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Abstract: Marked point processes are commonly used stochastic models
for representing a finite number of natural hazard events located in space
and time, because these kinds of data often associate measurements (i.e.
marks) with locations (i.e. points) of events. Methods of marked point pro-
cesses when marks and points are interacting have been proposed, but it
is still necessary to know whether the interaction must be considered. This
article presents a Kolmogorov-Smirnov type method to test the indepen-
dence between points and marks of marked point processes. The asymptotic
distribution of the test statistic under a few weak regularity conditions is
derived. According to the asymptotic result, a specific way to construct the
test statistic is recommended as its null distribution can be approximated
by the absolute maximum of the two-dimensional standard Brownian pil-
low. The simulation results and real data analyses demonstrated that the
proposed method is powerful in detecting weak dependence between marks
and points and performs well with a moderate sample size.
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1. Introduction

Marked point processes are important models for a wide variety of scientific
disciplines. A typical way to describe a marked point process is to use an artificial
order such that data can be represented as

n
∑

i=1

ǫ(Si,Mi),

where n is the total number of events, Si are the locations of points, Mi are the
associated marks, and ǫ is the Dirac measure. Both spatial and spatiotemporal
processes can be represented by the above expression: if Si represents a spatial
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location, then the marked point process is purely spatial; if Si represents a
spatiotemporal location, then the marked point process is spatiotemporal.

Specific statistical methods include variogram analysis, various kinds of krig-
ing, and geostatistical simulation techniques may be used to model a marked
point process [7], but these methods rely on a fundamental assumption that
point locations appear independently of marks because the correlation func-
tion used in a geostatistical method often ignores the point distributions [14].
However, the independence assumption is often violated in real world data. For
instance, the relative positions of trees in a forest have repercussions on their size
owing to their competition for light or nutrients [48], indicating that tree sizes
and locations of trees may not be independent. Forest wildfire activities exhibit
power-law relationships between frequency and burned area [30], indicating that
the burned area and the locations of forest wildfires may not be independent.
The purpose of this article is to explore a Kolmogorov-Smirnov type method to
test the independence between points and marks of marked point processes.

It is especially convenient in modeling, estimation, and prediction in a marked
point process if marks and points are independent. Many commonly used Hawkes
models, such as the epidemic-type aftershock sequences (ETAS) model [43], may
exhibit the independence between marks and points [50]. The spatstat [2] and
PtProcess [18] packages in R have been developed for marked point processes.
Methods of marked point processes when points and marks are interacted have
been proposed [20, 32, 38]. However, it is still important to answer whether it
is necessary to account for the interaction between points and marks. Recently,
a few methods have been proposed to assess the independence between points
and marks, including a test for stationarity and isotropy of a marked point pro-
cess using variograms [1, 48], a nonparametric kernel-based test to assess the
separability of the conditional intensity function [50], and a χ2-based test to as-
sess the interaction between points and marks for marked point processes with
a stationary spatial projection of the marked point process [16]. These meth-
ods, however, contain kernel estimation of a nonparametric smoothing function
which may result in a loss of power.

In this article, we propose a Kolmogorov-Smirnov type statistic ([53], p. 265)
to test the independence between marks and points. Intuitively, the test statistic
is derived by computing the absolute maximum difference between the joint em-
pirical process and the product of the marginal empirical processes of marks and
points, where the maximum is computed over a collection of subsets of the study
area. We show that the choice of the collection of subsets affects the asymptotic
distribution of the test statistic. With a careful choice of the collection, the
asymptotic null distribution may be distribution-free and approximated by the
absolute maximum of the two-dimensional standard Brownian pillow.

The Brownian pillow is an extension of the Brownian bridge from [0, 1] to
[0, 1]d for d ≥ 1. It is the Brownian bridge if d = 1. Many test statistics for multi-
variate independence converge to the Brownian pillow under the null hypothesis
[5, 11, 12, 39, 40, 49]. Many articles have evaluated the probability distribution
of the Brownian bridge. However, there are just a few for the Brownian pillow.
For example, analytical bounds for the maximum of the Brownian pillow were
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derived [9, 15, 27, 29, 52], but there are few known results related to more im-
portant features of the Brownian pillow, such as the maximum absolute value
[28]. Therefore, a simulation method is natural and convenient to be used.

Marked point processes are often used to model a number of natural haz-
ard events located in space and time. Many successful applications of marked
point processes can be found in the literature. These include marked point
modeling and prediction of earthquakes, where each earthquake is represented
by a magnitude and a space-time coordinate [21, 42, 54]. The three-dimensional
space coordinate contains the longitude, latitude and depth of earthquake occur-
rences. Marked point processes for wildfires have been discussed by [45], where
each wildfire is represented by its area burned and space-time coordinate. The
two-dimensional space coordinate contains the longitude and latitude of wildfire
occurrences. A few statistical methods of marked point processes with the inde-
pendence assumption may be used [34, 46]. If the independence assumption is
violated, one may consider intensity-dependent methods [20, 32, 38]. However,
a test for the independence between marks and points is still important in the
analysis.

To the best of our knowledge, the present article provides the first Kolmogorov-
Smirnov type approach to assess the independence between marks and points of
marked point processes. In principle, the Kolmogorov-Smirnov type approach
used in this paper is nonparametric. It is easily implemented in all kinds of
distributions of marks and points. The proposed method can be applied to both
continuous and discrete marks. It is prudent, however, to start with the con-
tinuous marks for our asymptotic results because the core derivation does not
contain complicated mathematical inferences.

The rest of the article is organized as follows. In Section 2, we briefly re-
view the classical Kolmogorov-Smirnov test for independence. In Section 3, we
propose the test statistic and derive its asymptotic distribution. In Section 4,
we provide our simulation results, focusing on the marked Poisson process, the
marked mixed Poisson process, and the marked Neyman-Scott cluster process.
In Section 5, we apply our test statistic to real world data: the Ambrosia dumosa
data [35] and the Alberta wildfire data. Our results showed that the marks and
the points were not independent in both data, and a supplementary nonpara-
metric method was proposed and applied to the Alberta wildfire data to account
for dependence between points and marks. In the end, we provide a discussion.

2. Kolmogorov-Smirnov test for multivariate independence

The Kolmogorov-Smirnov test for multivariate independence has been discussed
about fifty years ago (e.g. [5]). It usually considers a p-dimensional multivariate
variable x = (X1, . . . , Xp) with the joint CDF F (x1, . . . , xp). Let Fj be the
j-th marginal CDF of F . Then, the Kolmogorov-Smirnov test for multivariate
independence is to assess the null hypothesis

H0 : F (x1, . . . , xp) =

p
∏

j=1

Fj(xj). (2.1)
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Suppose samples distributions of F are observed. Then, the Kolmogorov-Smirnov
statistic for multivariate independence is

Tn = sup
x1,...,xp∈R

√
n|F̂ (x1, . . . , xp)−

p
∏

j=1

F̂j(xj)|, (2.2)

where n is the sample size, F̂ and F̂j are the joint sample CDF and marginal
sample CDF, respectively. It has been shown that under H0 the limiting distri-
bution of Tn is a p-dimensional Brownian pillow, which is a Gaussian random
field on [0, 1]p with mean 0 and covariance function equal to

∏p
j=1(tj ∧ t′j − tjt′j)

for 0 < tj , t
′
j < 1 with j = 1, . . . , p. To understand the Brownian pillow, we

briefly review the case when p = 2 below.
A Gaussian random field W (u, v) on [0, 1]2 is called the two-dimensional

standard Brownian sheet if W [(0, v)] = W [(u, 0)] = 0, E[W (u, v)] = 0, and
E[W (u, v)W (u′, v′)] = (u∧ u′)(v ∧ v′) for all (u, v) ∈ [0, 1]2, see [56]. Important
results on sample path properties of a Brownian sheet were obtained and it
has been shown that the sample paths of a Brownian sheet are continuous with
probability one and W (u, v) has independent stationary increments on [0, 1]2,
see [8, 9, 44, 55]. Let

W̃ (u, v) =W (u, v)− uW (1, v)− vW (u, 1) + uvW (1, 1). (2.3)

Then, W̃ (u, v) is called the two-dimensional standard Brownian pillow (or the
two-dimensional tied-down Brownian sheet) [12]. In general, the two-dimensional
standard Brownian pillow W̃ (u, v) is a Gaussian random field on [0, 1]2 with
E[W̃ (u, v)] = 0, W̃ (u, 0) = W̃ (0, v) = W̃ (u, 1) = W̃ (1, v) = 0, and covariance
function given by

E[W̃ (u, v)W̃ (u′, v′)] = (u ∧ u′ − uu′)(v ∧ v′ − vv′) (2.4)

for 0 ≤ u, v, u′, v′ ≤ 1. Neither the exact nor the approximate distribution of
supu,v∈[0,1] |W̃ (u, v)| has not been derived yet [26, 27, 28, 29].

We used a simulation method to evaluate the values of W̃α, where W̃α is the
upper α quantile of the distribution of supu,v∈[0,1] |W̃ (u, v)|. In the method, we

independently generated m2 random variables from N(0, 1/m2). Let them be

denoted by Xij for i, j = 1, . . . ,m. Let Ykl =
∑k

i=1

∑l
j=1Xij and Zkl = Ykl −

(l/m)Ykm− (k/m)Yml +(k/m)(l/m)Ymm. Then, E(Zkl) = 0 and E(ZklZk′l′) =
(k ∧ k′/m−kk′/m2)(l ∧ l′/m−ll′/m2). Thus, the distribution of sup1≤k,l≤m |Zkl|
was approximately equal to the distribution of sup0≤u,v≤1 |W̃ (u, v)| ifm is large.

In a simulation with 105 replications for m = 1000, we had W̃0.1 = 0.7298,
W̃0.05 = 0.7948, and W̃0.01 = 0.9234. Since we had P (supu,v∈[0,1] |W̃ (u, v)| >
1.5) < 10−5, we may conclude that the p-value is almost 0 if Tn > 1.5.

We attempt to modify the classical test statistic Tn displayed by Equation
(2.2) such that the modified test can be used to assess the independence between
points and marks of marked point processes. Note that the CDF used in the
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definition of Tn cannot be naturally defined in a marked point process. We
rephrase the definition of Tn such that it can be easily modified.

Let R = {(−∞, t],−∞ < t <∞} and R be the collection of all Borel sets in
R. Then, R can be generated by R. Let µ be the joint probability measure on
R

p satisfying
µ{(−∞, x1], . . . , (−∞, xp]} = F (x1, . . . , xp).

Then, µ is uniquely determined. Let µj be the j-th marginal probability measure
of µ. Then, µj satisfies

µj{(−∞, xj ]} = Fj(xj).

The null hypothesis given by Equation (2.1) can be rephrased as

H0 : µ{(−∞, x1], . . . , (−∞, xp]} =

p
∏

j=1

µj{(−∞, xj ]}

for all x1, . . . , xp, which is also equivalent to

H0 : µ{A1, . . . , Ap} =

p
∏

j=1

µj{Aj}

for all A1, . . . , Ap ∈ R. The test statistic Tn given by Equation (2.2) can be
written as

Tn = sup
A1,...Ap∈R

√
n|µ̂(A1, . . . , Ap)−

p
∏

j=1

µ̂j(Aj)|, (2.5)

where µ̂ and µ̂j are the sample measures of µ and µj , respectively. In the fol-
lowing of this paper, we focus on a modification of Tn given by (2.5) such that
it can be used to test the independence between points and marks in a marked
point process.

3. Method

The definition of marked point processes is well-established and can be found
in [10, 25]. In general, a marked point process is a point process defined on
the product space of points and marks, but the concept has its own life in
applications. To well express our method, we introduce the following notations.
Let ‖ · ‖ be the L2–norm and ‖ · ‖γ be the Lγ–norm for γ > 1 over an Euclidean
space. Let φ be the empty set, C̄ be the complementary set of C. Denote x∧x′ =
min(x, x′) if x, x′ ∈ R, x ∧ x′ = (x1 ∧ x′1, . . . , xk ∧ x′k) if x, x′ ∈ R

k, and write
x � x′ if xi ≤ x′i for all i = 1, . . . , k, where xi and x

′
i are the i-th component of

x and x′, respectively.

3.1. Statistical formulation

A marked point process N = (Ns, Nm) with points in a complete separable
metric space S and marks in a complete separable metric space M is a point
process on S × M with the additional property that the spatial projection of
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marked point process Ns is itself a point process and for any bounded A ∈ S
there is Ns(A) = N(A×M) <∞, where N(A×B) is number of points in A×B
for Borel sets A ⊆ S and B ⊆ M. In modeling the occurrence of ecological or
geographical events when depth is not involved, we may have S = R

d with d = 2
if time is not considered or d = 3 if time is considered.

The distribution of a marked point process can be mathematically defined
using the idea for a purely point process [37]. Let n = N(S ×M) be the total
number of observations and assume n is finite. Then, n is a discrete random
variable. Assume n ≥ 1 and observations are given by an artificial order such
that the data can be expressed into {(Si,Mi) : i = 1, . . . , n}. Then, a probability
distribution πn can be defined on the Borel sets of (S ×M)n as ([4], p. 232)

πn(A1 ×B1, . . . , An ×Bn) = P ((S1,M1) ∈ A1 ×B1, . . . , (Sn,Mn) ∈ An ×Bn).

To be consistent with treating the marked point process as a theory of unordered
data, πn should be permutation invariant as

πn(A1 ×B1, . . . , An ×Bn) = πn(Ai1 ×Bi1 , . . . , Ain ×Bin),

where (i1, . . . , in) is a permutation of (1, . . . , n). Let

πs,n(A1, . . . , An) = πn(A1 ×M, . . . , An ×M)

and
πm,n(B1, . . . , Bn) = πn(S ×B1, . . . ,S ×Bn).

Then, πs,n is the marginal distribution of points and πm,n is the marginal dis-
tribution of marks.

Definition 1. The marked point process N is independent if for all n ≥ 1 there
is

πn(A1 ×B1, . . . , An × Bn) = πs,n(A1, . . . , An)πm,n(B1, . . . , Bn), (3.1)

for any Borel sets A1, . . . , An ∈ S and B1, . . . , Bn ∈ M , where S and M are
the collections of all Borel sets of S and M, respectively.

In applications, it is often assumed that events appear independently such
that data can be modeled by a marked Poisson process. For Poisson point pro-
cesses with simple ground processes (i.e., with no two points at exactly the
same location), the intensity (if it exists) uniquely characterizes all of the finite-
dimensional distribution of the process [10, 24]. For a marked Poisson process,
one may consider a similar intensity function defined as the expected rate of
occurrences at a certain location of points with a certain value of marks [45].
This idea has been used to define a marked Poisson process by [50], which has
been summarized in the following.

Definition 2. The marked point processN is called a marked Poisson process if
there exists a Borel measure µ on S ×M such that for any disjoint C1, . . . , Ck,
N(C1), . . . , N(Ck) are independent Poisson distributed with expected values
µ(Ci) for i = 1, . . . , k, respectively.
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Proposition 1. The necessary condition for N to be independent is

π(A×B) = πs(A)πm(B) (3.2)

for any A ∈ S and B ∈ M , where π(A × B) = π1(A × B), πs(A) = πs,1(A),
and πm(B) = πm,1(B). If N is a marked Poisson process, then condition (3.2)
is also sufficient.

It can be seen that all marked point processes with intensity-dependent
marks violate Equation (3.2). However, marked point processes with intensity-
independent marks may also exhibit dependence between points and marks.
Therefore, Equation (3.2) is only a special case of Equation (3.1). In applica-
tions, it is often assumed that events appear independently so that data can be
modeled by a marked Poisson process. For Poisson point processes with sim-
ple ground processes, the first-order intensity uniquely characterizes all of the
finite-dimensional distribution of the process.

3.2. Derivation of the test statistic

In order to avoid the complexity of Equation (3.1), our interest is to investigate
whether Equation (3.2) holds. We consider the null hypothesis

H0 : ϕ(A,B) = 0 (3.3)

for any A ∈ S and B ∈ M against the alternative hypothesis

H1 : ϕ(A,B) 6= 0 (3.4)

for some A ∈ S and B ∈ M , where ϕ(A,B) = π(A×B)− πs(A)πm(B).

Lemma 1. A necessary condition for Equation (3.2) to be held is that ϕ(A,B) =
0 for any A ∈ A ⊆ S and B ∈ B ⊆ M . If S and M can be generated by A
and B, respectively, then the condition is also sufficient.

Note that π(A × B) is the joint probability distribution for points in A and
marks in B, πs(A) is the marginal probability for points in A, and πm(B) is the
marginal probability for marks in B. If n ≥ 1, then they can be estimated by
N(A×B)/n, Ns(A)/n, and Nm(B)/n, respectively. Let

ϕ̂n(A,B) = π̂n(A×B)− π̂s,n(A)π̂m,n(B), (3.5)

where π̂n(A×B) = N(A×B)/n, π̂s,n(A) = Ns(A)/n, and π̂m,n(B) = Nm(B)/n
if n > 0 and π̂n(A × B) = π̂s,n(A) = π̂m,n(B) = 0 if n = 0. Then, ϕ̂n(A,B) is
an estimator of ϕ(A,B). Our test statistic therefore is

Tn = sup
A∈A,B∈B

√
n|π̂n(A×B)− π̂s,n(A)π̂m,n(B)|, (3.6)

whereA ⊆ S and B ⊆ M . Then, Tn is a Kolmogorov-Smirnov type test statistic
with Tn = 0 if n = 0. It can be seen that the test statistic Tn given by Equation
(3.6) is special case of Equation (2.5). It is recommended to reject H0 if Tn is
large.
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Even though there are many ways to choose A and B in Equation (3.6), it
is not necessary to consider all of them. In this article, we only recommend to
consider two of them. In the first, we choose A and B such that S and M can
be generated by A and B, respectively. In the second method, we choose A and
B such that the p-value can be easily derived using the limiting distribution.
Because the second method is more convenient in applications, we focus on
the second method in the rest of the paper. The detail derivations of the two
methods will be discussed in the next subsection.

3.3. Asymptotics

We derive the asymptotic properties of Tn in this subsection. The asymptotic
properties include the asymptotic null distribution, consistency, and asymptotic
power functions. These properties are particularly considered in the marked
Poisson process as it has independent increments ([25], p. 6), which is an impor-
tant assumption in our main conclusion for asymptotic power functions given
by Theorem 2. If the marked point process is not Poisson, then we can only
provide the asymptotic null distribution since the basic theorem that we cite
requires Ns be strong stationary.

3.3.1. Asymptotics in marked poisson processes

Let ϕA,B be the vector composed by ϕ(A,B) and ϕ̂A,B,n be the vector composed
by ϕ̂n(A,B) for all A ∈ A and B ∈ B, respectively. Then, ϕA,B and ϕ̂A,B,n are
finite if both A and B are finite; otherwise they are infinite. For example, if
A = {A1, . . . , AI} and B = {B1, . . . , BJ}, then

ϕA,B = (ϕ(A1, B1), ϕ(A1, B2), . . . , ϕ(AI , BJ)) (3.7)

and

ϕ̂A,B,n = (ϕ̂n(A1, B1), ϕ̂n(A1, B2), . . . , ϕ̂n(AI , BJ )) (3.8)

are both IJ-dimensional vectors.
In order to derive the asymptotic distribution of Tn, we impose the following

regularity conditions:

(C1) N is a marked Poisson process.
(C2) The intensity function of Ns has the form of λs(s) = κλ0(s), where κ is a

finite positive number and
∫

S λ0(s)ds = 1.
(C3) Conditioning on points, the marks are continuous random variables with

conditional density functions given by λ1(m|s) = λ(s,m)/λs(s) for m ∈
M and s ∈ S.

Under Conditions (C1)–(C3), we have Nκ(A × B) ∼ Poisson(κπ(A × B)),
Nκ(A×B)|n ∼ Bin(n, π(A×B)) if n 6= 0, and π(A×B) =

∫

A×B
λ(s,m)dsdm/κ

if A ⊆ S. We denote
P→ as convergence in probability and

D→ as convergence in
distribution as κ→ ∞.
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Lemma 2. If Conditions (C1)–(C3) hold, then ϕ̂n(A,B)
P→ ϕ(A,B) for any

A ∈ S and B ∈ M .

Lemma 3. Assume Conditions (C1)–(C3) hold. Let ϕA,B and ϕ̂A,B,n be given
by (3.7) and (3.8) for A = {A1, . . . , AI} ⊆ S and B = {B1, . . . , BJ} ⊆ M ,
respectively. Let ν1i = π(Ci×Di), ν2j = π(Cj×Dj), uij = π[(Ci∩Cj)×(Di∩Dj)]
for i, j = 1, 2, 3, 4, where Ci = Ai1 or Cj = Ai2 if i = 1, 2 or j = 1, 2, Ci = Āi1

or Cj = Āi2 if i = 3, 4 or j = 3, 4, Di = Bj1 or Dj = Bj2 if i = 1, 3 or j = 1, 3,
and Di = B̄j1 or Dj = B̄j2 if i = 2, 4 or j = 2, 4 for i1, i2 = 1, . . . , I and
j1, j2 = 1, . . . , J . Then

√
n(ϕ̂A,B,n − ϕA,B)

D→ N (0,Σ), (3.9)

where

Σ =











σA1,B1,A1,B1 σA1,B1,A1,B2 · · · σA1,B1,AI ,BJ

σA1,B2,A1,B1 σA1,B2,A1,B2 · · · σA1,B2,AI ,BJ

...
...

. . .
...

σAI ,BJ ,A1,B1 σAI ,BJ ,A1,B2 · · · σAI ,BJ ,AI ,BJ











with

σAi1 ,Bj1 ,Ai2 ,Bj2

= 4ϕ(Ai1 , Bj1)ϕ(Ai2 , Bj2) + 4ϕ(Ai1 , Bj1)(ν21ν24 − ν22ν23)

+ 4ϕ(Ai2 , Bj2)(ν11ν14 − ν12ν13)

+ ν14(u11ν24 − u12ν23 − u13ν22 + u14ν21)

− ν13(u21ν24 − u22ν23 − u23ν22 + u24ν21)

− ν12(u31ν24 − u32ν23 − u33ν22 + u34ν21)

+ ν11(u41ν24 − u42ν23 − u43ν22 + u44ν21).

(3.10)

If Equation (3.2) holds, then

σAi1 ,Bj1 ,Ai2 ,Bj2
= [πs(Ai1 ∩Ai2 )− πs(Ai1 )πs(Ai2 )]

× [πm(Bj1 ∩Bj2)− πm(Bj1 )πm(Bj2 )].
(3.11)

Corollary 1. If Conditions (C1)–(C3) hold, then for any A ∈ S and B ∈ M

there is
√
n[ϕ̂n(A,B)− ϕ(A,B)]

D→ N(0, σ2
A,B), where

σ2
A,B = 4ϕ2(A,B) + 8ϕ(A,B)[π(A × B̄)π(Ā×B)− π(A×B)π(Ā × B̄)]

+ [π2(A×B)π(Ā × B̄) + π(A×B)π2(Ā× B̄)

+ π2(A× B̄)π(Ā×B) + π(A× B̄)π2(Ā×B)].

(3.12)

Theorem 1. If the null hypothesis of Equation (3.3) is violated, then there is
limκ→∞ P (Tn > x) = 1 for any x > 0.

Corollary 2 (Consistency). Suppose Conditions (C1)–(C3) hold. Assume S

and M can be generated by A and B, respectively. If the null hypothesis given
by Equation (3.3) is violated, then limκ→∞ P (Tn > x) = 1 for any x > 0.
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Theorem 2 (Asymptotic performance of the power function). Suppose Condi-
tions (C1)–(C3) hold. Denote Aa and Bb as sets indexed by a = (a1, . . . , aα) ∈
R

α and b = (b1, . . . , bβ) ∈ R
β, respectively, where α and β are positive integers.

Let A = {Aa : a ∈ R
α} and B = {Bb : b ∈ R

β}. Assume

(A1) Aa′ ⊆ Aa if a′ � a and Bb′ ⊆ Bb if b′ � b;
(A2) lim‖a′−a‖→0Aa′ = Aa and lim‖b′−b‖→0Bb′ = Bb;
(A3) limai→−∞Aa = limbj→−∞Bb = φ for any i and j; and
(A4) lima1→∞,...,aα→∞ Aa = S and limb1→∞,...,bβ→∞Bb = M.

Then,

sup
A∈A,B∈B

√
n|ϕ̂A,B,n − ϕA,B| D→ sup

A∈A,B∈B
|ZA,B|, (3.13)

where ZA,B is a Gaussian random field with mean 0 and covariance function
σA,B,A′,B′ for any A,A′ ∈ A and B,B′ ∈ B.

Theorem 2 can be used to derive the asymptotic distribution of Tn under
both the null and alternative hypotheses. However, the derivation of Tn under
the null hypothesis is more important since it is related to the p-value of the
test. If the null hypothesis holds, then the conditional distribution ofM does not
depend on its location, which implies that λ1(m|s) is independent of s. Using
Condition (C1), an iid sample of the marks is derived.

Theorem 3 (Asymptotic null distribution). Assume all conditions in Theorem
2 hold. If the null hypothesis given by Equation (3.3) also holds, then

lim
κ→∞

P (Tn ≥ x) = P ( sup
A∈A,B∈B

|ZA,B| ≥ x)

for all x > 0, where ZA,B is a Gaussian random field with mean 0 and covariance
function

τA,B,A′B′ = [πs(A ∩ A′)− πs(A)πs(A
′)][πm(B ∩B′)− πm(B)πm(B′)]

for any A,A′ ∈ A and B,B′ ∈ B.
It is generally not easy to directly apply Theorem 3 to a real-world application

because the asymptotic null distribution of Tn depends on πs and πm, which are
unknown. If we choose specific A and B, then the asymptotic null distribution
of Tn does not depend on πs and πm any more. Then, the p-value of Tn can be
easily derived using Theorem 3. The method is given below.

Corollary 3. Assume all conditions in Theorem 3 hold. If α = β = 1 in
Condition (A1) of Theorem 2, then

Tn
D→ sup

u,v∈[0,1]

|W̃ (u, v)|,

where W̃ is the standard Brownian pillow on [0, 1]2.
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3.3.2. Asymptotic null distribution for stationary marked point processes

Even though we have derived the asymptotic null distribution and asymptotic
power functions for marked Poisson process, it is generally hard to derive the
asymptotic power functions when the marked point process is not Poisson.
Therefore, we decide to only provide the limiting distribution of Tn under the
null hypothesis. To derive the limiting distribution of Tn for a marked Point pro-
cess which is not Poisson, we need to assume that Ns is stationary and satisfies
the strong mixing condition.

Let Ns be a spatial point process on S = R
d. We say Ns is strong stationary if

the joint distribution of (Ns(A1), . . . , Ns(Ak)) is equal to the joint distribution of
(Ns(A1+s), . . . , Ns(Ak+s)) for any A1, . . . , Ak ∈ S , where Ai+s = {s′+s : s′ ∈
Ai}. Assume the kth-order intensity function of Ns exists. Then, the logarithm
of the probability generating function of Ns is defined as

ψ(ζ) = log
[

Ee
∫
Rd

log ζ(s)dNs(s)
]

,

where ζ, 0 ≤ ζ ≤ 1, is a function with compact support on R
d. The kth-order

factorial cumulant measure of Ns is defined as

C(k)(A1 × · · · ×Ak) = lim
η↑1

[

∂k

∂a1 · · · ∂ak
ψ

(

η +

k
∑

i=1

aiIAi

)]

a1=···=ak=0

, (3.14)

where IA is the indicator function of A ∈ B(Rd). If C(k) is absolutely continu-
ous, then its kth-order density function, denoted by Qk(s1, . . . , sk) for distinct
s1, . . . , sk ∈ R

d, is called the kth-order factorial cumulant density of Ns. Let P
be the distribution of Ns. We say Ns satisfies the strong mixing condition if for
any positive r and d there is

lim
a→∞

ξ(ar, ad) = 0, (3.15)

where

ξ(r, d) = sup
d(E1, E2) ≥ r

d(E1) ≤ d, d(E2) ≤ d

sup
U1 ∈ F(E1)
U2 ∈ F(E2)

|P (U1 ∩ U2)− P (U1)P (U2)|,

d(E) = sups,s′∈E ρ(s, s
′) is the diameter of E, d(E1, E2) = sups∈E,s′∈E′ ρ(s, s′)

is the maximum distance between disjoint sets of points and ρ is the Euclidean
distance function. The detailed interpretation of those definitions can be found
in [23, 37].

The asymptotic null distribution of Tn is also investigated by assumingE(n)→
∞. To explain the condition E(n) → ∞, we write Sκ = [−κ, κ]d and as-
sume points are restricted on Sκ. Denote Nκ(A × B) = N [(A ∩ Sκ) × B] and
Ns,κ(A) = Nκ(A × M). The asymptotic properties of Tn is evaluated by con-
sidering

Tnκ
= sup

A∈Aκ,B∈B

√
nκ|ϕ̂nκ

(A,B)|,
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as κ→ ∞, where nκ = Nκ(Sκ ×M), Aκ is a collection of Borel sets of Sκ, B is
a collection of Borel sets of M, ϕ̂nκ

(A,B) = π̂nκ
(A × B) − π̂s,nκ

(A)π̂m,nκ
(B)

and π̂nκ
, π̂s,nκ

, π̂m,nκ
are the restrictions of π̂, π̂s, and π̂m on Sκ, respectively.

To derive the asymptotic distirbution of Tnκ
, we need the following regularity

conditions for Ns.

(D1) Ns is strong stationary on S.
(D2) Ns satisfies the strong mixing condition.
(D3) The kth-order factorial cumulant density functions Qk of Ns satisfies

∫

s1,...,sk∈S

|Qk(s1, . . . , sk)|ds1 · · · dsk < C1, k = 2, 3, 4,

and
∫

s1,...,sk∈S

|Qk(s1, . . . , sk)|ds1 · · · dsk−1 < C2, k = 2, 3, 4

for some constants C1, C2 ∈ R.

Note that Qk is permutation invariant. The first integral in (D3) is over all of
the k-th arguments but the second one is just over k − 1 of them.

The conditional density of marks in a marked Poisson process given by Con-
dition (C3) can also be used to describe the conditional density of marks in a
stationary marked point process. Let the conditional density still be denoted by
λ1(m|s). If the null hypothesis holds, then λ1(m|s) does not depend on s, which
implies that the conditional distributions of marks given their point locations
are identical. If marks are also independent, then they are iid.

Theorem 4. Assume Conditions (D1)–(D3) hold and the distribution of marks
is independent of their point locations. If marks are identically independently
distributed, then Tnκ

weakly converges to the absolute maximum of a Gaussian
random field with mean 0 and covariance function given by Equation (3.11).

Corollary 4. Assume all conditions in Theorems 3 and 4 hold. If α = β = 1
in Condition (A1) of Theorem 2, then

Tn
D→ sup

u,v∈[0,1]

|W̃ (u, v)|.

To choose A and B in Equation (3.6), we need to consider the asymptotic
null distribution of Tn given by Theorems 3 and 4 as well as their corollaries.
There are two methods recommended. In the first, we choose A and B as the
minimum collections of Borel sets in S and M such that S and M can be gen-
erated by them, respectively. A significant Tn is enough to conclude H1 given
by Equation (3.4) and an insignificant Tn is enough to conclude H0 given by
Equation (3.3). In the second, we choose A and B specifically such that both
of them can be generated by a univariate functions from S to R or M to R,
respectively. A significant Tn is enough to conclude H1 given by Equation (3.4)
but an insignificant Tn is not enough to conclude Ha given by Equation (3.3).
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Because the second method is more convenient than the first method in appli-
cations, we focus on the second method in this paper. In the next subsection,
we present a few examples about the choice of S and M in Tn.

3.4. Examples

We present a few examples to illustrate our ideas. We use α to represent the
significance level and N to represent a marked Poisson process (or a stationary
marked point process which satisfies the strong mixing condition). In all of these
examples, we focus of the choices of A and B in Tn.

Example 1. Assume S = R
2 and M = R such that the points are two-

dimensional random vectors and the marks are one-dimensional random vari-
ables. Let Aa = Aa1,a2 = (−∞, a1] × (−∞, a2], Bb = (−∞, b], A = {Aa : a ∈
R

2}, and B = {Bb : b ∈ R}. If n = 1 with the observation being denoted by
(S,M), then F (a, b) = P (S ∈ Aa,M ∈ Bb) is the joint CDF of S and M ,
Fs(a) = P (S ∈ Aa) is the marginal CDF of S, and Fm(b) = P (M ∈ Bb) is the
marginal CDF of M . If n ≥ 1, then

Tn = sup
a∈R2,b∈R

√
n| 1
n
N((−∞, a1]× (−∞, a2]× (−∞, b])

− Ns((−∞, a1]× (−∞, a2])Nm((−∞, b])

n2
|.

If F is absolutely continuous with respect to the Lebesgue measure on R
3, then

under H0 there is

lim
κ→∞

P (Tn ≥ x) = P ( sup
u∈R2,0≤v≤1

|Z(u, v)| ≥ x),u ∈ [0, 1]2, v ∈ [0, 1],

where Z(u, v) is a mean zero Gaussian random field on R
3 with given by

E[Z(u, v)Z(u′, v′)] = [Fs(u ∧ u′) − Fs(u)Fs(u
′)](v ∧ v′ − vv′), which depends

on Fs. If we choose a1 = a2 = a such that Aa = (−∞, a]2 with a = (a, a), then
under H0 there is

lim
κ→∞

P (Tn ≥ x) = P ( sup
0≤u,v≤1

|W̃ (u, v)| ≥ x),

which does not depend on Fs. Therefore, Equation (3.2) is rejected if Tn > W̃α.

Example 2. Let S = R
d and M = R

k. Let Aa = {x : x � a, a ∈ R
d},

Bb = {x : x � b,b ∈ R
k}, A = {Aa : a ∈ R

d}, and B = {Bb : b ∈ R
k}. If

n > 0, then

Tn = sup
a∈Rd,b∈Rk

√
n| 1
n

n
∑

i=1

ISi�a,Mi�b − (
1

n

n
∑

i=1

ISi�a)(
1

n

n
∑

i=1

IMi�b)|.

If F is absolutely continuous with respect to the Lebesgue measure on R
d+k,

then under H0 there is

lim
κ→∞

P (Tn ≥ x) = P ( sup
u∈Rd,v∈Rk

|Z(u,v)| ≥ x),
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where Z(u,v) is a mean zero Gaussian random field with the covariance function
given by

E[Z(u,v)Z(u′,v′)] = [Fs(u ∧ u′)− Fs(u)Fs(u
′)][Fm(v ∧ v′)− Fm(v)Fm(v′)],

u ∈ R
d and v ∈ R

k, which depends on both Fs and Fm. If we choose Aa =
(−∞, a]d, Bb = (−∞, b]k, A = {Aa : a ∈ R}, and B = {Bb : b ∈ R}, then under
H0 there is

lim
κ→∞

P (Tn ≥ x) = P ( sup
0≤u,v≤1

|W̃ (u, v)| ≥ x).

Therefore, Equation (3.2) is rejected if Tn > W̃α.

Example 3. In Example 1, let Aa = {s : ‖s− s0‖ ≤ a} and A = {Aa : a ∈ R
+}

for some s0 = (s01, s02) ∈ R
2. Then under H0 there is

lim
κ→∞

P (Tn ≥ x) = P ( sup
0≤u,v≤1

|W̃ (u, v)| ≥ x).

Therefore, we reject Equation (3.2) if Tn > W̃α.

Example 4. In Example 2, let Aa,γ = {s : ‖s − s0‖γ ≤ a}, Bb,ω = {m :
‖m − m0‖ω ≤ b}, Aγ = {Aa,γ : a ∈ R

+}, Bω = {Bb,ω : b ∈ R
+} for some

s0 ∈ R
d, m0 ∈ R

k, and γ, ω ≥ 1, where ‖ · ‖γ is the Lγ-norm. Then under H0

there is
lim
κ→∞

P (Tn ≥ x) = P ( sup
0≤u,v≤1

|W̃ (u, v)| ≥ x).

Therefore, we reject Equation (3.2) if Tn > W̃α.

4. Simulation

We simulated realizations from marked point processes on [0, 1]2 ×R for points
and marks. We considered marked Poisson processes, marked mixed Poisson
processes, and marked Neyman-Scott cluster processes, where only the marked
Poisson processes had independent increments. We chose these processes here
due to their popularity in modeling ecological data. In order to generate a
marked Poisson process specifically, we first generated the purely point process
Ns and then generated the associated marks according to a selected conditional
distribution function. It is known that Ns in a marked Neyman-Scott cluster
process may satisfy the stong mixing condition. However, Ns in a marked mixed
Poisson process does not satisfy the strong mixing condition because the depen-
dence between number of points in subregions does not approach to zero if the
conditional mean measure is not degenerated. Therefore, we used the marked
mixed Poisson process for the robustness of the strong mixing condition in our
asymptotics. In our setting, both the Neyman-Scott process and the mixed Pois-
son process can be thought as special cases of the Cox process (e.g. Chapter 5
in [36]).

We considered both stationary Ns and nonstationary Ns in our simulations.
To generate data from a stationary Ns, we used the uniform intensity function
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of Ns in [0, 1]2 such that the true intensity function of Ns was

λ0(u, v) = Y κ, (4.1)

for 0 ≤ u, v ≤ 1, where κ was a constant and Y was a positive random vari-
able. The random variable Y in (4.1) was only used in marked mixed Poisson
processes, where we chose E(Y ) = 1 and V (Y ) = 1/γ, which was determined
by the Γ(γ, γ) distribution. For othere cases, we fixed Y = 1. Clearly, a marked
mixed Poisson process reduced to a marked Poisson process if Y was a constant.

Let Si = (Si1, Si2), i = 1, . . . , n, be the points that were generated from
a simulation. The values of marks, denoted by M1, . . . ,Mn, respectively, were
generated independently from the N(νi, 1) distribution, where

νi = ν(Si) = η
√

S2
i1 + S2

i2. (4.2)

To generate data from a nonstationary Ns, we used the intensity function of Ns

as

λ0(u, v) = Y κβ(u)β(v), u, v ∈ [0, 1], (4.3)

where κ is a constant and β(u) = 30u2(1− u)2 is the density of the Beta(3, 3)-
distribution. The values of marks were also generated independently from the
N(νi, 1) distribution, where

νi = ν(Si) = ηβ(Si1)β(Si2), η ≥ 0. (4.4)

It can be seen that νi in the stationary Ns did not depend on the intensity of
Ns but νi in the nonstationary Ns depended on the intensity of Ns.

Before we were able to use Equation (4.2) or Equation (4.4) for marks, we
needed to generate Ns according to the spatial Poisson process, the Neyman-
Scott cluster process, and the mixed Poisson process, respectively. To generate
the marked Neyman-Scott cluster process, we first generated parent points from
a Poisson point process with intensity function λ0(u, v)/k and then generated
a Poisson number with mean k of offsprings for each parent point, where the
position of offspring points relative to its parent point was generated from an
independent bivariate normal distribution with standard deviation γ. Therefore,
the expected value of the number of parent points was κ/k. In all of our simu-
lation studies, we have E(n) = κ, E(Mi|Si) = νi and V (Mi|Si) = 1. If η = 0,
then νi = 0 for all i. Overall, in all the cases that we considered, we had that
the marked point process was independent if and only if η = 0.

We had two methods to define Tn: one was given by Theorems 3 and 4 and the
other was given by Corollaries 3 and 4. As there were many intensity functions
considered in the simulation studies, it was more convenient to focus on the
latter one. To define the test statistic Tn recommended by Corollaries 3 and 4,
we used A = {Aa : 0 ≤ a ≤ 1} with Aa = {(u, v) :

√
u2 + v2 ≤ a} for points

and B = {(−∞, b] : −∞ < b <∞} for marks. We tested hypotheses

H0 : η = 0 versus H1 : η 6= 0
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Table 1

Type I error probabilities and power functions of Tn for stationary Ns at the significance
level 0.05, where γ represented the standard deviation for clusters in the Neyman-Scott

cluster process or the value of V −1(Y ) in the mixed Poisson process

η
κ = 1000 κ = 5000

Process γ 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Poisson 0.0490 0.1290 0.3913 0.7248 0.0555 0.4949 0.9831 1.0000
Mixed 1 0.0501 0.1262 0.3389 0.5526 0.0532 0.4235 0.7495 0.8631

2 0.0473 0.1247 0.3643 0.6133 0.0512 0.4730 0.8594 0.9530
4 0.0470 0.1325 0.3838 0.6614 0.0517 0.4661 0.9126 0.9857
8 0.0544 0.1285 0.3859 0.6982 0.0558 0.4781 0.9537 0.9985
16 0.0493 0.1247 0.3887 0.7072 0.0554 0.4888 0.9689 0.9997

Cluster 0.01 0.0510 0.1377 0.4249 0.7339 0.0575 0.5077 0.9800 1.0000
k = 10 0.05 0.0523 0.1381 0.4184 0.7399 0.0565 0.5161 0.9839 1.0000

0.1 0.0480 0.1395 0.4378 0.7701 0.0544 0.5413 0.9893 1.0000
0.2 0.0501 0.1582 0.4923 0.8354 0.0526 0.6229 0.9968 1.0000

Cluster 0.01 0.0511 0.2112 0.5752 0.7941 0.0560 0.6593 0.9233 0.9729
κ/k = 10 0.05 0.0503 0.1967 0.5204 0.7505 0.0525 0.6108 0.9031 0.9630

0.1 0.0508 0.1877 0.5019 0.7446 0.0558 0.5966 0.9166 0.9758
0.2 0.0515 0.1804 0.5185 0.7939 0.0539 0.6201 0.9626 0.9943

Table 2

Type I error probabilities and power functions of Tn for nonstationary Ns at the
significance level 0.05, where γ was the same as that in Table 1

η
κ = 1000 κ = 5000

Process γ 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Poisson 0.0514 0.0961 0.3065 0.6295 0.0567 0.3874 0.9709 1.0000
Mixed 1 0.0458 0.1050 0.2860 0.4830 0.0496 0.3589 0.7105 0.8414

2 0.0498 0.1032 0.2918 0.5536 0.0546 0.3843 0.8063 0.9388
4 0.0523 0.0996 0.3026 0.5819 0.0513 0.3772 0.8830 0.9805
8 0.0513 0.1029 0.3066 0.6015 0.0534 0.3886 0.9195 0.9957
16 0.0491 0.0955 0.2910 0.6184 0.0588 0.3914 0.9451 0.9994

Cluster 0.01 0.0514 0.1127 0.3405 0.6665 0.0529 0.4041 0.9620 0.9999
κ = 10 0.05 0.0509 0.1194 0.3653 0.6910 0.0584 0.4430 0.9798 1.0000

0.1 0.0534 0.1310 0.4348 0.7932 0.0539 0.5437 0.9963 1.0000
0.2 0.0516 0.1723 0.5767 0.9100 0.0577 0.7159 0.9996 1.0000

Cluster 0.01 0.0520 0.1968 0.5475 0.7965 0.0583 0.6367 0.9342 0.9820
κ/k = 10 0.05 0.0517 0.1896 0.5028 0.7557 0.0550 0.5939 0.9184 0.9739

0.1 0.0517 0.1850 0.5245 0.7929 0.0555 0.6254 0.9475 0.9889
0.2 0.0487 0.1928 0.5885 0.8672 0.0558 0.6996 0.9860 0.9988

by Tn. We used 0.05 significance level test. By Corollary 3, we rejected H0 if
Tn ≥ W̃0.05 = 0.7948.

We simulated 10000 realizations for each selected case in the three types
of marked point processes. For each realization, we used Tn to test whether
points and marks were independent. We computed the type I error probabilities
(when η = 0) and power functions (when η > 0) for stationary Ns (Table 1)
and nonstationary Ns (Table 2), respectively. The results showed that the type
I error probabilities were all close to 0.05. The behaviors for marked Poisson
processes and marked point processes were expected because of Corollaries 3
and 4.
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To evaluate the power functions, we increased η from 0 to a certain positive
value for all the cases that we have considered. We found that the power func-
tions increased as either η or κ increased but they were slightly different within
these processes as γ varied. The power functions between the marked Poisson
process and the marked mixed Poisson process behaved similarly, but they were
slightly different from the power functions of the marked Neyman-Scott clus-
ter processes. This was expected because the dependence between points and
marks became stronger as η increased and the expected value of the normalized
constant

√
n in Tn increased as κ increased. However, the value of γ only af-

fected the variability of the normalized constant
√
n in Tn. The power functions

of the marked Neyman-Scott cluster processes behaved differently because the
presence of cluster effects might slightly affect the power functions.

5. Applications

We applied the proposed approach to the Ambrosia Dumosa data and the Al-
berta Forest Wildfire data. The Ambrosia Dumosa data were previously studied
by Miriti, Howe, and Wright [35] and Guan and Afshartous [16]. The Alberta
Forest Wildfire data consisted of forest wildfire activities in Alberta, Canada,
from 1931 to 2012. The test statistic Tn was applied to both data, where the
significance level 0.05 was used. For Alberta Forest Wildfire data, we initiated
a nonparametric method to assess the dependence between points and marks
when the test was significant.

5.1. Ambrosia dumosa data

Ecologists are interested in plant interactions which can cause low productivity
in ecosystems. It has been found that both positive and negative plant interac-
tions are common in desert plant communities [6, 22]. To understand these in-
teractions, Ambrosia dumosa data were collected within a hectare (100×100m2)
area in the Colorado Desert in 1984 [35]. Ambrosia dumosa is a drought decidu-
ous shrub with 20–60cm in height which is abundant on well drained soils below
one thousand meter elevation. To formulate hypothesis about plant interaction,
we investigated the spatial patterns between plant locations and plant measure-
ments, in which we treated the locations of Ambrosia dumosa plants as points
and plant measurements as marks.

The Ambrosia dumosa data consisted of locations and several important mea-
surements of 4358 Ambrosia dumosa (Figure 1(a) and 1(b)), including the height
of the plant canopy (M1), the length of the major axis of the plant canopy (M2),
the length of the minor axis of the plant canopy (M3), and the volume of the
plant canopy (M4). It is of interest to know whether any of them are indepen-
dent of their point locations.

It has been pointed out by Guan and Afshartous [16] that the approach of
Schlather et. al [48] is not appropriate because the marginal distribution of
marks is not normal in this example. The nonparametric approach proposed by
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Fig 1. Tree locations and density in Ambrosia dumosa plant data, and fire locations and
density in Alberta Forest Wildfire data.

[50] requires nonparametric estimates of intensity functions, which relies on the
choice of a kernel function and a bandwidth. A kernel-based method proposed
by Guan and Afshartous [16] has been used to assess the independence between
points and M4, indicating a significance p-value of 0.0031. Here we used Tn
to test the independence between points and every of M1, M2, M3 and M4,
separately.

To define the test statistic Tn, we chose A = {Aa : Aa = {‖s‖ ≤ a},
a ≥ 0} and B = {(−∞, b] : b ∈ R}. From Lemma 1, it is enough to conclude that
points and marks were not independent if Tn ≥ 0.7948. The values of Tn forM1,
M2, M3, and M4 were 1.5635, 1.9370, 1.9423, and 2.0861, respectively. All of
the p-values were almost equal to 0 (all were < 10−5). Therefore, we concluded
that the locations of trees were not independent of the tree canopy, the length
of the major axis, the length of the minor axis, or the volume of the canopy.

5.2. Alberta wildfire data

The Canadian Alberta Forest Service initiated the modern era of wildfire record
keeping in 1931. Over the years, this fire information has been recorded, stored
and made available in different formats. Beginning in 1996, paper copies of wild-



Independence between marks and points 2575

8

6

log(1+b)

4

2

0

2000 4000 6000 8000

0

1

2

3

4

5

Value

a

6

0

Fig 2. Values of
√

nϕ̂n(Aa, Bb) as functions of a and log(1+b) in the Alberta Forest Wildfire
data (1996–2010), where the maximum was attained at around a = 5438km and b = 42(km2).

fire history information were no longer retained. The wildfire history data were
entered at the field level on the Fire Information Resource Evaluation System
(FIRES), which are available at http://www.srd.alberta.ca/Wildfire.

We collected the historical forest wildfire data from 2006 to 2010 from the
website. The dataset contained forest wildfire activities with area burned greater
than or equal to 0.01 hectares (Figure 1(c) and 1(d)). The largest wildfire oc-
curred in 2007 and had an area burned of 630km2. To formulate hypothesis
about the interaction between wildfire activities, we investigated the indepen-
dence between the fire occurrences and area burned, in which we treated the
spatial locations of wildfires as points and area burned as marks.

We used Tn to assess the independence for each particular year and all years
combined. To define the test statistic Tn, we chose A = {Aa : Aa = {ρ(s, s0) ≤
a}, a ≥ 0} and B = {Bb : Bb = (−∞, b]}, where ρ(s, s0) was the spherical
distance between s and s0. We chose s0 at 60o latitude north and 120o longitude
west because this point was at the upper-left corner of the whole study area.
We derived the values

√
nϕ̂n(Aa, Bb) for all possible values of a and b. The

combined case is displayed in Figure 2. We computed the values and p-values of
Tn and displayed them in Table 3. It showed that the locations and area burned
were not independent in all the cases.

To account for the interaction between points and marks, we used a model
with intensity-dependent marks. The idea of intensity-dependent marks can
be found in [20, 38]. To apply the idea, we needed to derive an estimate of
the intensity function of Ns. Therefore, we used a two-step method. In the

http://www.srd.alberta.ca/Wildfire
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Table 3

Values Tn for Alberta forest wildfire data, where all of the p-values of Tn were almost 0

Total Area Total No.
Year burned (hectares) of Fires Tn

2006 118762 1954 2.4168
2007 103669 1349 3.0343
2008 20787 1712 2.8652
2009 66947 1710 2.6096
2010 83656 1840 3.8439

Combined 393821 8565 6.4260

first step, we used a nonparametric kernel approach to estimate the intensity
function λ0(s) of fire occurrences [17, 51]. Let si be the location and mi be the
area burned of the i-th fire given in the dataset. Based on the nonparametric
kernel approach, the well-known Berman-Diggle estimator [3, 13] was given by

λ̂0(s) =
1

ω2Cω(s)

n
∑

i=1

f(ρ(s, si)/ω) (5.1)

where ρ was the spherical distance function, f was a two-dimensional kernel
function, ω was the bandwidth, and Cω(s) was the edge correction. We chose f
as the bivariate standard normal density function. Based on the L2-norm cross
validation criterion, we had the best ω was about ω̂ = 77.42km. In the second
step, we used a linear regression method to model area burned. According to
the power-law in literature of forest fire research [31], we proposed to consider
the following linear regression model

logmi = β0 + β1 log λ̂0(si) +N(0, σ2).

We had β̂0 = −8.2845 with standard error 0.1705, β̂1 = −1.3825 with standard
error 0.0420, and σ̂2 = 2.3072. As β1 was significantly different from 0, we
concluded there was a strong linear effect between fire occurrence and area
burned. Because β̂1 < 0, our result implied that large forest fires were dominant
if the relative frequency was small, which was consistent with the literature
(e.g. [19, 33, 41, 47]).

6. Discussion

This research has proposed a Kolmogorov-Smirnov type method to test the
independence between points and marks of marked point processes. The method
primarily relies on the test statistic Tn given by Equation (3.6). Two methods
for A and B are recommended according to Theorems 3 and 4 as well as their
corollaries. In the first method, the asymptotic distribution of Tn depends on
the unknown intensity functions of the marked point process but in the second
method it does not. Therefore, we focus on the second method in this paper. The
difference between the two methods is that: it is enough to conclude dependence
if the null hypothesis is rejected by either methods but only the first method
can accept the null hypothesis if the test is insignificant.
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There are several possible extensions of our method. According to the random
field model for marked point processes considered by [48], it would be interest-
ing to study the mark-point intensity function and use it to model the local
variation of the process. High dimensional nonparametric estimation methods
may be used to estimate the mark-point intensity function, which may describe
the interaction effect between points and marks. In the future, one could con-
sider partitioning the mark-point intensity function into several important com-
ponents so that they can represent pure point effects, pure mark effects, and
point-mark interaction effects, respectively.

Appendix A: Proofs

Proof of Proposition 1. The necessity is implied by Definition 1. According to
the theorem of π-λ system ([4], p. 42), it is enough to consider the proof for
disjoint A1, . . . , An ∈ S and B1, . . . , Bn ∈ M . The proof is obvious for a marked
Poisson process as we have πn(A1 × B1, . . . , An × Bn) =

∏n
i=1 π(Ai × Bi),

πs,n(A1, . . . , An) =
∏n

i=1 πs(Ai), and πm,n(B1, . . . , Bn) =
∏n

i=1 πm(Bi) when
n ≥ 1.

Proof of Lemma 1. It is enough to consider the sufficiency because the necessity
can be directly implied by Equation (3.2). If S and M can be generated by
A and B, respectively, then for any ǫ > 0, C ∈ S , and D ∈ M there are
A ∈ A and B ∈ B such that |πs(A) − πs(C)| ≤ ǫ, |πm(B) − πm(D)| ≤ ǫ, and
|π(A×B)− π(C ×D)| ≤ ǫ ([4], p. 169). Then,

ϕ(C,D) = π(C ×D)− πs(C)πm(D)

= [π(C ×D)− π(A ×B)] + [πs(A)− πs(C)]πm(B)

+ πs(C)[πm(B)− πm(D)]

which implies |ϕ(C,D)| ≤ 3ǫ. This immediately leads the conclusion by letting
ǫ→ 0.

Proof of Lemma 2. Since n ∼ Poisson(κ), E[π̂n(A × B)|n] = π(A × B)In>0

and V [π̂n(A×B)|n] = n−1π(A×B)[1− π(A×B)]In>0. Then, E[π̂n(A×B)] =
E[π(A×B)In>0] = π(A×B)(1 − e−κ) → π(A×B) and

V [π̂n(A×B)]

= V [π(A×B)In>0] + E{n−1π(A ×B)[1− π(A×B)]In>0}

= π2(A×B)e−κ(1 − e−κ) + 2π(A×B)[1− π(A ×B)]

∞
∑

n=1

1

2n

κn

n!
e−κ

≤ π2(A×B)e−κ(1 − e−κ) + 2π(A×B)[1− π(A ×B)]

∞
∑

n=1

κn

(n+ 1)!
e−κ

≤ π2(A×B)e−κ(1 − e−κ) + 2π(A×B)[1− π(A ×B)]/κ

→ 0
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as κ → ∞. Using the Chebyshev inequality, we have π̂n(A,B)
P→ π(A × B).

Similarly, we have π̂s,n(A)
P→ πs(A) and π̂m,n(B)

P→ πm(B). The final conclusion
is drawn from the Continuous Mapping Theorem.

Proof of Lemma 3. For any Ai1 , Ai2 ∈ A and Bj1 , Bj2 ∈ B, let Y11 = N(Ai1 ×
Bj1)/κ, Y12 = N(Ai1 × B̄j1)/κ, Y13 = N(Āi1 ×Bj1)/κ, Y14 = N(Āi1 × B̄j1)/κ,
Y21 = N(Ai2 × Bj2)/κ, Y22 = N(Ai2 × B̄j2)/κ, Y23 = N(Āi2 × Bj2)/κ, Y24 =
N(Āi2 × B̄j2)/κ. Let yi = (Yi1, Yi2, Yi3, Yi4)

t, νi = (νi1, νi2, νi3, νi4)
t for i = 1, 2,

y = (yt
1,y

t
2)

t, and ν = (νt1, ν
t
2)

t. Then,

√
κ(y − ν)

D→ N(0,

(

V1 U
Ut V2

)

), (A.1)

where V1 = diag(ν1), V2 = diag(ν2), and U = (uij)i,j=1,2,3,4. Denote x =
(xt

1,x
t
2)

t with x1 = (x11, x12, x13, x14)
t and x2 = (x21, x22, x23, x24)

t. LetH(x) =
(h(x1), h(x2))

t, where

h(z) =
z1

z1 + z2 + z3 + z4
− (z1 + z2)(z1 + z3)

(z1 + z2 + z3 + z4)2
, z = (z1, . . . , z8) ∈ R

8. (A.2)

If n > 0, then H(y) = (ϕ̂n(Ai1 × Bj1), ϕ̂n(Ai2 × Bj2))
t and H(ν) = (ϕ(Ai1 ×

Bj1), ϕ(Ai2×Bj2))
t. Note that limκ→∞ P (n > 0) = 1 and n/κ

P→ 1, we can show
the final conclusion using the ∆-Method and Continuous Mapping Theorem.

Proof of Corollary 1. The conclusion can be directly implied from Lemma 3.

Proof of Theorem 1. Use the same notations as in Lemma 3. If the null hy-
pothesis of Equation (3.3) is violated, then there are Ã ∈ A and B̃ ∈ B such
that ϕ(Ã, B̃) = π(Ã, B̃)− πs(Ã)πm(B̃) 6= 0. Without loss of generality, assume
ϕ(Ã, B̃) is positive. Let Z ∼ N (0, σ2

Ã,B̃
). Then for any ǫ > 0, there are z0 > 0,

n0 > 0, and κ0 > 0 such that P (Z > −z0) ≥ 1− ǫ/3, and for any κ > κ0 there
are P (n ≤ n0) ≤ ǫ/3 and

|P{√n[ϕ̂n(Ã, B̃)− ϕ(Ã, B̃)] > −z0} − P (Z > −z0)| ≤ ǫ/3.

Then, we have

P{
√
n[ϕ̂n(Ã, B̃)− ϕ(Ã, B̃)] > −z0} ≥ P (Z > −z0)− ǫ/3 ≥ 1− 2ǫ/3.

Note that the way to choose n0 depends on κ0 and n0 can be arbitrary large if
κ0 becomes large. Therefore, we can increase κ0 such that

√
n0ϕ(Ã, B̃)−z0 > x.

Then

P{Tn > x} = P{ max
A∈A,B∈B

√
n|ϕ̂n(A,B)| ≥ x}

≥ P{√nϕ̂n(Ã, B̃) > x}
≥ P{√n[ϕ̂n(Ã, B̃)− ϕ(Ã, B̃)] > −z0, n > n0}
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+ P{√n[ϕ̂n(Ã, B̃)− ϕ(Ã, B̃)] > −z0, n ≤ n0} − P (n ≤ n0)

≥ P{√n[ϕ̂n(Ã, B̃)− ϕ(Ã, B̃)] > −z0} − ǫ/3

≥ 1− ǫ.

Therefore, limκ→∞ P (Tn > x) = 1 for all x > 0.

Proof of Corollary 2. The conclusion can be directly drawn using Lemma 1 and
Theorem 1.

Proof of Theorem 2. We use the empirical process approach to show the conclu-
sion of the theorem. Let (S,M) be a single observation in the data. Then, N can
be understood as being independently obtained from the distribution of (S,M)
with total n observations, where n ∼ Poisson(κ). Let F (x) = π(Aa × Bb) =
P [(S,M) ∈ Aa × Bb] for x = (a,b) with a ∈ R

α and b ∈ R
β . Then, F (x) is

continuous in a and b because its density is λ1(m|s)λ0(s) according to Condi-
tions (C2) and (C3) as well as Assumptions (A1)–(A3). Let Ia = {s : s ∈ Aa}
be the indicator function for the point in Aa and Ib = {m : m ∈ Bb}
be the indicator function for the mark in Bb. Then, F̂ (x) = π̂n(Aa × Bb)
is the empirical distribution of F (x). Let G1 = {IaIb : a ∈ R

α,b ∈ R
β},

G2 = {Ia(1 − Ib) : a ∈ R
α,b ∈ R

β}, G3 = {(1 − Ia)Ib : a ∈ R
α,b ∈ R

β},
and G4 = {(1 − Ia)(1 − Ib) : a ∈ R

α,b ∈ R
β}. To apply the empirical process

approach, it is enough to show G1, G2, G3, and G4 are F -Donsker, where the
definition can be found on page 270 in [53]. In the following, we only display
the proof for G1 because the proofs for G2, G3, and G4 are similar.

Let Fi be the i-th marginal CDF of F . For any ǫ ∈ (0, 1), we can find J + 2
points denoted by x0i0, x0i1, . . . , x0iJ , x0i(J+1), i = 1, . . . , α+β, with x0i0 = −∞
and x0i(J+1) = ∞ such that

ǫ2

ǫ+ α+ β
≤ Fi(x0i(j+1))− Fi(x0ij) ≤

ǫ2

α+ β
, j = 0, . . . , J,

with (α+ β)/ǫ2 ≤ J ≤ (α + β)/ǫ2 + 1. Let

Xǫ = {x = (x1, . . . , xα+β) : xi = x0ij for some j = 0, 1, . . . , J + 1}.
Then #Xǫ = (J + 2)α+β ≤ (α + β + 3)α+β/ǫ2(α+β). For any gy ∈ G1, we can
find x′,x′′ ∈ Xǫ such that x′ � y � x′′ but there is no x∗ ∈ Xǫ satisfying
x′i < x∗i < x′′i for some i = 1, . . . , α + β, where x′i, x

∗
i , and x′′i are the i-th

component of x′, x∗, and x′′, respectively. Then, gx′ ≤ gy ≤ gx′′ and

‖gx′ − gx′′‖2 =

∫

Rα+β

|gx′′(x) − gx′(x)|2F (dx) ≤
α+β
∑

i=1

[Fi(x
′′
i )− Fi(x

′
i)] ≤ ǫ2.

Because
∫ 1

0

√

log(#Xǫ)dǫ ≤
∫ 1

0

√

(α+ β) log(α+ β + 3)− 2(α+ β) log ǫdǫ <∞,

G1 is F -Donsker. Similarly, we can show G2, G3, and G4 are also F -Donsker. The
conclusion is drawn using the method in proofs of Corollary 1 and Lemma 3
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with the functional ∆-method ([53], p. 291) because the gradient of h defined
in (A.2) is uniformly bounded.

Proof of Theorem 3. The conclusion can be directly implied by Lemma 3 and
Theorem 2.

Proof of Corollary 3. Let u(a) = πs(Aa) and v(b) = πm(Ab) for −∞ < a, b <
∞. Then, lima→−∞ u(a) = limb→−∞ v(b) = 0 and lima→∞ u(a) = limb→∞ v(b) =
1. Denote u = u(a), u′ = u(a′), v = v(b), and v′ = v(b′). Then, πs(Aa ∩ Aa′) −
πs(Aa)πs(Aa′) = u∧u′−uu′ and πm(Bb ∩Bb′ )−πm(Ba)πs(Ba′) = v ∧ v′ − vv′.
Thus, σAa,Bb,Aa′ ,Bb′

= (u∧u′−uu′)(v∧v′−vv′), which is the covariance function
of the two-dimensional standard Brownian pillow given by (2.4).

Proof of Theorem 4. Let B1, . . . , BJ be a partition of M. Conditioning on
Ns,κ(A) for a given Borel A ∈ Sκ, Nκ(A×B1), . . . , Nκ(A×BJ) are multinomi-
ally distributed with the total count equal to Ns,κ(A) and the proportion vector
equal to (πm(B1), . . . , πm(BJ ))

t. For any measurable A,A′ ∈ S1 = [−1, 1]d, let
pB,B′ = (πm(B ∩B′), πm(B ∩ B̄′), πm(B̄ ∩B′), πm(B̄ ∩ B̄′))t and

ỹκ,A,A′,B,B′ = (Nκ[(Aκ ∩ A′
κ)× (B ∩B′)], Nκ[(Aκ ∩ A′

κ)× (B ∩ B̄′)],

Nκ[(Aκ ∩ A′
κ)× (B̄ ∩B′)], Nκ[(Aκ ∩ A′

κ)× (B̄ ∩ B̄′)])t,

where Aκ = κA and A′
κ = κA′. Then,

√

Ns,κ(Aκ ∩ A′
κ)[

ỹκ,A,A′B,B′

Ns,κ(Aκ ∩ A′
κ)

− pB,B′ ]
D→ N [0, diag(pB,B′)− pB,B′pt

B,B′ ],

as κ→ ∞, which is equivalent to

nκ
√

Ns,κ(Aκ ∩ A′
κ)

[
ỹκ,A,A′,B,B′

nκ

− pB,B′

Ns,κ(Aκ ∩ A′
κ)

nκ

]

D→ N [0, diag(pB,B′)− pB,B′pt
B,B′ ].

Note that Ns,κ(Aκ ∩ A′
κ)/nκ

P→ πs(A ∩ A′). We have

√
nκ(

ỹκ,A,A′,B,B′

nκ

− µ̃A,A′B,B′)
D→ N(0, Σ̃A,A′B,B′),

where µ̃A,A′,B,B′ = pB,B′πs(A∩A′) and Σ̃A,A′,B,B′ = πs(A∩A′)[diag(pB,B′)−
pB,B′pt

B,B′ ]. Let

yκ,A,A′,B,B′ = (ỹκ,A,A′,B,B′ , ỹκ,A,Ā′,B,B′ , ỹκ,Ā,A′,B,B′ , ỹκ,Ā,Ā′,B,B′)t,

µA,A′,B,B′ = (µ̃A,A′,B,B′ , µ̃A,Ā′,B,B′ , µ̃Ā,A′,B,B′ , µ̃Ā,Ā′,B,B′)t

and

ΣA,A′B,B′ = diag(Σ̃A,A′,B,B′ , Σ̃A,Ā′,B,B′ , Σ̃Ā,A′,B,B′ , Σ̃Ā,Ā′,B,B′).

From Theorem 4.2 in [23], we have

√
nκ(yκ,A,A′,B,B′ − µA,A′,B,B′)

D→ N(0,ΣA,A′,B,B′).
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Let H(z1, . . . , z16) = (h1(z1, . . . , z16), h2(z1, . . . , z16))
t with h1(z1, . . . , z16) =

(z1 + z2 + z5 + z6) − (z1 + z2 + z5 + z6 + z9 + z10 + z13 + z14)(z1 + z2 + z3 +
z4 + z5 + z6 + z7 + z8), h2(z1, . . . , z16) = (z1 + z3 + z5 + z7) − (z1 + z3 + z5 +
z7 + z9 + z11 + z13 + z15)(z1 + z2 + z3 + z4 + z9 + z10 + z11 + z12). Then,
H(yκ,A,A′,B,B′) = (ϕ̂(A,B), ϕ̂(A′, B′))t, H(µA,A′B,B′) = (0, 0)t. Using the ∆-
theorem, we have

√
n

(

ϕ̂(A,B)
ϕ̂(A′, B′)

)

D→ N

[(

0
0

)

,

(

σA,B,A,B σA,B,A′,B′

σA,B,A′,B′ σA′,B′,A′,B′

)]

,

where σA,B,A′,B′ is given in Equation (3.11). We finally have the conclusion of
the theorem using Corollary 7.2 in [23].

Proof of Corollary 4. The conclusion can be proven using exactly the same way
displayed in proof of Corollary 3.
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