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Abstract: We propose notions of calibration for probabilistic forecasts of
general multivariate quantities. Probabilistic copula calibration is a nat-
ural analogue of probabilistic calibration in the univariate setting. It can
be assessed empirically by checking for the uniformity of the copula prob-
ability integral transform (CopPIT), which is invariant under coordinate
permutations and coordinatewise strictly monotone transformations of the
predictive distribution and the outcome. The CopPIT histogram can be
interpreted as a generalization and variant of the multivariate rank his-
togram, which has been used to check the calibration of ensemble forecasts.
Kendall calibration is an analogue of marginal calibration in the univariate
case. Methods and tools are illustrated in simulation studies and applied
to compare raw numerical model and statistically postprocessed ensemble
forecasts of bivariate wind vectors.
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1. Introduction

The past two decades have witnessed major developments in the scientific ap-
proach to forecasting, in that probabilistic forecasts, which take the form of
probability distributions over future quantities and events, have been replacing
single-valued point forecasts in a wealth of applications (Gneiting and Katzfuss,
2014). The goal in probabilistic forecasting is to maximize the sharpness of the
predictive probability distributions subject to calibration (Gneiting, Balabdaoui
and Raftery, 2007). Calibration concerns the statistical compatibility between
the predictive distributions and the realizing observations; in a nutshell, the
observations are supposed to be indistinguishable from random numbers drawn
from the predictive distributions.

For probabilistic forecasts of univariate quantities various types of calibration
have been established (Gneiting and Ranjan, 2013). In particular, a forecast is
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probabilistically calibrated if its probability integral transform (PIT), i.e., the
value of the predictive cumulative distribution function at the realizing observa-
tion, is uniformly distributed. Accordingly, empirical checks for the uniformity
of histograms of PIT values have formed a cornerstone of density forecast eval-
uation (Dawid, 1984; Diebold, Gunther and Tay, 1998; Gneiting, Balabdaoui
and Raftery, 2007).

In this paper we introduce notions of calibration for probabilistic forecasts
of multivariate quantities and propose tools for empirical calibration checks
in such settings, as recently called for in hydrologic and meteorological applica-
tions (Schaake et al., 2010; Pinson, 2013; Schefzik, Thorarinsdottir and Gneiting,
2013). In Section 2 we study a natural multivariate extension of the univariate
PIT that is invariant under coordinate permutations and coordinatewise strictly
monotone transformations of the predictive distribution and the realizing obser-
vation, namely, the copula probability integral transform (CopPIT). Probabilis-
tic copula calibration can be assessed empirically by checking the uniformity of
the CopPIT histogram, which can be viewed as a generalization and variant of
the multivariate rank histogram proposed by Gneiting et al. (2008). Further-
more, we introduce the notion of Kendall calibration, which is an analogue of
marginal calibration in the univariate case. The strengths of these notions and
tools include their ease of interpretability and their applicability to both density
and ensemble forecasts.

In Section 3 we employ CopPIT histograms in a number of simulation studies,
and in Section 4 we use them to compare raw numerical model and statistically
postprocessed ensemble forecasts of bivariate wind vectors over Germany. The
paper ends with a discussion in Section 5.

2. Multivariate notions of calibration

We introduce the copula probability integral transform (CopPIT) and the
notions of probabilistic copula calibration and Kendall calibration within
the prediction space setting of Gneiting and Ranjan (2013). Throughout, we
identify a probability measure on Rd with its cumulative distribution function
(CDF).

The Kendall distribution function KH of a probability measure or CDF H
on Rd is defined as

KH(w) = pr{H(X) ≤ w} for w ∈ [0, 1],

where the random vector X has distribution H . It is well known that if d = 1
and H is continuous then KH corresponds to a uniform distribution on [0, 1].
In dimension d > 1, the Kendall distribution depends only on the copula of the
probability measure H and generally it is not uniform (Barbe et al., 1996). In
fact, for any CDF K on [0, 1] with K(w) ≥ w for w ∈ [0, 1] and any integer
d > 1, there exists a probability measure H on Rd such that KH = K (Nelsen
et al., 2003; Genest, Nešlehová and Ziegel, 2011).
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2.1. Probabilistic copula calibration and Kendall calibration

As noted, we work in the prediction space setting introduced by Gneiting and
Ranjan (2013). Specifically, let (Ω,A,Q) be a probability space. Let Y be an
Rd-valued random vector on Ω, and let H be a d-variate CDF-valued random
quantity that is measurable with respect to some sub σ-algebra A0 ⊆ A.1 Fur-
thermore, let the random variable V be uniformly distributed on the unit interval
[0, 1] and independent of Y and A0.

The CDF-valued random quantity H provides an A0-measurable predictive
probability measure for the Rd-valued outcome Y . It is said to be ideal relative
to A0 if it equals the conditional law of Y given A0, which we denote by H =
L(Y |A0). Thus, an ideal forecast honors the information in the sub σ-algebra
A0 ⊆ A to the full extent possible. For a function f on the real line, we use the
notation f(y−) = limx↑y f(x) to denote the left-hand limit, if it exists.

Definition 2.1 (CopPIT). In the prediction space setting, the random variable

UH = KH{H(Y )−}+ V [KH{H(Y )} − KH{H(Y )−}] (1)

is the copula probability integral transform (CopPIT) of the CDF-valued ran-
dom quantity H .

If T is a deterministic coordinatewise strictly monotone transformation on
Rd, i.e.,

T (x1, . . . , xd) = (T1(x1), . . . , Td(xd))

where the mappings T1, . . . , Td are real-valued and strictly increasing, the distri-
bution of UH for the probabilistic forecast H and the outcome Y is the same as
that of UH◦T−1 for the probabilistic forecastH◦T−1 and the outcome T (Y ). The
distribution of UH also is invariant under coordinate permutations. An inter-
esting open question is for the largest class of transformations under which this
invariance holds, with the class of the locally orientation preserving functions
being a candidate.

Definition 2.2. The forecast H is probabilistically copula calibrated if its
CopPIT is uniformly distributed on the unit interval.

Probabilistic copula calibration can be viewed as a multivariate generalization
of the notion of probabilistic calibration in the univariate case. In the prediction
space setting, let F be a univariate CDF-valued random quantity for the real-
valued outcome Y . Gneiting and Ranjan (2013, Definition 2.6) define F to be
probabilistically calibrated if

UF = F (Y−) + V {F (Y )− F (Y−)} (2)

is standard uniformly distributed. If the dimension is d = 1 then equation (1)
is the same as equation (2).

1That is, {H(yj) ∈ Bj for j = 1, . . . , n} ∈ A0 for all finite collections y1, . . . , yn ∈ Rn and
Borel sets B1, . . . , Bn ⊆ R.
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Definition 2.3. The forecast H is Kendall calibrated if

Q{H(Y ) ≤ w} = EQ{KH(w)} for w ∈ [0, 1]. (3)

The concept of Kendall calibration can be interpreted as marginal calibration
of the Kendall distribution, where marginal calibration refers to the univariate
prediction space setting, as follows (Gneiting and Ranjan, 2013, Definition 2.6).
If F is a univariate CDF-valued random quantity for the real-valued outcome
Y , then it is marginally calibrated if Q(Y ≤ y) = EQ{F (y)} for y ∈ R. Hence,
marginal calibration ensures that the forecast distribution is at least correct on
average over many prediction cases. The multivariate analogue introduced in
Definition 2.3 ensures that the dependence structure is correctly predicted on
average. Here, the dependence structure is summarized by the Kendall distri-
bution of the underlying copula.

The following result justifies the quest for probabilistically copula calibrated
and Kendall calibrated predictive distributions in practical settings.

Theorem 2.1. If the forecast H is ideal with respect to the σ-algebra A0, then

it is both probabilistically copula calibrated and Kendall calibrated.

Proof. Suppose that H = L(Y |A0) and let w ∈ [0, 1]. Then

Q{H(Y ) ≤ w} = EQ EQ [1{H(Y ) ≤ w}|A0] = EQ{KH(w)},

whence H is Kendall calibrated. Turning to probabilistic copula calibration,
observe thatKH andH areA0-measurable, and that the conditional distribution
ofY givenA0 isH , henceQ{UH ≤ w} = w by the known results for non-random
CDFs.

Suppose that the probabilistic forecasts F1, . . . , Fd for the marginals of the
random vector Y = (Y1, . . . , Yd) are probabilistically calibrated. Then proba-
bilistic copula calibration can be seen as a property that depends only on the
copula C of the forecast H and the copula of the outcome vector Y , as fol-
lows. Probabilistic calibration of the marginals implies that the random vector
W = (UF1

, . . . , UFd
) has uniformly distributed marginals. Therefore, the prob-

lem of predicting Y by H can be reduced to predicting W by a copula C. Then

H = C ◦ (F1, . . . , Fd)

yields a multivariate probabilistic forecast of Y with probabilistically calibrated
marginals. For a related discussion in the context of ensemble forecasts, see
Schefzik, Thorarinsdottir and Gneiting (2013).

2.2. Empirical assessment of copula calibration

In the practice of forecast evaluation, one observes a sample

(H1, y1), . . . , (HJ , yJ)

from the joint distribution of the probabilistic forecast and the outcome.
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To assess probabilistic copula calibration one can plot a histogram of the
empirical CopPIT values

uj = KHj
{Hj(yj)−}+ vj [KHj

{Hj(yj)} − KHj
{Hj(yj)−}] (4)

for j = 1, . . . , J , where v1, . . . , vJ are independent standard uniformly dis-
tributed random numbers. Based on ideas in Czado, Gneiting and Held (2009),
one can also define a non-randomized version of the CopPIT, but we do not
pursue this here. In most cases of practical interest, the Kendall distribution is
continuous and then we can write

uj = KHj
{Hj(yj)}, (5)

without any need to invoke vj . If d = 1, the CopPIT histogram coincides with
the PIT histogram, the key tool in checking the calibration of univariate prob-
abilistic forecasts (Diebold, Gunther and Tay, 1998; Gneiting, Balabdaoui and
Raftery, 2007; Czado, Gneiting and Held, 2009). If the forecasts are proba-
bilistically copula calibrated, the CopPIT histogram is uniform up to random
fluctuations, and deviations from uniformity can be interpreted diagnostically,
as illustrated in Section 3.1.

For multivariate distributions with an Archimedean copula the Kendall dis-
tribution function KH is available in closed form (McNeil and Nešlehová, 2009),
and then we can readily evaluate (4) or (5). For other types of distributions, one
can approximate KH by the empirical CDF of H(x1), . . . , H(xn) for some large
n, where x1, . . . , xn is a sample from a d-variate population with CDF H . An al-
ternative approximation that does not require the potentially costly evaluation
of H , uses the empirical Kendall distribution function Kn, i.e., the empirical
CDF of the pseudo-observations

wk =
1

n

n
∑

j=1

1(xj � xk) for k = 1, . . . , n, (6)

where xj = (xj1, . . . , xjd) � xk = (xk1, . . . , xkd) if xjl ≤ xkl for l = 1, . . . , d.
As Barbe et al. (1996) show, the empirical Kendall distribution function Kn

generally converges to KH . Both types of approximation are further discussed
in Section 3.4.

To assess Kendall calibration one can plot

1

J

J
∑

j=1

1{Hj(yj) ≤ w} vs.
1

J

J
∑

j=1

KHj
(w)

for w ∈ [0, 1], which are the empirical analogues of the left- and right-hand sides
of (3). We call this type of display a Kendall calibration diagram. If the forecasts
are calibrated the resulting plot ought to be close to the diagonal.

2.3. Comparison to the multivariate rank histogram

As noted, the CopPIT histogram generalizes the multivariate rank histogram
introduced by Gneiting et al. (2008) in the context of ensemble forecasts. This
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refers to the situation in which the probabilistic forecasts H1, . . . , HJ are em-
pirical measures with a fixed size m.

For ease of exposition, we drop the indices and suppose that the forecast
H places mass 1/m at each of x1, . . . , xm ∈ Rd, while the outcome is y ∈ Rd.
The associated multivariate rank is obtained as follows. Define pre-ranks ρ0 =
1 +

∑m
i=1

1(xi � y) and

ρk = 1(y � xk) +

m
∑

i=1

1(xi � xk) for k = 1, . . . ,m.

The multivariate rank then is the rank of the observation pre-rank ρ0 among
ρ0, ρ1, . . . , ρm, with ties resolved at random. Conditional on H and y we thus
get a multivariate rank with a discrete uniform distribution on the integers

1 +

m
∑

k=1

1(ρk < ρ0), . . . , 1 +

m
∑

k=1

1(ρk ≤ ρ0). (7)

We now link the multivariate rank and the CopPIT. If H is the empirical mea-
sure with mass 1/m at x1, . . . , xm ∈ Rd, its Kendall distribution function can
be expressed in terms of the pseudo-observations at (6), in that

KH(w) =
1

m

m
∑

k=1

1(wk ≤ w) for w ∈ [0, 1].

Since ρ0 = mH(y) + 1 and ρk = mwk + 1(y � xk) for k = 1, . . . ,m, we
can express the CopPIT value (4) in terms of the pseudo-ranks. Solving these
equations in terms of H(y) and wk and plugging into (4) shows that conditional
on H and y the CopPIT value has a uniform distribution on the interval

[

1

m

m
∑

k=1

1{ρk − 1(y � xk) < ρ0 − 1},
1

m

m
∑

k=1

1{ρk − 1(y � xk) ≤ ρ0 − 1}

]

. (8)

A comparison of (7) and (8) suggests that if the ensemble size m is large the
CopPIT and the multivariate rank histogram tend to look nearly identical. If
m is small this may not be the case, as we illustrate in Section 4.

The multivariate rank histogram has also been used to assess the calibration
of probabilistic forecasts in the form of continuous multivariate distributions.
For example, Schuhen, Thorarinsdottir and Gneiting (2012) transform predic-
tive densities for bivariate wind vectors into ensemble forecasts, by drawing a
simple random sample from each predictive distribution, where the particular
choice of the sample size m = 8 allows for a better comparison with the un-
derlying ensemble forecast. In such settings we prefer to work with the CopPIT
histogram, as it makes better use of the structure of the predictive distributions
and does not induce additional randomness into the evaluation procedure. We
illustrate this latter aspect in a simulation setting in Section 3.3.
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Fig 1. Illustration of quadrants for directional CopPITs.

2.4. Directional copula calibration

The CopPIT is a natural multivariate generalization of the PIT in the univari-
ate setting. We now discuss a further generalization that allows for directional
approaches. In doing so, we refer to the probabilistic forecast for the Rd-valued
outcome Y either by H or µ, with H denoting a CDF and µ the associated
probability measure.

Let e1, . . . , ed be an orthonormal basis of Rd and let E be the closed convex
cone spanned by this basis. We define the E-CDF of the probability measure µ
as

HE : Rd → [0, 1], x 7→ µ(x + E).

Any function HE characterizes the probability measure µ. The usual CDF is
obtained by choosing ej = (e1j , . . . , edj) with eij = −1(i = j), whereas the
survival function of µ is HE with eij = 1(i = j). The CopPIT depends on
the particular CDF chosen, and distinct choices of E may reveal distinct facets
of calibration or the lack thereof. In principle, one could envision a procedure
in the style of a projection pursuit algorithm (Huber, 1985) that finds those
E where the deviation of the CopPIT histogram from uniformity is the most
pronounced. In the case of density forecasts a related idea was considered by
Ishida (2005).

Certain choices of the cone E might be particularly useful. We illustrate this
for d = 2, but the idea generalizes to higher dimensions. Let SW be the convex
cone spanned by (−1, 0) and (0,−1), i.e., the south-west quadrant. Analogously
we define the quadrants SE, NE, and NW, as illustrated in Figure 1. If the
marginals are probabilistically calibrated, probabilistic copula calibration with
respect to HSW, which is the classical multivariate CDF, only depends on the
forecast copula. This argument remain valid for HSE, HNE, and HNW, with the
latter being the multivariate survival function.

Similarly, we can assess directional Kendall calibration by plotting

1

J

J
∑

j=1

1{HE
j (yj) ≤ w} vs.

1

J

J
∑

j=1

KHE

j
(w)

for w ∈ [0, 1] and suitable choices of the cone E .
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Table 1

Parameters of forecast distributions in the simulation study

Forecast First Margin F1 Second Margin F2 Copula C
T correct correct correct

µ1 = 2− B1 σ2

2
= 1/B2 τ = (B1 +B2)/2

F biased underdispersed misspecified
µ̂1 = 0.8(2− B1) σ̂2

2
= 0.8/B2 τ̂ = 0.6(B1 + B2)/2

3. Simulation studies

We now illustrate the use of the CopPIT histogram and Kendall calibration
diagram in simulation studies, all of which use R (R Core Team, 2013).

3.1. Interpretation of copula calibration

We consider the following simulation setting in dimension d = 2. Let B1 and B2

be independent beta variables with parameters (α1, β1) = (2, 5) and (α2, β2) =
(5, 2), respectively. Conditional on (B1, B2) the outcome vector Y = (Y1, Y2) has
normal margins and a Gumbel copula with Kendall’s τ equal to (B1 + B2)/2,
as described by Nelsen (2006). The margin Y1 has mean µ1 = 2 − B1 and unit
variance; the margin Y2 has mean zero and variance σ2

2 = 1/B2.
We assess eight probabilistic forecasters with various types of forecast defi-

ciencies. All forecasters have access to (B1, B2) and specify a Gumbel copula
with Kendall’s τ equal to τ̂ and normal marginals, where the first margin F1

has mean µ̂1 and unit variance, and the second margin F2 has mean zero and
variance σ̂2

2 , with details provided in Table 1. We name each forecaster with a
sequence of three letters, where T stands for true and F for false. For example,
the forecaster TTF specifies the first and the second marginal distributions cor-
rectly, but misspecifies the copula. The forecaster TTT is ideal with respect to
the σ-algebra generated by (B1, B2) in the sense defined in Section 2.1 and does
not show any forecast deficiencies.

Figure 2 shows CopPIT histograms for the eight forecasters based on a sam-
ple of 4,000 forecast–observation pairs. It is interesting to observe that the stan-
dard CopPIT histogram detects misspecified marginals as well as misspecified
copulas. Similar to the interpretation of univariate PIT histograms (Gneiting,
Balabdaoui and Raftery, 2007), biases yield skewed histograms, underdispersed
forecasts induce a U-shape, and overdispersed forecasts an inverse U-shape.

Figure 3 shows univariate PIT histograms along with directional CopPIT
histograms based on another sample of 4,000 forecast–observation pairs. The
joint consideration of the histograms can diagnose specific forecast deficiencies.
As a rule of thumb, the CopPIT histograms mimic features seen in the univariate
PIT histograms if the copula is well specified. For example, in the third row the
first marginal distribution and the copula are specified correctly, whereas the
second marginal distribution, F2, is underdispersed. The underdispersion of F2

is reflected by the U-shaped PIT histogram in the second column, and this
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Fig 2. CopPIT histograms for the forecasters in the simulation study in Section 3.1.

U-shape carries over to the directional CopPIT histograms. In contrast, if the
copula is ill specified, the CopPIT histograms show deviations from uniformity in
shapes that are not necessarily reflected by the PIT histograms. For example,
in the seventh row the first marginal distribution is specified correctly, and
the second marginal distribution is underdispersed. However, the copula is now
misspecified. Instead of only seeing U-shapes in the CopPIT histograms, as we
do in row three, we now see hump shapes in columns four and six.

Finally, Figure 4 shows directional Kendall calibration diagrams. While mis-
specifications of the probabilistic forecasts are readily discernible, the Kendall
calibration diagrams appear to be more difficult to interpret diagnostically than
the CopPIT histograms.

3.2. Tawn copulas

Bivariate Archimedean copulas are characterized by their Kendall distribution
function; the same is true in dimension d = 3 and has been conjectured for d ≥ 4
(Genest, Nešlehová and Ziegel, 2011). This raises the question whether the Cop-
PIT histogram is suited particularly well to this situation, such as in Section 3.1,
and may fail otherwise. Therefore, we now consider another simulation example
based on the Tawn copula family (Tawn, 1988). This is a three parameter family
of extreme value copulas, which can be defined via their Pickands dependence
function; see, for example, Gudendorf and Segers (2010). For all extreme value
copulas, the Kendall distribution function has the remarkably simple form

KH(w) = w − (1 − τ)w logw for w ∈ [0, 1],

in terms of Kendall’s τ , which derives from the Pickands dependence function
A as

τ =

∫ 1

0

t(1 − t)

A(t)
dA′(t).
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Fig 3. Univariate PIT and directional CopPIT histograms for the forecasters in the simulation

study in Section 3.1.
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Fig 4. Directional Kendall calibration diagrams for the forecasters in the simulation study in

Section 3.1.

It follows easily that, contrary to the Archimedean case, the Kendall distribution
does not identify the copula uniquely, even in the bivariate case.

The Tawn copula family allows for left- as well as right-skewed Pickands
dependence functions. We consider the left-skewed case only, which corresponds
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j = 0 j = 1 j = 2

i = 0

i = 1

i = 2

Fig 5. CopPIT histograms for the forecasters Fij in the simulation study in Section 3.2.

to Pickands dependence functions of the form

A(t) = (1 − ψ)t+ {(1− t)θ + (ψt)θ}1/θ, t ∈ [0, 1],

where θ > 1 and ψ ∈ [0, 1]. Let the random variable γ be gamma distributed
with shape and scale parameter equal to 6 and 0.3, respectively. Conditional on
γ, the bivariate outcome is distributed as a Tawn copula with θ = γ + 1 and
ψ = 1/(γ + 1). We consider nine different forecasters Fij , where i, j = 0, 1, 2.
All nine forecasters predict the marginal distributions correctly. Forecaster F00

indeed predicts the full bivariate distribution correctly. Generally, forecaster Fij

predicts a Tawn copula with parameters θ = θi and ψ = ψj , where

θ0 = γ + 1, θ1 = 2γ + 1, θ2 =
γ

5
+ 1,

and ψj = 1/θj for j = 0, 1, 2. If we fix the value of γ at its expectation, 1.8,
the outcome and forecaster F00 have a conditional Kendall’s τ of 0.285. The
respective values for the other forecasters vary from a minimum of 0.098 for
F21, 0.221 for F22, and 0.320 for F10, to a maximum of 0.605 for F12.

Figure 5 shows the CopPIT histograms for 10,000 forecast–observation pairs
for each forecaster. Overall, miscalibration is detected well by the CopPIT his-
tograms. The type of deviation from uniformity varies depending on which pa-
rameters have been misspecified. Predicting θ1 instead of θ0 only has a small
influence on the CopPIT histogram, whereas predicting θ2 instead of θ0 makes
the CopPIT histogram attain a U-shape. Predicting ψ1 instead of ψ0 also yields
U-shaped CopPIT histograms, while predicting ψ2 instead of ψ0 favors hump-
shaped histograms. For forecaster F22, the two effects nearly compensate each
other, so the deviation from uniformity is minor only.
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3.3. A higher dimensional example

As noted in Section 2.3, the multivariate rank histogram of Gneiting et al.
(2008), which is tailored to discrete ensemble forecasts, can also be used to as-
sess the calibration of probabilistic forecasts given in the form of continuous
multivariate distributions. However, additional randomness is introduced in the
evaluation procedure as a sample needs to be drawn from the predictive distri-
bution in order to compute the multivariate rank histogram. In such situations,
it seems advantageous to use the CopPIT histogram.

We illustrate this in a simulation setting in dimension d = 20, where we
choose the sample size m = 8 to compute the multivariate rank histograms. In
weather and climate forecasting, ensemble systems operate with small m and
large d (Gneiting and Raftery, 2005; Leutbecher and Palmer, 2008), so this
scenario is practically relevant. Specifically, let δ and λ be independent gamma
variables with shape and scale parameters (2, 2) and (5, 1), respectively. Given
λ, let (pij)i,j=1,...,5 be independent Poisson variables with parameter λ. The
outcome vector Y is given by

Y =





I5 0 0
0 A 0
0 0 B



X,

where X = (X1, . . . , X20)
′ is vector of independent normally distributed compo-

nents with mean zero and variance δ2. Furthermore, I5 is the five-dimensional
identity matrix, A ∈ R10×10 has entries ai,i = 1, ai,i+1 = 1/2 and zeros oth-
erwise, and B ∈ R5×5 has entries bi,i = (pi,i + 1)/(

∑

ij pi,j + 5) and bi,j =
pi,j/(

∑

ij pi,j + 5) if i 6= j. In the context of weather forecasting, the depen-
dence structure embodied in the matrix A might correspond to a given weather
variable at a given location over ten subsequent prediction horizons, and that
in B to five distinct weather variables at a given location and a given prediction
horizon.

Forecaster F1 predicts the distribution of a vector X1 of independent normal
components with variance δ2. Forecaster F2 predicts the distribution of

X2 =

(

I5 0
0 A′

)

X1,

where A′ ∈ R15×15 has entries a′i,i = 1, a′i,i+1 = 1/2 and zeros otherwise. Hence,
she correctly predicts the first 15 components of Y . Forecaster F3 predicts the
distribution of

X3 =





I5 0 0
0 A 0
0 0 B′



X1,

where B′ ∈ R5×5 has entries b′i,i = (λ + 1)/(25λ + 5) and b′i,j = λ/(25λ + 5)
if i 6= j. This means that the last forecaster is almost predicting the correct
dependence structure, but she does not have access to the pi,j , so instead their
mean, λ, is used.
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Fig 6. Multivariate rank and CopPIT histograms in the high-dimensional simulation setting

in Section 3.3.

Figure 6 shows multivariate rank and CopPIT histograms in this setting,
based on a sample of 4,000 forecast–observation pairs. As the Kendall distribu-
tion function of a multivariate normal law is not available in closed form, an
approximate version is used, as discussed in the subsequent section. The rank
histograms have difficulties in detecting the deficient probabilistic forecasts due
to the discretization effect mentioned in Section 2.3. In contrast, the CopPIT
histograms for the forecasts F1 and F2 with the misspecified copulas are non-
uniform, as desired. For forecast F3 it is debatable whether the CopPIT his-
togram deviates more from uniformity than the rank histogram. However, if we
compare the rank histogram and the CopPIT histogram for the predicted distri-
bution of the last five components of Y , denoted F3|16:20, the CopPIT histogram
is able detect miscalibration, while the rank histogram remains essentially flat.
When assessing calibration, it is not unnatural to check the calibration of this
set of components separately. As described above, the dependence structure en-
coded in B, which is influencing the components 16 to 20 is of a different nature
than the one of the first 15 components.

3.4. Approximating the Kendall distribution function

For many widely used multivariate distributions the Kendall distribution func-
tion is not available in closed form. In such cases the empirical Kendall dis-
tribution function (6) can be used to calculate the CopPIT if it is possible to
draw samples from the distribution. We use this procedure with sample size
n = 5,000 in Section 3.1 for the directional CopPIT histograms SE, NE, and
NW, and throughout the bivariate real data study in Section 4.

However, in higher dimensions the sample size n may need to be very large
in order to make the approximation sufficiently precise. Assuming that the pre-
dictive CDF, H , can be evaluated, it may then be preferable to approximate the
Kendall distribution function by the empirical CDF of H(x1), . . . , H(xn), where
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exact approximate −0.02 0.00 0.02

Fig 7. CopPIT histograms for the forecaster TTF in Figure 3, computed using either the

exact Kendall distribution function, or the approximation based on the empirical Kendall

distribution function (6) with n = 5,000. The histogram at right shows the distribution of the

error in the individual CopPIT values that is caused by using the approximation.

x1, . . . , xn is a sample drawn from H . In Section 3.3, we use this technique with
sample size n = 4,000.

Here we demonstrate in two examples that the errors made in the two types
of approximations typically are sufficiently small, so that they do not obstruct
conclusions drawn from the CopPIT histogram.

Specifically, for the forecaster TTF in Section 3.1 we compute the CopPIT
value using either the closed form expression of the Kendall distribution function
derived by McNeil and Nešlehová (2009), to yield U1, or based on the empirical
Kendall distribution function(6) with n = 5,000, to yield U2. Figure 7 displays
the CopPIT histograms computed from U1 and U2, respectively, and shows the
distribution of the approximation error, U1 −U2, for 4,000 forecast–observation
pairs. The absolute value of the approximation error is below 0.01 in 97.5%
of the cases. It is possible to spot tiny differences in the histograms. However,
as CopPIT histograms are intended to be used as qualitative diagnostic tools,
these small deviations are unimportant.

Figure 8 shows the results of an analogous study for forecaster F1 in Section
3.3, who predicts a normal CDF, H , with d = 20 independent components. The

exact approximate −0.005 0.005

Fig 8. CopPIT histograms for the forecaster F1 in Figure 6 computed using either the

exact Kendall distribution function, or the approximation based on the empirical CDF of

H(x1), . . . , H(xn), where n = 4,000 and x1, . . . , xn is a sample from H. The histogram at

right shows the distribution of the error in the individual CopPIT values that is caused by

using the approximation.
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respective Kendall distribution function is given by

K(w) = w
d−1
∑

k=0

(− logw)k

k!
for w ∈ [0, 1].

We compare to the approximation via the empirical CDF of H(x1), . . . , H(xn),
where n = 4,000 and x1, . . . , xn is a sample from H . Again, the approximation
error is minor.

4. Case study: Probabilistic forecasts of wind vectors over the

Pacific Northwest

In a recent change of paradigms, meteorologists have adopted probabilistic
weather forecasting in the form of ensemble forecasts. An ensemble forecast is
a collection of numerical weather prediction (NWP) model runs that are based
on distinct initial conditions and/or model physics parameters (Gneiting and
Raftery, 2005; Leutbecher and Palmer, 2008). Despite their undisputed success,
ensemble forecasts tend to be biased and underdispersed, in the sense of the
spread among the ensemble members being too small to be realistic. There-
fore, methods for the statistical postprocessing of ensemble forecasts have been
developed, such as the ensemble model output statistics (EMOS) approach of
Gneiting et al. (2005), which generates Gaussian predictive distributions for
univariate variables. In a more recent development, Schuhen, Thorarinsdottir
and Gneiting (2012) developed a bivariate EMOS method that generates bi-
variate Gaussian predictive distributions for wind vectors. Parameter estima-
tion is performed on a rolling 30-day training period, except for the model for
the correlation coefficient, which is estimated on historical data; cf. Schuhen,
Thorarinsdottir and Gneiting (2012, Sections 3.c and 3.d).

Here, we take up their work on probabilistic forecasts of surface wind vectors
over the North American Pacific Northwest based on the University of Wash-
ington Mesoscale Ensemble (Eckel and Mass, 2005), which has m = 8 members.
The test data comprise calendar year 2008 with a total of 19,282 forecast–
observations pairs at 79 meteorological stations and a prediction horizon of 48
hours. We assess and compare the raw ensemble forecast, the statistically post-
processed regional bivariate EMOS forecast developed by Schuhen, Thorarins-
dottir and Gneiting (2012), and an Independent EMOS forecast with the same
bivariate Gaussian predictive distribution, except that the correlation coefficient
is misspecified at zero.

Figure 9 shows univariate PIT histograms, the multivariate rank histogram,
the CopPIT histogram, and the Kendall calibration diagram for the raw en-
semble, Independent EMOS, and EMOS forecasts. The raw ensemble forecast
shows U-shaped PIT, multivariate rank and CopPIT histograms, which attest to
its underdispersion, and the Kendall calibration diagram points at severe fore-
cast deficiencies. The univariate PIT histograms for the Independent EMOS
and EMOS forecasts are identical and diagnose slight overdispersion. However,
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Raw
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Fig 9. Univariate PIT histograms, multivariate rank histogram, CopPIT histogram and

Kendall calibration diagram for the raw ensemble, Independent EMOS, and EMOS forecasts

of wind vectors. Following common practice, we label the wind vector components as u and v.

the bivariate rank and CopPIT histograms for the EMOS forecast are more
uniform than for the Independent EMOS forecast, as the Independent EMOS
technique fails to take dependencies between the wind vector components into
account, with the CopPIT histogram providing a much clearer diagnosis than
the multivariate rank histogram.

5. Discussion

In this paper, we introduced the copula probability integral transform (CopPIT),
and we proposed CopPIT histograms and Kendall calibration diagrams as di-
agnostic tools in the evaluation and comparison of probabilistic forecasts of
multivariate quantities. These tools apply to non-parametric, semi-parametric
and parametric approaches and thus can be employed to diagnose strengths
and deficiencies of multivariate stochastic models in nearly any setting, be it
predictive or not.

Extant methods for calibration checks for probabilistic forecasts of multivari-
ate quantities apply either to ensemble forecasts only, such as rank histograms
(Smith and Hansen, 2004; Wilks, 2004; Gneiting et al., 2008; Thorarinsdottir,
Scheuerer and Heinz, 2014), or they apply to density forecasts only, such as the
methods of Diebold, Hahn and Tay (1999), Ishida (2005), and González-Rivera
and Yoldas (2012) that rely on the univariate PIT and the Rosenblatt transform
(Rosenblatt, 1952; Rüschendorf, 2009) in one way or another. By way of con-
trast, CopPIT histograms and Kendall calibration diagrams apply to all types of
probabilistic forecasts, including both ensemble forecasts and density forecasts.

In our case study, we assessed probabilistic forecasts of raw ensemble and
statistically postprocessed density forecasts of bivariate wind vectors. However,
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our methods also apply in higher dimensions and then it may be useful to plot
CopPIT histograms and Kendall calibration diagrams for a range of subvectors
of the outcome, too.

As noted, probabilistic forecasting strives to maximize the sharpness of the
predictive probability distributions subject to calibration (Gneiting, Balabdaoui
and Raftery, 2007), and the methods proposed here serve to evaluate calibration
only. If probabilistic forecasters are to be ranked considering both calibration
and sharpness, proper scoring rules can be employed (Gneiting and Raftery,
2007; Gneiting et al., 2008), with recent theoretical advances having been made
by Ehm (2011). Diks, Panchenko and van Dijk (2010) and Röpnack et al. (2013)
advocate the use of the logarithmic score to compare probabilistic forecasts of
multivariate quantities. The event based approach of Pinson and Girard (2012)
reduces a high-dimensional quantity to a binary event — essentially, the ultimate
dimension reduction — and applies proper scoring rules to assess the induced
probability forecasts for dichotomous events. While these techniques aim to rank
probabilistic forecasters, CopPIT histograms and Kendall calibration diagrams
are diagnostic tools that strive to inform model development and spur model
improvement.

Acknowledgements

The authors thank Nina Schuhen and Thordis Thorarinsdottir for assistance
with the data handling, and Fabian Krüger for support on some computational
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