∆1zi)(Ã

T∆2zi)∆1ziz̃
T
i , (A.11)

Di = (∆1z
T
i Ã)2∆1zi∆1z

T
i , Ei = (∆1z

T
i Ã)2∆2ziz̃

T
i (A.12)

then

E(Bi) = 2σ4(2Π̃iÃ)(2Π̃iÃ)T , E
(

Ci

)

= 4σ4ṼiÃ(Π̃iÃ)T ,

E(Di) = σ4ζ̃Ṽi + 2σ4(ṼiÃ)(ṼiÃ)T , E(Ei) = 4σ4ζ̃Π̃
T

i
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Proof of Lemma A.1. E(Bi) follows immediately from

E
(

(∆2z
T
i Ã)2

)

= E
(

Ã2(δ2i + ε2i )
2
)

= Ã2
(

var(δ2i + ε2i ) + E(δ2i + ε2i )
2
)

= 8Ã2σ4.

Note that (δ2i + ε2i )/σ
2 has Chi-Squared distribution with df = 2. Using Ãz̃i =

Π̃Ã gives the desired result. Next, we find E(Ci). Recall ∆1zi = ãiδi+ b̃iεi and
α̃i = ÃT ãi and β̃i = ÃT b̃i, and hence α̃iãi + β̃ib̃i = ṼiÃ, then

E(Ci) = ÃE
(

(α̃iδi + β̃iεi)(δ
2
i + ε2i )(ãiδi + b̃iεi)z̃

T
i

)

= ÃE
(

(α̃iδ
4
i ãi + β̃iε

4
i b̃i + (α̃iãi + β̃ib̃i)ε

2
i δ

2
i

)

z̃Ti

= 4Ãσ4
(

α̃iãi + β̃ib̃i

)

z̃Ti = 4σ4ṼiÃ(Π̃iÃ)T .

Now, after simple calculations, one can find

Di = (α̃2
i δ

2
i + 2α̃iβ̃iδiεi + β̃2

i ε
2
i )(ãiδi + b̃iεi)(ã

T
i δi + b̃T

i εi).

Using
α̃2
i + β̃2

i = ÃT (ãiã
T
i + b̃ib̃

T
i )Ã = ÃT ṼiÃ = ÃT ÑPÃ = ζ̃

and ṼiÃ = α̃iãi + β̃ib̃i, one can find

E(Di) = E

(

α̃2
i ãiã

T
i δ

4
i + β̃2

i b̃ib̃
T
i ε

4
i +

(

α̃2
i b̃ib̃

T
i + β̃2

i ãiã
T
i + 4α̃iβ̃iS[ãib̃T

i ]
)

δ2i ε
2
i

)

= σ4
(

3α̃2
i ãiã

T
i + 3β̃2

i b̃ib̃
T
i +

(

α̃2
i b̃ib̃

T
i + β̃2

i ãiã
T
i + 4α̃iβ̃iS[ãib̃T

i ]
)

)

= 2σ4
(

α̃2
i ãiã

T
i + β̃2

i b̃ib̃
T
i + 2α̃iβ̃iS[ãib̃T

i ]
)

+ σ4(α̃2
i + β̃2

i )(ãiã
T
i + b̃ib̃

T
i )

= 2σ4(ṼiÃ)(ṼiÃ)T + σ4ζ̃Ṽi

Finally, since

Ei = (∆1z
T
i Ã)2∆2ziz̃

T
i =

(

α̃2
i δ

2
i + 2α̃iβ̃iδiεi + β̃2

i ε
2
i

)

(δ2i + ε2i )ĕ1z̃
T
i

one gets E(Ei) = 4(α̃2
i + β̃2)σ4ĕ1z̃

T
i = 4σ4ζ̃(Π̃Ã)T . This completes the proof of

the lemma.

Next we prove Theorem 3.2. First let us write

cov(∆1A,∆3A) = E(∆3A∆1A
T ) = Λ1 +Λ2 +Λ3 +Λ4

where

Λ1 = −M̃−SÑE

(

∆3MÃÃT∆1MM̃−
)

Λ2 = 2M̃−SÑE

(

S
[

∆1MM̃−∆2M
]

ÃÃT∆1MM̃−
)

Λ3 = −2M̃−SÑE

(

∆2,1λS[ÑM̃−∆1M]ÃÃT∆1MM̃−
)

Λ4 = −M̃−SÑE

(

∆2,1λ∆1NÃ∆1A
T
)

.
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Now let us handel each Λ′
is starting with Λ1. Recall that E(δ

3
i εj) = E(δiε

3
j) = 0,

for all i, j and ∆3M = 1
n

∑n

i=1 2S(∆1zi∆2z
T
i ) and ∆1M. Using Lemma A.1,

E(∆3MÃÃT∆1M) is

=
1

n2

n
∑

i,j=1

E
(

2S[∆2zi∆1z
T
i ]Ã(ÃT∆1zj)z̃

T
j

)

=
1

n2

n
∑

i=1

E

(

(∆2zi∆1z
T
i +∆1zi∆2z

T
i )Ã(ÃT∆1zi)z̃

T
i

)

=
1

n2

n
∑

i=1

(

E
(

(∆1z
T
i Ã)2∆2ziz̃

T
i

)

+ E
(

(ÃT∆2zi)(Ã
T∆1zi)∆1ziz̃

T
i

)

)

=
1

n2

n
∑

i=1

(

E(Ei) + E(Ci)
)

=
4σ4

n2

n
∑

i=1

(

(ṼiÃ)(Π̃iÃ)T + ζ̃Π̃
T

i

)

If the last expression is pre-multiplied by −M̃−SÑ and post-multiplied by M̃−,
we get Λ1. Next we Compute Λ2 by firstly writing

E
(

∆1MM̃−∆2MÃÃT∆1M
)

= Υ1 +Υ2 +Υ3 +Υ4

where Υi’s are defined by

Υ1 =
1

n3

n
∑

i,j,k=1

E
[

z̃j∆1z
T
j M̃

−(ÃT∆1zi)(Ã
T∆1zk)∆1ziz̃

T
k

]

Υ2 =
1

n3

n
∑

i,j,k=1

E
[

∆1zj z̃
T
j M̃

−(ÃT∆1zi)(Ã
T∆1zk)∆1ziz̃

T
k

]

Υ3 =
1

n3

n
∑

i,j,k=1

E
[

(z̃j∆1z
T
j )M̃

−(ÃT∆2zi)(Ã
T∆1zk)z̃iz̃

T
k

]

Υ4 =
1

n3

n
∑

i,j,k=1

E
[

(∆1zj z̃
T
j )M̃

−(ÃT∆2zi)(Ã
T∆1zk)z̃iz̃

T
k

]

Remark A.1. Note that ∆1MM̃−∆2MÃÃT∆1M is a product of three av-
erages; two of which are linear combinations of the combined error vector h =
(δ1, . . . , δn, ε1, . . . , εn)

T , and the third is a quadratic form of h, thus it is enough
to write the above expressions of Υi’s in terms of i and j because E(δ2i εjεk) =
E(ε2i δjδk) = 0 for all j 6= k.

Remark A.2. By Remark A.1, all Υi’s consist of two summations having
different orders of magnitude; some of order O(n2σ4) (when i 6= j and j = k)
and others of order O(nσ4) (when i = j = k), thus their contributions to MSE
are of orders O(σ4/n), O(σ4/n2), respectively. This means that we will ignore
the latter case from our consideration.
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Denote M̃ij = z̃iz̃
T
j (if i = j, set M̃ii = M̃i), and repeatedly apply the fact

E(δ2i δ
2
j ) = E(δ2i )E(δ

2
j ) = σ4 for all i 6= j, to each of Υi’s. We reach

E
(

∆1MM̃−∆2MÃÃT∆1M
)

=
2σ4

n3

n
∑

i6=j

S
(

VjÃz̃Tj
)

M̃−
(

ViÃz̃Tj + 2ÃM̃ij

)

.

(A.13)

In the same analogue, we find E(∆2MM̃−∆1MÃÃT∆1M). Recall that Π̃i =
z̃iĕ

T
1 , then

1

n3

n
∑

i6=j

(

E
(

∆1zi∆1z
T
i +∆2ziz̃

T
i + z̃i∆2z

T
i

)

· M̃− · E
(

ÃT∆1zj∆1z
T
j Ã

)

M̃j

)

and further

E
(

∆2MM̃−∆1MÃÃT∆1M
)

=
σ4

n3
ζ̃

n
∑

i6=j

(

(

Ṽi + 4S[Π̃i]
)

M̃−M̃j

)

(A.14)

Now combine Equations (A.13) and (A.14) to get

Λ2 =
σ4

n3
M̃−S

Ñ

n
∑

i6=j

(

2S
[

VjÃz̃Tj
]

M̃−
(

ViÃz̃Tj + 2ÃM̃ij

)

+ ζ̃
((

Ṽi + 4S[Π̃i]
)

M̃−M̃j

)

)

M̃−

(A.15)
To find Λ3, we use the definition of ∆2,1λ given in equation (3.11). Firstly,

observe that for all i = 1, . . . , n, we have E(ÃT∆2MiÃ) = σ2ζ̃ and

E
(

(∆1MiÃ)(∆1MiÃ)T
)

= ÃT
E(∆1zi∆1z

T
i )Ãz̃iz̃

T
i = σ2ζ̃M̃i.

Consequently, E(∆2,1λÑM̃−∆1MÃÃT∆1MM̃−) =

ÑM̃−

n3(ÃT ÑÃ)

n
∑

i6=j

E(ÃT∆2MiÃ)E
(

(∆1MjÃ)(∆1MjÃ)T
)

M̃−

and as such E(∆2,1λÑM̃−∆1MÃÃT∆1MM̃−) =

σ4 ζ̃2ÑM̃−

n3(ÃT ÑÃ)

n
∑

i6=j

M̃jM̃
− =

(n− 1)ζ̃2σ4

n2(ÃT ÑÃ)
ÑM̃− (A.16)

In the same approach we find

E
(

∆2λ2,1∆1MM̃−ÑÃÃT∆1MM̃−
)

=
σ4ζ̃

∑n

i6=j

(

2S[VjÃz̃Tj ]M̃
−ÑÃz̃Tj M̃

−
)

n3(ÃT ÑÃ)
(A.17)

Substitute (A.16) and (A.17) in Λ3 to get

Λ3 = −
(n− 1)ζ̃2σ4

n2(ÃT ÑÃ)
M̃−S

Ñ
ÑM̃− −

ζ̃σ4

n3(ÃT ÑÃ)
M̃−S

Ñ

n
∑

i6=j

[

2S(ṼjÃz̃Tj )M̃−ÑÃz̃Tj M̃−
]

(A.18)
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Finally, the last term Λ4 depends on ∆1N which is exactly zero for Pratt’s and
Kåsa’s fits, since their corresponding constraint matrices are independent of the
data. On the other hand, the constraint matrices associated with Taubin’s fit
and Hyper fit are data-dependent, and as such we should compute Λ4 for both
fits separately. Because NH = 2NT −NP, ∆1NH = 2∆1NT, and as such it is
enough to compute Λ4 for Taubin’s fit. Since ÃT ÑTÃ = ÃT ÑPÃ = ζ̃, then

ÃT ÑHÃ = 2ÃT ÑTÃ− ÃT ÑPÃ = ζ̃ (A.19)

Also, recall that ∆2,1λ = (ÃT∆2MÃ)

ÃT ÑÃ
, then Λ4’s for both Hyper and the Taubin

fits become

Λ4,T = −1

ζ̃
M̃−SÑT

E
(

(ÃT∆2MÃ)∆1NTÃ∆1A
T
)

Λ4,H = −2

ζ̃
M̃−SÑH

E
(

(ÃT∆2MÃ)∆1NTÃ∆1A
T
)

(A.20)

respectively. Also, since ÑT = 1
n

∑n

i=1 Ṽi, then E((ÃT∆2MÃ)∆1NTÃ∆1A
T )

becomes

= − 1

n3

n
∑

i,j,k=1

E
(

(ÃT∆2MiÃ)∆1VjÃÃT∆1MkM̃
−
)

= − 1

n3

n
∑

i,j=1

E
(

(ÃT [∆1zi∆1z
T
i ]Ã)∆1VjÃ(ÃT∆1zj)z̃

T
j

)

M̃−

∆1Mi and ∆2Mi are the linear and the quadratic forms of the random vectors
(δi, εi) for all i = 1, . . . , n. Hence the expectation of all cross-product terms,
which have different indices j and k (j 6= k), is exactly zero. Note that when i =
j, the resulting expression will be dropped because it is of order O(σ4/n2). Thus
we are interested only in the case of i 6= j. Thus E((ÃT∆2MÃ)∆1NTÃ∆1A

T )
becomes

= − 1

n3

n
∑

i6=j

[

ÃT
E(∆1zi∆1z

T
i )Ã · E(∆1VjÃ(ÃT∆1zj))z̃

T
j

]

M̃−

= − ζ̃σ
2

n3

n
∑

i6=j

E
(

∆1VjÃ(ÃT∆1zj)
)

z̃Tj M̃
− (A.21)

Next, perturbating Vj gives ∆1Vj = Ỹjδj + P̃jεj , then we conclude

E(∆1VjÃ(ÃT∆1zj)) = σ2Q̃jÃ.

Combining all above equations together and using cov(∆1zi) = σ2ÑT simplifies
E((ÃT∆2MÃ)∆1NTÃ∆1A

T ) to

= − ζ̃σ
4

n3

(

n
∑

i6=j

Q̃jÃz̃Tj

)

M̃− = − (n− 1)ζ̃σ4

n3

(

n
∑

j=1

Q̃jÃz̃Tj

)

M̃−
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According to above discussion, Λ4 for Taubin’s and Hyper fits can be formalized
by the expressions given below

Λ4,T =
(n− 1)σ4

n3
M̃−SÑT

(

n
∑

j=1

Q̃jÃz̃Tj

)

M̃− (A.22)

Λ4,H =
2(n− 1)σ4

n3
M̃−SÑH

(

n
∑

j=1

Q̃jÃz̃Tj

)

M̃− (A.23)

respectively. In the same analogue we find Λ4,I for HyperLS fit, say Λ4,I . First

note that
∑n

i=1 ξ̃i =
∑n

i=1 z̃
T
i M̃

−z̃i = trace(M̃−M̃) = 3, thus

ÃT ÑIÃ = ζ̃
(

1− 1

n2

n
∑

i=1

ξ̃i

)

= ζ̃(1 − 3/n2)

This fact together with Eq. (A.21) and trace(M̃−Ṽi) ∼ O(n) give us

Λ4,I = −M̃
−

S
ÑI

[

−
2(n − 1)σ4(

∑n
j=1

Q̃jÃz̃Tj )M̃−

n3(1 − 3

n2
)

−
1

n2

n
∑

i=1

E(∆2λ2,1trace(M̃
−

Ṽi)∆1MiÃ∆1A
T
)
]

.

Finally, one can use

1

n2

n
∑

i=1

E

(

∆2λ2,1trace(M̃
−

Ṽi)∆1MiÃ∆1A
T
)

= −
ζ̃(n − 1)σ4

∑n
i=1

trace(M̃−Ṽi)M̃iM̃
−

n4(1 − 3

n2
)

.

to get the desired result.

Proof of Theorem 3.3. Recall ∆2A = M̃−S̃Ñ(R1 − R2)Ã, where R1 = ∆2M

and R2 = ∆1MM̃−∆1M. It is straightforward to show that

E(R1Ã) =
σ2

n

n
∑

i=1

Ψ̃iÃ,

where Ψ̃i = Ṽi + 2S[Π̃i]; while

E(R2Ã) =
1

n2

n
∑

i,j=1

E

(

2S(z̃i∆1z
T
i )M̃

−(∆1z
T
j Ã)z̃j

)

=
1

n2

n
∑

i=1

(

(

z̃iÃ
T
)

E
(

∆1zi∆1z
T
i

)

M̃−z̃i + ψ̃iE
(

∆1zi∆1z
T
i

)

Ã
)

=
σ2

n2

n
∑

i=1

(

η̃iz̃i + ψ̃iṼiÃ
)

.

Thus premultiplying E(R1 − R2) by M̃−SÑ gives the bias of ∆2A. Next we

derive the MSE of ∆2A. Since E(R2ÃÃTR2) has O(σ4/n2), it will be ignored
in our analysis, and as such we are interested in

E(∆2A∆2A
T ) = M̃− S̃Ñ E

(

R1ÃÃTR1 − 2S[R1ÃÃTR2]
)

S̃T

Ñ
M̃− (A.24)
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up to order O(σ4/n2). We commence with writing E(R1ÃÃTR1) = Ω1 +Ω2,
where

Ω1 =
1

n2

n
∑

i6=j

[

E(∆2Mi)ÃÃT
E(∆2Mj)

]

(A.25)

Ω2 =
1

n2

n
∑

i=1

[

E(∆2Mi)ÃÃT
E(∆2Mi)

]

, (A.26)

We firstly handel Ω1. Recall Π̃i = z̃iĕ
T
1 (so Ãz̃i = Π̃iÃ), then using the defini-

tion of Ψ̃i gives

Ω1 =
1

n2

n
∑

i6=j

[

E(∆2Mi)ÃÃT
E(∆2Mj)

]

=
1

n2

n
∑

i6=j

[

E((∆2z
T
i Ã)z̃i + (∆1z

T
i Ã)∆1zi)E((∆2z

T
j Ã)z̃Tj + (∆1z

T
j Ã)∆1z

T
j )

]

=
σ4

n2

n
∑

i6=j

[

(2Π̃iÃ+ ṼiÃ)(2Π̃jÃ+ ṼjÃ)T
]

=
σ4

n2

n
∑

i6=j

(Ψ̃iÃ)(Ψ̃jÃ)T .

Note that Ω1 is the most important term in MSE (because it is of order σ4).
Next, we verify the final form of Ω2, which can be written in terms of Bi, Ci,
and Di for each i = 1, . . . , n. By Lemma A.1, we handel Ω2.

Ω2 =
1

n2

n
∑

i=1

E

[

(

(∆2z
T
i Ã)z̃i + (∆1z

T
i Ã)∆1zi

)(

(∆2z
T
i Ã)z̃Ti + (∆1z

T
i Ã)∆1z

T
i

)

]

=
1

n2

n
∑

i=1

[

E
(

Bi + 2S[Ci] + E(Di)
]

=
σ4

n2

n
∑

i=1

[

2(2Π̃iÃ)(2Π̃iÃ)T + 4S[(ṼiÃ)(2Π̃iÃ)T ] + ζ̃Ṽi + 2(ṼiÃ)(ṼiÃ)T
]

=
σ4

n2

n
∑

i=1

[

2(2Π̃iÃ+ ṼiÃ)(2Π̃iÃ+ ṼiÃ)T + ζ̃Ṽi

]

=
σ4

n2

n
∑

i=1

[

2(Ψ̃iÃ)(Ψ̃iÃ)T + ζ̃Ṽi

]

.

Now if we combine Ω1 and Ω2, then we get

E
(

(R1Ã)(R1Ã)T
)

=
σ4

n2

n
∑

i=1

(

(Ψ̃iÃ)(Ψ̃iÃ)T + ζ̃Ṽi +

n
∑

j=1

(Ψ̃iÃ)(Ψ̃jÃ)T
)

.

(A.27)
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Lastly, we compute E((R1Ã)(R2Ã)T ).

E
(

(R1Ã)(R2Ã)T
)

=
1

n3

n
∑

i,j,k=1

E
(

∆2MiÃÃT∆1MjM̃
−∆1Mk

)

(A.28)

∆2Mi is a quadratic form of the random vector h, also ∆1Mi is a linear combi-
nation of h, hence the expectation of all terms having unequal indices j and
k is zero. A more detailed analysis, after excluding the case i = j, shows
E((R1Ã)(R2Ã)T )

=
2

n3

n
∑

i6=j

E
[

(∆2z
T
i Ã) z̃i +∆1zi∆1z

T
i Ã

]

E
[

(ÃT∆1zj) z̃
T
j M̃

−S[∆1zj z̃
T
j ]
]

=
σ2

n3

n
∑

i6=j

[

2Ãz̃i + ṼiÃ
][

E
(

ÃT∆1zj∆1z
T
j M̃

−M̃j

)

+ ψ̃jÃ
T
E
(

∆1zj∆1z
T
j

)]

=
σ4

n3

n
∑

i6=j

(Ψ̃iÃ)
(

ÃT ṼjM̃
−M̃j + ψ̃jÃ

T Ṽj

)

=
σ4

n3

n
∑

i6=j

(Ψ̃iÃ)
(

η̃j z̃j + ψ̃jṼjÃ
)T
.

Finally, substituting the formal expressions of (A.27) and (A.28) in equation
(A.24) gives (3.3). Now cov(∆2A) follows immediately if we subtract the outer
product of Bias(∆2A) represented by

σ4

n2
M̃−SÑ

n
∑

i,j=1

(

(Ψ̃iÃ)(Ψ̃jÃ)T − 2

n
S
[

(Ψ̃iÃ)(ψ̃jṼjÃ+ η̃j z̃j)
T
]

)

ST

Ñ
M̃−

from M̃−SÑΦ̃SÑM̃−. This gives cov(∆2A) = M̃−SÑΦ̃2S
T

Ñ
M̃−, with Φ̃2 given

in (3.22).
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