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Abstract: The item count technique (ICT) is a helpful tool to conduct
surveys on sensitive characteristics such as tax evasion, corruption, insur-
ance fraud, social fraud or drug consumption. The ICT yields cooperation of
the respondents by protecting their privacy. There have been several inter-
esting developments on the ICT in recent years. However, some approaches
are incomplete while some research questions can not be tackled by the ICT
so far. For these reasons, we broaden the existing literature in two main
directions. First, we generalize the single sample count (SSC) technique,
which is a simplified version of the original ICT, and derive an admissi-
ble estimate for the proportion of persons bearing a stigmatizing attribute,
bootstrap variance estimates and bootstrap confidence intervals. Moreover,
we present both a Bayesian and a covariate extension of the generalized
SSC technique. The Bayesian set up allows the incorporation of prior in-
formation (e.g., available from a previous study) into the estimation and
thus can lead to more efficient estimates. Our covariate extension is useful
to conduct regression analysis, i.e., to estimate the effects of explanatory
variables on the sensitive characteristic. Second, we establish a new ICT
that is applicable to multicategorical sensitive variables such as the number
of times a respondent has evaded taxes or the amount of money earned by
undeclared work (recorded in classes). The estimation of the distribution
of such attributes was not at all treated in the literature on the ICT so far.
Therefore, we derive estimates for the marginal distribution of the sensitive
characteristic, Bayesian estimates and regression estimates corresponding
to our multicategorical ICT.
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1. Introduction

The item count technique (ICT) is a method to elicit truthful answers from
respondents in surveys on sensitive topics. The basic idea of the ICT, which
was originally proposed in Miller (1984, [14]) is as follows. The interviewees are
not requested to answer a sensitive question such as “Have you ever evaded
taxes?” directly. Instead they receive a list consisting of the sensitive question
and some inquiries on nonsensitive items, e.g., “Is your birthday in the first
half of the year?”, “Do you have two or more siblings?” or “Is your telephone
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number odd?”, and are instructed to report only the total number of “yes” an-
swers. Replies to individual questions are not revealed. This scheme protects
the interviewees’ privacy and yields increased cooperation compared with di-
rect questioning. In particular, answer refusal and untruthful socially desired
responses are reduced.

The ICT approach has already been applied in several fields. For example,
studies on drug use, theft by employees, shoplifting, buying stolen goods, atti-
tudes towards immigrants, racism, undeclared work, voter turnout, and eating
disorder are available in the literature. For a detailed list of articles containing
concrete studies conducted with the ICT, we refer, for instance, to Tian and
Tang (2014, p. 12, [19]) and Blair and Imai (2012, Section 1, [2]).

To estimate the proportion of persons in the population having the sensitive
attribute (e.g., having evaded taxes) from ICT data, the so-called difference-in-
means estimator is applied in many articles. This estimator possesses a simple
representation, however, it may fall out the interval [0, 1]. Tsuchiya (2005, [21])
considers a discrete onedimensional covariate and derives estimators for the pro-
portion of persons having a sensitive outcome among the persons possessing a
certain value of the covariate. Imai (2011, [12]) describes regression analysis for
the ICT. In particular, the author allows arbitrary covariates and derives a non-
linear least square estimate and a maximum likelihood (ML) estimate (MLE).
As a specific feature, the estimations in Imai (2011, [12]) involve a certain model
for the number of affirmative answers to the nonsensitive questions. Blair and
Imai (2012, [2]) build upon Imai (2011, [12]) and develop methods to estimate
the social desirability bias as function of the covariates, to tackle multiple sensi-
tive questions, to improve the efficiency, and to detect and correct failures of the
ICT. The work of Imai (2011, [12]) is also the fundament for Kuha and Jackson
(2014, [13]), who propose a faster algorithm for the ML estimation that ad-
ditionally delivers an asymptotic variance estimation automatically. Moreover,
they suggest further possible specifications for a model regarding the nonsensi-
tive questions. A version of the ICT that is suitable to estimate the mean of a
quantitative sensitive characteristic can be found in Chaudhuri and Christofides
(2013, [5]) and Trappmann et al. (2014, [20]), where the latter work includes a
real-data study whose interviews were conducted already in 2010. The estima-
tion methods in the articles mentioned above demand to divide the respondents
in two groups, a control and a treatment group. Here, the respondents in the
treatment group contribute information on the sensitive characteristic whereas
persons in the control group provide only information on the nonsensitive items.
Regarding this, Petroczi et al. (2011, [15]) describe a version of the ICT (the
so-called single sample count (SSC) technique) that gets along without control
group and can be applied when the distributions of the nonsensitive items are
known.

Despite the interesting developments in recent years, the methodological in-
struments for the ICT still need important extensions and improvements. For
instance, the SSC approach by Petroczi et al. (2011, [15]) focuses on the case
of four nonsensitive questions where each nonsensitive characteristic possesses a
Bernoulli(1/2) distribution. Moreover, they derive an estimator for the propor-
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tion of persons bearing the stigmatizing attribute that can attain inadmissible
values outside [0, 1]. These practical problems motivate us to enhance the work
of Petroczi et al. (2011, [15]) by dealing with an arbitrary number of innocuous
items whose distributions are not restricted to the Bernoulli(1/2) case, and
to develop a feasible estimator in [0, 1]. Here, we show that the occurring data
situation corresponds to a special missing data pattern and apply the expecta-
tion maximization (EM) algorithm to obtain the valid estimator. We establish
bootstrap variance estimates for our estimator as well as bootstrap confidence
intervals. The bootstrap concept is appropriate not only for large samples, but
also for smaller samples. After illustrating our estimation procedure in a real-
data example, we demonstrate the efficiency gains that can be realized by the
ICT without control group. Furthermore, we derive both a Bayesian and a co-
variate extension for the generalized SSC procedure. The Bayesian extension is
motivated by the fact that sometimes prior information (e.g., from a previous
study) is available and should be incorporated into the estimation. The covariate
set up enables the researcher to study the dependence of the sensitive variable
on nonsensitive exogenous quantities. Our covariate extension is beneficial, for
instance, to analyze the effects of gender, nationality, regular occupation, and
expected sanctions on conducting undeclared work. Such an analysis on unde-
clared work delivers an impression of the economic loss caused by moonlighting
and may be relevant for economic policy decisions. To illustrate our method
for the estimation of the influence of explanatory variables on the sensitive at-
tribute, a numerical example is given in the paper.

Another problem that has not been addressed in the literature on the ICT
so far is the estimation of the distribution of multichotomous sensitive charac-
teristics. An example of such variables is income (divided in classes). Income
is often relevant in social surveys such as the German General Social Survey
(ALLBUS) or the Socio-Economic Panel (SOEP). Nevertheless, when asking
directly for income, a large amount of missing values or untruthful answers typ-
ically occurs, because persons with higher income are often afraid of envy while
persons with lower income are often ashamed. Further examples for multicat-
egorical sensitive characteristics are the number how often one has conducted
insurance fraud, the number of hours per week somebody conducts moonlight-
ing, and the monthly amount of income earned by undeclared work (e.g., with
categories 0 Euro, 1–100 Euro, 101–1000 Euro, more than 1000 Euro). The con-
sideration of the latter variable is more interesting than considering only the
variable describing whether a person conducts undeclared work or not, because
a researcher can obtain a more precise impression of the loss through moon-
lighting.

To fill this gap in the literature, we propose an extension of the ICT to poly-
chotomous sensitive attributes with an arbitrary number of categories in the
second part of this paper. In this context, we derive estimates for the uncon-
ditional distribution of the sensitive variable, different Bayesian estimates that
enable the exploitation of prior knowledge, and regression estimates that are use-
ful for the investigation of the influence of nonsensitive explanatory variables on
the polychotomous sensitive quantity.
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The paper continues with a review of the ICT by Miller (1984, [14]) in Sec-
tion 2. In Section 3, we present extensions and improvements of the ICT ac-
cording to Petroczi et al. (2011, [15]). In Section 4, we establish an ICT for
polychotomous sensitive variables. Finally, concluding remarks are available in
Section 5.

2. Miller’s item count technique

The item count technique according to Miller (1984, [14]) is suitable to gather
data on a binary sensitive characteristic. Here, the respondents are randomly
divided into a control group and a treatment group. The respondents in the
control group receive a list with J nonsensitive questions and have to reveal
the number how often they would have to give a “yes” response, i.e., they
reply a number between 0 and J . In the treatment group, a list consisting of
the same nonsensitive questions and a sensitive question is presented to the
interviewees, who have to provide the total number of affirmative answers to
these J + 1 questions, i.e., a number between 0 and J + 1 must be written in
the questionnaire or told to the interviewer.

Formally, let Uj ∈ {0, 1} (j = 1, . . . , J) and Y ∈ {0, 1} be a nonsensitive
and sensitive attribute, respectively. E.g., U1 and U2 may indicate whether a
person went to a sporting event in the last year and has an even telephone
number, respectively. Regarding Y , the value 1 typically represents a stigma-
tizing attribute (e.g., person has evaded taxes) whereas the value 0 stands for
the corresponding nonstigmatizing inverse (person has never evaded taxes). De-
fine T = 0 if a person is assigned to the control group and T = 1 if a person
belongs to the treatment group. Moreover, set Z = U1 + · · · + UJ . Then, the
required answer S of a person in the control group is Z while interviewees in the
treatment group are instructed to give an answer Z + Y . In the control group,
nobody is confronted with any sensitive item so that truthful answers can be
supposed. In most cases, the privacy of the persons in the treatment group is
protected and truthful answers can be expected, because only a total and not
the value of Y is reported. Notice, however, that the protection of the privacy
can fail when all nonsensitive items apply (i.e., U1 = · · · = UJ = 1). In this case,
an answer J + 1 implies Y = 1. To minimize this “ceiling effect”, one should
select nonsensitive questions for which only few persons would give throughout
“yes” answers. Furthermore, Y = 0 follows from an answer 0. However, if Y = 0
represents a nonstigmatizing outcome (e.g., no tax evasion), this “floor effect”
is less problematic than the ceiling effect.

Let us assume that a simple random sample of n persons has been drawn
and denote the ith sample unit’s outcome corresponding to Uj, Y , T , Z, S by
Uij , Yi, Ti, Zi, Si, respectively. Further, denote the proportion of persons in the
universe having Y = 1 by π1, set π0 = 1 − π1, and define π = (π0, π1)

⊤. To
estimate π1, the difference-in-means estimator

π̂1 = n−1
T

n∑

i=1

TiSi − n−1
C

n∑

i=1

(1− Ti)Si (1)
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with nT =
∑n

i=1 Ti and nC = n−nT is used in many articles. Unfortunately, this
estimator can attain negative values and values greater than one. We remark
that an ICT with a slightly different procedure and a corresponding estimator
are proposed by Chaudhuri and Christofides (2007, [4]). This modified version
of the ICT avoids a ceiling effect, but also inheres floor effects. Moreover, the
estimator in Chaudhuri and Christofides (2007, [4]) can attain values outside
[0, 1], too.

3. Improvements and Extensions of the Single Sample Count

Technique

In an article by Petroczi et al. (2011, [15]) on a study on Mephedrone use, a vari-
ant of the ICT without control group is mentioned. Petroczi et al. (2011, [15])
call their version of the ICT the single sample count technique. However, these
authors focus on the case of J = 4 nonsensitive items, assume that the distri-
bution of Uj (j = 1, . . . , 4) is known and equal to a Bernoulli distribution with
probability of success 1/2, and suggest a moment-based estimator for π1 that
can fall out the interval [0, 1]. These practical limitations motivate us to extend
the approach by Petroczi et al. (2011, [15]) and develop admissible estimates
between 0 and 1 for the proportion π1. Moreover, we develop Bayesian estimates
and present a method that enables regression analysis, i.e., the investigation of
the influence of covariates on the sensitive item.

3.1. General procedure and ML estimation

Let us consider the following general procedure for an ICT without control
group. Each interviewee in the sample is supplied with a list of J (J ∈ N ar-
bitrary) nonsensitive questions supplemented by a question on a sensitive topic
and is instructed to reveal only the total number of affirmative answers. Contin-
uing the notation from Section 2, each respondent gives the answer S = Z+Y ∈
{0, . . . , J + 1}. Compared with Section 2, we now only have a treatment group
and every respondent contributes information on the distribution of Y . Regard-
ing the protection of the privacy, we have analog statements as in Section 2. In
particular, the answers 1, . . . , J do not expose the respondent’s Y -value. How-
ever, answer 0 implies Y = 0. Even more problematic is that Y = 1 can be
concluded from response J+1. The risk that a truthfully answering interviewee
must admit that he or she possesses Y = 1 (i.e., must give answer J + 1) can
be reduced by selecting control items such that the proportion of individuals in
the population having Z = J is small. An alternative approach that improves
the protection of the privacy is sketched in Section 5. We proceed with two
assumptions:

the distribution of Z is known and (2)

Z and Y are independent. (3)
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We discuss these assumptions in Subsection 3.4. To estimate the marginal dis-
tribution of Y , we propose maximum likelihood estimation rather than mo-
ment estimation, because the MLE for π1 is always admissible, i.e., in [0, 1].
To compute the MLE, the EM algorithm due to Dempster, Laird, and Ru-
bin (1977, [7]) is beneficial. Hereto, note that S = (S1, . . . , Sn) describes our
observed data while Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn) are missing val-
ues. We denote the proportion of individuals in the population having Z = i
with φi (i = 0, . . . , J) and set φ = (φ0, . . . , φJ )

⊤, that is, φ is known due to (2).
Further, set λ = (λ0, . . . , λJ+1)

⊤ where λi is the proportion of units in the
population possessing S = i and assume that the n sample units were drawn
by simple random sampling with replacement (SRSWR). Let s = (s1, . . . , sn),
y = (y1, . . . , yn), and z = (z1, . . . , zn) be the realizations of S, Y, and Z, re-
spectively. The observed data log-likelihood is given by

lobs(π; s) =

n∑

i=1

logP(Si = si) =

n∑

i=1

log [φsi · π0 + φsi−1 · π1]

with the convention φx = 0 if x /∈ {0, . . . , J}. Similar conventions are used
permanently in the paper, either explicitly or implicitly. For the complete data
log-likelihood,

lcom(π) = lcom(π;y, z, s) =

n∑

i=1

logP(Yi = yi, Zi = zi, Si = si) =

n∑

i=1

logP(Yi = yi) + const. = log π0 ·
n∑

i=1

1{0}(yi) + log π1 ·
n∑

i=1

1{1}(yi) + const.

holds. Applying the EM algorithm to maximize lobs, each iteration consists of an

E step and a M step. When π(t) = (π
(t)
0 , π

(t)
1 )⊤ is available from the preceding

iteration t, we calculate an estimated complete data log-likelihood in the E step
of iteration t+ 1 by

l̂com(π) = Et(lcom(π;Y,Z,S) |S = s) = log π0 ·
n∑

i=1

Et(1{0}(Yi)|S = s)

+ log π1 ·
n∑

i=1

Et(1{1}(Yi)|S = s) + const.

=: log π0 · v(t)0 + log π1 · v(t)1 + const. (4)

where Et and Pt (see below) mean the calculation of expectation and probability
assuming π(t) is the true parameter. We can further compute the expectations

Et(1{j}(Yi)|S = s) = Pt(Yi = j|Si = si) =
φsi−j · π(t)

j

φsi · π
(t)
0 + φsi−1 · π(t)

1

(j = 0, 1).
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Notice, we have the compact representation

(
v
(t)
0

v
(t)
1

)
=


φ .∗







1/λ
(t)
0
...

1/λ
(t)
J+1


 · (π(t)

0 , π
(t)
1 )







⊤

· n⊤
1 =: P (t) · n⊤

1 . (5)

Here, the entry (i, j) of the 2× (J + 2) matrix P (t) is equal to Pt(Y = i|S = j)
(i = 0, 1; j = 0, . . . , J + 1), the entry (i, j) of the (J + 2) × 2 matrix φ equals

φi−j (i = 0, . . . , J + 1; j = 0, 1), λ(t) = (λ
(t)
0 , . . . , λ

(t)
J+1)

⊤ = φ · π(t), n1 =
(n10, . . . , n1,J+1) where n1i equals the number how often answer i occurred in
the sample, and .∗ denotes componentwise multiplication. The maximum of the

function l̂com, which is calculated in the M step of iteration t+ 1, is given by

π
(t+1)
0 =

v
(t)
0

v
(t)
0 + v

(t)
1

, π
(t+1)
1 =

v
(t)
1

v
(t)
0 + v

(t)
1

.

After choosing a starting value, e.g., π(0) = (0.5, 0.5)⊤, we obtain step-by-step
a sequence (π(t))t∈N0 , for which the corresponding values of the observed data
log-likelihood are nondecreasing. When the variation from π(t) to π(t+1) is small
enough, we have found an estimate π̂.

Since we have no handy analytic representation of π̂, the bootstrap (BS)
approach is attractive for the computation of standard errors and confidence
intervals (CIs). Here, we calculate B bootstrap replications of π̂, denoted by
π̂(b) for b = 1, . . . , B. The empirical variance of these replications is the BS
estimate V̂ arBS(π̂) for the variance of π̂. The square roots of the diagonal

elements of V̂ arBS(π̂) represent the BS standard errors of the components of
π̂. The empirical α/2 quantile of the replications of the ith component of π̂
provides a lower bound of a 1 − α CI for πi while an upper bound is given by
the 1 − α/2 quantile. To obtain one replication π̂(b), we treat π̂ = (π̂0, π̂1)

⊤ as
true parameter and simulate new frequencies of the answers 0, . . . , J + 1 by

n
(b)
1 = (n

(b)
10 , . . . , n

(b)
1,J+1) ∼Multinomial(n, (λ̂0, . . . , λ̂J+1)) (6)

where λ̂i = φiπ̂0 + φi−1π̂1. The quantity π̂(b) is then obtained by applying the

EM algorithm to the new frequencies n
(b)
1 .

3.2. Real-data example

One may think that the EM algorithm is not necessary, because π̂1 = 0 could be
set if the moment estimate according to Petroczi et al. (2011, [15]) is negative.
Then, however, π̂1 = 0 is in general not the MLE. To show this, we reana-
lyze data from Petroczi et al. (2011, [15]) where Y equals 1 if a person has
taken the drug Mephedrone at least once in the previous three months, and Y
equals 0 else. Moreover, Z can attain the values 0, 1, 2, 3, and 4 and follows a
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Binomial(4, 0.5) distribution. Consequently, the possible answers S are 0, 1, 2,
3, 4, and 5. According to Petroczi et al. (2011, Table 3, [15]), the answer 0, 1, 2,
3, 4, and 5 was observed 15, 64, 89, 51, 16, and 2 times, respectively. Petroczi
et al. (2011, [15]) calculate the negative moment estimate −0.0211 for π1 and
an asymptotic 95% confidence interval for π1 equal to [0, 0.0996].

Since this moment estimate is inappropriate, we calculate the MLE for π1 via

EM algorithm. With starting value π
(0)
1 = 0.5, we obtain the MLE π̂1 = 0.0632

within 58 iterations. This example underlines that the EM algorithm is beneficial
to compute the desired valid estimate. Additionally, we obtain 0.0496 as the
bootstrap standard error of π̂1 and [0, 0.1671] as a 95% bootstrap CI for π1.

3.3. Increase of accuracy

We now demonstrate the efficiency gains that can be achieved by using control
items with known distribution and dispensing with the control group. For this
purpose, we compare two procedures. Procedure one is the ICT without control
group from Subsection 3.1, for which every respondent contributes information
on Y and π can be estimated via EM algorithm as shown. The second procedure
is the ICT with control group according to Section 2 where we assume that
every sample unit is assigned to the control group with probability 50%. For the
second procedure, we can apply an EM algorithm for the ML estimation, too.
This is implicitly contained in Imai (2011, [12]). Moreover, this estimation is a
special case of the estimation in Subsection 4.1 (set k = 2, k1 = · · · = kJ = 1 in
Subsection 4.1). Our comparison is conducted by some simulations, in which we
consider π = (0.8, 0.2)⊤ and three specifications of φ resulting in the cases I–III
given in Table 1. In procedure 1, φ is known and in procedure 2, φ is unknown.

For each case and each procedure (ICT without or with control group), we
simulate 10000 samples with sample size 250. For each sample, we calculate the
corresponding estimate for π. The 10000 generated realizations of an estimator
are used to compute the simulated expectations and MSEs of the estimator’s
components. The results are given in Table 2. We recognize that the simulated
bias of each estimator is close to zero. Moreover, the application of control items
whose sum has a known distribution leads to manifestly more efficient estimates.
This is not surprising, because we can expect that the incorporation of more
information (here, the additional information is the known distribution of Z)
results in better estimates.

Table 1

The specifications of φ, which represents the distribution of Z. Each φ is obtained by
determining the marginal distributions of Ui and assuming independence of the Ui. Ber(p)
means a Bernoulli distribution with parameter p. The distribution of the sensitive Y is

always π = (0.8, 0.2)⊤

case U1 U2 U3 U4 φ⊤

I Ber(0.5) Ber(0.5) Ber(0.5) Ber(0.5) 0.0625 0.2500 0.3750 0.2500 0.0625
II Ber(0.2) Ber(0.2) Ber(0.5) Ber(0.5) 0.1600 0.4000 0.3300 0.1000 0.0100
III Ber(0.2) Ber(0.2) Ber(0.4) Ber(0.5) 0.1920 0.4160 0.3000 0.0840 0.0080
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Table 2

Simulation results for the comparison between the ICT from Subsection 3.1 and an ICT
with control group

ICT without control group ICT with control group

case Ê(π̂0) Ê(π̂1) ˆMSE(π̂0) ˆMSE(π̂1) Ê(π̂0) Ê(π̂1) ˆMSE(π̂0) ˆMSE(π̂1)
I 0.8008 0.1992 0.0040 0.0040 0.7919 0.2081 0.0181 0.0181
II 0.8009 0.1991 0.0037 0.0037 0.7966 0.2034 0.0140 0.0140
III 0.7999 0.2001 0.0038 0.0038 0.7969 0.2031 0.0143 0.0143

3.4. Discussion of assumptions

Potential control items can be constructed in various ways, some examples are:
“Is your birthday in the first quarter of the year?”, “Is the last digit of your
best friend’s telephone number equal to 7, 8, or 9?”, “Are you born during the
dates 1–10?”, “Is your mother’s birthday this year on Monday or Tuesday?”,
“Do you have two or more siblings?”, “Are you the owner of a house?”, “Do
you have a university degree?”, “Is your house number an even number?”, “Are
you evangelic?”.

For some of these control items, there is an intuition about the marginal dis-
tribution of the characteristic. E.g., for the first control item, the probability of
success can be assumed to be 1/4 while for the second control item, the proba-
bility of success should be approximately 3/10. If we have no such intuition or
if we would like to use more precise quantities, we can work with census data
or other databases (e.g., Petroczi et al. (2011, p. 9–10 and p. 15–16, [15]) men-
tion some data sources for house and phone numbers as well as birthdays). For
above control items independence between the variables is often a reasonable
assumption. When we have independence and know the marginal distributions,
the distribution of Z can be calculated. Notice, if we do not want to assume
independence between some control items, we sometimes are able to find their
precise joint distribution e.g. in census data. All in all, an investigator will usu-
ally find control items for which it is justifiable to assume (2) and (3). Regarding
the number of control items, we first note that the application of a very small
number of control items (say, 1–2) is not recommendable from the viewpoint
of privacy protection. For too many control items (e.g., 10 or more), the effi-
ciency of the corresponding estimate is doubtful. Maybe 4–5 items seem to be
an appropriate choice.

We now study the case where (2) is not fulfilled. In this situation, we have
to estimate φ, too. The ML estimation for θ = (π⊤, φ⊤)⊤ can be conducted
via EM algorithm. Because the concrete algorithm needed for this problem is
a special case of the EM algorithm for the maximization of (11) in Section 4
(set k = 2, k1 = · · · = kJ = 1, and t1 = · · · = tn = 1 in Subsection 4.1), we
exclude further details on the iterations here.

However, when we conduct a ML estimation for θ = (π⊤, φ⊤)⊤ for an ICT
procedure without control group, identification problems become manifest, i.e.,
we have nonunique MLEs. Let us consider the cases A-C from Table 3 to con-
struct an illustrative example. In each case, the distributions of the Ui and Y



2330 H. Groenitz

Table 3

Three specifications for U1, U2, Y that all result in the same probabilities of the answers 0,
1, 2, 3 (independence of U1, U2, Y is assumed). Ber(p) represents a Bernoulli distribution

with probability of success equal to p

case U1 U2 Y φ⊤ λ⊤ = (λ0, . . . , λ3)
A Ber(0.5) Ber(0.8) Ber(0.2) 0.10 0.50 0.40 0.08 0.42 0.42 0.08
B Ber(0.2) Ber(0.8) Ber(0.5) 0.16 0.68 0.16 0.08 0.42 0.42 0.08
C Ber(0.5) Ber(0.2) Ber(0.8) 0.40 0.50 0.10 0.08 0.42 0.42 0.08

are specified. Although these specifications are different, they all lead to the
same distribution of the answers. Now assume that the absolute frequency of
the answer 0, 1, 2, 3 in the sample equals 8, 42, 42, 8, respectively. Then, it is
not surprising that each of the vectors

(0.8, 0.2, 0.1, 0.5, 0.4)⊤, (0.5, 0.5, 0.16, 0.68, 0.16)⊤, (0.2, 0.8, 0.4, 0.5, 0.1)⊤

is a MLE for θ. Owing to this identification problem, it is not recommendable
to apply the ICT without control group when φ must be estimated from our
survey data.

3.5. Bayesian estimation

Sometimes prior information on the distribution of Y is available, e.g., from
an earlier study. By incorporating prior information into the estimation, we
can expect to obtain better, i.e., more accurate, estimates. Such estimates can
be calculated by application of Bayesian methods. In a Bayesian context, the
parameter (π0, π1) is considered to be a realization of a random vector (Π0,Π1).
The investigator has to define a distribution of (Π0,Π1) (the so called prior
distribution) which contains the prior information. For the conditional density
of the complete data (Y,S) given a value of Π0, we set for yi ∈ {0, 1} and
si ∈ {0, . . . , J + 1}

fY,S |Π0
(y, s |π0) =

n∏

i=1

φ(si, yi) · πyi , (7)

where φ(i, j) is entry (i, j) of matrix φ from (5) and π1 = 1−π0. Consequently,
(7) and the prior of Π0 completely determine the distribution of (Y,S,Π0). Let
us assume an outcome s of S has been recorded in our survey with the item
count technique without control group. Then, the principle of Bayes inference
is to evaluate the posterior distribution of (Π0,Y) given the observed s. This
results in estimates that base on both the prior information and the information
in s from the current survey. In the sequel, we give more details on the Bayes
estimation for the ICT without control group.

Regarding the prior distribution, we apply the Beta(δ0, δ1) distribution for
Π0, that is, we assume Π0 to have density

fΠ0(π0) = K · πδ0−1
0 · (1 − π0)

d1−1 · 1[0,1](π0),
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where δ0, δ1 > 0 are parameters and the constant K depends on the δi. Clearly,
we have the uniform distribution on [0, 1] for δ0 = δ1 = 1. We consider the
Beta distribution, because of the following properties. First, the Beta prior is
interpretable well. In particular, the Beta(δ0, δ1) distribution contains the same
information as (δ0 − 1) + (δ1 − 1) additional observations among which the
outcomes Y = 0 and Y = 1 occur δ0 − 1 times and δ1 − 1 times, respectively.

Second, an investigator’s guess π̂
(p)
0 for π0, which may be based on a previous

study, can be transformed into a concrete Beta prior so that the certainty about
the guess is reflected. For this purpose, let us fix a proportionality constant d

and set δ0 = π̂
(p)
0 · d as well as δ1 = (1 − π̂

(p)
0 ) · d. Then, the Beta prior with

these parameters δi comprises the same information as d− 2 new observations.
Thus, a large d corresponds to a large certainty of the investigator about the

guess π̂
(p)
0 . Third, the Beta prior allows comparatively comfortable calculations

for the EM and data augmentation algorithm (see below).

We next derive several possibilities to study the posterior distribution of
(Π0,Y) given s. We start with the calculation of the mode of the density
fΠ0|S(· | s). We remark that in the case of a uniform prior, this posterior mode
equals the MLE. Dempster, Laird, and Rubin (1977, [7]) show for general miss-
ing data constellations that a version of the EM algorithm can be used to detect
the posterior mode. In our situation of the ICT without control group, the pos-
terior mode calculation adds up to modify the EM algorithm for the MLE from
above. In the E step of iteration t+ 1, we now compute the function

π0 7→ log π0 · v(t)0 + log(1− π0) · v(t)1 + log fΠ0(π0) (8)

with v
(t)
i as in (5). Compared with (4), the term log fΠ0(π0) corresponding to

the prior distribution now appears. The maximum of (8) is searched in the M
step. It is equal to

π
(t+1)
0 =

v
(t)
0 + δ0 − 1

n+ δ0 + δ1 − 2
.

Beginning with a starting value, this EM procedure produces step-by-step a

sequence π
(0)
0 , π

(1)
0 , π

(2)
0 , . . . with fΠ0|S(π

(t+1)
0 | s) ≥ fΠ0|S(π

(t)
0 | s) (cf. Schafer

(2000, p. 46, [17]) for a general missing data problem).

Further possibilities to evaluate fΠ0 |S(· | s) are to calculate the expectation,
i.e., the posterior mean, as another point estimate for the true π0 and quan-
tiles as bounds of confidence intervals. Moreover, we can consider the rela-
tive frequency of sample units having the outcome Y = 0, i.e., we look at
P0 = 1

n

∑n

i=1 1{Yi=0} and compute the expectation and quantiles of the distri-
bution of P0 given S = s. To detect the mentioned expectations and quantiles,
the data augmentation (DA) algorithm (see Tanner and Wong (1987, [18]))
is helpful. With this iterative procedure, we obtain a sequence of realizations

(y(t), π
(t)
0 )t∈N of a Markov chain (Y(t),Π

(t)
0 )t∈N, which converges in distribution

to the distribution given by the conditional density fY,Π0 |S(·, · | s). In particu-
lar, in the I step of iteration t + 1 of the DA scheme, we must draw a vector
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y(t+1) from fY |S,Π0
(· | s, π(t)

0 ). Regarding this, (7) implies

fY |S,Π0
(y | s, π(t)

0 ) =

n∏

i=1

φ(si, yi) · π(t)
yi

fSi |Π0
(si |π(t)

0 )
,

where π
(t)
1 = 1− π

(t)
0 and fSi |Π0

(si |π(t)
0 ) equals the entry number si ∈ {0, . . . ,

J+1} of the vector φ ·(π(t)
0 , π

(t)
1 )⊤. In the subsequent P step, we generate a new

parameter π
(t+1)
0 from the density fΠ0 |Y,S(· |y(t+1), s). According to (7) and the

Beta(δ0, δ1) prior, this density corresponds to a Beta(m
(t+1)
0 + δ0,m

(t+1)
1 + δ1)

distribution. Here, we define m
(t+1)
0 =

∑n
i=1 1{0}(y

(t+1)
i ) and m

(t+1)
1 = n −

m
(t+1)
0 where y

(t+1)
i is the ith entry of y(t+1). Due to a strong law of large

numbers (SLLN) for Markov chains (for instance, Schafer (2000, p. 91, [17])),
we obtain for L→ ∞ the almost sure convergences

p̂L =
1

L

L∑

t=1

Π
(t)
0

a.s.−→ E(Π0 |S = s) and FL(x) =
1

L

L∑

t=1

1
{Π

(t)
0 ≤x}

a.s.−→ FΠ0|S(x|s),

where FΠ0|S(· | s) is the distribution function of Π0 given s. Accordingly, the
quantile functions also converge, that is, for u ∈ (0, 1), we have

F−1
L (x)

a.s.−→ F−1
Π0 |S(x | s) for L→ ∞.

It is appealing to use the a.s. limit of p̂L as point estimate for the true π0 while
the a.s. limits of F−1

L (α/2) and F−1
L (1 − α/2) provide a lower and an upper

bound of a 1 − α confidence interval for the true proportion π0. These limits
can be simulated with the help of the DA algorithm as described above.

Let us now analyze the distribution of P0 given S = s. The values m
(t)
0

(t ≥ 1) can be interpreted as multiple imputations (MIs) for
∑n

i=1 1{Yi=0}. Set

P
(t)
0 = M

(t)
0 /n where M

(t)
0 is the random variable that belongs to m

(t)
0 and

introduce p̂MI
L = 1

L

∑L
t=1 P

(t)
0 . Then, the Markov chain SLLN guarantees

p̂MI
L

a.s.−→ E(P0 |S = s) and FMI
L (x) =

1

L

L∑

t=1

1
{P

(t)
0 ≤x}

a.s.−→ FP0|S(x|s),

where FP0|S(· | s) is the distribution function of P0 given s. WhenQMI
L represents

the quantile function that belongs to FMI
L , it follows thatQMI

L (u)
a.s.−→ F−1

P0|S
(u|s)

for any u ∈ (0, 1) where the quantile function F−1
P0|S

(·, s) is continuous. The a.s.

limit of p̂MI
L is another point estimate for the true π0 and the a.s. limits of

QMI
L (α/2) and QMI

L (1 − α/2) deliver CI bounds. These limits can be detected
by DA, too.

We close this subsection with the remark that the Bayesian estimation meth-
ods established above concretely address the item count technique without con-
trol group. However, for various randomized response and nonrandomized re-
sponse procedures, Bayesian estimates can be derived in a similar way. In this
regard, the interested reader is referred to Groenitz (2013, [9]).
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3.6. Covariate extension

In this subsection, we present a covariate extension of the ICT without control
group, that is, we develop a method that enables the analysis of the influence
of a vector of p nonsensitive covariates X on the sensitive characteristic Y .
Such a technique is helpful, for instance, for the investigation of the dependence
of tax evasion on gender, age, and profession. We again make the assumption
that the distribution of Z in the population is known. We start with the case
of deterministic exogenous variables. Here, the researcher determines values of
the covariates. Subsequently, persons with these covariate values are randomly
selected and requested to give an answer according to the ICT with control
group, i.e., each person should reply his or her outcome of S = Z + Y . Let xij
be the ith interviewee’s value of the jth covariate, and set xi = (xi1, . . . , xip).
We further assume:

(D1) Y1, . . . , Yn are independent.
(D2) Z1, . . . , Zn are independent and identically distributed (iid) with Zi ∼ Z.
(D3) The vectors (Y1, . . . , Yn) and (Z1, . . . , Zn) are independent.

(D4) There is a β ∈ R
p with P(Yi = 1) = exiβ

1+exiβ
(i = 1, . . . , n).

(D1)–(D3) are fulfilled if (Y,X) and Z are independent and if for each covariate
level fixed by the researcher, the interviewees are selected by SRSWR from
the population units possessing this covariate level where the selection for one
covariate level is independent of the selection for the other covariate levels. The
assumptions (D1)–(D4) mean that a logistic regression model for the dependence
of the sensitive item on the exogenous characteristics holds. To estimate β via
EM algorithm, we initially notice the observed data log-likelihood

lobs(β) =

n∑

i=1

logP(Si = si) =

n∑

i=1

log

[
φsi ·

1

1 + exiβ
+ φsi−1 ·

exiβ

1 + exiβ

]

=

R∑

r=1

J+1∑

j=0

n1(r, j) · log
[
φj ·

1

1 + exirβ
+ φj−1 ·

exirβ

1 + exirβ

]
. (9)

Regarding this equality, we assume that R ≤ n different covariate levels are in
place, that sample unit number ir possesses the rth covariate level, and that
n1(r, j) is the number how often answer j occurred among the interviewees with
the rth covariate level. We have introduced the quantity R to hint that the
number of computations and hence the elapsed time of the algorithm can be
reduced if the number of different covariate levels is clearly smaller than n. The
complete data log-likelihood is apart from a constant equal to

lcom(β) =

n∑

i=1

(
1{1}(yi) · log

exiβ

1 + exiβ
+ 1{0}(yi) · log

1

1 + exiβ

)
.
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In the E step of iteration t + 1 of the EM algorithm, we obtain an estimated
complete data log-likelihood

l̂com(β)=
n∑

i=1

(
Pt(Yi=1|Si= si) log

exiβ

1 + exiβ
+ Pt(Yi=0|Si= si) log

1

1 + exiβ

)

=
R∑

r=1

J+1∑

j=0

n1(r, j)

[
Pt(Yir =1|Sir = j) log

exirβ

1 + exirβ
+ Pt(Yir =0|Sir = j) log

1

1 + exirβ

]

where

Pt(Yir = 1|Sir = j) =
φj−1 · exirβ(t)

φj−1 · exirβ(t) + φj

holds where β(t) is the estimate corresponding to the preceding iteration. In
the subsequent M step, we compute a new estimate β(t+1). This β(t+1) equals
the MLE corresponding to a logistic regression model with data such that for
covariate level r, Y = 1 occurs

∑J+1
j=0 n1(r, j) · Pt(Yir = 1|Sir = j) times and

Y = 0 occurs
∑J+1
j=0 n1(r, j) · Pt(Yir = 0|Sir = j) times (noninteger numbers

may appear). Such an MLE can be obtained by standard software (e.g., in
MATLAB, one may apply the function mnrfit). When the difference between
β(t) and β(t+1) is sufficiently small, we stop iterations and use the last β(t) as

estimate β̂.
Estimated standard errors for the components of β̂ can be obtained via the

bootstrap approach. Here, replications β̂(1), . . . , β̂(B) are computed and the em-

pirical variance of these replications is the BS estimate for the variance of β̂.
Taking the square roots of the diagonal entries of this matrix yields BS stan-
dard errors for the components of β̂. To generate β̂(b) (b = 1, . . . , B), we draw a
replication for each n1(r, j) by

(n
(b)
1 (r, 0), . . . , n

(b)
1 (r, J+1))∼Multinomial(nr, (λ̂r,0, . . . , λ̂r,J+1)) (r = 1, . . . , R)

where nr is the number of sample units having the rth covariate level and

λ̂r,j = φj ·
1

1 + exir β̂
+ φj−1 ·

exir β̂

1 + exir β̂
.

Then, β̂(b) is the MLE corresponding to the new frequencies n
(b)
1 (r, j) and can

be computed as above.
We now switch to stochastic covariates. Here, each person in the sample

is first requested to reveal his or her outcomes of the nonsensitive covariates,
and second to give a reply S = Z + Y according to the ICT without control
group. The case of stochastic explanatory variables is likely more relevant for
practice than the case of deterministic covariates. However, we have initially
presented the deterministic case, because this case is mathematically simpler
and the estimation for stochastic exogenous characteristics can be traced back
to this case. Let the random variable Xij be the ith sample unit’s outcome of
the jth covariate and define the random vector Xi = (Xi1, . . . , Xip). We have
to incorporate the stochastic character of the covariates into our assumptions.
In particular, (D1)–(D4) change to
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(S1) (Y1, X1), . . . , (Yn, Xn) are iid.
(S2) Z1, . . . , Zn are iid with Zi ∼ Z.

(S3) The two quantities



Y1, X1

...
...

Yn, Xn


 and



Z1

...
Zn


 are independent.

(S4) There is a β ∈ R
p with P(Yi = 1|Xi = xi) =

exiβ

1+exiβ
(i = 1, . . . , n).

(S1)–(S3) are satisfied if (Y,X) and Z are independent and the respondents are
drawn by SRSWR from the universe. The observed data log-likelihood is given
by (a constant is ignored)

lobs(β) =
n∑

i=1

log P(Si = si|Xi = xi)

=

n∑

i=1

log

[
φsi ·

1

1 + exiβ
+ φsi−1 ·

exiβ

1 + exiβ

]
. (10)

A comparison with (9) makes clear that the maximum of (10) can be obtained
by maximizing an observed data log-likelihood corresponding to certain data
according to the case of deterministic covariates. How this can be done, is ex-
plained above. Estimated standard errors for the components of β̂ given the
observed covariate levels can be calculated by a bootstrap procedure analog to
the case of deterministic exogenous variables.

3.7. Numerical example for covariate extension

In this subsection, we illustrate the proposed methods from Section 3.6 in a
simple, artificial example. We consider Y ∈ {0, 1} where we may have Y = 1
if a person conducts undeclared work and Y = 0 else. Let us suppose that we
have p = 4 covariates. The first covariate is a constant equal to 1 while the other
covariates each can attain the values 0 and 1. The covariates 2–4 could have the
following meanings. The second covariate may equal 1 if the person has a regular
occupation of at least 30 hours per week. The third covariate may describe the
gender (0: female/1: male). The fourth covariate may attain value 1 if the person
expects a great chance of being caught when conducting undeclared work. Then,
the covariate vector (1, 1, 0, 1) represents a woman having a main occupation of
30 or more hours per week and evaluating the probability of being caught when
conducting moonlighting to be large. Say, the number Z of affirmative responses
to the nonsensitive questions is binomially distributed with parameters 4 and
0.5. Let us now assume that we have made the observations as given in the left
part of Table 4.

Under the assumptions (S1)–(S4), we obtain the MLE

β̂ =
(
1.2270 −2.3233 1.6568 −3.3706

)⊤

for β with 87 iteration of the EM algorithm. With this β̂, we estimate the
probability that a person conducts undeclared work given the covariates with
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Table 4

Observed distribution of the scrambled answers S and estimated probabilities of the sensitive
variable Y for each covariate level

covariate level observed frequency estimated probability
X S = 0 S = 1 S = 2 S = 3 S = 4 S = 5 Y = 0 Y = 1

(1, 0, 0, 0) 1 8 21 26 15 3 0.2267 0.7733
(1, 1, 0, 0) 9 37 64 53 21 3 0.7496 0.2504
(1, 0, 1, 0) 0 6 19 27 18 4 0.0530 0.9470
(1, 0, 0, 1) 1 6 9 7 2 0 0.8951 0.1049
(1, 1, 1, 0) 1 5 11 12 7 1 0.3634 0.6366
(1, 1, 0, 1) 4 15 23 16 4 0 0.9886 0.0114
(1, 0, 1, 1) 1 4 8 7 3 1 0.6193 0.3807
(1, 1, 1, 1) 1 3 5 3 1 0 0.9432 0.0568

the help of the relation (S4). These estimated probabilities are given in the right
part of Table 4. For our contrived data and the corresponding estimation, the
following interpretations hold: Men are more involved in undeclared work than
women, because β̂3 is positive. People expecting a large chance of being caught
are less often involved in moonlighting than persons who expect a small chance
of being caught, because β̂4 is negative. The largest probability for committing
this kind of social fraud appears for men without main occupation of at least 30
hours per week who assess the chance of being caught to be small. For women
with regular occupation of at least 30 hours per week who expect a large chance
of being caught, the probability for undeclared work is smallest.

4. Extension of the ICT to polychotomous sensitive attributes

Sometimes an investigator may be interested in a sensitive characteristic with
more than two categories. Examples for such variables are income (divided in
classes) and the number of times a person has evaded taxes. In this section, let
Y be a sensitive attribute with an arbitrary number k of categories coded with
0, . . . , k−1. As before Uj (j = 1, . . . , J) stands for an innocuous attribute, but we
now allow that Uj attains values 0, . . . , kj (kj ≥ 1). For instance, we may define
U1 ∈ {0, 1, 2} where U1 = 0 if a person did not visit a foreign country last year,
U1 = 1 if a person visited a foreign country once last year, and U1 = 2 if a person
visited a foreign country two or more times last year. Analog to Sections 2 and
3, we define Z to be the sum of the nonsensitive variables, i.e., Z = U1+· · ·+UJ .
In this section, we first investigate the case in which the distribution of Z is not
known and establish an item count technique with control and treatment group
that enables the estimation of the probability masses of the multicategorical Y .
A Bayesian extension and regression analysis are also described. Subsequently,
we consider a known distribution of Z. For this case, we show that a control
group is not necessary and derive the corresponding estimates.

4.1. Method and estimation

We divide the interviewees in two groups, one control group and one treat-
ment group where each respondent has a chance of 50% to be assigned to the
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Table 5

Example of a questionnaire for the polychotomous ICT that is shown to the respondents in
the treatment group. The questionnaire should be accompanied with an instruction like “For
each question, please think about your answer category. Subsequently, compute the sum of
the answer categories that apply to you. Report this sum and nothing else.” By deleting the

question on tax evasion, we obtain the questionnaire for persons in the control group

Question Answer category Answer statement
Did you attend a religious service last month? 0 no

1 once
2 twice or more

Did you visit a foreign country last year? 0 no
1 yes

Is your telephone number even? 0 no
1 yes

What is your favourite sport? 0 soccer
1 handball
2 athletics
3 swimming
4 other

Have you evaded taxes last year? 0 I don’t have evaded
taxes.

1 I have evaded taxes,
but not more than
1000 Euro.

2 I have evaded taxes
in an amount of
more than 1000
Euro.

treatment group. Each respondent in the control group is supplied with a ques-
tionnaire with the J nonsensitive questions. The interviewee is introduced to
get the outcome for each question straight in his or her mind and reveal only
the sum of the outcomes. In the treatment group, every respondent receives the
same nonsensitive questions and additionally a question concerning the critical
Y . In this group, the demanded answer is the overall sum of outcomes for the
nonsensitive variables and the sensitive variable. An example of a questionnaire
for the treatment group is provided in Table 5. Such a table should be accompa-
nied with the clear instruction that only a total has to be reported. Additionally,
an example of an answer may be helpful.

Contrary to Section 3, we need a treatment indicator for the current setup.
Let T ∈ {0, 1} be this indicator. Then, requested answer is S =

∑J
j=1 Uj+T ·Y =

Z + T · Y . Say Z ∈ {0, . . . , kZ − 1} where kZ − 1 = k1 + · · ·+ kJ . Consequently,
S ∈ {0, . . . , kZ + k − 2}, that is, there are kZ + k − 1 answer categories where
the replies kZ , . . . , kZ + k − 2 can only emerge in the treatment group. It must
be mentioned that the ceiling effect explained in Section 2 propagates itself to
the polychotomous case. In particular, for a respondent in the treatment group,
the answers kZ , . . . , kZ + k − 2 restrict the possible Y-values. E.g., for k = 3
and kZ = 7, we have that S = 8 implies Y = 2 while S = 7 implies Y ≥ 1. To
reduce the ceiling effect, it is appealing to select control items where one can
expect only few persons possessing values of Z greater or equal than kZ −k+1.
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Adapting the notation from Sections 2 and 3, we now have π = (π0, . . . , πk−1)
⊤

and φ = (φ0, . . . φkZ−1)
⊤. We again assume independence of Z and Y and con-

sider SRSWR of size n. We define Ti = 1 if the ith sample unit belongs to
the treatment group and Ti = 0 else. The Ti are collected in T = (T1, . . . , Tn).
Furthermore, let ti denote the realization of Ti and set t = (t1, . . . , tn). The
observed data log-likelihood in our polychotomous case is given by

lobs(π, φ; s, t) =

n∑

i=1

log P(Si = si|Ti = ti) =

n∑

i=1

log



k−1∑

j=0

φsi−tij · πj


 . (11)

Here, the additive constant
∑n

i=1 logP (Ti = ti) = n·log 0.5 is ignored, since it is
irrelevant for the maximization. At other places in this paper, similar ignorings
occur although this may be not explicitly emphasized. The complete data log-
likelihood equals

lcom(π, φ) = lcom(π, φ;y, z, s, t) =

n∑

i=1

logP(Yi = yi) +

n∑

i=1

logP(Zi = zi)

=

k−1∑

j=0

log πj ·
n∑

i=1

1{j}(yi) +

kZ−1∑

j=0

logφj ·
n∑

i=1

1{j}(zi).

The maximization of lobs can again be conducted with the EM algorithm. In
the E step of iteration t+ 1, we estimate the complete data log-likelihood by

l̂com(π, φ) = Et(lcom(π, φ;Y,Z,S,T) |S = s,T = t)

=

k−1∑

j=0

log πj ·
n∑

i=1

Et(1{j}(Yi)|S = s,T = t)

+

kZ−1∑

j=0

logφj ·
n∑

i=1

Et(1{j}Zi|S = s,T = t)

=:
k−1∑

j=0

log πj · v(t)j +

kZ−1∑

j=0

logφj · w(t)
j .

Here, for j = 0, . . . , k − 1 respectively j = 0, . . . , kZ − 1, the identities

Et(1{j}(Yi)|S = s,T = t) = Pt(Yi = j|Si = si, Ti = ti) =
φ
(t)
si−tij

· π(t)
j∑k−1

l=0 φ
(t)
si−til

· π(t)
l

and

Et(1{j}(Zi)|S = s,T = t) =

k−1∑

l=0

1{si−til}(j) · Pt(Yi = l|Si = si, Ti = ti)
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hold. In the M step of iteration t+1, we obtain π(t+1) and φ(t+1) by maximizing

l̂com. Here, we have

π
(t+1)
j =

v
(t)
j

v
(t)
0 + · · ·+ v

(t)
k−1

, φ
(t+1)
j =

w
(t)
j

w
(t)
0 + · · ·+ w

(t)
kZ−1

.

This algorithm can be programmed conveniently. For this purpose, we point out
that



v
(t)
0
...

v
(t)
k−1


 = nC · π(t) +


φ(t) .∗







1/λ
(t)
0
...

1/λ
(t)
kZ+k−2


 · (π(t)

0 , . . . , π
(t)
k−1)







⊤

· n⊤
1

=: nC · π(t) + P
(t)
1 · n⊤

1 (12)

where nC is the size of the control group, φ(t) is a (kZ + k − 1) × k matrix

whose entry (i, j) is φ
(t)
i−j for i = 0, . . . , kZ + k − 2; j = 0, . . . , k − 1, and

λ(t) = (λ
(t)
0 , . . . , λ

(t)
kZ+k−2)

⊤ = φ(t) · (π(t)
0 , . . . , π

(t)
k−1)

⊤. Moreover, n1i represents
the absolute frequency of answer i among the respondents in the treatment

group and n1 = (n10, . . . , n1,kZ+k−2). Regarding the w
(t)
j , we introduce the

kZ × (kZ + k− 1) matrix P̃ (t) whose component (i, j) is equal to entry (j− i, j)

of the matrix P
(t)
1 for i = 0, . . . , kZ − 1 and j = 0, . . . , kZ + k − 2. Then, it

follows
(w

(t)
0 , . . . , w

(t)
kZ−1)

⊤ = n⊤
0 + P̃ (t) · n⊤

1 (13)

with n0 = (n00, . . . , n0,kZ−1) describing the observed answer distribution in
the control group, that is, n0 is the analog of n1 for the control group. As
initial values, we may employ π(0) and φ(0) that each consist of identical en-
tries. The algorithm stops if the deviation between (π(t), φ(t)) and the successor
(π(t+1), φ(t+1)) is sufficiently small. The generated sequence (π(t), φ(t))t∈N0 yields
a nondecreasing sequence (lobs(π

(t), φ(t); s, t))t∈N0 . The last M step delivers the

estimate θ̂ = (π̂⊤, φ̂⊤)⊤.

Estimated standard errors of the components of θ̂ and confidence inter-
vals for components of θ = (π⊤, φ⊤)⊤, can be derived similar to Section 3

from B bootstrap replications of θ̂. The bth reproduction is generated by sim-

ulating the size of the control group n
(b)
C ∼ Bin(n, 0.5), drawing new fre-

quencies of the answers in the groups by n
(b)
0 ∼ Multinomial(n

(b)
C , φ̂⊤) and

n
(b)
1 ∼ Multinomial(n − n

(b)
C , (λ̂0, . . . , λ̂kZ+k−2)) with λ̂i =

∑k−1
j=0 φ̂i−j · π̂j .

Then, θ̂(b) is the MLE corresponding to n
(b)
0 and n

(b)
1 .

4.2. Numerical illustration

This subsection provides a numerical example for the polychotomous ICT. The
following setup and data are artificial, but suffice to illustrate the estimation
methods according to Subsection 4.1. Let us assume that a questionnaire as in
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Table 6

Observed distribution of the answers S

group / answer S 0 1 2 3 4 5 6 7 8 9 10

control 30 71 90 92 81 60 42 26 8 – –
treatment 21 56 80 90 84 68 49 32 15 4 1

Table 5 is used in the treatment group while this questionnaire without the last
(i.e., the sensitive) question is used in the control group. Consequently, we have
J = 4 nonsensitive control items, Z can attain the kZ = 9 values 0, . . . , 8, and
the sensitive attribute on tax evasion possesses the three categories 0, 1, and 2.
Thus, in the treatment group, kZ + k − 1 = 11 different answers are possible
(namely, the answers 0, . . . , 10). Furthermore, let us assume that the sample size
equals n = 1000, where each 500 interviewees are assigned to the control and
treatment group, and that we have observed the frequencies of the answers as
in Table 6.

Then, the EM algorithm delivers the MLEs π̂ = (0.7148, 0.1761, 0.1091)⊤

and

φ̂ = (0.0595, 0.1420, 0.1800, 0.1847, 0.1621, 0.1205, 0.0836, 0.0514, 0.0162)⊤.

According to π̂, the majority of inhabitants would pay the taxes correctly while
an estimated proportion of 11% would have evaded more than 1000 Euro taxes.
Moreover, we obtained bootstrap standard errors of the components SE(π̂) =
(0.1173, 0.1641, 0.0786)⊤ and e.g. a 90% bootstrap confidence interval for π1
given by [0.4939, 0.8651].

4.3. Bayes extension

We establish Bayesian estimates for the polychotomous ICT from Section 4.1
in this subsection. Here, we modify the considerations from Subsection 3.5. The
true π and φ are treated as realizations of random quantities (Π0, . . . ,Πk−1)

⊤

and (Φ0, . . . ,ΦkZ−1)
⊤, respectively. As prior density for (Π0, . . . ,Πk−2), we set

fΠ0,...,Πk−2
(π0, . . . , πk−2) = constant · πδ0−1

0 · · ·πδk−1−1
k−1

for π0, . . . , πk−2 ∈ [0, 1], π0 + · · · + πk−2 ≤ 1, πk−1 = 1 − π0 − · · · − πk−2 and
δi > 0, that is, we have a Dirichlet distribution with parameters δ0, . . . , δk−1.
The Dirichlet distribution is a multivariate extension of the Beta distribution.
We also apply the Dirichlet distribution for the prior of (Φ0, . . . ,ΦkZ−2), more
precisely, we assume (Φ0, . . . ,ΦkZ−2) to have a Dirichlet distribution with pa-
rameters ε0, . . . , εkZ−1. As overall prior density, we use

fΠ0,...,Πk−2,Φ0,...,ΦkZ−2
(π0, . . . , πk−2, φ0, . . . , φkZ−2)

= fΠ0,...,Πk−2
(π0, . . . , πk−2) · fΦ0,...,ΦkZ−2

(φ0, . . . , φkZ−2).

The advantages of this prior are similar to those of the prior in Subsection 3.5.
In particular, the prior contains information equivalent to δ0 + · · · + δk−1 − k
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observations on Y where Y = i occurs δi − 1 times and ε0 + · · · + εkZ−1 − kZ
additional data on Z among which Z = i appears εi − 1 times. Moreover, a
researcher’s guesses for π and φ can be converted into a concrete prior where
the certainty is reflected and the procedures of EM and data augmentation
algorithm are relatively simple. For the density of the complete data given the
parameter, we define

fY,S,T |Π0,...,Πk−2,Φ0,...,ΦkZ−2
(y, s, t |π0, . . . , πk−2, φ0, . . . , φkZ−2)

=

n∏

i=1

πyi · φsi−tiyi ·
1

2

where, of course, πk−1 = 1− π0 − · · · − πk−2 and φkZ−1 = 1− φ0 − · · · − φkZ−2

hold. Regarding the calculation of the mode of the density

fΠ0,...,Πk−2,Φ0,...,ΦkZ−2 |S,T(π0, . . . , πk−2, φ0, . . . , φkZ−2 | s, t)

via EM algorithm, function (8), which corresponds to the E step, changes to

(π0, . . . , πk−2, φ0, . . . , φkZ−2) 7→
k−1∑

j=0

log πj · v(t)j +

kZ−1∑

j=0

logφj · w(t)
j

+

k−1∑

j=0

log πj · (δj − 1) +

kZ−1∑

j=0

logφj · (εj − 1) (14)

where the v
(t)
j are from (12) and the w

(t)
j are from (13). Obviously, (14) comprises

a part that corresponds to the estimated complete data log-likelihood for the
non-Bayes case and a part that belongs to the prior.

The DA algorithm leads to realizations (y(t), π
(t)
0 , . . . , π

(t)
k−2, φ

(t)
0 , . . . , φ

(t)
kZ−2)t≥1

of a Markov chain (Y(t),Π
(t)
0 , . . . ,Π

(t)
k−2,Φ

(t)
0 , . . . ,Φ

(t)
kZ−2)t≥1 that converges in

distribution to (Y,Π0, . . . ,Πk−2,Φ0, . . . ,ΦkZ−2) given s and t. In the I step of
iteration t+ 1, we generate the vector y(t+1) from

fY |Π0,...,Πk−2,Φ0,...,ΦkZ−2,S,T(y |π(t)
0 , . . . , π

(t)
k−2, φ

(t)
0 , . . . , φ

(t)
kZ−2, s, t)

=
n∏

i=1

π
(t)
yi · φ(t)si−tiyi∑k−1

j=0 π
(t)
j · φ(t)si−tij

.

In the subsequent posterior step (P step) of iteration t + 1, we draw new pa-
rameters from the distribution of (Π0, . . . ,Πk−2,Φ0, . . . ,ΦkZ−2) given Y =
y(t+1), S = s, T = t. The density of this distribution is the product of the

density corresponding to a Dirichlet distribution with parameters m
(t+1)
0 +

δ0, . . . ,m
(t+1)
k−1 + δk−1 and the density of a Dirichlet distribution with param-

eters q
(t+1)
0 + ε0, . . . , q

(t+1)
kZ−1 + εkZ−1. Here, m

(t+1)
j denotes the number how

often the value j appears among y
(t+1)
1 , . . . , y

(t+1)
n and q

(t+1)
j represents the

number how often outcome j occurs among z
(t+1)
1 , . . . , z

(t+1)
n where we set

z
(t+1)
i = si − tiy

(t+1)
i .
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With the help of the generated realizations of the Markov chain, we are able to
simulate expectations and quantiles of the distribution of Πi given s and t as well
as of Pi given s and t where Pi = n−1

∑n

j=1 1{Yj=i}. These simulations proceed
analog to Subsection 3.5, in which the ICT for binary target variables without
control group is under study. We can also simulate expectations and quantiles
of the distribution of Φi given s and t. However, these quantities are typically
of lower interest, because we are mainly interested in the sensitive variable.

4.4. Regression analysis

Regarding the ICT for binary sensitive variables according to Miller (1984, [14]),
methods for regression analysis are proposed e.g. in Imai (2011, [12]) and in
Kuha and Jackson (2014, [13]). An important element of these methods is that
a structure model for the control items has to be specified. In this subsection,
we extend the available literature by techniques that enable the investigation of
the influence of nonsensitive covariates on a multicategorical sensitive item on
which data are collected by the ICT from Subsection 4.1. Let us first consider
deterministic covariates. In this case, values of the covariates are determined
by the researcher and persons having these values are searched. Each person
is randomly assigned either to the control or to the treatment group and is
requested to give an answer according to the polychotomous ICT from 4.1. Let
xi ∈ R

1×p be a vector whose jth entry represents the ith interviewee’s value of
covariate j (i = 1, . . . , n; j = 1, . . . , p). We assume:

(D1’) The n vectors (Y1, Z1, T1), . . . , (Yn, Zn, Tn) are independent.
(D2’) For all i = 1, . . . , n, we have: Ti and (Yi, Zi) are independent and

P(Ti = 1) = 1/2.

(D3’) There is a β = (β(1)⊤ , . . . , β(k−1)⊤)⊤ with β(j) ∈ R
p×1 and

P(Yi = j) =
exiβ

(j)

1 + exiβ(1) + · · ·+ exiβ(k−1)
(j = 1, . . . , k − 1).

Hence, we are in the situation of a multivariate logistic regression model for the
influence of the exogenous quantities on the stigmatizing variable. The assump-
tions (D1’) and (D2’) are fulfilled in the following case: for any covariate level,
the respondents are drawn by SRSWR out of the population units having this
covariate level such that the selection is conducted independent of the selection
for other covariate levels; the drawn persons are randomly assigned to a group
e.g. by flipping a fair coin. Notice, we allow dependence between Yi and Zi in
this subsection. For si ∈ {0, . . . , kZ + k − 2} and ti ∈ {0, 1}, it is true that

logP

(
n⋂

i=1

{Si = si, Ti = ti}
)

=

n∑

i=1


log



k−1∑

j=0

P(Zi = si − tij |Yi = j) · P(Yi = j)


+ log 0.5


 .
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As in Kuha and Jackson (2014, [13]) for the binary ICT, we make use of a model
for the probabilities P(Zi = z |Yi = y). In particular, we consider a multino-
mial logistic regression set up (compare Appendix A3 in Kuha and Jackson
(2014, [13]) for the binary ICT). Other modelings lead to similar estimation

steps. Formally, we assume that a ψ = (ψ(1)⊤ , . . . , ψ(kZ−1)⊤)⊤ exists such that

P(Zi = z |Yi = y) =
ev(xi,y)·ψ

(z)

1 + ev(xi,y)·ψ(1) + · · ·+ ev(xi,y)·ψ(kZ−1)
(15)

holds for z = 1, . . . , kZ−1. In this equation, v is a map specified by the researcher
and the range of v determines the length of the row vector ψ(l) (l = 1, . . . , kZ−1).
We give some examples for v. For v(x, y) = (x, y) ∈ R

1×(p+1), the distribution
of Zi depends on the nonsensitive covariates and the sensitive item. Some au-
thors recommend that the control items should not be totally unrelated to the
sensitive item (e.g., Chaudhuri and Christofides (2007, Section 3, [4])). For such
a situation a v with v(x, y) depending on y is helpful. In the case, v(x, y) = x,
Zi is independent of the sensitive characteristic and for v(x, y) = 1, Zi is in-
dependent of both the innocent covariates and the stigmatizing variable. The
observed data log-likelihood is given by

lobs(β, ψ) =

n∑

i=1

log



k−1∑

j=0

P(Zi = si − tij |Yi = j) · P(Yi = j)


 (16)

whereas the complete data log-likelihood has the form

lcom(β, ψ) =

n∑

i=1

logP(Yi = yi) +

n∑

i=1

logP(Zi = zi |Yi = yi)

=: l1(β) + l2(ψ). (17)

Again, the EM algorithm is beneficial to maximize (16). Let estimates β(t) =

(β
(1)⊤

(t) , . . . , β
(k−1)⊤

(t) )⊤ and ψ(t) = (ψ
(1)⊤

(t) , . . . , ψ
(kZ−1)⊤

(t) )⊤ for β and ψ be avail-

able from iteration t. In the expectation step of iteration t+ 1, l1(β) and l2(ψ)

are replaced by certain conditional expectations l
(t)
1 (β) and l

(t)
2 (ψ). In detail, we

have with β(0) being a vector of zeros

l
(t)
1 (β) =

nC∑

i=1

k−1∑

j=0

Pt(Yi = j |Si = si, Ti = 0) · log exiβ
(j)

1 + exiβ(1) + · · ·+ exiβ(k−1)

+

n∑

i=nC+1

k−1∑

j=0

Pt(Yi = j |Si = si, Ti = 1) · log exiβ
(j)

1 + exiβ(1) + · · ·+ exiβ(k−1)

=: l
(t)
10 (β) + l

(t)
11 (β)

where we assume without loss of generality that the sample units i = 1, . . . , nC
are assigned to the control group while the units i = nC + 1, . . . , n belong to
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the treatment group. That is, l
(t)
10 (β) and l

(t)
11 (β) correspond to the control and

treatment group, respectively. Further, l
(t)
10 (β) =

k−1∑

j=0

R0∑

r=1

kZ−1∑

s=0

n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0) · log
exi0rβ

(j)

1 + · · ·+ exi0rβ
(k−1)

(18)

holds. Here, we assume that we have R0 ≤ nC covariate levels for respondents
in the control group and that sample unit i0r ∈ {1, . . . , nC} possesses the rth
covariate level. Moreover, we denote the number how often answer s occurs
among the respondents in the control group with covariate level r by n0(r, s).
Concerning (18), we have

Pt(Yi0r = j |Si0r = s, Ti0r = 0) =
Pt(Zi0r = s |Yi0r = j) · Pt(Yi0r = j)∑k−1
l=0 Pt(Zi0r = s |Yi0r = l) · Pt(Yi0r = l)

with

Pt(Zi0r = s |Yi0r = l) =
e
v(xi0r ,l)·ψ

(s)
(t)

1 + e
v(xi0r ,l)·ψ

(1)
(t) + · · ·+ e

v(xi0r ,l)·ψ
(kZ−1)

(t)

and

Pt(Yi0r = l) =
e
xi0r

β
(l)
(t)

1 + e
xi0r

β
(1)
(t) + · · ·+ e

xi0r
β
(k−1)
(t)

.

For these identities, we define ψ
(0)
(t) and β

(0)
(t) to be vectors consisting only of

zeros. For the function l
(t)
11 , it is true that l

(t)
11 (β) =

k−1∑

j=0

R1∑

r=1

kZ+k−2∑

s=0

n1(r, s)·Pt(Yi1r = j |Si1r = s, Ti1r = 1) · log
exi1rβ

(j)

1 + · · ·+ exi1rβ
(k−1)

where

Pt(Yi1r = j |Si1r = s, Ti1r = 1) =
Pt(Zi1r = s− j |Yi1r = j) · Pt(Yi1r = j)

∑k−1
l=0 Pt(Zi1r = s− l |Yi1r = l) · Pt(Yi1r = l)

and the probabilities contained in this fraction come from (15) and (D3’) by
working with ψ(t) and β(t) instead of ψ and β. Additionally, R1 denotes the
number of covariate levels in the treatment group, sample unit i1r ∈ {nC +
1, . . . , n} is a person having the rth covariate level, and n1(r, s) is the absolute
frequency of interviewees in the treatment group with covariate level r giving
answer s. Let us now consider l2(ψ). Partitioning the respondents in control and
treatment group yields l2(ψ) =

nC∑

i=1

logP(Zi = zi |Yi = yi) +
n∑

i=nC+1

logP(Zi = zi |Yi = yi) =: l20(ψ) + l21(ψ).

The first summand can be written as

l20(ψ) =

nC∑

i=1

k−1∑

j=0

kZ−1∑

s=0

1{j}(yi) · 1{s}(si) · logP(Zi = s |Yi = j)
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while the second summand is equal to

l21(ψ) =

n∑

i=nC+1

k−1∑

j=0

kZ−1∑

s=0

1{j}(yi) · 1{s+j}(si) · logP(Zi = s |Yi = j).

In the E step of iteration t+ 1, we substitute l20(ψ) and l21(ψ) by their condi-
tional expectations given the observed data and calculated under the parameters
from iteration t and obtain

l
(t)
20 (ψ) =

k−1∑

j=0

R0∑

r=1

kZ−1∑

s=0

n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0)

· logP(Zi0r = s |Yi0r = j)

and

l
(t)
21 (ψ) =

k−1∑

j=0

R1∑

r=1

kZ−1+j∑

s=j

n1(r, s) · Pt(Yi1r = j |Si1r = s, Ti1r = 1)

· log P(Zi1r = s− j |Yi1r = j).

Notice, the probabilities Pt(Yi0r = j |Si0r = s, Ti0r =0) and Pt(Yi1r = j |Si1r = s,

Ti1r =1) are already available from the calculation corresponding to l
(t)
10 (β) and

l
(t)
11 (β).

In the M step of iteration t + 1, we maximize l
(t)
1 and l

(t)
2 = l

(t)
20 + l

(t)
21 in β

respectively ψ. The maxima are the new estimates β(t+1) and ψ(t+1). The vector
β(t+1) is the MLE for an ordinary multivariate logistic regression model with
the following data situation: There are R0 + R1 covariate levels. For covariate
level equal to xi0r (r = 1, . . . , R0) the outcome Y = j is observed

(
kZ−1∑

s=0

n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0)

)

times while for value xi1r (r = 1, . . . , R1) of the covariates the value Y = j
occurs (

kZ+k−2∑

s=0

n1(r, s) · Pt(Yi1r = j |Si1r = s, Ti1r = 1)

)

times. Thus, one part of the data corresponds to the control group and the
other part corresponds to the treatment group. Since we are working with a
standard logistic regression situation (aside from the fact that noninteger ob-
servations appear), β(t+1) can be obtained with standard statistics software.
The quantity ψ(t+1) can be computed similarly. Referring to this, note that
ψ(t+1) is the MLE for a multivariate logistic regression model with data con-
stellation as follows: The covariate levels for this constellation are given by
v(xi0r , j) as well as v(xi1r , j) for j = 0, . . . , k − 1 and r = 1, . . . , R0 respec-
tively r = 1, . . . , R1. I.e., the sensitive item can play the role of a covariate in
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this data setup. For the covariate level equal to v(xi0r , j), the outcome Z = s
occurs (n0(r, s) · Pt(Yi0r = j |Si0r = s, Ti0r = 0)) times. For covariates equal to
v(xi1r , j), the value Z = s appears

(n1(r, j + s) · Pt(Yi1r = j |Si1r = j + s, Ti1r = 1))

times (s = 0, . . . , kZ−1). Due to this data constellation, ψ(t+1) can be calculated
by standard software, too. After sufficiently many EM algorithm iterations, an
estimate (β̂⊤, ψ̂⊤)⊤ is present.

Our next aim is a variance estimation for the estimator (β̂⊤, ψ̂⊤)⊤. For this
goal, bootstrap resampling is again advantageous. We first remark that the
probability of the event {Si = s, Ti = t} can be estimated by

P̂(Si = s, Ti = t) =

k−1∑

j=0

1

2
· P̂(Zi = s− t · j |Yi = j) · P̂(Yi = j) (19)

where P̂(Zi = s − t · j |Yi = j) is computed by replacing ψ by ψ̂ in (15) and

P̂(Yi = j) = exp(xiβ̂
(j))/(1 + exp(xiβ̂

(1)) + · · ·+ exp(xiβ̂
(k−1))). We obtain the

bth (b = 1, . . . , B) bootstrap replication of (β̂⊤, ψ̂⊤)⊤ by drawing for i = 1, . . . , n

a realization (s
(b)
i , t

(b)
i ) according to (19) and employing the EM algorithm as de-

scribed above to these new data. From the B resampled versions of (β̂⊤, ψ̂⊤)⊤,
we can calculate an empirical variance matrix. This is the bootstrap estimate
for the variance of (β̂⊤, ψ̂⊤)⊤. By calculating empirical quantiles from the repli-
cations, we obtain confidence intervals for the components of (β⊤, ψ⊤)⊤.

Let us now address stochastic covariates, that is, the values of the exogenous
characteristics are random. The interview procedure is that the sample units
report both the outcomes of the covariates and an answer according to the
item count technique in Subsection 4.1. We introduce the random row vector
Xi whose jth entry describes the ith respondents value of the jth covariate
(i = 1, . . . , n; j = 1, . . . , p) and make the assumptions:

(S1’) The n vectors (Y1, Z1, T1, X1), . . . , (Yn, Zn, Tn, Xn) are iid.
(S2’) For every i = 1, . . . , n, we have: Ti and (Yi, Zi, Xi) are independent and

P(Ti = 1) = 1/2.

(S3’) A vector β = (β(1)⊤ , . . . , β(k−1)⊤)⊤ with β(j) ∈ R
p×1 exists so that we

have for j = 1, . . . , k − 1

P(Yi = j |Xi = x) =
exβ

(j)

1 + exβ(1) + · · ·+ exβ(k−1)
.

Consequently, we are in the situation of a multivariate logistic regression model
with stochastic covariates. (S1’) and (S2’) hold when we apply simple random
sampling with replacement for generating the sample and assign each sample
unit to the control or treatment group by e.g. tossing a fair coin. For stochastic
covariates the model (15) for the control items now changes to

P(Zi = z |Yi = y,Xi = x) =
ev(x,y)·ψ

(z)

1 + ev(x,y)·ψ(1) + · · ·+ ev(x,y)·ψ
(kZ−1)

.
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Then, the observed data log-likelihood is lobs(β, ψ) =

n∑

i=1

log



k−1∑

j=0

P(Zi = si − tij |Yi = j,Xi = xi) · P(Yi = j |Xi = xi)


 (20)

where si, ti, and xi are the observed realizations of Si, Ti, and Xi, respec-
tively. This log-likelihood has the same form as (16). Thus, maximizing (20) is
equivalent to the maximization of a log-likelihood that corresponds to the de-
terministic case. In other words, we can trace the ML estimation for stochastic
exogenous variables back to the ML estimation for deterministic covariates. We
can obtain the estimator’s variance given the observed covariates by a bootstrap
resampling method that proceeds analog to the case of deterministic covariates.

4.5. An ICT for polychotomous variables without control group

In Section 3, we have studied an ICT for binary variables without control group
while for the polychotomous case, the presence of a control group was required
so far in Subsections 4.1 - 4.4. In this subsection, we show that it is possible to
dispense with the control group also in the polychotomous case. In the setup
without control group, every respondent is instructed to give answer Y +Z and
we have to make assumptions analog to (2) and (3), that is, we assume that the
distribution of Z is known and that Z and Y are independent. The observed
data log-likelihood is then given by

lobs(π; s) =
n∑

i=1

logP(Si = si) =
n∑

i=1

log



k−1∑

j=0

φsi−j · πj


 . (21)

To maximize (21), we apply the EM algorithm again where we must adapt the
calculation from Subsection 4.1 as follows. The complete data log-likelihood is

lcom(π) = lcom(π;y, z, s) =
n∑

i=1

logP(Yi = yi) =
k−1∑

j=0

log πj ·
n∑

i=1

1{j}(yi).

In the E step of the EM algorithm in iteration t+ 1, we compute

l̂com(π) = Et(lcom(π;Y,Z,S)|S = s)

=

k−1∑

j=0

log πj ·
n∑

i=1

Et(1{j}(Yi)|S = s) =:

k−1∑

j=0

log πj · v(t)j ,

where

Et(1{j}(Yi)|S = s) = Pt(Yi = j|Si = si) =
φsi−j · π

(t)
j∑k−1

l=0 φsi−l · π
(t)
l
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holds. In the M step of iteration t+1, we obtain π
(t+1)
j = v

(t)
j /(v

(t)
0 + · · ·+v(t)k−1).

It is easy to see that the maximization of (21) is equivalent to the maximization
of l̃, which possesses k − 1 arguments and is given by

l̃(π0, . . . , πk−2) = n1 · log[φ · (π0, . . . , πk−2, 1− π0 − · · · − πk−2)
⊤]

= n1 · log[φ∗ · (π0, . . . , πk−2)
⊤ + φ∗].

Here, log is applied componentwise, φ is a (kZ + k− 1)× k matrix whose entry
(i, j) is φi−j for i = 0, . . . , kZ + k − 2 and j = 0, . . . , k − 1, n1i represents the
absolute frequency of answer i in the sample, and n1 = (n10, . . . , n1,kZ+k−2).
Moreover, the jth column of φ∗ (j = 0, . . . , k − 2) equals the jth column of
φ minus the last column of φ and φ∗ is equal to the last column of φ. Some
standard calculations deliver the Hessian matrix

l̃′′(π0, . . . , πk−2) = [φ∗]⊤ · (−D) · φ∗ = − [φ∗]⊤ ·
√
D ·

√
D · φ∗

with a diagonal matrix D whose ith diagonal element (i = 0, . . . , kZ + k − 2)
equals n1i/λ

2
i where (λ0, . . . , λkZ+k−2)

⊤ = φ·(π0, . . . , πk−2, 1−π0−· · ·−πk−2)
⊤.

Assuming strict positivity of the φi and n1i (i.e., φi > 0 and n1i > 0), one can
show that the Hessian matrix is negative definite implying that l̃ is strictly
concave. Furthermore, the Fisher matrix is given by

F = F (π0, . . . , πk−2) = E(−l̃′′(π0, . . . , πk−2;S1, . . . , Sn)

= n · [φ∗]⊤ · diag( 1

λ0
, . . . ,

1

λkZ+k−2
) · φ∗

and the asymptotic variance of the ML estimator (π̂0, . . . , π̂k−2) is given by the
inverse of F . Of course, we also can compute bootstrap variance estimates, how-
ever, we skip details here, because the procedure should be clear from previous
parts of this paper. The above descriptions show how the computations for the
ML estimation of unconditional proportions from previous parts of this paper
have to be adapted when a multicategorical sensitive characteristic is intended
to be investigated with an ICT without control group. Given these detailed de-
scriptions, the adaption of the explanations on Bayes and regression estimation
from previous parts of this article on the case of a multichotomous variable and
an ICT without control group is quite straightforward. For this reason, we do
not go into particulars here.

5. Concluding remarks

When data on sensitive topics are intended to be collected in a survey, direct
questions such as “Have you ever committed tax evasion?” are not advisable.
The reason is that they lead to missing values due to answer refusal or untruthful
responses. Hence, ingenious procedures for the survey are necessary. One such
approach is the item count technique. The basic principle of the ICT is that only
the overall sum of outcomes of a sensitive characteristic and several innocuous
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characteristics is revealed. This idea usually protects the privacy. Thus, we can
expect the ICT to deliver more trustworthy estimates than direct questioning.

To gather data on sensitive attributes, different alternatives to the ICT are
available in the literature. One of these is the nonrandomized response (NRR)
approach (see e.g. Tian and Tang (2014, [19])). In NRR schemes, the desired
scrambled answer is a function of the sensitive variable and a nonsensitive scram-
bling variable. Moreover, every respondent gives the same answer if he or she
is interviewed repeatedly. In fact, these features of NRR methods hold also
for the item count techniques without control group from Section 3 and Sub-
section 4.5. In particular, Z plays the role of a scrambling variable while the
scrambled answer is S = Y + Z. Thus, such an ICT can be considered as a
special NRR technique. A further approach for gathering sensitive data are
randomized response (RR) techniques (e.g., Chaudhuri (2011, [3])). In compar-
ison with the ICT, these methods possess, however, the uncomfortable feature
that the respondents must accomplish a random experiment with the help of a
randomization device. We further remark that our item count techniques from
Section 3 and Subsection 4.5 show similarities to known additive data masking
techniques. Additive data masking was first investigated by Pollock and Bek
(1976, [16]), whose work was extended in several directions (e.g., in Gupta et al.
(2010, [10]), some respondents have the option to provide a direct answer; Eich-
horn and Hayre (1983, [8]) and Bar-Lev et al. (2004, [1]) consider multiplicative
masking). The basic idea in Pollock and Bek (1976, [16]), who have quantitative
sensitive variables in mind, is that the interviewee adds the value of a random
number from a known distribution to the value of the sensitive characteristic.
This answer principle resembles the answer principle of the methods in Sec-
tion 3 and Subsection 4.5. However, the estimations given in Pollock and Bek
(1976, [16]) are not useful for our constellations, because their moment esti-
mator can deliver inadmissible values and their parametric estimation is only
briefly mentioned and only illustrated in a very simple example. Moreover, our
techniques can be classified as NRR method whereas the technique from Pollock
and Bek (1976, [16]) is a RR procedure.

Several studies demonstrate that the ICT approach can be successful to
gather sensitive data (e.g., Tsuchiya et al. (2007, [22]), Holbrook and Krosnick
(2010, [11]), Coutts and Jann (2011, [6]), and Trappmann et al. (2014, [20])).
Moreover, a number of useful estimation methods regarding the ICT have been
developed in recent years. Nevertheless, several methodological gaps remained so
far. Important gaps are addressed in this paper. In particular, we have described
a generalized ICT for binary attributes without control group and derived ad-
missible estimators, presented Bayesian inference and established methods for
regression analysis. Furthermore, we have considered the field of multicategor-
ical sensitive characteristics. Here, we have derived a version of the ICT for
such attributes including unconditional MLEs, Bayes estimates, and regression
estimates.

The item count methods presented in this paper inherit the problem that
certain answers restrict the possible values of the sensitive variable (ceiling /
floor effect) from the originally ICT by Miller (1984, [14]). As described, suitable
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chosen control items can partially mitigate this problem. One possible starting
point for future research is to perfect the privacy protection offered by the ICT.
For instance, the ICT from Section 3 could be modified such that respondents
who originally have to give the maximal answer S = J + 1 should give an-
other predefined response, e.g., response 0. Then, the ceiling effect is avoided.
Such a revised answer scheme was already briefly mentioned in Petroczi (2011,
p. 11, [15]), but without presenting the corresponding estimation. The complete
development of ML, Bayes, and regression estimates for this modified ICT is be-
yond the scope of our paper, too. Nevertheless, we outline the ML estimation:
First, note that the modified procedure results in new probabilities for the an-
swers (the possible answers are now 0, . . . , J). These probabilities can be easily
calculated by thinking about which combinations of Y and Z lead to a certain
answer. With these new probabilities, we obtain an observed data log-likelihood
function, which can be maximized similar to Section 3 via the EM algorithm.
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