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Abstract: Monte Carlo methods (based on iid sampling or Markov chains)
for estimating integrals with respect to a proper target distribution (that
is, a probability distribution) are well known in the statistics literature.
If the target distribution π happens to be improper then it is shown here
that the standard time average estimator based on Markov chains with π
as its stationary distribution will converge to zero with probability 1, and
hence is not appropriate. In this paper, we present some limit theorems
for regenerative sequences and use these to develop some algorithms to
produce strongly consistent estimators (called regeneration and ratio esti-
mators) that work whether π is proper or improper. These methods may be
referred to as regenerative sequence Monte Carlo (RSMC) methods. The
regenerative sequences include Markov chains as a special case. We also
present an algorithm that uses the domination of the given target π by a
probability distribution π0. Examples are given to illustrate the use and
limitations of our algorithms.
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1. Introduction

Let π be a distribution (that is, a measure) on a set S and let f be a real valued
function on S, integrable with respect to π, that is,

∫

S
|f |dπ < ∞. Let λ :=

∫

S fdπ. The problem addressed in this paper is to find appropriate statistical
procedures to estimate λ. That is, the problem is to find a way to generate data
(X1, X2, . . . , Xn) and find a statistic λ̂n such that for large n, λ̂n is close to
λ in a suitable sense. When π is known to be a probability distribution, that
is when π(S) = 1, a well established statistical procedure is the classical (iid)
Monte Carlo method. This method requires one to generate iid observations
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(X1, X2, . . . , Xn) with distribution π and estimate λ by λ̂n ≡
∑n

i=1 f(Xi)/n.

By the law of large numbers for iid random variables, λ̂n
a.s.−→ λ as n → ∞.

If in addition
∫

S f
2dπ < ∞ then the accuracy of the estimate λ̂n, that is the

behavior of the quantity (λ̂n − λ) is (by the classical CLT) of the order n−1/2.

Over the past twenty years an alternative statistical procedure known as
Markov chain Monte Carlo (MCMC) has come into extensive use in statistical
literature. In particular, if generating iid observations from π is not easy then
classical Monte Carlo cannot be used to estimate λ. The MCMC method is to
generate a Markov chain {Xn}n≥0 with π as its invariant distribution and that is
suitably irreducible. Then one appeal to the law of large numbers for such chains
that says that for any initial value of X0, the “time average”

∑n
j=1 f(Xj)/n con-

verges almost surely to the “space average” λ =
∫

S fdπ. Indeed, the pioneering
paper by [15] did introduce this method where the target distribution π, al-
though a probability distribution, turned out to be the so called Gibbs measure
on the configuration space in statistical mechanics and it was difficult to simulate
from π. In this fundamental paper, they constructed a Markov chain {Xn}n≥0

that is appropriately irreducible and has π as its stationary distribution. This
idea was adapted to some statistical problems by [10]. This whole apparatus
was rediscovered in the late 80’s and early 90’s by a number of statisticians and
since then the subject has exploded [see e.g. 21]. Both the above two methods,
that is, the iid Monte Carlo and the MCMC depend crucially on the assumption
that π is a probability distribution.

A natural question suggested by the above discussion is the following. Suppose
π is not proper (that is, π(S) = ∞) but f : S → R is such that

∫

S
|f |dπ < ∞.

How do we estimate λ by statistical tools as distinct from classical numerical
analytic tools? Clearly, the iid Monte Carlo to generate data from π is not
feasible since π(S) = ∞. However, it may be possible to generate a Markov
chain {Xn}n≥0 that is appropriately irreducible and admits the (improper) dis-
tribution π as its stationary distribution. In such situations, it can be shown
(see Corollary 2) that the usual estimator

∑n
j=1 f(Xj)/n will indeed not work,

that is, will not converge to λ, but rather go to zero with probability 1. In par-
ticular, in Bayesian statistics if an improper prior is assigned to the parameters
then the resulting posterior distribution π (for the given data) is not guaranteed
to be proper. If posterior propriety is not checked and π happens to be improper
then Corollary 2 implies that the usual MCMC estimator

∑n
j=1 f(Xj)/n based

on a Markov chain {Xn}n≥0 with π as its stationary (improper) distribution will
simply not work in the sense that it will go to zero with probability 1 and not
to λ. The use of MCMC for improper posterior distribution does not seem to
have received much attention in the literature. The exceptions include [22, 12],
and [13].

In this paper we show that given a distribution π on some space S that may
or may not be proper, it may be possible to generate data {Xn}n≥0 such that
more general time averages (called regeneration and ratio estimators in Theo-
rem 1) than the standard Monte Carlo estimator,

∑n
j=1 f(Xj)/n, will converge

to λ. This is based on the idea of regenerative sequences (Definition 1) which in-
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clude iid samples and Markov chains (null or positive recurrent) as special cases
(see section 2). For Harris recurrent Markov chains, the possibility of using the
ratio estimator proposed here was previously noted by [22]. Based on these the-
oretical results we present several algorithms for statistical estimation of λ (see
sections 2 and 3). Section 3 discusses the use of a special class of regenerative se-
quences, namely regenerative sequences (not necessarily Markov chains) based
on null recurrent random walks for estimating countable sums and integrals
when S = R

d for any d < ∞. Some examples are given in Section 4. Some of
these examples illustrate the use of null recurrent Gibbs chains for consistent
estimation of quantities like λ. This use of null recurrent Markov chains does
not seem to have been noted before in the statistical literature. Section 4 also
presents a generalization of the importance sampling methods and its potential
application in Bayesian sensitivity analysis.

Another method discussed in this paper uses the idea of dominating the given
target π by a probability distribution π0 and then using the standard Monte
Carlo methodology (iid or MCMC) with π0 as its stationary distribution. This
is discussed in Section 5. Some concluding remarks appear in Section 6. Finally,
proofs of theorems and corollaries are given in Appendix B and some technical
results appear in Appendix A and Appendix C.

2. Convergence results for regenerative sequences

In this section we introduce the concept of regenerative sequences and establish
some convergence results for these. This in turn provides some useful statistical
tools for estimating parameters. These tools are more general than the Monte
Carlo methods based on iid observations or Markov chains. In particular, they
are applicable to the case when the target distribution is not proper. The fol-
lowing definition of a regenerative sequence is given in [2].

Definition 1. Let (Ω,F , P ) be a probability space and (S,S) be a measurable
space. A sequence of random variables {Xn}n≥0 defined on (Ω,F , P ) with values
in (S,S) is called regenerative if there exists a sequence of integer (random) times
T0 = 0 < T1 < T2 < · · · such that the excursions {Xn : Tj ≤ n < Tj+1, τj+1}j≥0

are iid where τj = Tj − Tj−1 for j = 1, 2, . . . , that is,

P (τj+1 = kj , XTj+q ∈ Aq,j , 0 ≤ q < kj , j = 0, . . . , r)

=

r
∏

j=0

P (τ1 = kj , XT1+q ∈ Aq,j , 0 ≤ q < kj),

for all k0, k1, . . . , kr ∈ N, the set of positive integers, Aq,j ∈ S, 0 ≤ q < kj , j =
0, 1, . . . , r, and r ≥ 1. The random times {Tn}n≥0 are called regeneration times
and {τj}j≥1 are the excursion times.

Example 1. Let {Xn}n≥0 be an irreducible, recurrent Markov chain with
countable state space S = {s0, s1, s2, . . . }. Let X0 = s0, T0 = 0, Tr+1 = inf{n :
n ≥ Tr + 1, Xn = s0}, r = 0, 1, 2, . . . . Then {Xn}n≥0 is regenerative with
regeneration times {Tn}n≥0.
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Example 2. Let {Xn}n≥0 be a Markov chain with general state space (S,S).
Assume that S is countably generated and {Xn}n≥0 is Harris recurrent. Then it
has been independently shown by [3] and [18] that for some n0 ≥ 1, the Markov
chain {Zn}n≥0 has an atom that it visits infinitely often, where Zn ≡ Xnn0

for
n = 0, 1, . . . . By the Markov property, the excursions between consecutive visits
to this atom are iid making {Zn}n≥0 a regenerative sequence (see e.g. Meyn
and Tweedie [16, Section 17.3.1] or Athreya and Lahiri [2, Theorem 14.2.8]).

Example 3. Let {Yn}n≥0 be a Harris recurrent Markov chain as in Exam-
ple 2. Given {Yn = yn}n≥0, let {An}n≥0 be independent positive integer valued
random variables. Set

Xn =











y0 0 ≤ n < A0

y1 A0 ≤ n < A0 +A1

...

.

Then {Xn}n≥0 is called a semi Markov chain with embedded Markov chain
{Yn = yn}n≥0 and sojourn times {An}n≥0. Since {Yn}n≥0 is regenerative, it
follows that {Xn}n≥0 is regenerative.

The following theorem presents some useful limit results for regenerative
sequences that can be used for constructing consistent estimators of integrals
with respect to improper measures.

Theorem 1. Let {Xn}n≥0 be a regenerative sequence with regeneration times
{Tn}n≥0. Let

π̌(A) = E

( T1−1
∑

j=0

IA(Xj)

)

for A ∈ S. (2.1)

(The measure π̌ is known as the canonical (or, occupation) measure for {Xn}n≥0.)
Let Nn = k if Tk ≤ n < Tk+1, k, n = 0, 1, 2, . . . , that is, Nn is the number of
regenerations by time n. Suppose f, g : S → R are two measurable functions
such that

∫

S
|f |dπ̌ <∞,

∫

S
|g|dπ̌ <∞, and

∫

S
gdπ̌ 6= 0. Then, as n→ ∞,

(i) (regeneration estimator)

λ̂n =

∑n
j=0 f(Xj)

Nn

a.s.−→
∫

S

fdπ̌, (2.2)

(ii) (ratio estimator) and

R̂n =

∑n
j=0 f(Xj)

∑n
j=0 g(Xj)

a.s.−→
∫

S fdπ̌
∫

S
gdπ̌

. (2.3)

A proof of Theorem 1 is given in Appendix B. Theorem 1(i) for continuous
time regenerative sequences is available in [1]. Theorem 1(ii) for Harris recur-
rent Markov chains is available in Meyn and Tweedie [16, Theorem 17.3.2]. In
Definition 1, if {Xn : Tj ≤ n < Tj+1, τj+1}’s are assumed to be iid only for
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j ≥ 1, then {Xn}n≥0 is called a delayed regenerative process. Straightforward
modification of the proof of Theorem 1 shows that it holds for any delayed
regenerative process.

The next theorem describes the asymptotic behavior of the regeneration
times, Tn and the number of regenerations, Nn. The result on the asymptotic
distribution of Tn presented in the theorem below is already proved in Feller [8,
Chapter XIII, Section 6].

Theorem 2. Let {Tj}j≥0 and {τj}j≥1 be as defined in Definition 1. Suppose in
addition P (τ1 > x) ∼ x−αL(x) as x → ∞, where 0 < α < 1 and L(x) is slowly
varying at ∞ (i.e., L(cx)/L(x) → 1 as x→ ∞, ∀ 0 < c <∞).

(i) Then
Tn
an

d−→ Vα, as n→ ∞, (2.4)

where {an} satisfies na−α
n L(an) → 1 and Vα is a positive random variable

with a stable distribution with index α such that

E(exp(−sVα)) = exp(−sαΓ(1− α)), 0 ≤ s <∞, (2.5)

where for p > 0, Γ(p) =
∫∞

0
up−1 exp(−u)du is the Gamma function.

(ii) Also
Nn

bn

d−→ Yα, as n→ ∞, (2.6)

where bn = nα/L(n) and

P (Yα ≤ x) = P (Vα ≥ x−
1
α ) for 0 < x <∞,

that is Yα
d
= V −α

α and Vα is as defined in (2.5).

As mentioned before, the proof of Theorem 2(i) is available in Feller [8, Chap-
ter XIII, Section 6]. The proof of Theorem 2(ii) for random walk Markov chains
on R using method of moments is presented in [4, page 229]. We provide a proof
of Theorem 2(ii) in Appendix B.

Recall from the Introduction that our goal is to obtain a consistent estimate of
λ =

∫

S
fdπ for a given (possibly infinite) measure π and an integrable function

f : S → R. Theorem 1 yields the following generic recipe for estimating λ.

1. Construct a regenerative sequence {Xn}n≥0 with π as its canonical mea-
sure.

2. As defined in Theorem 1, let Nn be the number of regenerations by time
n. Estimate λ by λ̂n =

∑n
j=1 f(Xj)/Nn. By Theorem 1(i) λ̂n

a.s.−→ λ.

3. If we can find a function g such that Eπg :=
∫

S gdπ(6= 0) is known then

we can estimate λ by (Eπg)R̂n consistently, where R̂n is defined in (2.3).

In order to use the above recipe, one needs to find a regenerative sequence
with π as its canonical measure. Later in this section, we see that a Markov
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chain {Xn}n≥0 that has a recurrent atom and has π as its invariant measure
can be used for this purpose.

The following corollary uses (2.6) to provide an alternative estimator of λ.

Corollary 1. From (2.2) and (2.6) it follows that under the hypotheses of The-

orem 1 and Theorem 2,
∑n

j=0 f(Xj)/bn
d−→ (

∫

S
fdπ̌) Yα. If E(Yα) is known and

is finite then we can estimate
∫

S fdπ̌ in the following way. Run k independent
copies of {Xn} and let Dr

n =
∑n

j=0 f(X
r
j )/bn where {Xr

j }nj=0 are the realized
values of the chain in the rth run, r = 1, 2, . . . , k. Since for large n, Dr

n, r =
1, 2, . . . , k are independent draws from an approximation to (

∫

S
fdπ̌) Yα, we can

estimate
∫

S
fdπ̌ by λ̂n,k ≡ ∑k

r=1D
r
n/(kE(Yα)). It can be shown that there ex-

ists a sub-sub sequence kjl ↑ ∞ and nkjl
↑ ∞ such that λ̂nkjl

,kjl

a.s.−→
∫

S fdπ̌ as

l → ∞.

A proof of Corollary 1 is given in Appendix B.
For the Markov chains in Example 1, it can be shown that P (Xn = si for some

1 ≤ n < ∞|X0 = sj) = 1 for all si, sj ∈ S, that is, for such chains any
si ∈ S is a recurrent point and the Markov chain regenerates every time it
reaches si. If {Xn}n≥0 is a Markov chain with general state space (S,S) and is
φ-irreducible with a nontrivial σ-finite reference measure φ, then by the regen-
eration method of [3] and [18], the Markov chain {Xn}n≥0 is equivalent to an
appropriate Markov chain X̌n on an enlarged space Š so that X̌n admits an atom
∆ in Š [16, Theorem 5.1.3]. Now in addition if we assume that {Xn}n≥0 is Harris
recurrent as in Example 2, then P (X̌n = ∆ for some 1 ≤ n < ∞|X̌0 = x) = 1
for all x ∈ Š, i.e., ∆ is a recurrent point for X̌n. In Appendix A we present some
results on the existence and the uniqueness of invariant measure for Markov
chains. Using these results and Theorem 1, the following remark discusses how
integrals with respect to a given target distribution can be estimated using
Markov chains.

Remark 1. Let π be a given (proper or improper) target distribution and
{Xn}n≥0 be a Markov chain as in Examples 1 or 2 with invariant distribution
π. Then from Corollary 3 in Appendix A we know that π is the unique (up to a
multiplicative constant) invariant measure for {Xn}n≥0. Also from Theorem 1
we know that for any two integrable functions f, g : S → R with

∫

S gdπ 6= 0,
no matter what the distribution of the starting value X0, as n → ∞, the ratio
R̂n =

∑n
j=0 f(Xj)/

∑n
j=0 g(Xj) converges almost surely to

∫

S fdπ/
∫

S gdπ. If

we choose g such that Eπg =
∫

S
gdπ is easy to evaluate, then λ =

∫

S
fdπ

can be consistently estimated by R̂n(Eπg). In particular, if g(·) = IK(·), where
K is a (possibly cylinder) subset of S with known π(K) < ∞ then R̂n =
∑n

j=0 f(Xj)/Nn(K), where Nn(K) =
∑n

j=0 IK(Xj), the number of times the
Markov chain visits K by time n. Further, from Corollary 3 in Appendix A we
note that one may use the regenerative estimator λ̂n as in (2.2) if π({∆}) is
known.

From Remark 1 we see that when π is not proper, the regeneration estimator
(2.2) and the ratio estimator (2.3) based on a Markov chain provide consistent
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estimates of λ. On the contrary, in Corollary 2 below we show that when π
is improper, the usual time average MCMC estimator

∑n
j=1 f(Xj)/n is not

consistent for λ. Indeed, we show that it converges to zero with probability 1.
A result similar to Corollary 2 but under a different set of hypotheses was
established by [13].

Theorem 3. Let {Xn}n≥0 be a regenerative sequence with occupation measure
π̌ as in (2.1). Let π̌(S) = E(T1) = ∞. Then for any f : S → R such that
∫

S
|f |dπ̌ <∞,

lim
n→∞

1

n

n
∑

i=1

f(Xi) = 0 with probability 1.

Corollary 2. Let {Xn}n≥0 be a Harris recurrent Markov chain with improper
invariant measure π, that is, π(S) = ∞. Let f : S → R be such that

∫

S
|f |dπ <

∞. Then the standard time average estimator
∑n

i=1 f(Xi)/n converges to 0 with
probability 1.

The proof of Theorem 3 is given in Appendix B. Corollary 2 follows from
Theorem 3 since as pointed out in Example 2, every Harris recurrent Markov
chain is regenerative. In the improper target case, Nn, the number of regenera-
tions, grows slower than n as noted in (2.6). On the other hand, from (2.2) we
know that the time sums

∑n
i=1 f(Xi) grow exactly at the rate Nn. This may

explain why the usual time average MCMC estimator is not consistent for λ
when π is improper.

3. Algorithms based on random walks

In this section we focus on the use of a special class of regenerative sequences,
namely regenerative sequences (not necessarily Markov chains) based on null
recurrent random walks on Z and its variants for estimating countable sums
and integrals. We begin with the case when S is countable.

Let S be any countable set and f : S → R be such that
∑

s∈S |f(s)| <
∞. Our goal is to obtain a consistent estimator of λ =

∑

s∈S f(s). Without
loss of generality (see Remark 3) we take S to be Z, the set of integers. Let
{Xn}n≥0 be a simple symmetric random walk (SSRW) on Z starting at X0.
That is, Xn+1 = Xn + δn+1, n ≥ 0 where {δn}n≥1 are iid with distribution
P (δ1 = +1) = 1/2 = P (δ1 = −1) and independent of X0. This Markov chain
{Xn}n≥0 is null recurrent with the counting measure {π(i) ≡ 1 : i ∈ Z} being
its unique (up to multiplicative constant) invariant measure [see e.g. 16, Section
8.4.3]. From Example 1 of Section 2, we know that {Xn}n≥0 is regenerative
and it satisfies the hypothesis of Corollary 3 in Appendix A with ∆ = 0. Since
π(∆) = 1, Corollary 3 in Appendix A allows us to identify the occupation
measure π̃ with the counting measure and hence from (2.2) it follows that for
any initial X0,

λ̂n =

∑n
j=0 f(Xj)

Nn

a.s.−→
∑

i∈Z

f(i) ≡ λ, (3.1)
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where Nn =
∑n

j=0 I(Xj = 0) is the number of visits to zero by {Xj}nj=0. So

λ̂n is a consistent estimator of λ. Let X0 = 0, T0 = 0, Tr+1 = inf{n : n ≥
Tr + 1, Xn = 0}, r = 0, 1, 2, . . . and τi = Ti − Ti−1, i ≥ 1. Then {τi}i≥1 are iid

positive random variables with P (τ1 > n) ∼
√

2/πn−1/2 as n → ∞ [see e.g. 7,

page 203]. So from Theorem 2 (that is, from (2.6)) using bn = n1/2
√

π/2, we
have

Nn√
n

d−→
√

π

2
Y1/2,

where Y1/2 = V
−1/2
1/2 and Vα is as defined in (2.5). Since the density function of

V1/2 is available [see e.g. 8, page 173], simple calculations show that Y1/2
d
= |Z|

where Z ∼ N(0, 1). (We can also use (2.5) to find the distribution of Y1/2.) So
∑n

j=0 f(Xj)/
√
n

d−→
√

π
2λ|Z| and since E(|Z|) =

√

2/π is known we can use
Corollary 1 to obtain an alternative estimator of λ.

Remark 2. It can be shown [see 23] that the number of distinct values of Xj

for 0 ≤ j ≤ n grows at the rate of
√
n. Thus, after n steps of running the SSRW

Markov chain, the computation of
∑n

j=0 f(Xj) involves evaluation of f only at

approximately
√
n sites in Z.

The above discussion implies the following algorithm, that can be used to
estimate of λ =

∑

s∈S f(s)π(s) where π is a given (possibly infinite) measure on
a countable set S and f : S → R is a function satisfying

∑

s∈S |f(s)|π(s) < ∞.
Again, without loss of generality (see Remark 3) we assume that S = Z.

Algorithm I:

1. Run the simple symmetric random walk (SSRW), {Xn}n≥0 on Z.

2. Let λ̂n =
∑n

j=0 f(Xj)π(Xj)/Nn where Nn is the number of visits by

{Xj}nj=0 to 0 by time n. Then λ̂n
a.s.−→ λ, that is λ̂n is a consistent estimator

of λ.

Remark 3. Let S be any countable set and as before let N be the set of
positive integers. Then there exists a 1 − 1, onto map ζ : N → S. Consider the
map ξ : Z → N, defined as follows

ξ(j) =

{

2j if j = 1, 2, . . .
−2j + 1 if j = 0,−1,−2, . . .

.

Then ξ is 1− 1, onto map from Z to N and so ζ ◦ ξ is a 1− 1, onto map from Z

to S. Using Algorithm I, we can estimate λ =
∑

s∈S f(s)π(s) by
∑n

j=1(f ◦ ζ ◦
ξ(Xj))(π ◦ ζ ◦ ξ(Xj))/Nn. We now present some examples of the function ζ.

(i) Note that, if S = Z, we can take ζ to be simply ξ−1.



2672 K. B. Athreya and V. Roy

(ii) When S = Z
2, define A = {2i3j : i ≥ 1, j ≥ 1}. There exists a 1− 1, onto

map ρ1 : N → A, for example take ρ1(1) to be the smallest element of
A = 2 × 3 = 6, ρ1(2) to be the second smallest element = 22 × 3 = 12,
and so on. Define another map ρ2 : A → N

2 by ρ2(2
i3j) = (i, j). Lastly

consider ρ3 : N2 → Z
2 where ρ3(i, j) = (ϕ(i), ϕ(j)) and ϕ = ξ−1, that is

ϕ(n) =

{

n
2 if n is even

−n−1
2 if n is odd

.

So ζ ≡ ρ3 ◦ ρ2 ◦ ρ1 : N → S = Z
2 is 1− 1, onto.

(iii) We can similarly define ζ when S = Z
d for d ≥ 3.

Now we consider the case S = R. Let f : R → R be Lebesgue integrable and
let λ =

∫

R
f(x)dx. Our goal is to obtain a consistent estimator of λ. Let {ηi}i≥1

be iid Uniform (−1/2, 1/2) random variables. Let Xn+1 = Xn + ηn+1, n ≥
0, X0 = x for some x ∈ R. Then it can be shown (see e.g. Durrett [7, page 195],
Meyn and Tweedie [16, Proposition 9.4.5]) that {Xn}n≥0 is a Harris recurrent
Markov chain with state space R and the Lebesgue measure as its invariant
measure (unique up to a multiplicative constant). From Example 2 of Section 2,
we know that {Xn}n≥0 is regenerative and Corollary 3 in Appendix A identifies
the occupation measure π̃ with (up to a multiplicative constant) the Lebesgue
measure. Since the Lebesgue measure of (−1/2, 1/2) is 1, it follows from (2.3)
of Theorem 1 that for any initial X0,

R̂n =

∑n
j=0 f(Xj)

Nn(K)

a.s.−→
∫

R

f(x)dx,

where Nn(K) =
∑n

j=0 IK(Xj) is the number of visits to K = (−1/2, 1/2) by

{Xj}nj=0. So R̂n is a consistent estimator of λ.
Since E(ηi) = 0, Var(ηi) = 1/12, and the length of the interval (−1/2, 1/2)

is 1, straightforward calculations using Theorem 10.30 in [4] show that

Nn(K)√
n

d−→
√
12|Z|, Z ∼ N(0, 1).

So as in the S countable case, an alternative estimator of λ can be formed
following Corollary 1.

Next we consider the case S = R
2. Let f : R2 → R be Lebesgue integrable

and let λ =
∫

R2 f(x)dx. Let Xn+1 = Xn+ηn+1, n ≥ 0, X0 = (0, 0) and {ηi}i≥1 ≡
{(η1i , η2i )}i≥1’s are iid random variables where η1i , η

2
i are iid Uniform (−1/2, 1/2).

From Durrett’s (2010) Theorem 4.2.8 we know that starting anywhere X0 = x,
{Xn}n≥0 visits any circle infinitely often with probability one. Also since ηi has
an absolutely continuous distribution, the density of ηi is bounded below by ǫ,
for any 0 < ǫ < 1 [see e.g. 7, Example 6.8.2]. Thus a regeneration scheme as in
[3] exists making {Xn}n≥0 regenerative. Since the Lebesgue measure on R

2 is
an invariant measure for {Xn}n≥0 by Corollary 3 in Appendix A and (2.3) of
Theorem 1, a consistent estimator of λ is given by

R̂n =

∑n
j=0 f(Xj)

Nn(K)

a.s.−→
∫

R2

f(x)dx,
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where Nn(K) =
∑n

j=0 IK(Xj) is the number of visits to K = [−1/2, 1/2] ×
[−1/2, 1/2] by {Xj}nj=0. Since X0 = (0, 0), note that

P (Xn ∈ K) =
[

P
(

n
∑

i=1

η1i ∈ [−1/2, 1/2]
)]2

=
[

P
(

∑n
i=1 η

1
i√

n
∈
[ −1

2
√
n
,

1

2
√
n

])]2

.

By the local central limit theorem, as n→ ∞,

√
nP

(

∑n
i=1 η

1
i√

n
∈
[ −1

2
√
n
,

1

2
√
n

])

→ c, 0 < c <∞.

Since E(η1i ) = 0, Var (η1i ) = 1/12, we have c =
√
12/

√
2π. Thus nP (Xn ∈

K) → c2, as n→ ∞ and hence

E[Nn(K)] = 1 +
n
∑

j=1

P (Xj ∈ K) ∼ c2
n
∑

j=1

1

j
∼ c2 logn.

(Here, as n → ∞, cn ∼ dn means that limn→∞ cn/dn = 1.) This yields the
following proposition.

Proposition 1. Let Nn(K) be as defined above. Then

E

(

Nn(K)

logn

)

→ 6

π
.

Next using discrete renewal theory and Karamata’s Tauberian theorem, ar-
guing as in [4, Theorem 10.30], one can show that for each r = 1, 2, . . .

lim
n
E

(

Nn(K)

logn

)r

= µr <∞ exists

and {µr}r≥1 is a moment sequence of an exponential distribution and hence
satisfies Carleman’s condition for determining the distribution. This implies the
following theorem holds.

Theorem 4. Let Nn(K) be as defined above. Then

Nn(K)

logn

d−→ 6

π
Y.

where Y is an Exponential(1) random variable.

Some recent results (analogous to Theorem 4) for random walks on Z
2 can

be found in [9] and [19]. As in the case of S = R, we can use Theorem 4 to
obtain an alternative estimator of λ (Corollary 1).

Let S = R and π be absolutely continuous with density h. From the above
discussion we see that the following algorithm can be used to estimate of λ =
∫

R
f(x)π(dx) where f : R → R is π-integrable.
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Algorithm II:

1. Run the mean 0 random walk, {Xn}n≥0 on R with increment distribution
Uniform (−1/2, 1/2).

2. Let R̂n =
∑

n
j=1

f(Xj)h(Xj)

Nn(K) where Nn(K) is the number of visits by {Xj}nj=0

to the unit interval K = (−1/2, 1/2). Then R̂n
a.s.−→ λ, that is, R̂n is a

consistent estimator of λ

From the above discussion we know that Algorithm II can be suitably mod-
ified for the case S = R

2.

Remark 4. When S is countable, the method proposed here works with the
Markov chain SSRW replaced by any mean 0, random walk on Z such that
Xn/n → 0 in probability. By Chung-Fuchs theorem this random walk is recur-
rent [7, page 195]. Similarly when S = R or R

2, any mean 0, finite variance
random walk with absolutely continuous distribution can be used. On the other
hand, a symmetric random walk on R may not be recurrent. For example, con-
sider a random walk Markov chain {Xn}n≥0 on R where the increment random
variable η has a symmetric stable distribution with index α, 0 < α < 1, that
is, the characteristic function of η is ψ(t) = exp(−|t|α), 0 < α < 1. It can be
shown that {Xn}n≥0 is not recurrent [see 6, page 253] in the sense that for any
nondegenerate interval, I in R,

∑∞
n=0 P (Xn ∈ I) <∞ and hence the number of

visits by {Xn}n≥0 to I is finite with probability 1.

Lastly we present an algorithm that is based on the SSRW on Z and a ran-
domization tool to estimate integrals with respect to an absolutely continuous
measure π on any R

d, d <∞. Let f : Rd → R be Borel measurable and π be an
absolutely continuous distribution on R

d with Radon-Nikodym derivative p(·).
Assume that

∫

Rd |f(x)|p(x)dx <∞. The following theorem provides a consistent
estimator of λ =

∫

Rd f(x)p(x)dx.

Theorem 5. Let {Xn}n≥0 be a SSRW on Z. Let {Uij : i = 0, 1, . . . ; j =
1, 2, . . . , d} be a sequence of iid Uniform (−1/2, 1/2) random variables and in-
dependent of {Xn}n≥0. Assume κ : Z → Z

d be 1 − 1, onto. Define Yn :=
κ(Xn) + Un, n = 0, 1, , . . . where Un = (Un1, Un2, . . . , Und). Then

λ̂n :=

∑n
j=0 f(Yj)p(Yj)

Nn

a.s.−→
∫

Rd

f(x)p(x)dx, (3.2)

where Nn =
∑n

j=0 I(Xj = 0) is the number of visits to zero by {Xj}nj=0.

It may be noted that the sequence {Yn}n≥0 defined above is not a Markov
chain but is indeed regenerative as in Theorem 1 with {Tn} sequence corre-
sponding to the returns of SSRW {Xn}n≥0 to zero. The proof of Theorem 5 is
given in Appendix B. Note that, the function κ can be chosen as κ = ζ ◦ξ where
ζ and ξ are as given in Remark 3. Theorem 5 suggests the following variation
of Algorithm I.
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Algorithm III:

1. Generate the sequence {Yn}n≥0 as in Theorem 5.

2. Estimate λ =
∫

Rd f(x)p(x)dx by λ̂n defined in (3.2).

4. Examples

In this section we demonstrate the use of the statistical algorithms developed in
the previous sections with some examples. Some of our simulations also illustrate
that the convergence of these algorithms could be rather slow.

4.1. Simulation examples

We first consider estimating λ =
∑∞

m=1 1/m
2 using SSRW (Algorithm I) with

X0 = 0. The left panel in Figure 1 shows the estimates for 6 values (log10 n =
3, 4, . . . , 8, where log10 denotes logarithm base 10). The plot includes the me-
dian estimates and the 90% empirical confidence interval estimates based on 30
independent repetitions. The median and 90% interval estimates for n = 108

are 1.654, and (1.560, 1.701) respectively. Note that, the true value λ is π2/6 =
1.645. The time to run the SSRW chain for 108 steps using R [20] in an old Intel
Q9550 2.83GHz machine running Windows 7 is about 3 seconds. Next we used
the same chain (SSRW with X0 = 0) to estimate λ̃ =

∑∞
m=1001 1/(m− 1000)2

and found that the first 105 iterations yielded an estimate of 0 (red lines in the
right panel in Figure 1). However, estimation of λ̃ can be improved if we start
the SSRW at X0 = 1000, and define regenerations as the returns to 1000 (green
lines in the right panel in Figure 1).

Next we consider estimating λ =
∫∞

1
1/x2dx (see left panel in Figure 2) using

Algorithms II (red line) and III (green line) for the same six n values mentioned
above. We observe that the interval estimates based on Algorithm II are much
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Fig 1. Point and 90% interval estimates of
∑

∞

m=1
1/m2 (left panel) and λ̃ =∑

∞

m=1001
1/(m − 1000)2 (right panel).
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Fig 2. The left panel shows the point and 90% interval estimates of λ =
∫
∞

1
(1/x2)dx. The

right panel shows the behavior of the standard MCMC estimator based on the Gibbs chain.

wider than those for Algorithm III particularly for smaller values of n. In the
examples of this section, for applying Algorithm III we use κ = ζ ◦ ξ where ζ
and ξ are as given in Remark 3.

Lastly, we consider two examples with S ⊂ R
2. The first one is the following.

Let
f(x, y) = exp[−(x2 − 2xy + y2)/2], (x, y) ∈ R

2. (4.1)

Define the measure π by π(A) =
∫ ∫

A
f(x, y)dx dy,A ∈ B(R2). Note that π is a

σ-finite, infinite measure on R
2. Note that

fX|Y (x|y) :=
f(x, y)

∫

R
f(x′, y)dx′

= φ(x − y),

is a probability density on R, where φ(u) = exp(−u2/2)/
√
2π, u ∈ R is the stan-

dard normal density. Our goal is to estimate π(A) where A = [−1, 1]× [−1, 1].
Notice that the integral, π(A) is not available in closed form. Let {(Xn, Yn)}n≥0

be the Gibbs sampler Markov chain that uses fX|Y (·|y) and fY |X(·|x) alter-
nately. Then {(Xn, Yn)}n≥0 has π as its invariant measure. From Theorem 3

we know that the usual MCMC estimator,
∑n

j=0 IA(Xj , Yj)/n
a.s.−→ 0 since π is

an improper measure (see the right panel in Figure 2). It can be verified that
{(Xn, Yn)}n≥0 is regenerative (a proof of this is given in Appendix C). So by
Theorem 1, for any initial (X0, Y0), and for any −∞ < a < b <∞,

R̂n =

∑n
j=0 IA(Xj , Yj)

∑n
j=0 I[a,b](Yj)

a.s.−→ π(A)√
2π(b − a)

,

as π(R × [a, b]) =
√
2π(b − a). Thus

√
2π(b − a)R̂n is a consistent estimator of

π(A). The solid lines in the left panel in Figure 3 shows the median (based on
30 independent repetitions) estimates of π((−1, 1) × (−1, 1)) using Algorithm
II with uniform random walk in R

2 (red line), Algorithm III (green line) and
the above ratio estimator based on the Gibbs sampler (with −a = b = 1000)
(blue line) for the same six n values mentioned above. The median estimates
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Fig 3. Estimates using Gibbs sampler and random walks.

for n = 108 corresponding to the Gibbs sampler, Algorithm II (with uniform
random walk in R

2) and Algorithm III are 4.438, 2.801, and 3.060 respectively.
Numerical integration yields 3.056 as an estimate of π(A). Like in the previous
example, here also Algorithm III performs better than Algorithm II.

The next example is as follows. Let

f(x, y) = exp(−xy) x, y ∈ R+, (4.2)

where R+ = (0,∞). Let

fX|Y (x|y) :=
f(x, y)

∫

R+
f(x′, y)dx′

= y exp(−xy); 0 < x, y <∞.

Then for each y, fX|Y (·|y) is a probability density on R+. Consider the Gibbs
sampler {(Xn, Yn)}n≥0 that uses the two conditional densities fX|Y (·|y) and
fY |X(·|x) alternately. [5] considered this example and found that the usual es-
timator

∑n
j=0 fX|Y (x̌|Yj)/n for the marginal density fX(x̌) =

∫

R+
f(x̌, y)dy =

∫

R+
fX|Y (x̌|y)fY (y)dy = 1/x̌ breaks down. Indeed from Theorem 3 we know

that this estimator converges with probability 1 to zero as the above Gibbs
sampler chain is regenerative (see Proposition 3 in Appendix C) with an im-
proper invariant measure. ([11] showed that the Gibbs sampler {(Xn, Yn)}n≥0

is a null recurrent Markov chain, in the sense that
∑∞

n=0E[IA(Xn, Yn)] = ∞ for
any set A with positive Lebesgue measure on R

2.) [5] suggested as a remedy that
one restricts the conditional densities to compact intervals. Theorem 1 provides
alternatives that do not require this restriction.

By Theorem 1 we have the following consistent estimator of fX(x̌). Let 0 <
a < b <∞. Then for all x̌ ∈ R+,

log(b/a)R̂n = log(b/a)

∑n
j=0 fX|Y (x̌|Yj)

∑n
j=0 I[a,b](Yj)

= log(b/a)

∑n
j=0 Yj exp(−x̌Yj)
∑n

j=0 I[a,b](Yj)

a.s.−→ 1/x̌ = fX(x̌),
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as
∫

S fX|Y (x̌|y)f(x, y)dxdy =
∫

R+ fX|Y (x̌|y)fY (y)dy = fX(x̌) and
∫

S IK(x,
y)f(x, y)dxdy = log(b/a) with K = R+ × [a, b].

Although log(b/a)R̂n is a consistent estimator of fX(x̌) based on the Gibbs
sampler, our simulations show that in this case the Gibbs chain is apt to take
values too large or too small (positive) that are outside the range of machine
precision. Here we use Algorithms II and III to estimate fX(2) = 1/2. The right
panel in Figure 3 shows the estimates (median and 90% interval based on 30
repetitions) using Algorithms II (red line) and III (green line) for the same six n
values mentioned above. The median estimates corresponding to red, and green
lines for n = 108 are 0.503, and 0.501 respectively.

Remark 5. Note that in order to use the ratio estimator (2.3) based on the
Gibbs sampler {(Xn, Yn)}n≥0 in the above two examples, by Theorem 1 it suf-
fices to establish that these chains are regenerative. This avoids having to es-
tablish the Harris recurrence of {(Xn, Yn)}n≥0, which is required to apply the
Theorem 17.3.2 in Meyn and Tweedie [16].

4.2. Generalization of importance sampling

Importance sampling is a Monte Carlo technique in which a sample from one
density is used to estimate an expectation with respect to another. Suppose π́ is
a probability density on S (with respect a measure ν) and we want to estimate
Eπ́f =

∫

S fπ́dν where f : S → R is such that
∫

S |f |π́dν <∞. Often, such a π́ is
known only up to a normalizing constant, that is let π́(x) = cp(x), where c > 0
is a finite constant, not easy to evaluate and p(x) is a known function. Suppose
π is another density (not necessarily proper) with respect to the measure ν such
that {x : π́(x) > 0} ⊂ {x : π(x) > 0}. Now note that

Eπ́f =

∫

S

fπ́dν =

∫

S

f(x)
π́(x)

π(x)
π(x)ν(dx)

/
∫

S

π́(x)

π(x)
π(x)ν(dx)

=

∫

S

f(x)
p(x)

π(x)
π(x)ν(dx)

/
∫

S

p(x)

π(x)
π(x)ν(dx).

Note that
∫

S f(x)[p(x)/π(x)]π(x)ν(dx) = Eπ́f/c is well defined and is finite,
and 0 <

∫

S [p(x)/π(x)]π(x)ν(dx) = 1/c < ∞. So if we can generate a Harris
recurrent Markov chain (regenerative sequence) {Xn}n≥0 with invariant (occu-
pation) density π, then by Theorem 1, we have for any initial X0,

R̂n =

∑n
j=0 f(Xj)

p(Xj )
π(Xj)

∑n
j=0

p(Xj)
π(Xj)

a.s.−→
∫

S
f(x) p(x)π(x)π(x)ν(dx)
∫

S
p(x)
π(x)π(x)ν(dx)

= Eπ́f. (4.3)

Thus R̂n is a consistent estimator of Eπ́f . Note that, here the ratio limit theorem
(Theorem 1 (ii)) is naturally applicable since the above importance sampling
estimator of Eπ́f has the form of a ratio. That is, in order to use the above
importance sampling estimator, we do not need to find any function g such
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that
∫

S gdπ(6= 0) is known. Note that the standard importance sampling us-
ing MCMC requires π to be a probability density and {Xn}n≥0 to be positive
recurrent [10]. Here we are able to drop both these conditions.

4.2.1. An example involving Bayesian sensitivity analysis

The importance sampling estimator (4.3) can be useful in Bayesian analysis
when one wishes to see the effect of a change in the prior distribution on a
posterior expectation. Let {πh(θ), h ∈ H} be a family of prior densities, where
h is called a hyperparameter. The resulting posterior densities are denoted by
πh(θ|y) ∝ ℓ(θ|y)πh(θ), where y denotes the observed data and ℓ(θ|y) is the
likelihood function. Let f(θ) be a quantity of interest where f(·) is a function. In
sensitivity analysis one wants to assess the changes in the posterior expectation
Eh(f(θ)|y) as h varies. If two different values of h result in the almost same
posterior expectations, then the use of either of those two values will not be
controversial. On the other hand, if Eh(f(θ)|y) changes significantly as h varies,
one may want to make a plot of the posterior expectations to see what values of h
cause big changes. If posterior expectations are not available in closed form, then
the importance sampling estimator (4.3) based on a single chain may be used to
estimate Eh(f(θ)|y) for all h ∈ H. Note that, here the parameter θ corresponds
to x in (4.3) and πh(θ|y) plays the role of π́. In general, the importance density π
in (4.3) is preferred to have heavier tails than πh(θ|y) for all h ∈ H, as otherwise
the ratio estimate will tend to be unstable because the weights ph(θ)/π(θ) can
be arbitrarily large, where ph(θ) = ℓ(θ|y)πh(θ). On the other hand, it may be
difficult to construct a proper importance density π which has heavier tails than
πh(θ|y) for all h ∈ H. Since the importance sampling estimator (4.3) can be
used even when π is improper, in the following example, we take π to be the
improper uniform density on R.

Let y ≡ (y1, y2, . . . , ym) be a random sample from N(µ, 1). Suppose, the con-
jugate normal prior N(µ0, σ

2
0) is assumed for µ. Here h = (µ0, σ0). Let {µj}j≥0

be the random walk on R with Uniform (−1/2, 1/2) increment distribution. As
mentioned in Section 3, {µj}j≥0 is a Harris recurrent Markov chain with state
space R and the Lebesgue measure as its invariant measure. The estimator (4.3)
for Eh(f(µ)|y) in this case becomes

R̂n =

∑n
j=0 f(µ

j) exp(−m(ȳ − µj)2/2)φ(µj ;µ0, σ
2
0)

∑n
j=0 exp(−m(ȳ − µj)2/2)φ(µj ;µ0, σ2

0)
, (4.4)

where ȳ =
∑m

i=1 yi/m, and φ(x; a, b) is the density of the normal distribution
with mean a, variance b, evaluated at the point x. A single random walk chain
{µj}nj=0 started at µ0 = 0 with n = 107 is used to estimate Eh(f(µ)|y) with
f(µ) ≡ µ for different values of (µ0, σ0). The plots in Figure 4 give graphs of
the estimate (4.4) as µ0 and σ0 vary. For making these plots, we took m = 5,
and ȳ = 0. We fixed σ0 = 0.5 for the graph in the left panel in Figure 4
and the plot is based on the estimate (4.4) for 41 values of µ0. (We took µ0

ranging from −10 to 10 by increments of 0.5.) The right panel in Figure 4 is
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Fig 4. Posterior expectations for different values of hyperparameters.

based on the estimate (4.4) for 410 values of (µ0, σ0) with µ0 ranging from
−10 to 10 by increments of 0.5, and σ0 ranging from 0.1 to 1 by increments
of 0.1. Both the plots are median estimates of posterior expectations Eh(µ|y)
based on 30 independent repetitions of random walk chains of length n = 107

with µ0 = 0. The pointwise empirical 90% confidence intervals are too narrow
to distinguish these quantiles from the median estimates in these plots. The
median estimates also match (up to two decimal places) with the true values
E(µ0,σ0)(µ|y) = mσ2

0ȳ/(mσ
2
0 + 1) + µ0/(mσ

2
0 + 1).

5. Reduction to proper target distribution

In the previous sections we have presented several algorithms for estimating
integrals with respect to a measure π that may be proper or improper. In this
section, we propose one more algorithm that involves reduction to a proper
target distribution. We begin with the following result.

Lemma 1. Let π be a σ-finite measure on a measurable space (S,S).

(i) Let {An}n≥1 be a finite or countable sequence of S- sets such that An’s
are disjoint, π(An) < ∞ for all n ≥ 1, and S = ∪∞

n=1An. Let J = {j :
π(Aj) > 0} and let {pj : j ∈ J} be such that pj > 0 for all j ∈ J and
∑

j∈J pj = 1. Then π is dominated by the probability measure π0 defined
by

π0(A) =
∑

j∈J

pj
π(A ∩ Aj)

π(Aj)
, A ∈ S. (5.1)

That is, A ∈ S, π0(A) = 0 implies π(A) = 0.
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(ii) Further, the Radon-Nikodym derivative h = dπ/dπ0 is given by

h(·) =
∑

j∈J

π(Aj)

pj
IAj

(·). (5.2)

Remark 6. Since there can be many choices of {An}n≥1, and since we can
use any {pj : j ∈ J} such that pj > 0 for all j ∈ J and

∑

j∈J pj = 1, the
above lemma shows that given a σ-finite measure π, there are uncountably
many probability measures π0 dominating π.

Let π be the given σ-finite (probably infinite, that is, π(S) = ∞) measure
on (S,S) and suppose we can find a probability measure π0 on S such that π
is dominated by π0. (For example, if π is absolutely continuous on R

d, we can
take π0 to be the probability measure corresponding to the d-variate Student’s
t distribution.) Let h ≡ dπ/dπ0 be the Radon-Nikodym derivative of π with
respect to π0 and suppose we know h only upto a normalizing constant, that is,
h = ch∗, where the finite constant c > 0 is unknown and h∗ is known. In that
case, if we have an integrable (with respect to π) function g : S → R such that
∫

S
gdπ 6= 0 is known, we have a consistent estimator of λ =

∫

S
fdπ via a new

ratio estimator

R̃n =

∑n
j=0 f(Xj)h

∗(Xj)
∑n

j=0 g(Xj)h∗(Xj)

a.s.−→
∫

S fhdπ0
∫

S
ghdπ0

=

∫

S fdπ
∫

S
gdπ

, (5.3)

where {Xj}nj=0 is either iid sample from π0 or realizations of a positive Harris
recurrentMarkov chain with invariant measure π0 started at any initialX0 = x0.

Lemma 1 and the above discussion is formalized in the following algorithm
for estimating λ =

∫

S fdπ where π is a σ-finite measure on S.

Algorithm IV:

1. Find a probability measure π0 dominating π (there are infinitely many
such probability measures). Let h be the density of π with respect to π0.

2. Draw iid sample {Xj}nj=0 from π0 or run a positive Harris recurrent
Markov chain {Xj}nj=0 (starting at any X0 = x0) with stationary distri-

bution π0. Estimate λ by the usual estimator
∑n

j=0 f(Xj)h(Xj)/(n + 1)
if h is completely known, otherwise if h is known up to a multiplicative
constant, estimate λ via the ratio estimator (5.3).

One of the difficulties with Algorithm IV is that if π0 has thinner tails than
π, then the function h (or h∗) can take rather large values for some Xj ’s making
the estimator highly varying.

Example 5.1 Let S = R and let f : R → R be Lebesgue integrable. Our goal is
to obtain a consistent estimator of λ =

∫

R
f(x)π(dx) using Algorithm IV where

π(dx) = dx is the Lebesgue measure on R.
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Define Aj = [j, j + 1) for all j ∈ Z and let pj > 0, j ∈ Z, be such that
∑

j∈Z
pj = 1. Since π([j, j + 1)) = 1, from (5.1) we have

π0(A) =
∑

j∈J

pjπ(A ∩ [j, j + 1)), A ∈ B(R).

Suppose U ∼ Uniform (0, 1) and let N be a Z valued random variable with
P (N = j) = pj , j ∈ Z. Let U and N be independent and define X = N + U .
Then it is easy to see that X has an absolutely continuous distribution with
probability density function

fX(x) = pj if j ≤ x < j + 1, j ∈ Z,

that is X ∼ π0. From (5.2), the Radon-Nikodym derivative h = dπ/dπ0 =
1/pj if j ≤ x < j+1, j ∈ Z. Let X1, X2, . . . , Xn be iid random sample with com-
mon distribution π0. Then a consistent estimator of λ is

∑n
j=1 f(Xj)h(Xj)/n =

(1/n)
∑n

j=1(f(Xj)/p⌊Xj⌋).

6. Concluding remarks

In this paper we have considered the problem of estimating λ ≡
∫

S fdπ where
f : S → R,

∫

S
|f |dπ <∞, but π(S) could be ∞. We have shown that the regular

(iid or Markov chain) Monte Carlo methods fail in the case when π(S) = ∞.
Here we have presented several statistical algorithms for estimating λ (when
π(S) is finite or infinite) based on the notion of regenerative sequences. It may
be noted that the general recipe in Section 2 and Algorithm III use regenerative
sequences that may not be Markov chains, Algorithms I and II use null recurrent
Markov chains. All these methods may be referred to as regenerative sequence
Monte Carlo (RSMC) methods. Algorithm IV uses positive recurrent Markov
chains.

Although the Algorithms I–IV do provide consistent estimators, in this paper
we have not addressed the important question of the second order accuracy, that
is, the rate of decay of (λ̂n−λ) where λ̂n is the estimator of λ. This is a matter for
further research and has been addressed in a forthcoming paper by the authors.
In MCMC with proper target (that is, π is a probability measure) [17] discuss the

estimation of the standard error of λ̂n using the regeneration of the underlying
Markov chain. In the present context of improper target distribution something
similar based on standard error computed from the observed excursions for
the underlying regenerative sequences could be tried. The results in [14] may
be applicable to some of the Markov chains discussed here, although verifying
Karlsen and Tjøstheim’s (2001) conditions for functional limit theorems does
not seem to be easy. In the case of reduction to a proper target distribution π0
(that is, Algorithm IV) it is possible to establish the rate of decay of (λ̂n − λ)
under strong conditions on f as well as the mixing rates for the chain used (with
stationary distribution π0).
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Appendices

Appendix A: Results on the existence and the uniqueness of

invariant measure for Markov chains

Theorem 6. Let {Xn}n≥0 be a Markov chain with state space (S,S). Let ∆ ∈ S
be a singleton such that {∆} ∈ S. Let T be the hitting time (also known as the
first passage time) for ∆, that is, T = min{n : 1 ≤ n < ∞, Xn = ∆} and
T = ∞ if Xn 6= ∆ for all n <∞. Let

π̃(A) = E

( T−1
∑

j=0

IA(Xj)|X0 = ∆

)

for A ∈ S. (A.1)

(i) (Existence of a subinvariant measure) Let P∆(·) denote P (·|X0 = ∆), then
we have

π̃(A) = IA(∆)P∆(T = ∞) +

∫

S

P (x,A)π̃(dx) for all A ∈ S, (A.2)

and hence π̃(·) is a subinvariant measure with respect to P , that is,

π̃(A) ≥
∫

S

P (x,A)π̃(dx) for all A ∈ S. (A.3)

(ii) (Uniqueness of the subinvariant measure) If π̆ is a measure on (S,S) that
is subinvariant with respect to P , then

π̆(A) ≥ π̆({∆})π∗(A) for all A ∈ S, (A.4)

where π∗(A) := π̃(A)− IA(∆)P∆(T = ∞) =
∫

S P (x,A)π̃(dx) = (π̃P )(A).

Corollary 3. Let π̃(·) be as defined in (A.1). Then

π̃(A) =

∫

S

P (x,A)π̃(dx) for all A ∈ S, (A.5)

that is, π̃(·) is an invariant measure with respect to P if and only if ∆ is re-
current, that is, P∆(T < ∞) = 1. Further, ∆ is recurrent if and only if π̃ =
π∗ = π̃P . Also, if ∆ is accessible from everywhere in S, that is, if for all x ∈ S,
there exists n(x) ≥ 1 such that Pn(x)(x, {∆}) > 0, then for every subinvariant
measure π̆ with π̆({∆}) <∞, we have π̆(A) = π̆({∆})π̃(A) for all A ∈ S.

A version of Theorem 6 can be found in Meyn and Tweedie [16, section 10.2].
For the sake of completeness we give a proof of Theorem 6 and Corollary 3 in
Appendix B.
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Appendix B: Proof of results

Proof of Theorem 1. Let h : S → R+ be a nonnegative function. Recall that,
Nn = k if Tk ≤ n < Tk+1, k, n = 0, 1, 2, . . . . Since h ≥ 0,

TNn
∑

j=0

h(Xj) ≤
n
∑

j=0

h(Xj) ≤
TNn+1−1
∑

j=0

h(Xj).

Let ξr =
∑Tr+1−1

j=Tr
h(Xj) for r = 0, 1, 2, . . . . So we have

1

Nn

Nn−1
∑

r=0

ξr ≤ 1

Nn

n
∑

j=0

h(Xj) ≤
1

Nn

Nn
∑

r=0

ξr, (B.1)

for all n ≥ 1. Since {Xn}n≥0 is a regenerative sequence, {ξi}i≥0 are iid nonneg-
ative random variables with E(ξ0) =

∫

S
hdπ̌, where π̌ is as defined in (2.1).

Also, we have Nn → ∞ as n → ∞. By the strong law of large numbers,
∑Nn

r=0 ξr/Nn → E(ξ0) as n→ ∞. Using (B.1) we then have

∫

S

hdπ̌ ≤ lim inf
n→∞

1

Nn

n
∑

j=0

h(Xj) ≤ lim sup
n→∞

1

Nn

n
∑

j=0

h(Xj) ≤
∫

S

hdπ̌

and hence

lim
n→∞

1

Nn

n
∑

j=0

h(Xj) =

∫

S

hdπ̌. (B.2)

Let f+ and f− are the positive and negative parts of the function f . Applying
the above argument to f+ and f− separately yields (i) of Theorem 1. Next the
proof of (ii) of the theorem follows by noting that

∑n
j=0 f(Xj)

∑n
j=0 g(Xj)

=

∑n
j=0 f

+(Xj)−
∑n

j=0 f
−(Xj)

∑n
j=0 g

+(Xj)−
∑n

j=0 g
−(Xj)

,

and applying (B.2) to each of the four terms in the above ratio.

Proof of Theorem 2. To prove Theorem 2(ii), note that,

P (Nn ≤ k) = P (Tk+1 > n) for all integers k ≥ 0 and n ≥ 0.

This implies that for 0 < x <∞,

P (Nn ≤ bnx) = P (Nn ≤ ⌊bnx⌋) = P
(

T⌊bnx⌋+1 > n
)

= P

(

T⌊bnx⌋+1

a⌊bnx⌋+1
>

n

a⌊bnx⌋+1

)

,

where {an} is as in (2.4) and bn > 0 will be chosen shortly. Suppose bn ↑ ∞ is
such that for each 0 < x <∞,

n

a⌊bnx⌋+1
→ x−

1
α . (B.3)
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Then since Vα has a continuous distribution, by (2.4) it follows that as n→ ∞

P

(

T⌊bnx⌋+1

a⌊bnx⌋+1
>

n

a⌊bnx⌋+1

)

→ P (Vα > x−
1
α ).

(This uses the fact that if Wn is a sequence of random variables such that

Wn
d−→ W with P (W = w0) = 0 and wn → w0 then P (Wn > wn) → P (W >

w0).) Now we find bn so that (B.3) holds. Let Ψ(x) ≡ P (τ1 > x). Then Ψ(x)
is monotone in x. Thus Ψ−1(·) is well defined on (0, 1). Also, by hypothesis of
Theorem 2, Ψ(x) ∼ x−αL(x) as x ↑ ∞. We know that na−α

n L(an) → 1, that is
nΨ(an) → 1 as n → ∞. This in turn implies that as n → ∞, Ψ(an) ∼ 1/n, or
an ∼ Ψ−1(1/n), that is a⌊bnx⌋+1 ∼ Ψ−1(1/{⌊bnx⌋+ 1}). Thus (B.3) will hold if
as n→ ∞,

n

Ψ−1(1/(⌊bnx⌋+ 1))
→ x−

1
α ,

that is, Ψ−1(1/⌊bnx⌋ + 1) ∼ n/x−
1
α , or 1/(⌊bnx⌋ + 1) ∼ Ψ(nx

1
α ) ∼

(nx
1
α )−αL(nx

1
α ). This implies that as n→ ∞,

1

bnx
∼ n−α

x
L(nx

1
α ) =

n−αL(n)

x

L(nx
1
α )

L(n)
.

Since L(·) is slowly varying at ∞, the above equation will hold if bn = nα/L(n),
thus establishing (B.3). Hence (2.6) is proved.

Proof of Corollary 1. Let λ̌ ≡
∫

S fdπ̌. Note that Dr
n

d−→ Wr as n → ∞ where

Wr
d
= λ̌Yα, and Wr’s are independent for all r = 1, 2, . . . , k. Since Dr

n, r =

1, . . . , k are also independent, (Dn
1 , . . . , D

n
k )

d−→ (W1, . . . ,Wk), which, by contin-

uous mapping theorem, implies that λ̂n,k ≡ ∑k
r=1D

r
n/(kE(Yα))

d−→ ∑k
r=1Wr/

(kE(Yα)) ≡ W k as n → ∞. By Skorohod’s theorem, for each k, there exists

λ̃n,k
d
= λ̂n,k and W̃k

d
= W k, such that λ̃n,k

a.s.−→ W̃k as n → ∞. Since by the

strong law of large numbers, W k
a.s.−→ λ̌ as k → ∞, and W̃k

d
= W k, we have

W̃k
d−→ λ̌ as k → ∞. Since λ̌ is a constant and convergence in probability im-

plies almost surely convergence along a subsequence, there exists, kj such that

W̃kj

a.s.−→ λ̌. So λ̃nkj
,kj

a.s.−→ λ̌. However, λ̃n,k
d
= λ̂n,k implying λ̂nkj

,kj

d−→ λ̌ as

j → ∞. The corollary follows since there exists further subsequences kjl ↑ ∞
and nkjl

↑ ∞ such that λ̂nkjl
,kjl

a.s.−→ λ̌ as l → ∞.

Proof of Theorem 3. Note that

1

n

n
∑

i=1

f(Xi) =
Nn

n

1

Nn

n
∑

i=1

f(Xi), (B.4)

and by Theorem 1 we know that
∑n

i=1 f(Xi)/Nn
a.s.−→

∫

S
fdπ̌. Let Tj and τj be

as in Definition 1. Now

TNn

Nn
=

∑Nn

j=1 τj

Nn
≤ n

Nn
≤

∑Nn+1
j=1 τj

Nn
=
TNn+1

Nn
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Since τi’s are iid, by SLLN, Tn/n→ E(τ1) = π̌(S) = ∞. So limn→∞ n/Nn exists

and limn→∞ n/Nn = ∞ with probability 1, which implies that Nn/n
a.s.−→ 0 and

hence the proof follows from (B.4).

Proof of Theorem 5. Let T0 = 0, Tr+1 = inf {n : n ≥ Tr + 1, Xn = 0} for
r ≥ 0 be the successive return times of the SSRW {Xn}n≥0 to the state 0. Let
h : Rd → R+ be a nonnegative function. Since {Yn}n≥0 is regenerative with
regeneration times Tr’s, from (B.2) we have

lim
n→∞

1

Nn

n
∑

j=0

h(Yj) = E
(

T1−1
∑

j=0

h(Yj)
)

. (B.5)

Note that

E
(

T1−1
∑

j=0

h(Yj)
)

=

∞
∑

j=0

E(h(Yj)I(j < T1))

=

∞
∑

j=0

E(E(h(κ(Xj) + U j)I(j < T1)|{Xi}ji=0))

=

∞
∑

j=0

E(E(h(κ(Xj) + U j)|{Xi}ji=0)I(j < T1))

=

∞
∑

j=0

E(ψ(Xj)I(j < T1)),

where ψ : Z → R is defined as ψ(x) :=
∫

K
h(κ(x)+u)du, withK = [−1/2, 1/2]d ≡

[−1/2, 1/2]× [−1/2, 1/2]× · · · d times. Since

∞
∑

j=0

E(ψ(Xj)I(j < T1)) = E
(

T1−1
∑

j=0

ψ(Xj)
)

=
∑

j∈Z

ψ(j),

it follows that

E
(

T1−1
∑

j=0

h(Yj)
)

=
∑

j∈Z

∫

K

h(κ(j) + u)du =

∫

Rd

h(x)dx.

From (B.5) it follows that limn→∞

∑n
j=0 h(Yj)/Nn =

∫

Rd h(x)dx. Applying the

above arguments to f+p and f−p separately yields (3.2).

Proof of Lemma 1. The measure π0 defined in (5.1) is a probability measure
since

π0(S) =
∑

j∈J

pj
π(S ∩ Aj)

π(Aj)
=

∑

j∈J

pj = 1
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Now the 1st part of the lemma follows from the fact that

π0(A) = 0 ⇒ π(A ∩Aj) = 0 for all j ∈ J ⇒ π(A) = 0.

In order to prove Lemma 1 (ii), note that

π(A) =
∑

j∈J

π(A ∩ Aj) =
∑

j∈J

pj
π(A ∩ Aj)

π(Aj)

π(Aj)

pj
. (B.6)

Since An’s are disjoint, for any j0 ∈ J ,

π0(A ∩Aj0 ) =
∑

j∈J

pj
π(A ∩ Aj0 ∩ Aj)

π(Aj)
= pj0

π(A ∩ Aj0)

π(Aj0 )
.

So from (B.6) we have for all A ∈ S

π(A) =
∑

j∈J

π(Aj)

pj
π0(A ∩ Aj) =

∑

j∈J

π(Aj)

pj

∫

A

IAj
(·)dπ0

=

∫

A

∑

j∈J

π(Aj)

pj
IAj

(·)dπ0,

and hence the Radon-Nikodym derivative,

h =
dπ

dπ0
=

∑

j∈J

π(Aj)

pj
IAj

(·).

Proof of Theorem 6. Let π̃(·) be as defined in (A.1). Then for any A ∈ S,

π̃(A) = E
(

T−1
∑

j=0

IA(Xj)|X0 = ∆
)

= IA(∆) + E
(

∞
∑

j=1

IA(Xj)I(T − 1 ≥ j)|X0 = ∆
)

.

Now letting E∆(·) denote E(·|X0 = ∆), we have

E∆

(

∞
∑

j=1

IA(Xj)I(T − 1 ≥ j)
)

= E∆

([

∞
∑

j=1

IA(Xj)I(T > j − 1)−
∞
∑

j=1

IA(Xj)I(T = j)
])

.

Thus

π̃(A) = IA(∆) +

∞
∑

j=1

E∆

(

IA(Xj)I(T > j − 1)
)

−
∞
∑

j=1

IA(∆)P∆(T = j)
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= IA(∆) +

∞
∑

j=1

E∆

(

IA(Xj)I(T > j − 1)
)

− IA(∆)P∆(T <∞)

= IA(∆)P∆(T = ∞) +

∞
∑

j=1

E∆

(

IA(Xj)I(T > j − 1)
)

. (B.7)

Now for j ≥ 1, {T > j− 1} = {T ≤ j− 1}c belongs to σ(X0, X1, . . . , Xj−1), the
σ-algebra generated by X0, X1, . . . , Xj−1. By the Markov property of {Xn}n≥0,
for j ≥ 1,

E∆

(

IA(Xj)I(T > j − 1)
)

= E∆

(

I(T > j − 1)E[IA(Xj)|Xj−1]
)

= E∆

(

I(T > j − 1)P (Xj−1, A)
)

.

Thus
∞
∑

j=1

E∆

(

IA(Xj)I(T > j − 1)
)

= E∆

(

∞
∑

j=1

P (Xj−1, A)I(T > j − 1)
)

= E∆

(

∞
∑

j=0

P (Xj , A)I(T > j)
)

=

∫

S

P (x,A)π̃(dx),

where the last equality follows from the definition of π̃(·) as in (A.1). So from
(B.7) we get π̃(A) = IA(∆)P∆(T = ∞) +

∫

S P (x,A)π̃(dx), establishing (A.2),
that is, proving Theorem 6 (i).

Next, let π̆ be a σ-finite measure on (S,S) that satisfies (A.3). We need to
show that π̆(A) ≥ π̆({∆})π∗(A) for all A ∈ S. From (A.3) we have

π̆(A) ≥ π̆({∆})P (∆, A) +
∫

S−{∆}

P (x,A)π̆(dx).

But,
∫

S−{∆}

P (x,A)π̆(dx) ≥
∫

S−{∆}

P (x,A)

∫

S

P (y, dx)π̆(dy)

=

∫

S−{∆}

∫

S−{∆}

P (y, dx)P (x,A)π̆(dy)

+ π̆({∆})
∫

S−∆

P (x,A)P (∆, dx)

= π̆({∆})P∆(X2 ∈ A,X1 ∈ S − {∆})

+

∫

S−{∆}

∫

S−{∆}

P (y, dx)P (x,A)π̆(dy).

Iterating this we find that (A.3) implies that for n ≥ 2,

π̆(A) ≥ π̆({∆})(P∆(X1 ∈A)+P∆(X2 ∈A, T > 1)+ · · ·+P∆(Xn ∈A, T >n−1)).
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So for n ≥ 2,

π̆(A) ≥ π̆({∆})
(

n
∑

j=1

P∆(Xj ∈ A, T > j − 1)
)

= π̆({∆})
(

n
∑

j=1

P∆(Xj ∈ A, T > j) +
n
∑

j=1

P∆(T = j)IA(∆)
)

= π̆({∆})
(

IA(∆)P∆(T ≤ n) +

n
∑

j=1

P∆(Xj ∈ A, T > j)
)

.

Letting n→ ∞, we see that the right side above reduces to

π̆({∆})
(

IA(∆)P∆(T <∞) +

∞
∑

j=1

P∆(Xj ∈ A, T > j)
)

= π̆({∆})
(

IA(∆) +
∞
∑

j=1

P∆(Xj ∈ A, T > j)− IA(∆)P∆(T = ∞)
)

= π̆({∆}
(

∞
∑

j=0

P∆(Xj ∈ A, T > j)− IA(∆)P∆(T = ∞)
)

= π̆({∆}
(

π̃(A) − IA(∆)P∆(T = ∞)
)

= π̆({∆}π∗(A).

Thus π̆(A) ≥ π̆({∆})π∗(A) for all A ∈ S establishing (A.4).

Proof of Corollary 3. From (A.2) it follows that (A.5) holds if and only if ∆ is
recurrent.

Since ∆ is accessible, S = ∪nDn where Dn = {x : Pn(x, {∆}) > 0}. So to
complete the proof of Corollary 3, it is sufficient to show that

π̆(A) = π̆({∆})π̃(A) for all A ⊂ Dn, n ≥ 1.

If the above is false, then there exists A0 ∈ Dn for some n ≥ 1 such that
π̆(A0) > π̆({∆})π̃(A0) as by (A.4), π̆(A) ≥ π̆({∆})π̃(A) for all A ∈ S. Then

π̆({∆}) ≥
∫

S

Pn(x, {∆})π̆(dx)

=

∫

A0

Pn(x, {∆})π̆(dx) +
∫

S−A0

Pn(x, {∆})π̆(dx)

> π̆({∆})
∫

A0

Pn(x, {∆})π̃(dx) + π̆({∆})
∫

S−A0

Pn(x, {∆})π̃(dx)

= π̆({∆})
∫

S

Pn(x, {∆})π̃(dx) = π̆({∆})π̃({∆}),

where the first inequality follows by repeated application of (A.3) as π̆ is as-
sumed to be a subinvariant measure. The strict inequality follows from (A.4),
and the facts that π̆(A0) > π̆({∆})π̃(A0) and Pn(x, {∆}) > 0 for all x ∈ A0.
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But π̃({∆}) = 1 and so we get π̆({∆}) > π̆({∆}), which is a contradiction since
π̆({∆}) <∞. Thus π̆(A) = π̆({∆})π̃(A) for all A ∈ S.

Appendix C: Some technical results

Proposition 2. Let {(Xn, Yn)}n≥0 be the Gibbs chain corresponding to the joint
density f(x, y) defined in (4.1) in Section 4. The Markov chain {(Xn, Yn)}n≥0 is
regenerative and its subchains {Xn}n≥0 and {Yn}n≥0 are both Harris recurrent
Markov chains.

Proof. Since X1|Y0 ∼ N(Y0, 1) and Y1|X1 ∼ N(X1, 1), we have Y1 = η1 + η2 +
Y0, where (Y0, η1, η2) are independent and η1, η2 are N(0, 1) random variables.
By induction, Yn = Y0 + ξ1 + · · · + ξn where {Y0, ξ1, . . . , ξn} are independent
random variables and {ξi}i≥1 are iid N(0, 2) random variables. Since E|ξ1|2 <
∞, E(ξ1) = 0, and ξ1 has an absolutely continuous distribution with mean 0,
{Yn}n≥0 is Harris recurrent with Lebesgue measure as the reference measure [16,
Proposition 9.4.5]. The Harris recurrence of {Xn}n≥0 can be shown similarly. Let
B = (−1, 1). Since infx∈B P (Yn ∈ B|Xn = x) = infx∈B[Φ(1+x)+Φ(1−x)−1] >
0 and Harris recurrence of {Xn}n≥0 implies that P (Xn ∈ B infinitely often) =
1 for any initial X0, it follows that a recurrent atom can be constructed for
{(Xn, Yn)}n≥0 and hence it is regenerative.

Proposition 3. The Gibbs sampler Markov chain {(Xn, Yn)}n≥0 corresponding
to the joint density defined in (4.2) is regenerative.

Proof. Since given (X0, Y0), the distribution of X1 is exponential with mean
1/Y0, we can write X1 = (1/Y0)η1, where η1 is an exp(1) random variable
and is independent of Y0. Next, given X1, the distribution of Y1 is exponen-
tial with mean 1/X1 and hence we can write Y1 = η2/X1 = Y0(η2/η1), where
{Y0, η1, η2} are independent and η1, η2 are exp(1) random variables. By induc-
tion, Yn = Y0ξ1 . . . ξn where {Y0, ξ1, . . . , ξn} are independent random variables
and {ξi}i≥1 are iid random variables such that ξ1 has the same distribution
as η2/η1. Since E| log η1|2 =

∫∞

0
| log x|2 exp(−x)dx < ∞, by Minkowski’s in-

equality we have E| log ξ1|2 < ∞. Also since E| log η1| < ∞, it follows that
E log ξ1 = E log(η2/η1) = E log(η2)− E log(η1) = 0. Now note that

log Yn = log Y0 +

n
∑

i=1

log ξi.

Then since log ξ1 has an absolutely continuous distribution with mean 0, as in
Proposition 2, it implies that {logYn}n≥0 is Harris recurrent. This implies that
{Yn}n≥0 is a Harris recurrentMarkov chain with state space (0,∞). This in turn,
as in the proof of Proposition 2, implies that {Xn, Yn}n≥0 is regenerative.

Acknowledgments

The authors thank two reviewers and an associate editor for helpful comments
and valuable suggestions which led to several improvements in the manuscript.



Monte Carlo methods for improper target distributions 2691

References

[1] Athreya, K. B. (1986). Darling and Kac revisited. Sankhyā, 48 255–266.
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