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1. Introduction

The asymptotic properties of empirical processes indexed by functions have
been intensively studied during the past decades (see, e.g., Van der Vaart and
Wellner (1996) or Dudley (1999) for self-contained, comprehensive books on the
topic). Among those results, one of the most used in statistical applications is
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that a class admiting a finite uniform entropy integral and a square integrable
envelope is Donsker (Koltchinskii (1981)). In this note, we will show that this
structural condition is strong enough to carry a Donsker and a Glivenko-Cantelli
theorem over a wider class of processes which we shall describe at once. For
p = (pi)i≥1 ∈ RN and r > 0, we shall write the (possibly infinite) value

|| p ||r:=
(∑

i≥1

| pi |r
)1/r

. (1)

Let (Ω,A,P) be a complete probability space (in the sense that every P-negligible
set belongs to A), and let

S :=
{
p = (pi)i≥1 ∈ [0,+∞[N, || p ||1<∞

}
, (2)

be the cone of positive summable sequences, which will be endowed with the
product Borel σ-algebra (denoted by Bor). Consider a sequence of S-indexed
collections of probability measures (Pn,p)n≥1,p∈S on a measurable space (X,X ).
For fixed n, consider a random variable βn = (βi,n)i≥1 from (Ω,A,P) to (S, Bor)
and a sequence Yn = (Yi,n)i≥1 of random variables from (Ω,A,P) to (X,X ), for
which the conditional law given βn = p is P⊗N

n,p (we also make the assumption
that those conditional laws properly define a Markov kernel). We then define
the random element

Prn :=
∑

i≥1

βi,nδYi,n
, (3)

which is a random probability measure in the sense that Prn(X) ≡ 1 and Prn(A)
is Borel measurable for each A ∈ X . Obtaining asymptotic results (as n → ∞)
for Prn is of interest for several reasons. The first of them is that Prn gener-
alizes the usual empirical measure, and also related objects from the bootstrap
theory, such as the empirical bootstrap, or more generally, the exchangeable
bootstrap empirical measure (see (Van der Vaart and Wellner, 1996, Section
3.6.2)). Our main motivation to consider such a generalization comes from the
second reason: these types of random measures play a role in the modeling of
almost surely discrete priors, such as stick breaking priors (including the two
parameter Poisson-Dirichlet process) or, more generally, species sampling pri-
ors, including the normalized homogenous completely random measures. For an
overview of all the previously cited types of random measures, see, e.g., (Hjort
et al., 2010, Chapter 3). In addition, there are several situations where objects
such as (3) do also appear in the posterior distributions or posterior expected
values of some almost surely discrete priors (see §3 in the sequel).

As usual in empirical processes theory, we shall write, for a probability mea-
sure P and an integrable function f :

P(f) :=

∫

X

fdP, (4)

and we shall adopt the same notation Pr(f) when Pr is a random probability
measure, in which case Pr(f) has to be understood as a random variable. As
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mentioned earlier, we will state a Glivenko-Cantelli and a Donsker result for
empirical-like processes indexed by a class of (Borel) functions F . When F is
not uniformly bounded, the definition of such objects requires additional care on
the structure of F . Throughout this article, we will assume that F is pointwise
separable relatively to a countable subclass F0 (see, e.g., Van der Vaart and
Wellner (1996, p. 110)). We will denote by B(F) the space of real bounded
functions on F that are continuous with respect to the topology spanned by the
maps {f → f(x), x ∈ X}. We shall also denote the usual sup norm on B(F)

|| ψ ||F := sup
f∈F

| ψ(f) | .

We will denote by F the envelope function x → sup{f(x), f ∈ F0} ∨ 1. For
ǫ > 0, r > 0 and a probability measure Q, we shall write N(ǫ,F , || · ||Q,r) for
the (possibly infinite) minimal number of balls with radius ǫ needed to cover F ,
using the usual Lr(Q) norm. We shall also write ℓ∞(F) ⊃ B(F) for the space of
all real bounded functions on F . For r > 0, we define the space EF ,r as follows:
a map Ψ : Ω → B(F) belongs to EF ,r if and only if Ψ(f) defines a Borel random
variable on (Ω,A,P) for each f ∈ F , and if ||| Ψ |||rF ,r:= E(|| Ψ ||rF ) < ∞.
Under the assumption that E(F (Y1,n)) <∞ for all n, it is possible to define the
process

Gn(·) : f →
∑

i≥1

βi,n

(
f(Yi,n)− E

(
f(Yi,n) | βn

))

as the limit, as k → ∞, of the truncated sequence

Gk
n(·) : f →

k∑

i=1

βi,n

(
f(Yi,n)− E

(
f(Yi,n) | βn

))

in the Banach space (EF ,1, ||| · |||F ). Also note that this limit also holds in EF ,r

for each r ≥ 1 such that E(F (Y1,n)
r) < ∞. Note that the measurability of the

|| Gk
n ||F is not completely immediate. The corresponding proof can be found

at the beginning of §4.

2. Main results

We state here our first result, of Glivenko-Cantelli type.

Theorem 1. Assume that || βn ||1= 1 almost surely for all n, and || βn ||2→ 0
in probability. Suppose that

lim
M→∞

lim
n→∞

E

(
F (Y1,n)1{F (Y1,n)≥M}

)
= 0. (5)

Also assume that, for each ǫ > 0 and M > 0, we have, as n→ ∞:

log
(
N
(
ǫ,FM , || · ||P (βn,Yn),1

))
= oP

(
|| βn ||−2

2

)
, (6)
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where, FM := {f1{F≤M}, f ∈ F} and

P (p,y) :=
∑

i≥1

piδyi
, for p ∈ S, y ∈ XN. (7)

Then
E
(
|| Gn ||F

)
→ 0. (8)

Remark 2.1. Choosing βi,n := n−1 when i ≤ n and 0 otherwise, leads to the
usual Glivenko-Cantelli theorem under random entropy conditions (see, e.g.,
Van der Vaart and Wellner (1996, p. 123)), except for the almost sure coun-
terpart of (8). Indeed, that almost sure convergence deeply relies on a reverse
submartingale structure, which is not guaranteed under the general conditions
of Theorem 1.

Our second result is a Donsker type Theorem. Since, for fixed n, the Yi,n
are only conditionally independent, such a result will not involve the Gaussian
analogues of the Gn, but mixtures Wn of the Pn,βn

Brownian bridges by βn,
for which a rigorous definition resuires additional care. To properly define them,
we proceed as follows: for p ≥ 1 and f := (f1, . . . , fp) ∈ Fp and p ∈ S, writing
Qf

n,p for the centered Gaussian distribution with variance covariance matrix

Σf
n,p :=

[
Pn,p

(
(fj −Pn,p(fj))(fj′ −Pn,p(fj′ ))

)]

(j,j′)∈{1,...,p}2
,

we set, for each Borel set A ⊂ Rp:

Qf
n(A) := E

(
Qf

n,βn
(A)
)
.

Kolmogorov’s extension theorem ensures the existence of a probability measure
P′
n on Ω′ := RF , endowed with its (P′

n-completed) product Borel σ-algebra X ′,
which is compatible with the system {Qf

n, f ∈ Fp, p ≥ 1}. We defineWn as the
canonical map on (Ω′,X ′,P′

n). Unfortunately, the latter can fail to be measurable
with respect to the Borel σ-algebra of (ℓ∞(F), || · ||F). This lack of measurability
will be tackled by introducing outer expectations (see, e.g. Van der Vaart and
Wellner (1996, Chapter 1.2)). To simplify the notations, we shall adopt the
following convention: each time a map h is defined on a probability space, the
symbol E∗(h) will denote the outer expectation with respect to that probability
space. We shall adopt the same convention for outer probabilities P∗.

Theorem 2. Assume that, for each n ≥ 1, || βn ||22= 1 with probability one,
and that || βn ||4→ 0 in probability. Also assume that E(F 2(Y1,n)) < ∞ for all
n, and that:

lim
M→∞

lim
n→∞

E

(
F 2(Y1,n)1{F (Y1,n)≥M}

)
= 0, (9)

∫ ∞

0

√
log
(

sup
Q probab.

N
(
ǫ || F ||Q,2,F , || · ||Q,2

))
dǫ <∞. (10)
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Then, for all n ≥ 1, Wn is almost surely bounded, and || Wn ||F is Borel mea-
surable. Also assume that, for a semimetric ρ0 which makes F totally bounded
we have,

lim
δ→0

lim
n→∞

P
∗

sup
(f1,f2)∈F2,ρ0(f1,f2)≤δ

|| f1 − f2 ||Pn,βn
,2= 0, (11)

where the symbol lim
P
∗

n→∞ stands for the lim sup in outer probability. Then

dBL

(
Gn,Wn

)
:= sup

B∈BL1

∣∣∣E∗
(
B
(
Gn

))
− E

∗
(
B
(
Wn

))∣∣∣→ 0, (12)

where BL1 is the set of all 1-Lipschitz functions on (ℓ∞(F), || · ||F) that are
bounded by 1.

Remark 2.2. As pointed out in the introduction, Prn encompasses several
already well studied random measures, for which Donsker and Glivenko-Cantelli
theorems have been established during the past decades. We will hence point
out the relevance of our results with respect to the existing literature.

1. When Yn ⊥⊥ βn, each Wn is equal in distribution to the Pn-Brownian
bridge. In addition, condition (11) is implied by condition (ii) in Sheehy
and Wellner (1992, Theorem 3.1), namely:

For some probability measure P0, we have:

sup
(f,g)∈F2

max
{
| Pn

(
(f − g)2

)
−P0

(
(f − g)2

)
|, | Pn(f)−P0(f) |

| Pn(f
2)−P0(f

2) |
}
→ 0, (13)

where Pn stands for the law of Y1,n. In that case, (12) has the simpler
interpretation that Gn(·) converges weakly to the P0-Brownian bridge
GP0 . Hence, in this setting, Theorem 2 turns out to be a partial gener-
alization of Sheehy and Wellner (1992, Theorem 3.1), where the authors
proved, among other results, a Donsker theorem for sequence of F -indexed
empirical processes, for which the law of the sample varies with n. The
contribution of our result is that it extends to random (possibly infinite)
convex combinations of the δYi,n

.
2. When, again, Yn ⊥⊥ βn, when Pn := P0 is constant, when βi,n = 0 for i ≥
n+1, when || βn ||1= 1 almost surely, and when the vector (βi,n)i=1...,n is
exchangeable for all n, then Prn coincides with the exchangeable bootstrap
empirical measure. Among other results, Praestgaard and Wellner (1993,
Theorem 2.2) did establish a Donsker theorem for such objects, under the
sole assumption that F is P0-Donsker. However, their result holds with
sequences of F indexed processes which differ from Gn, namely:

G̃n : f →
n∑

i=1

(
βi,n − 1√

n

)
δYi
. (14)
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Not only does the centering parameter differ from Gn to G̃n, but their
result is a Donsker theorem that holds for the conditional laws of G̃n

given (Y1, . . . , Yn). Hence, our Theorem 2 has very few similarities with
that result.

3. It also has to be noted, when Yn ⊥⊥ βn, that the processes Gn are measure-
like (see, e.g., (Van der Vaart and Wellner, 1996, Chapter 2.11)). Hence,
the result of Alexander (1987) applies, when F satisfies (10), to sums

Gn =
1

n

n∑

i=1

Gn,i, (15)

of n independent processes having representation from (3). Though re-
lying on similar ideas, our result is different in the sense that we prove
asymptotic theorems for more general sequences, that do not need to be
expressed as sums of n independent measurelike processes.

The remainder of this article is organized as follows: in §3, we provide appli-
cations of Theorems 1 and 2 to particular types of random probability measures,
and provide simple criteria for Glivenko-Cantelli and Donsker theorems to hold.
We also discuss the possible applications of those results to Bayesian nonpara-
metrics. Most of the proofs of the results of this section are short, and hence are
written in continuation of them. Finally, in §4, the proofs of Theorems 1 and 2
and Corollary 4 are provided.

3. Some applications of Theorems 1 and 2

In this section, we will consider sequences of random measures of different types:
modified Kac processes, normalized homogenous completely random measures
(NHCRM) and stick breacking random measures. For a given type, we will pro-
vide a tractable sufficient criterion for sequences of that type to satisfy a Donsker
or a Glivenko Cantelli theorem. Both NHCRM and stick breaking measures are
encountered in Bayesian nonparametrics, and also play a role in their posterior
distributions given the observed sample. We will hence also discuss of possible
uses of Theorems 1 and 2 to frequentist asymptotics in Bayesian nonparametrics.
For that aim, let us first provide a concise background of this theory.

Write M for the set of all probability measures on X, endowed with the Borel
σ-field M spanned by the weak topology. The Bayesian analysis with a specified
prior Pr exhibits has objects of interest, namely:

1. The posterior distribution:

Postn : (x1, . . . , xn) 7→ P̃

(
Pr = ·

∣∣∣(X1, . . . , Xn) = (x1, . . . , xn)
)
,

where P̃ is understood as the underlying probability measure of the non-
parametric Bayesian model (hence a probability measure on (M,M) ⊗
(X,X )⊗N).
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2. The posterior expected probability:

Expectn : (x1, . . . , xn) 7→
{
A 7→ E

P̃

(
Pr(A)

∣∣∣(X1, . . . , Xn)= (x1, . . . , xn)
)}
.

Note that those two objects are rigorously classes of equivalences, for which the
representant does not have any impact for probability calculus under P̃. The
frequentist analysis for Bayesian nonparametrics, also called “what if” approach,
consists in assuming that the Xi are i.i.d. with a distribution P0, and then
obtaining asymptotic results (of first or second order) for Expectn(X1, . . . , Xn),
and P⊗N

0 almost sure limit results for Postn(x1, . . . , xn) (those of the later
type are usually called posterior consistency and Bernstein-von Mises theorems).
Under the distribution P⊗N

0 , the choice of representant in Postn and Expectn
is not harmless anymore. However, the Bayes calculus often exhibits versions
that are “natural” from a statistical point of view. For the specific choice of
the (strong) topology induced by || · ||F , it is our belief that Theorems 1 and
2 can play a role in establishing “what if” asymptotic results. This belief turns
out to be true when considering Poisson-Dirichlet priors (see §3.3 below). The
case of posterior consistency of NHCRM is also discussed in §3.2. Another brief
discussion on Gibbs-type priors is also presented in §3.5. The Bernstein-von
Mises phenomenon for Dirichlet processes priors (first proved by Lo (1983),
treating the case of the distribution functions of the posterior laws, and later
extended by James (2008) to a wider setup) is also revisited in §3.4.
Remark 3.1. Due to the very nature of Theorems 1 and 2, the possible use of
those two results in Bayesian nonparametrics is limited to models where the pos-
terior distributions are almost surely discrete, or at least are predominantly built
on random discrete probability measures. Such a restriction naturally excludes
the vast majority of smooth models (see, e.g., (Hjort et al., 2010, Chapter 3.4)),
where the support of Pr (and hence of each Postn(x1, . . . , xn)) is the set of
continuous measures.

We start this section with an application that is not related to Bayesian
nonparametrics: empirical processes with random sample sizes (also called Kac-
processes), for which the trust in the observations depends increasingly upon
the observed sample size.

3.1. Randomly sized sampling with increasing trust

For fixed n, consider a sequence Yn having distribution P⊗N
n and an almost

surely finite N∗-valued random variable ηn which is independent of the first
sequence. For fixed n, the random probability measure

Kacn :=
1

ηn

ηn∑

i=1

δYi,n
,

is called a Kac empirical measure. Randomizing the sample size plays a role in
probability calculus for the empirical process, where Poissonization techniques
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are involved (in which case ηn is a Poisson random variable with expectation n).
But such a randomization does also reflect a situation sometimes encountered
in practice: the sample size is not known in advance but the observations can
be considered as i.i.d regardless of the observed value of the sample size. Limit
theorems for Kac random measures are well known (see, e.g. (Van der Vaart
and Wellner, 1996, Chapter 3.5)). An interesting extension of those objects is to
weaken the independence structure to a conditional i.i.d. structure of (Yi,n)i≥1

given ηn. More precisely, given a sequence of probability measures (Pk)k≥1 one
may assume that, for each integers n and k, the law of (Yi,n)i≥1 given ηn = k

is P
⊗N

k . Moreover, if one makes the assumption that Pk → P0, as k → ∞, for
some “true” probability measure P0, then the corresponding model illustrates
an increasing trust phenomenon: for example, people responding to a survey on
a sensible topic may be keener to reveal their true beliefs or habits (modeled
by P0) when they are ensured that a large number of other people are also
interrogated. Our application of Theorems 1 and 2 is as follows.

Corollary 1. Let F be a pointwise separable class of functions with measurable
envelope F . Let (Pk)k∈N be a sequence of probability measures such that Pk

converges to P0 in the sense of (13). Let ηn be a sequence of N∗ valued random
variables satisfying ηn →P +∞. Assume that, for each integers n and k, the

law of Yn given ηn = k is P
⊗N

k .

1. If F satisfies (6), with || βn ||22= ηn, as well as

lim
M→∞

lim
k→∞

Pk

(
F1{F≥M}

)
= 0, (16)

then whe have
sup
f∈F

∣∣∣Kacn(f)−P0(f)
∣∣∣→P 0. (17)

2. If F satisfies (10), and satisfies

lim
M→∞

lim
k→∞

Pk

(
F 2

1{F≥M}

)
= 0, (18)

then the sequence of F-indexed processes

Gn :
√
ηn

(
Kacn(·)−Pηn

(·)
)

(19)

converges in law to the P0-Brownian bridge GP0 . If, in addition, we have

lim
k→∞

√
k sup

f∈F

∣∣∣Pk(f)−P0(f)
∣∣∣ = 0, (20)

then the centering processes Pηn
(·) can be replaced by P0(·) in the above

mentioned weak convergence.

Remark 3.2. Condition (20) can be understood as a condition on the rate of
trustfullness of Pk as the sample size k grows. It is somehow unavoidable, since,
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if the (non random) trajectories
√
k(Pk(·)−P0(·)) converge in ℓ∞(F) to a limit

trajectory ψ, then the second convergence in point 2 holds toward the drifted
Brownian bridge GP0(·) + ψ(·), as it will clearly appear in the proof.

Proof of Corollary 1. We first prove point 1. Looking at (16), we can assume
without loss of generality that Pk(F ) <∞ for all k ≥ 1. Since ηn →P ∞, condi-
tioning upon ηn readily gives (5) from (16), by the use of Cesaro’s convergence
criterion. The same argument combined with (13) shows that

lim
n→∞

sup
f∈F

∣∣∣E
(
f(Y1,n)

)
−P0(f)

∣∣∣ = 0. (21)

Now, since the weights βi,n := η−1
n 1{i≤ηn} satisfy || β ||1= 1 and || β ||22= η−1

n ,
all the conditions of Theorem 1 are met and we apply the latter, justifying the
centering terms P0(f) by (21). The proof of point 2 is done similarly, by formally

replacing F by F 2 and by taking βi,n := η
−1/2
n 1{i≤ηn}. This entails (19), by

Theorem 2 combined with point 1 of Remark 2.2. Now the use of the centering
parameter P0(f) instead of Pηn

(f) is guaranteed by (20) and straightforward
calculus.

3.2. Application to sequences of normalized homogenous completely

random measures

A first general class of random measures admitting representation (3) and play-
ing a role in Bayesian nonparametrics is that of normalized homogenous com-
pletely random measures (NHCRM) with infinite activity which can be de-
scribed as follows (see, e.g., Hjort et al. (2010, p. 84–85)): given any finite
measure ν on (X,X ) and an infinite but σ-finite measure ρ on R

+ fulfilling∫
sdρ(s) < ∞, denote by Π a Poisson random measure on X × R+ with base

measure ν ⊗ ρ. Then the associated NHCRM Pr is defined as

Pr := B →
∫
B×R+ sdΠ(x, s)
∫
X×R+ sdΠ(x, s)

. (22)

Since ρ is σ-finite, we can select a sequence (Ak)k≥1 fulfilling ρ(Ak) < ∞, and
represent Π as

Π =d

∑

k≥1

ηk∑

i=1

δ(Yi,k,Ji,k), (23)

where (ηk)k≥1 is a sequence of independent Poisson processes with respective
expectations ρ(Ak) × ν(X), and (Yi,n, Ji,n)n≥1,i≥1 is an array of independent
random variables, independent of (ηk)k≥1, and for which any pair (Yi,n, Ji,n)
has distribution [ν(X)−1ν(·)]⊗ [ρ(An)

−1ρ(·∩An)]. Plugging (23) in (22) directly
implies that Pr can be represented through (3), with Pn,p := ν(X)−1ν(·) being
constant in p. As an application of Theorems 1 and 2, we now provide a sufficient
and simple criterion for sequences of NHCRM to satisfy a Glivenko-Cantelli or
a Donsker theorem.
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Corollary 2. Let F be a pointwise separable class of functions with measur-
able envelope F , satisfying (10). Let νn (resp ρn) be a sequence of finite (resp.
σ-finite) measures, and let Πn be the associated sequence of Poisson random
measures. Write Pn := νn(X)

−1νn(·).
1. Assume that F satisfies (5), with Y1,n  Pn and that, as n→ ∞:

K−2
n :=

∫
R+ s

2dρn(s)

νn(X)×
(∫

R+ sdρn(s)

)2 = o(1). (24)

Then we have

sup
f∈F

∣∣∣
∫
X×R+ sf(x)dΠn(x, s)∫

X×R+ sdΠn(x, s)
−
∫

X

fdPn

∣∣∣→P 0.

2. Now assume in addition that F satisfies (9) and that Pn converges to a
probability measure P0 in the sense of (13). Also assume that

∫

R+

s4dρn(s) = o

(
νn(X)×

(∫

R+

s2dρn(s)

)2
)
. (25)

Then the sequence of random elements

Gn : f 7→ Kn

(∫
X×R+ sf(x)dΠn(x, s)∫

X×R+ sdΠn(x, s)
−Pn(f)

)
(26)

converges weakly to GP0 .
If in addition we have

Kn sup
f∈F

∣∣∣Pn(f)−P0(f)
∣∣∣→ 0, (27)

then the centering trajectories Pn(·) can be replaced by P0(·) in (26).

Remark 3.3. James et al. (2009) did provide the very general form of the poste-
rior probability of priors Pr that are NHCRM. They proved that, given a sample
(x1, . . . , xn) with distincts observations (x∗1, . . . , x

∗
k), and given the value u of

a specific random variable Un, the posterior distribution Pr(u,x1,...,xn) of such
a prior can be expressed as a convex combination of two independent compo-

nents: a normalized completely random measure Pr
(u,x1,...,xn)

, and a (possibly

unbalanced) bootstraped empirical measure
∑k

i=1W
(u,x1,...,xn)
i δx∗

i
.

Hence, the posterior law of Pr given (x1, . . . , xn) is theoretically entirely
known, by mixing Pr(u,x1,...,xn) along the distribution of Un given (x1, . . . , xn).
Another important feature of this representation is that, if Pr is a NHCRM with

location measure ν, then all the Pr
(u,x1,...,xn)

are also NHCRM, with location
measure ν. Hence, we hope that Corollary 2 could be a contribution toward
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achieving (at least partially) the aim of first/second order posterior consistency
of completely random measures, under norms of the form || · ||F . However, there
is still much work to do, and a very crucial step is to understand the P⊗N

0 almost
sure asymptotic probabilistic behaviour of Un given (x1, . . . , xn).

Proof of Corollary 2. We start the proof with the following straightforward lem-
ma.

Lemma 3.1. For a non negative Borel function ψ on [0,∞), if we have
∫
R+ ψ

2(s)dρn(s)

vn(X)×
( ∫

R+ ψ(s)dρn(s)
)2 = o(1),

as n → ∞, then, since Πn is a Poisson measure with mean measure ρn ⊗ vn,
we have

Var
(∫

R+

ψ(s)dΠn(x, s)
)
= o

(
E

( ∫

R+

ψ(s)dΠn(x, s)
)2)

,

and hence the involved random variable is an equivalent of its expectation, in
probability, as n→ ∞.

We first prove point 1. With Theorem 1 at hand, it is sufficient to prove that

|| βn ||22=
∫
X×R+ s

2dΠn(x, s)
( ∫

X×R+ sdΠn(x, s)
)2 →P 0. (28)

By Markov’s inequality, the numerator is OP(vn(X)
∫
s2dρn(s)). By Lemma 3.1

(taking ψ(s) := s), we have
∫

X×R+

sdΠn(x, s) ∼P vn(X)×
∫

R+

sdρn(s). (29)

Hence || βn ||22= OP(K
−2
n ), which tends to 0 by (24). This proves point 1 of

Corollary 2. Proving (26) of point 2 is done in a similar way, formally replacing
s by s2 and using (25) instead of (24). This entails

∫

X×R+

s2dΠn(x, s) ∼P vn(X)×
∫

R+

s2dρn(s), (30)

∫
X×R+ s

4dΠn(x, s)
(∫

X×R+ s2dΠn(x, s)

)2 →P 0,

and hence Theorem 2 applies. The choice of normalizationKn in (26) is justified
because (29) and (30) imply

|| βn ||−2
2 =

( ∫
R+ sdΠn(x, s)

)2

∫
R+ s2dΠn(x, s)

∼P K
2
n. (31)

This concludes the proof of Corollary 2.
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3.3. Stick breaking random measures

Another general class of discrete priors (see, e.g., (Hjort et al., 2010, Chapter 3))
is that of stick breaking priors, which can be represented as in (3), with Yn being
independent of βn, and with βn constructed as follows:

βi,n := Vi,n

i−1∏

j=1

(
1− Vj,n

)
. (32)

Here the Vi,n are mutually independent (but not necessarily identically dis-
tributed), satisfying

∞∑

i=1

− log
(
1− E(Vi,n)

)
= ∞,

to ensure that || βn ||1= 1 with probability 1. The class of stick breaking priors
is not included in that of NHCRM, and encompasses discrete priors of interest.
A crucial example is the two parameter Poisson-Dirichlet process. More precis-
ley, a Poisson-Dirichlet process PD(αn,Mn,Pn) with base probability measure
Pn, concentration parameter Mn > 0 and shape parameter αn ∈ [0, 1) can be
represented as a stick breaking random probability measure with Y1,n  Pn and
Vi,n  Beta(1 − αn,Mn + iαn) (see, e.g., James (2008)). Except for the case
αn = 0, which corresponds to the Dirichlet process, a Poisson-Dirichlet process
does not belong to the NHCRM class. Our next result provides a sufficient cri-
terion for sequences of stick breaking random measures to satisfy a Donsker or a
Glivenko-Cantelli theorem. As in Corollary 2, the criterion can be divided into
a convergence criterion of the underlying measures Pn and a sufficient condi-
tion for the weights to behave as demanded in Theorems 1 and 2. Motivated by
the Poisson-Dirichlet process, our proposed criterion can be roughly described
as a sufficent set of conditions to ensure that, for some non random sequence
Kn → ∞:

1. The number of predominant weights βi,n is of order Kn.
2. Those weights behave as if they where i.i.d with common order of magni-

tude K−1
n .

Due to the particular structure of the stick breaking construction, we propose
three conditions (see (34), (35) and (36) below) to ensure that 1 and 2 are
satisfied. To heuristically explain why we propose these conditions, let us first
assume that, for fixed n, the weight constructing random variables (Vi,n)i≥1 are
i.i.d. with expectation K−1

n . The stick breaking construction shows a picture of
first weights βi,n that are not too far from the respective Vi,n, as long as the
correcting factor

∏
j≤i−1(1−Vj,n) remains close enough to 1. Roughly speaking,

such a closeness is guaranteed as long as no Vi,n departs too far away from its
expectation. Indeed, when such a departure happens, the unexpectedly small
factor (1 − Vi0,n) introduces a significant gap between the βi,n, i ≤ i0 − 1 and
the βi,n, i ≥ i0. We make the assumption that i0(n, ω) is at least of order Kn
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(see condition (34)), ensuring that such a gap does not happen too soon. Con-
ditions (35) and (36) are introduced to handle the case where the independent
Vi,n fail to be identically distributed, but the consecutive laws of Vi+1,n and
Vi,n are nevertheless similar enough. This is the case for the Poisson-Dirichlet
process, as it will be shown in Corollary 4.

Corollary 3. Let F be a pointwise separable class of functions satisfying (10),
with measurable envelope F . Let Prn be a sequence of stick breaking measures,
with respective underlying distributions Pn, and with respective sequences of
weight-constructing random variables (Vi,n)i≥1, n ≥ 1.

1. Assume that F satisfies (5), with Y1,n  Pn, and that

∑

i≥1

E
(
V 2
i,n

) i−1∏

j=1

E
(
(1− Vj,n)

2
)
→ 0. (33)

Then we have
sup
f∈F

∣∣∣Prn(f)−Pn(f)
∣∣∣→P 0.

2. Assume that F satisfies (9) and that Pn converges to P0 in the sense
of (13). Assume that, for some determistic sequence Kn → ∞, writing
Zi,n := KnVi,n, the following conditions are satisfied:

∀ǫ > 0, ∃δ > 0, limn→∞ P

(
maxi≤[δKn] Zi,n ≥ log(Kn)

)
≤ ǫ, (34)

limn→∞
1

Kn

∑
i≥1

E

(
Z4
i,n

) i−1∏
j=1

E

((
1− Zi,n

Kn

)4)
<∞, (35)

∀δ > 0, limn→∞ P K−1
n

[δKn]∑
i=1

Z2
i,n > 0. (36)

Then the sequence of processes

f → 1

|| βn ||2

(
Prn(f)−Pn(f)

)
, (37)

with βn defined as in (32), converges weakly to GP0 in ℓ∞(F). If, in
addition there exists δ > 0 such that

K1+δ
n sup

f∈F

∣∣∣Pn(f)−P0(f)
∣∣∣→ 0,

as a deterministic sequence, then the centering process Pn(·) can be re-
placed by P0(·) in (37).

Proof of Corollary 3. Point 1 is proved by noticing that (33) implies
|| βn ||2→P 0 by Markov’s inequality. To prove point 2, we need to show
that || βn ||4 / || βn ||2→P 0. By (35), we already have || βn ||44= OP(K

−3
n ).

Hence it is largely sufficient to prove that

∃δ0, ∀δ ≤ δ0, K
−1−3δ
n = oP

(
|| βn ||22

)
. (38)
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For fixed δ > 0, δ′ > 0 and n ≥ 1, write

An,δ,δ′ :=
{

max
i≤[δn]

Zi,n ≤ log(Kn)
}
∩
{
K−1

n

[δKn]∑

i=1

Z2
i,n ≥ δ′

}
.

Note that, by (34) and (36), we have

lim
δ→0

lim
δ′→0

lim
n→∞

P

(
An,δ,δ′

)
= 1. (39)

Introducing the equalities Zi,n = KnVi,n in the expression of || βn ||2 entails:

K2
n || βn ||22 1An,δ,δ′

=

+∞∑

i=1

Z2
i,n

i−1∏

j=1

(
1− Zj,n

Kn

)2
1An,δ,δ′

≥
(
1− log(Kn)

Kn

)2δKn
[δKn]∑

i=1

Z2
i,n1An,δ,δ′

≥ exp

(
− 2δ log(Kn)−

δ log2(Kn)

Kn

)
δ′Kn1An,δ,δ′

≥ δ′K1−3δ
n 1An,δ,δ′

.

Now choosing δ > 0 and δ′ > 0 small enough and using (39) proves (38). The
last statement of Corollary 3 is also a consequence of (38).

Remark 3.4. Given a prior DP (α,M,P) a version of Postn is the map for
which, given (x1, . . . , xn):

Postn(x1, . . . , xn) =d Rk ×DP (α,M + kα,P) + (1−Rk)
k∑

i=1

∆jx
∗
i , (40)

with k being the number of distinct obervations (x∗1, . . . , x
∗
k) with respective

numbers of ties (n1, . . . , nk), with (∆1, . . . ,∆k) Dirichlet(n1 − α, . . . , nk − α),
with Rk  Beta(M + kα, n − kα), and with all the three random variables/
processes in (40) being mutually independent. Hence, Glivenko-Cantelli and
Donsker theorems for sequences Poisson-Dirichlet processes are definitely a valu-
able tool to derive posterior first/second order consistency under || · ||F .

By a use of Corollary 3, we can deduce asymptotics for sequences of Poisson-
Dirichlet processes in strong topology (see Corollary 4 below). It has to be
mentioned that, among other results, (James, 2008, Section 4) did also prove
such kind of results, when αn = α and Pn = P are constant in n, and
Kn+1 =M+αn, and hence extending the pioneering result of Lo (1983). James
took another route, by expressing PD(α,M + αn,P) as a randomly weighted
convex combination of n+ 1 independent Poisson-Dirichlet processes. Then, he
used standard methods in empirical processes theory: convergence of sums of
independent measurelike processes (see, e.g., (Van der Vaart and Wellner, 1996,
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Chapter 2.11) for a definition), and a multiplier central limit theorem. Finally
he used those asymptotic results together with the theory of exchangeable boot-
strap, to prove, under the || · ||F topology:

• A first and a second order posterior consistency result for the Dirichlet
process prior.

• A first and a second order posterior consistency result for the Poisson-
Dirichlet process prior, when P0 is discrete.

• A first and second order posterior convergence result, for the Poisson-
Dirichlet process prior, to αP + (1 − α)P0, when α ∈ (0, 1) and P0 is
continuous (hence an unconsistency result).

All his results were restricted to the case where F is a V-C subgraph class of
functions (see, e.g., (Van der Vaart and Wellner, 1996, p. 141)), which is an
assumption stronger than (10). However, a close look at his arguments leads to
the conclusion that all his results still hold when the V-C subgraph assumption
is relaxed to (10). Our next result, which generalizes Theorems 4.1 and 4.2 of
James (2008), can also be seen as an alternate route to prove all the three
above-mentioned posterior convergence results.

Corollary 4. Let Kn and αn be two sequences of non negative real numbers such
that Kn → ∞ and αn ∈ [0, 1−ǫ) for some ǫ > 0 not depending upon n. Let Pn be
a sequence of probability measures on X, and let F be a pointwise separable class
of functions with measurable envelope F satisfying (10). Let Prn be a sequence
of random probability measures having distributions PD(αn,Kn + 1,Pn).

1. Assume that F satisfies (5), with Y1,n  Pn. Then we have

sup
f∈F

∣∣∣Prn(f)−Pn(f)
∣∣∣→P 0.

2. Assume that F satisfies (9) and that Pn converges to P0 in the sense of
(13). Then the sequence of processes

f → 1

|| βn ||2

(
Prn(f)−Pn(f)

)
, (41)

with βn defined as in (32), converges weakly to GP0 in ℓ∞(F). If, in
addition, there exists δ > 0 such that

K1+δ
n sup

f∈F

∣∣∣Pn(f)−P0(f)
∣∣∣→ 0,

as a deterministic sequence, then the centering process Pn(·) can be re-
placed by P0(·) in (41).

The corresponding proof relies on cumbersome calculations based on the usual
properties of the Beta distribution. It is postponed to §4.
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3.4. A Bernstein-von Mises phenomenon under || · ||F for

sequences of Dirichlet processes priors

Using the results of the preceding subsections, it is now possible to extend James’
results to a Berstein-von Mises theorem for posterior distributions of sequences
of Dirichlet processes priors PD(0,Mn,Pn) with varying baseline probability
measures Pn and concentration parameters Mn, as long as the latters are neg-
ligible in front of the sample information n. Such an approach of using priors
distributions that change with the sample size is already present in Castillo and
Nickl (2014). Note that, for a Dirichlet process PD(0,Mn,Pn), the (natural
version of) the posterior distribution given a sample has the following simpler
expression (Ferguson (1973)):

Postn(x1, . . . , xn) := PD
(
0,Mn + n, θnPn + (1− θn)

1

n

n∑

i=1

δxi

)
, where (42)

θn :=
Mn

Mn + n
.

Corollary 5. Let Mn be a sequence of positive numbers which is o(n1/2), let
Pn be a sequence of probability measures on X, and let PD(0,Mn,Pn) be the
associated sequence of Dirichlet processes. For fixed n, define Postn(x1, . . . , xn)
as in (42). Let F be a pointwise separable class of functions with measurable
envelope F satisfying (10) and

lim
n→∞

Pn(F
2) < +∞. (43)

Let P0 be a probability measure for which F is square integrable. Then for P⊗N

0

almost every sequence (xi)i≥1 we have

√
n

(
Postn(x1, . . . , xn)−

1

n

n∑

i=1

δxi

)
→L GP0 , in ℓ∞(F). (44)

Proof. Write

G :=
{
(f − g)2, (f, g) ∈ F2,

}
∪
{
f2, f ∈ F

}
∪ F ,

A :=
{
(xi)i≥1,

√
n sup

f∈G

∣∣∣θn
(
Pn(f)−

1

n

n∑

i=1

f(xi)
)∣∣∣→ 0

}
,

B :=
{
(xi)i≥1, sup

f∈G

∣∣∣
1

n

n∑

i=1

f(xi)−P0(f)
∣∣∣→ 0

}
,

C :=
{
(xi)i≥1, ∀M ∈ N,

1

n

n∑

i=1

F 2(xi)1{F (xi)≥M} → P0

(
F 2

1{F≥M}

)}
.

Since θn = o(n−1/2), since P0(F
2) < ∞ and by (43), we have P⊗N

0 (A) = 1.
Moreover, by (10) combined with standard covering numbers arguments, the
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class G is P0-Glivenko-Cantelli, and hence P⊗N

0 (B) = 1. Finally P⊗N

0 (C) = 1
by the strong law of large numbers. Now, for every (xi)i≥1 ∈ A ∩ B ∩ C the
sequence (Postn(x1, . . . , xn))n≥1 is a sequence of NHCRM (see, e.g. Hjort et al.
(2010)), with base measures

dρn(s) :=
1

s
exp(−s)1(0,+∞)(s)ds

vn := (Mn + n)× αn, with

αn := θnPn + (1− θn)
1

n

n∑

i=1

δxi
.

Note that, by elementary analysis, we have (using the notations of Corollary 2)
K2

n ∼ (Mn + n) ∼ n. Moreover, by the triangle inequality we have

lim
M→∞

lim
n→∞

αn

(
F 2

1{F≥M}

)
= 0. (45)

Hence, the sequence (Postn(x1, . . . , xn))n≥1 satisfies all the required conditions
to use (26) in Corollary 2, with the formal change of Pn into αn (note that
condition (13) is guaranteed by the definition of A and B together with the
triangle inequality for || · ||F ). We hence have

√
n

(
Postn(x1, . . . , xn)− αn

)
→L GP0 , in ℓ

∞(F). (46)

Now the substitution of αn to n−1
∑n

i=1 δxi
is possible by definition of A.

3.5. A discussion on Gibbs-type priors

A very important class of discrete priors Pr is that of Gibbs-type priors with
parameter σ ∈ (−∞, 1), for which

Expectn(x1, . . . , xn) :=
Vn+1,k+1

Vn,k
P ∗ +

Vn+1,k

Vn,k

k∑

i=1

(ni − σ)δx∗
i
,

with P ∗ being the mean value of Pr, and with Vn,k satisfying the recursion

Vn,k := (n− σk)Vn+1,k + Vn+1,k+1.

De Blasi et al. (2013) did prove a first order posterior consistency result for
Postn(x1, . . . , xn) under the weak topology, and hence it would be of interest to
strenghten their result under || · ||F . Their proofs, however, do not relies on any
explicit representation of Postn(x1, . . . , xn), which are not known in generality.
Instead, they successfully take advantage of the exchangeability of (X1, . . . , Xn)
(in the Bayesian model) to obtain suitable bounds for the posterior variances
of Pr(A), given (x1, . . . , xn), for fixed A ∈ X . Since our results are limited to
posterior distributions that are explicit, we doubt that Theorems 1 and 2 could
be useful toward that aim of generalization.
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4. Proofs

Proof of Theorem 1. The proof is an adaptation of Van der Vaart and Wellner
(1996, p. 123). We first prove the Borel measurability of the || Gk

n ||F . Since
E(F (Y1,n)) < ∞, for all n, there exists Ω0 fulfilling P(Ω0) = 1 and such that
E(F (Y1,n) | βn)(ω) < ∞ for all n ≥ 1 and ω ∈ Ω0. Applying, for fixed ω ∈
Ω0, the dominated convergence theorem with underlying measure Pn,βn

(ω), we
conclude that the pointwise dense class F0 is also dense in (F , || · ||Pn,βn(ω)

).

This ensures the Borel measurability of || Gk
n ||F for all n ≥ 1 and k ≥ 1.

We now fix M > 0, and we introduce an independent, identically distributed
Rademacher sequence (ǫi)i≥1 (namely P(ǫi = 1) = P(ǫi = −1) = 1/2), which
is independent of both (βn)n≥1 and (Yn)n≥1. For fixed n ≥ 1 and k ≥ 1, we
apply Lemma 2.3.1 in Van der Vaart and Wellner (1996, p. 108) conditionally

to βn, for
∑k

i=1 βi,nδYi,n
. Because FM is uniformly bounded by M , we can take

the limit in (EFM ,1, ||| · |||FM ,1) of the latter inequality, as k → ∞, to obtain

E

(
|| Gn ||FM

∣∣∣βn

)
≤ 2E

(
sup

f∈FM

|
∑

i≥1

βi,nǫif(Yi,n) |
∣∣∣βn

)
, with probability 1.

Now fix ǫ > 0, p = (pi)i≥1 ∈ S and y = (yi)i≥1 ∈ XN. By (6) we have,

E

(
sup

f∈FM

|
∑

i≥1

piǫif(yi) |
)

≤ ǫ+ E

(
max

f∈Fp,y

|
∑

i≥1

piǫif(yi) |
)
, (47)

where Fp,y ⊂ FM has cardinality less than N(ǫ,FM , P (p,y)) (recall (7)). The
maximal inequality for sub-gaussian random variables (see, e.g., Van der Vaart
and Wellner (1996, Lemma 2.2.2, p. 96)) yields, almost surely:

E

(
max

f∈Fp,y

|
∑

i≥1

piǫif(yi) |
)

≤
√
1 + log

(
N
(
ǫ,FM , P (p,y)

))√∑

i≥1

p2iF
2(yi)1{F (yi)≤M}

≤
√
1 + log

(
N
(
ǫ,FM , P (p,y)

))
× || p ||2 ×M, from where, integrating (47):

E

(
sup

f∈FM

|
∑

i≥1

βi,nǫif(Yi,n) |
∣∣∣βn

)
→P 0, because || βn ||2→P 0,

and that convergence in probability also holds in expectation, since the in-
volved random variables take values in [−M,M ] with probability one (see, e.g.,
Williams (1991, p. 130)). The proof is then concluded by noticing that

E

(
sup
f∈F

∣∣∣Gn(f)−Gn

(
f1{F≤M}

)∣∣∣
)

≤ 2E
(
F (Y1,n)1{F (Y1,n)≥M}

)
, (48)

which can be rendered arbitrarily small by (5).
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Proof of Theorem 2. Invoking similar arguments as in the beginning of the proof
of Theorem 1, there exist Ω0 having probability one, such that, for each ω ∈ Ω0,
F0 is dense in (F , || · ||Pn,βn(ω),2). Moreover, given βn, Wn is Gaussian with
intrinsic semimetric bounded by || · ||Pn,βn

,2. Hence (see, e.g., Van der Vaart
and Wellner (1996, p. 100)) we have, almost surely (K denoting a universal
constant):

E

(
sup

(f1,f2)∈F2
0

|Wn(f1)−Wn(f2) | 1{
||f1−f2||Pn,βn

,2≤δ
}
)

= E

(
sup

(f1,f2)∈F2
0 , ||f1−f2||Pn,βn

,2≤δ

|Wn(f1)−Wn(f2) |
)

= E

(
E

(
sup

(f1,f2)∈F2
0 , ||f1−f2||Pn,βn

,2≤δ

|Wn(f1)−Wn(f2) |
)∣∣∣βn

)

≤ KE
∗

(∫ δ

0

√
log
(
N(ǫ,F0, || · ||Pn,βn

,2)
)
dǫ

)

≤ K

∫ δ

0

√
log sup

Q prob.

(
N(ǫ || F ||Q,2,F0, || · ||Q,2)

)
dǫ, since F ≥ 1.

Hence, for any k ≥ 1, that bound can be rendered less than 2−2k for a suitable
choice of δk > 0. Markov’s inequality and the Borel-Cantelli lemma yield

P

(
sup

(f1,f2)∈F0, ||f1−f2||Pn,βn
,2≤δk

|Wn(f1)−Wn(f2) |≥ 2−k infinitely often

)
= 0.

This entails the existence of Ω1 ⊂ Ω0 having probability one, on which the
process Wn is || · ||Pn,βn

,2 uniformly continuous on F0. Combine this with the
density (for fixed ω) of F0 in (F , || · ||Pn,βn

,2) to conclude that, for any (possibly
infinite) δ > 0, we have, on Ω1:

sup
(f1,f2)∈F2,

||f1−f2||Pn,βn
,2<δ

|Wn(f1)−Wn(f2) | = sup
(f1,f2)∈F2

0 ,

||f1−f2||Pn,βn
,2<δ

|Wn(f1)−Wn(f2) |,

(49)
which is almost surely finite. The proof of Theorem 2 is divided in two steps.

Step 1: Convergence of the marginals
For p ≥ 1, write | · |p for the usual Euclidean norm on R

p. Also write dLP

for the Levy-Prokhorov distance between (Borel) probability measure on Rp,
generated by | · |p, namely, for two probability measures P and Q

dLP (P,Q) := inf
{
λ > 0, Π(P,Q, λ) ≤ λ

}
, where we write (50)

Π(P,Q, λ) := sup
A Borel

max
{
P (A)−Q(Aλ), Q(A)− P (Aλ)

}
, for λ > 0, (51)

and where, for a set A, we defined

Aλ :=
{
x ∈ R

p, inf
y∈A

| x− y |p< λ
}
. (52)
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Our first proposition controls the distance of the marginals of Gn and those of
Wn. Given ψ ∈ ℓ∞(F), ψ(f) stands for (ψ(f1), . . . , ψ(fp)).

Proposition 4.1. For each p ≥ 1 and f ∈ Rp, we have

dLP

(
Gn(f),Wn(f)

)
→ 0.

Proof. For δ > 0, write

Z1,n(δ) :=
∑

i≥1

βi,n

[
1{

βi,nF (Yi,n)>δ
}f(Yi,n)− E

(
1{

βi,nF (Yi,n)>δ
}f(Yi,n) | βn

)]
,

Z2,n(δ) :=
∑

i≥1

βi,n

[
1{

βi,nF (Yi,n)≤δ
}f(Yi,n)− E

(
1{

βi,nF (Yi,n)≤δ
}f(Yi,n) | βn

)]
.

Now, for p ∈ S, denote by P
(1)
n,p(δ) (resp. P

(2)
n,p(δ)) the law of Z1,n(δ) (resp.

Z2,n(δ)) conditionally to βn = p, and Q
(1)
n,p(δ) (resp. Q

(2)
n,p(δ)) the Gaussian

analogue of P
(1)
n,p(δ) (resp. P

(2)
n,p(δ)). We will also write V1,n(δ) (resp. V2,n(δ))

for a (generic) random vector, for which the law is the mixture of (P
(1)
n,p(δ))p∈S

(resp. (P
(2)
n,p(δ))p∈S by βn. The proof is then divided into two separate lemmas.

Lemma 4.1. For any δ > 0 we have Z1,n(δ) →L 0 and V1,n(δ) →L 0.

Proof. We can assume without loss of generality that p = 1. Fix δ and ǫ > 0,
and choose (by (9)) η > 0 small enough to have

lim
n→∞

E

(
F (Y1,n)1{

F (Y1,n)≥δ/η
}
)
≤ ǫ3. (53)

The union bound entails, for fixed n:

P

(
| Z1,n(δ) |p> ǫ

)
≤ P

(
|| βn ||4≥ η

)
+ P

(
|| βn ||4≤ η, | Z1,n(δ) |p> ǫ

)
.

The first term of the RHS of the preceding inequality tends to 0 by assumption.
Applying Tchebychev’s inequality conditionally to βn, yields:

P

(
|| βn ||4≤ η, | Z1,n(δ) |p> ǫ

)

≤ 1

ǫ2
E

(
1{

||βn||4≤η
}∑

i≥1

β2
i,nVar

(
f(Yi,n)1{βi,nF (Yi,n)>δ} | βn

))

≤ 1

ǫ2
E

(
1{

||βn||4≤η
}∑

i≥1

β2
i,nE

(
F 2(Y1,n)1{F (Y1,n)≥δ/η}

))

≤ ǫ,

for all n large enough, by (53) and because || βn ||22= 1 with probability one.
This proves the first assertion of Lemma 4.1. The second assertion is treated in
a very similar way. We omit details.
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Lemma 4.2. There exists c > 0 such that, for any p ≥ 1, f ∈ Fp, δ > 0 and
n ≥ 1, we have (as a comparison of real functions on [0,∞[):

sup
p∈S

Π
(
P(2)

n,p(δ),Q
(2)
n,p(δ), •

)
≤ cp5/2 exp

(
− •

2cp5/2δ

)
,which implies (54)

Π
(
Z2,n(δ), V2,n(δ), •

)
≤ cp5/2 exp

(
− •

2cp5/2δ

)
,which entails (55)

dLP

(
Z2,n(δ), V2,n(δ)

)
≤ cp5/2e−12δ(| ln(2δ) | +1). (56)

Proof. Fix p ≥ 1. Since Theorem 1.1 in Zaitsev (1987) provides bounds that
do not depend on the power of convolutions, as soon as the latter are properly
defined as limits under weak convergence. Hence, for fixed p ∈ S we apply the
second part of Theorem 1.1 in Zaitsev (1987), with τ = 2δ, for which the upper
bound does not depend on p. This proves (54), then (55) by integration, then
(56) by definition of dLP .

Now a combination of Lemmas 4.1 and 4.2 concludes the proof of Proposi-
tion 4.1.

Step 2: Asymptotic equicontinuity
We now turn on to proving that both (Wn)n≥1 and (Gn)n≥1

are asymptoti-
cally equicontinuous.

Proposition 4.2. We have

∀ǫ > 0, lim
δ→0

lim
n→∞

P
∗

sup
(f1,f2)∈F2, ρ0(f1,f2)<δ

| Gn(f1)−Gn(f2) |= 0,

∀ǫ > 0, lim
δ→0

lim
n→∞

P
∗

sup
(f1,f2)∈F2, ρ0(f1,f2)<δ

|Wn(f1)−Wn(f2) |= 0.

Proof. First, from assumption (11), the proof boils down to showing that

∀ǫ > 0, lim
δ→0

lim
n→∞

P

sup
(f1,f2)∈F2, ||f1−f2||Pn,βn

,2<δ

| Gn(f1)−Gn(f2) |= 0, (57)

∀ǫ > 0, lim
δ→0

lim
n→∞

P

sup
(f1,f2)∈F2, ||f1−f2||Pn,βn

,2<δ

|Wn(f1)−Wn(f2) |= 0, (58)

and that the involved maps are measurable, which will justify the use of P instead
of P∗. The required measurability of (58) has already been proved through (49).
Moreover, since

∑
i≥1 βi,nF (Yi,n) <∞ almost surely for all n, and by a simple

truncation argument, we see that there exists Ω2 having probability 1, such
that, for each ω ∈ Ω2, the sets

Fn,βn,δ(ω) :=
{
f1 − f2, (f1, f2) ∈ F2, || f1 − f2 ||Pn,βn(ω),2< δ

}
, δ > 0

are open for the topology O generated by the maps {f → f(x), x ∈ X}.
This proves the measurability requirement of (57), since Gn is O- continuous
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for ω ∈ Ω0 (here, we take the set Ω0 which was exhibited in the beginning of
the proof of Theorem 2). We will now complete the proof of (57). Fix ǫ > 0.
Conditioning by βn and using symmetrization as in the proof of Theorem 1, we
have, almost surely:

E

(
|| Gn ||Fn,βn,δ

∣∣∣βn

)

≤ 2E
(

sup
f∈Fn,βn,δ

|
∑

i≥1

βi,nǫif
(
Yi,n

)
|
∣∣∣βn

)

≤ 2C

∫ θn

0

√
log
(
ǫ || F ||Pn,βn

,2,Fn,βn,δ, || · ||Pn,βn
,2

)
dǫ, where (59)

θ2n :=

supf∈Fn,βn,δ

∑
i≥1

β2
i,nf

2(Yi,n)

E

(
F 2(Y1,n) | βn

) .

Since the integrand in (59) is bounded by the integrand in (10), the proof of
(57) will be achieved if we establish that θn →P 0. Since F ≥ 1, it suffices to
prove that the class G := {(f1 − f2)

2, (f1, f2) ∈ F2} satisfies the conditions
of Theorem 1, with the formal changes of βi,n to β2

i,n. All these conditions
are straightforwardly satisfied, except (6) for which we invoke the almost sure
comparison, for fixed ǫ > 0:

N
(
ǫ,G, || · ||P (βn,Yn),1

)
≤ N

(
|| F ||−1

P (βn,Yn),2
ǫ/8,F , || · ||P (βn,Yn),2

)2
,

for which the RHS is bounded in probability as n → ∞ by (9) and (10). This
proves (57). The proof of (58) is very similar. We omit details.

The proof of Theorem 2 is then achieved by combining Step 1 and Step 2
with a straightforward adaptation of Van der Vaart and Wellner (1996, p. 72,
Theorem 1.12.2).

Proof of Corollary 4. Assume without loss of generality that Kn ≥ 3 for all
n ≥ 1. We will prove assertions (34), (35) and (36) with Kn as written in the
statement of Corollary 4. Note that Zi,n  Kn × Beta(1− αn,Kn + iαn). For
fixed δ > 0 and n ≥ 1 we have

P

(
max

i≤[δKn]
Zi,n ≥ log(Kn)

)

≤ [δKn] max
i≤[δKn]

P

(
Zi,n ≥ log(Kn)

)

= [δKn]P
(
Z1,n ≥ log(Kn)

)
, by usual properties of the Beta distribution

= [δKn]
Γ(1− αn +Kn + 1)

Γ(1 − αn)Γ(Kn + 1)
K−1

n

∫ Kn

log(Kn)

( x
Kn

)−αn(
1− x

Kn

)Kn

dx

≤ [δKn]
Γ(1− αn +Kn + 1)

Γ(1 − αn)Γ(Kn + 1)
K−1+αn

n

∫ +∞

log(Kn)

exp
(
− x
)
dx,
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Γ(·) denoting the Gamma function. Now, by a use of Stirling’s formula for Γ(·),
and because 1− αn ≥ ǫ for all n, we have

Γ(1− αn +Kn + 1)

Γ(1− αn)Γ(Kn + 1)
K−1+αn

n ≤ 2

for all n large enough. This proves (34). To prove (35), fix n ≥ 1 and first notice
that, by the moment formulas of the Beta distribution, we have

1

Kn

∑

i≥1

E

(
Z4
i,n

) i−1∏

j=1

E

((
1− Zi,n

Kn

)4)

≤ 1

Kn

∑

i≥1

E

(
Z4
i,n

) i−1∏

j=1

E

(
1− Zi,n

Kn

)

≤ 1

Kn

∑

i≥1

(1− αn)(2 − αn)(3 − αn)(4 − αn)(
1 + iαn

Kn

)4
i−1∏

j=1

(
1− 1− αn

1− αn +Kn + 1 + jαn

)
.

(60)

Now consider the two following complementary cases.

Case 1: αn = 0: In that case the RHS of (60) is bounded by

24

Kn

∑

i≥1

i−1∏

j=1

(
1− 1

Kn + 2

)
≤ 24(Kn + 2)

Kn
≤ 48,

because Kn ≥ 3.

Case 2: αn > 0: In that case the RHS of (60) can be bounded by 64 by the
following chain of inequalities (we use the classical comparisons of sums/integral
of monotonic functions in (61) and (62)):

=
24

Kn

∑

i≥1

1
(
1 + iαn

Kn

)4
i−1∏

j=1

(
1− 1− αn

1− αn +Kn + 1 + jαn

)

≤ 24

Kn

[
2 +

∑

i≥3

1
(
1 + iαn

Kn

)4 exp

(
−

i−1∑

j=1

1− αn

1− αn +Kn + 1 + αnj

)]

≤ 24

Kn

[
2 +

∑

i≥3

(
1 +

iαn

Kn

)−4
exp

(
− 1− αn

αn

(
log
( 1− αn +Kn + 1 + iαn

1− αn +Kn + 1 + 2αn

))]

(61)

=
24

Kn

[
2 +

∑

i≥3

(
1 +

iαn

Kn

)−4
(
1 +

(i− 2)αn

1− αn +Kn + 1+ 2αn

)− 1−αn
αn

]

≤ 48

Kn
+

24

αn

Kn + 3

Kn
× αn

Kn + 3

∑

i≥3

(
1 +

(i− 2)αn

Kn + 3

)−4
(
1 +

(i− 2)αn

Kn + 3

)− 1−αn
αn
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≤ 16 +
48

αn
× 1

4 + 1−αn

αn

(62)

= 16 +
48

1 + 3αn

≤ 64.

Now, in order to prove (36), in virtue of the Bienaymé-Tchebytchev inequality,
it is sufficient to establish that

lim
n→∞

min
i≤n

E

(
Z2
i,n

)
> 0, (63)

lim
n→∞

max
i≤n

Var
(
Z2
i,n

)
<∞, (64)

which is straightforward using the moments expressions of the Beta distribution.
We omit details.
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