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1. Introduction and statement of the results

The problem of estimating high-dimensional networks has recently attracted a
lot of attention in statistics and machine learning. Both in the continuous case
using Gaussian graphical models [8, 13, 19, 7, 4, 17, 12], and in the discrete
case using Markov random fields [2, 11, 16, 10]. This paper focuses mainly on
discrete Markov random fields (MRF). Let (X(1), . . . , X(n)) be n i.i.d. random

variables where X(i) = (X
(i)
1 , . . . , X

(i)
p ) is a p-dimensional vector of dependent

random variables with joint density

fθ(x1, . . . , xp) =
1

Zθ
exp







∑

1≤s<s′≤p

θ(s, s′)B(xs, xs′)







, (1.1)

for some symmetric function B : X× X → R, where X is a finite set. The real-
valued symmetric matrix θ = {θ(s, s′), 1 ≤ s < s′ ≤ p} is the network structure
and is the parameter of interest. The term Zθ is a normalizing constant. This
type of statistical models was pioneered by J. Besag [3] under the name auto-
model. The nice feature of model (1.1) is that for any 1 ≤ s ≤ p, the conditional
density of Xs given {Xj , j 6= s} = x ∈ Xp−1 is

f
(s)
θ (u|x) = 1

Z
(s)
θ

exp







∑

j 6=i

θ(s, j)B(u, xj)







, (1.2)

for a normalizing constant Z
(s)
θ = Z

(s)
θ (x). Therefore, θ(s, j) = 0 implies that Xs

and Xj are conditionally independent given the other variables Xk, k /∈ {s, j}.
Thus estimating θ provides us with the dependence structure and the magnitude
of the dependence between these variables.

This paper focuses on the situation where the outcomes X
(i)
j take discrete

values (X is a finite set), although extension to a more general setting is possi-
ble without much difficulty. A number of recent work have shown that based on
(X(1), . . . , X(n)), the true network structure denoted θ⋆ can be consistently esti-
mated using a number of methods, even when the number of entries of θ⋆ is much
large than n [11, 16, 10]. For computational tractability, a pseudo-likelihood
approach is often preferred, even though this approach incurs a certain lost
of efficiency. Working mainly with the auto-logistic model (where X = {0, 1},
B(u, v) = uv), [10] shows that the ℓ2-norm estimation error of the penalized
pseudo-likelihood estimator is bounded from above by τ−1

√

a log d/n, where a
is the number of non-zero elements of θ⋆ and τ is the smallest eigenvalue of
the information matrix. [16] obtained similar results for a one-node-at-the-time
ℓ1-penalized pseudo-likelihood estimator. [18] also derived some properties of
the oracle estimator with the SCAD penalty.

In many situations where network estimation is needed, the network data can
be only partially observed because certain nodes are missing from the sample.
For example, in social network analysis, some close friends or siblings might
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not be part of the survey. As another example, in protein-protein networks, the
analysis is often restricted to the specific subgroup of proteins that is believed
to carry a role in a given biological function. So doing, some important proteins
might be omitted from the analysis. In the Gaussian case the distribution of the
observed nodes remains Gaussian, but its conditional independence structure
can be substantially altered by the missing data problem. [6] considered this
issue and studied the problem of recovering the conditional independence struc-
ture among the observed nodes (as defined in the complete data setting). They
address the issue by approximating the inverse covariance matrix of the observed
nodes by a sum of a sparse matrix and a low-rank matrix. Key to their approach
is the fact that the marginal distribution of the observed nodes remains Gaus-
sian, albeit one with an altered covariance matrix. Under some regularity and
identifiability conditions, these authors show that the sparse component of their
model consistently estimates the covariance matrix (as defined in the complete
data setting) between the observed nodes.

This paper consider the same issue for discrete MRF. Unlike the Gaussian
case, discrete Markov random field distributions are not closed under marginal-
ization. For example, if there exist r additional nodes denoted p+1, . . . , p+r such
that the joint distribution of (X1, . . . , Xp, Xp+1, . . . , Xp+r) is an auto-model
with network structure {θ(s, s′), 1 ≤ s < s′ ≤ p+ r}, then the joint (marginal)
distribution of (X1, . . . , Xp) is not of the form (1.1) in general. To take a specific
example, if r = 1 and B(x, y) = B(x)B(y), then the joint (marginal) distribu-
tion of (X1, . . . , Xp) is the mixture distribution

fθ(x1, . . . , xp) =
1

Cθ

∑

i∈X

exp







p
∑

s=1

θi(s)B(xs) +
∑

1≤s<s′≤p

θ(s, s′)B(xs)B(xs′ )







,

where θi(s) = B(i)θ(s, p + 1). The conditional distributions are also altered.
Indeed, and keeping with the assumption r = 1, if |θ(s, p + 1)| > 0, then the
conditional density of Xs given {Xℓ, ℓ 6= s, 1 ≤ ℓ ≤ p} depends not only on Xℓ

for all ℓ such that |θ(s, ℓ)| > 0, but also on Xk for all k such that |θ(k, p+1)| > 0.
Because the marginal distribution of the observed node belongs to a different
family than (1.1), it seems unlikely that the “sparse + low-rank” approach of [6]
would be of much use in this context. We propose to ignore the missing nodes
and fit (the misspecified) model (1.1) to the observed data. It seems plausible
that the resulting estimator would still be well-behaved to the extent that the
missing data problem is limited. The goal of the paper is to formalize this idea.

We consider a large (possibly infinite) Markov random field model, where only
part of the field is observed, and fit the misspecified model (1.1) using penalized
pseudo-likelihood approach. We study conditions under which this procedure
can recover the true network parameter. We show that the ℓ2-norm estimation
error of the procedure is at most τ−1

√
a(
√

log d/n+ b), up to a multiplicative
constant factor, where d (resp. a) is the number of possible edges (resp. the
number of non-zeros entries) of the true network, τ is the smallest eigenvalue of
the information matrix, and where the term b represents the effect of the missing
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nodes (see Theorem 1.2 for the exact statement). We conclude that the estimator

θ̂n is robust to a small to moderate amount of missing data. We report some
simulation results that are consistent with these findings. In practical situations
where MRF are used, it is often unclear whether one is dealing with a partially
observed field with important missing nodes. The above discussion thus stresses
the need for methods of detecting the existence of missing nodes in Markov
random field data. We leave this problem for future research.

The remainder of the paper is organized as follows. We define the model
and estimator in Section 1.1, followed by the statement of the main result in
Section 1.2. A simulation example is presented in Section 1.3. Section 2 develops
the technical proofs.

1.1. The setting

Let X be a finite set. X is the sample space of the observations. Let S be a
finite non-empty or countably infinite set that we assume, without any loss of
generality to be a subset of the integer set N. The set S represents the nodes of

the network. We use the notation S2 def
= {(s, ℓ) ∈ S × S : s < ℓ}, the set of all

ordered pairs of S. More generally, if Λ is a subset of S, we denote by Λ2, the
set of all ordered pairs (u, v) ∈ Λ× Λ, with u < v.

Let B : X × X → R be a measurable function such that B(x, y) = B(y, x)
(symmetry). Throughout the paper we define

c1
def
= sup

x,y,z∈X

|B(y, x)−B(z, x)| <∞, (1.3)

which plays the role of the variance of the interaction statistics B(Xs, x).

For a matrix θ : S × S → R and s ∈ S, the θ-neighborhood of s is the set

∂θs
def
= {ℓ ∈ S : ℓ 6= s and |θ(s, ℓ)| > 0},

and the θ-degree of node s is the (possibly infinite) quantity

degθ(s)
def
=

∑

ℓ∈S\{s}

|θ(s, ℓ)| =
∑

ℓ∈∂θs

|θ(s, ℓ)|.

We denote M(S) the space of all symmetric matrices θ : S × S → R such that
degθ(s) <∞ for all s ∈ S. For θ ∈ M(S), let µθ be the probability measure on
(XS , ES) such that if X = {Xs, s ∈ S} has distribution µθ, then the conditional
distribution of Xs given {Xℓ, ℓ 6= s} exists and has probability mass function

f
(s)
θ (·|x), where for u ∈ X, x ∈ XS\{s},

f
(s)
θ (u|x) = 1

Z
(s)
θ

exp







∑

ℓ∈S\{s}

θ(s, ℓ)B(u, xℓ)







, (1.4)
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for a normalizing constant Z
(s)
θ = Z

(s)
θ (x). Notice that f

(s)
θ (u|x) actually de-

pends only on x∂θs
def
= {xℓ : ℓ ∈ ∂θs}. As a result, we will interchangly

write f
(s)
θ (u|x) and f

(s)
θ (u|x∂θs) to mean the same object. We call the pro-

cess {Xs, s ∈ S} an auto-model Markov random field. We will take for granted
that such distributions µθ exist. Obviously, this is the case if S is finite. In the
case where S is infinite, it can be shown that µθ exists for any θ ∈ M(S). This
follows for instance from [9], Theorem 4.23 (a).

For θ⋆ ∈ M(S), let {X(i), 1 ≤ i ≤ n} be a sequence of i.i.d. auto-model
Markov random fields with distribution µθ⋆ defined on some probability space
with probability measure P̌⋆ and expectation operator Ě⋆. Let D be a finite
subset of S with cardinality p. We assume that the random fields X(i) are only
observed over D, giving rise to observations (X(1), . . . , X(n)), where X(i) =

{X(i)
k , k ∈ D}. We are interested in inferring the network parameter {θ⋆(s, ℓ),

(s, ℓ) ∈ D2} from the observed data.

Let d
def
= p(p−1)/2 and denote M(D) the set of all symmetric finite matrices

{θ(s, ℓ), (s, ℓ) ∈ D2}, that we identify with R
d. For s ∈ S, we define ∂s

def
= ∂θ⋆s

and called it the (true) neighborhood of s. We also define Ds def
= D\{s}. Since the

neighborhood system {∂s, s ∈ S} is not known, we introduce the approximate
conditional distributions

f̄
(s)
θ (u|x) = f̄

(s)
θ (u|xDs

)
def
=

1

Z̄
(s)
θ

exp

(

∑

ℓ∈Ds

θ(s, ℓ)B(u, xℓ)

)

, u ∈ X, x ∈ XS\{s},

(1.5)

for some normalizing constant Z̄
(s)
θ . The difference between (1.5) and (1.4) is

that f̄
(s)
θ (u|x) depends only on the nodes in D. In particular, f̄

(s)
θ (u|x) depends

on θ only through θs
def
= {θ(s, ℓ), ℓ ∈ Ds}. We define the functions

ℓn(θ)
def
=

1

n

n
∑

i=1

∑

s∈D

log f̄
(s)
θ (X(i)

s |X(i)
Ds

), and

Qn(θ) = ℓn(θ) − λn
∑

(s,ℓ)∈D2

|θ(s, ℓ)|, θ ∈ M(D),

for some parameter λn > 0. Finally, we define

ArgmaxQn
def
= {θ ∈ M(D) : Qn(θ) = sup

ϑ∈M(D)

Qn(ϑ)},

and we call any element θ̂n of ArgmaxQn a penalized pseudo-likelihood estimator
of θ⋆. It is useful to have some simple conditions under which ArgmaxQn well-
defined. It is easy to see that the function Qn is strictly concave. Thus if θ̂n
exists, it is necessarily unique. The following result gives an easily verifiable
condition under which θ̂n exists.



Partially observed Markov random fields 2247

Proposition 1.1. Suppose that for each s ∈ D, there exists a finite constant
c(s) such that for all θ ∈ M(D), all u ∈ X and for all x ∈ XDs ,

f
(s)
θ (u|x) ≤ c(s).

Then θ̂n exists and is unique.

1.2. Non-asymptotic estimation error bound

In this section X denotes a Markov random field with distribution µθ⋆ . Let
s ∈ D. Notice that if the entire θ⋆-neighborhood of s (that is ∂s) is included in
D, then the approximate conditional distribution (1.5) and the true conditional

distribution (1.4) would be the same: f̄
(s)
θ⋆

(·|xDs
) = f

(s)
θ⋆

(·|x∂s) for all x ∈ XS\{s}.
In particular, we would have:

E⋆ [B(Xs, Xℓ)] = E⋆

[∫

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du

]

, ℓ ∈ Ds.

This motivates the definition

b
def
= sup

s∈D
sup
ℓ∈Ds

∣

∣

∣

∣

E⋆ [B(Xs, Xℓ)]− E⋆

[∫

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du

]∣

∣

∣

∣

. (1.6)

The quantity b measures the effect of the missing nodes. It measures how well

the misspecified conditional densities f̄
(s)
θ⋆

(u|xDs
) approximate the correct con-

ditional densities f
(s)
θ⋆

(u|xS\{s}) in terms of matching the first moment of the
statistics B(Xs, xℓ). As we will see below, the quantity b is the main effect of
the misspecification on the recovery rate of the ℓ1-penalized pseudo-likelihood
estimator.

Let I
def
= {(s, ℓ) ∈ D2 : θ⋆(s, ℓ) 6= 0}, and denote a the cardinality of I. Set

∆
def
=







θ ∈ M(D) :
∑

(s,ℓ)∈D2\I

|θ(s, ℓ)| ≤ 3
∑

(s,ℓ)∈I

|θ(s, ℓ)|







.

For θ ∈ M(D), we introduce the semi-norm

‖θ‖2⋆ def
=







∑

(s,ℓ)∈I

|θ(s, ℓ)|2






1/2

.

For s ∈ D, ℓ, ℓ′ ∈ Ds, we define the random variable

H(s)(ℓ, ℓ′;X)
def
=

∫

X

B(u,Xℓ)B(u,Xℓ′)f̄
(s)
θ⋆

(u|XDs
)du

−
{
∫

X

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du

}{
∫

X

B(u,Xℓ′)f̄
(s)
θ⋆

(u|XDs
)du

}

(1.7)
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and we set
C(s)(ℓ, ℓ′)

def
= E⋆

[

H(s)(ℓ, ℓ′;X)
]

.

The family of matrices {C(s), s ∈ D} plays the role of information matrix.
Clearly, each matrix C(s) defines a quadratic form on R

p−1 by

θ′sC
(s)θs

def
=
∑

ℓ∈Ds

∑

ℓ′∈Ds

θ(s, ℓ)θ(s, ℓ′)C(s)(ℓ, ℓ′),

where we write θs
def
= {θ(s, ℓ), ℓ ∈ Ds}. We impose the following restricted

strong convexity-type assumption.

A1 There exists τ > 0 such that
∑

s∈D

θ′sC
(s)θs ≥ 2τ‖θ‖22⋆, θ ∈ ∆. (1.8)

Theorem 1.2. Assume A1 and take λn ≥ 4b+ 8c1

√

log d
n . Suppose that nτ2 ≥

2(642)c21a
2 log(2d), and 48c1aλn < τ . Then

∥

∥

∥θ̂n − θ̄⋆

∥

∥

∥

2
≤ 26

√
aλn,

with a probability at least 1 − 3
d , where θ̄⋆ = {θ⋆(s, ℓ), (s, ℓ) ∈ D2}, and for

u ∈ M(D), ‖u‖2 def
= {

∑

(s,ℓ)∈D2 |u(s, ℓ)|2}1/2.

Remark 1. Taking λn = 4b + 8c1

√

log d
n , and assuming that 48c1aλn < τ ,

the bound suggests that the convergence rate of the estimator θ̂n is

τ−1a1/2(c1

√

log d
n + b). This shows that in general the estimator is inconsistent

for d fixed and n→ ∞. When b = 0, we recover Theorem 1 of [10], with a slight
improvement on the requirement on the sample size. Here the condition on n
reads n & τ−2a2 log(d), whereas Theorem 1 of [10] imposes n & τ−2a3 log(d).

Although the estimator is inconsistent, if b is small, θ̂n would still give a
reasonably good estimate of θ̄. In such cases, if in addition min(s,ℓ)∈I |θ⋆(s, ℓ)| is
comparatively large, one can also correctly recover the sign of {θ⋆(s, ℓ), (s, ℓ) ∈ I}
by a simple hard-thresholding rule, where the sign of a vector is defined as the
vector of signs. Consider the estimator θ̃n where

θ̃n(s, ℓ) =

{

θ̂n(s, ℓ) if |θ̂n(s, ℓ)| > δ
0 otherwise,

for a thresholding parameter δ. Following Corollary 2 of [14], the next result is
a direct consequence of Theorem 1.2.

Corollary 1.3. Under the assumptions of Theorem 1.2, and assuming that
δ > 26

√
aλn, and min(s,ℓ)∈I |θ⋆(s, ℓ)| > 26

√
aλn,

P⋆

[

sign(θ̃n) = sign(θ̄⋆)
]

≥ 1− 3

d
.
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1.2.1. On the misspecification parameter b

The misspecification parameter b plays an important role in the results above.
Clearly b is related to how much connections there is between the observed and
the missing nodes. However, as the next result shows, b is controlled mainly by
the strength of the connections between the observed and the missing nodes,
not necessarily by the number of missing nodes.

Proposition 1.4.

b ≤
{

sup
x,y

|B(x, y)|
}

∧







c21 sup
s∈D

∑

j∈∂s\D

|θ⋆(s, j)|







, (1.9)

where a ∧ b def
= min(a, b).

Proof. The fact b is smaller than supx,y |B(x, y)| follows directly from its defi-
nition. Recall that E⋆ denotes the expectation under the true model θ⋆. Hence,
by first conditioning on {Xℓ, ℓ ∈ S \ {s}}, we have

E⋆ [B(Xs, Xℓ)] = E⋆

[∫

B(u,Xℓ)f
(s)
θ⋆

(u|X∂s)du

]

, s 6= ℓ.

Hence

E⋆ [B(Xs, Xℓ)]− E⋆

[∫

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du

]

= E⋆

[∫

B(u,Xℓ)f
(s)
θ⋆

(u|XSs
)du −

∫

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du

]

.

We then apply (A.3), with f1 = f2 = B(·, Xℓ) which gives
∣

∣

∣

∣

∫

B(u,Xℓ)f
(s)
θ⋆

(u|XSs
)du−

∫

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du

∣

∣

∣

∣

≤ c21
∑

j∈∂s\D

|θ⋆(s, j)|,

and the stated result follows easily.

Better bounds than (1.9) can be derived with additional assumptions. And in
turn, such bounds can be used to state Theorem 1.2 with different assumptions.
Consider for example the case of the Ising model where

X = {0, 1}, and B(x, y) = xy. (1.10)

For s ∈ D, we define

degout(s)
def
=

∑

j∈S\D

θ⋆(s, j), and degin(s)
def
=
∑

j∈Ds

θ⋆(s, j),

as the strength of the connection between s and the missing nodes, and between
s and the observed nodes, respectively. We will also assume that there are only
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non-negative interactions in the network: θ⋆(s, ℓ) ≥ 0 for all (s, ℓ) ∈ S2. This
assumption is mostly technical and made to simplify the analysis. Recall that
c1 is defined in (1.3), D ⊆ S, p = |D|, and d = p(p− 1)/2.

Corollary 1.5. Assume A1, (1.10), and suppose that θ⋆(s, ℓ) ≥ 0 for all

(s, ℓ) ∈ S2. Take λn = 10c1

√

log d
n . If n, D, S, and θ⋆ are such that nτ2 ≥

2(642)c21a
2 log(2d), (480)c1a

√

log d
n < τ , and

sup
s∈D

{

degout(s) exp

(

−1

2
degin(s)

)}

≤ c1
2

√

log d

n
. (1.11)

Then
∥

∥

∥θ̂n − θ̄⋆

∥

∥

∥

2
≤ (260)c1

√

a log d

n
,

with a probability at least 1− 3
d

Remark 2. The result formalizes the intuition that the estimation procedure
will work well when D is large and the nodes in D interact only weakly with
the missing nodes. If degin(s) is large, degout(s) would need to be exponentially
larger to result in a large bias. However, note that the result still does not imply
that θ̂n is consistent for d fixed, since for d fixed, (1.11) will fail as n→ ∞.

Obviously this result is not of much practical use, because the degin(s) and
degout(s) are typically unknown. Amore promising approach would be to develop
misspecification statistical testings to detect the existence of the missing nodes.
However this is beyond the scope of the paper, and is left for possible future
research.

Proof. It suffices to show that

b ≤ sup
s∈D

{

degout(s) exp

(

−1

2
degin(s)

)}

, (1.12)

which together with (1.11) implies that λn = 10c1

√

log d
n ≥ 4b+ 8c1

√

log d
n , and

48c1aλn = 480c1a
√

log d
n < τ . The corollary then follows from Theorem 1.2.

It remains to show (1.12). We denote logit
−1(x) = ex

1+ex , and G(x) = ex(1 +

ex)−2 its derivative. In the case of the Ising model, the conditional means are
given by E⋆[Xs|XS\{s}] = logit

−1(
∑

j∈∂s
θ⋆(s, j)Xj). Hence

E⋆

[

B(Xs, Xℓ)|XS\{s}

]

= XℓE⋆

[

Xs|XS\{s}

]

= Xℓlogit
−1





∑

j∈∂s

θ⋆(s, j)Xj



 .

Similarly

∫

X

B(u,Xℓ)f̄
(s)
θ⋆

(u|XDs
)du = Xℓlogit

−1





∑

j∈∂s∩D

θ⋆(s, j)Xj



 .
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Notice that G(x) ≤ e−|x|, for all x ∈ R. Hence, by Taylor expansion

Xℓ



logit−1





∑

j∈∂s

θ⋆(s, j)Xj



− logit−1





∑

j∈∂s∩D

θ⋆(s, j)Xj









= Xℓ







∑

j∈∂s\D

θ⋆(s, j)Xj







∫ 1

0

G





∑

j∈∂s∩D

θ⋆(s, j)Xj + t
∑

j∈∂s\D

θ⋆(s, j)Xj



 dt

≤







∑

j∈∂s\D

θ⋆(s, j)Xj







∫ 1

0

exp



−
∑

j∈∂s∩D

θ⋆(s, j)Xj − t
∑

j∈∂s\D

θ⋆(s, j)Xj



 dt.

For all x, y ≥ 0, it is clear that y
∫ 1

0
e−x−tydt = e−x

∫ 1

0
ye−tydt = e−x(1− e−y),

which easily yields the bound

b ≤ sup
s∈D

E⋆



exp



−
∑

j∈Ds

θ⋆(s, j)Xj











1− exp



−
∑

j∈S\D

θ⋆(s, j)Xj













 .

Since 1− e−y ≤ y for all y ≥ 0, and using also the Jensen’s inequality, we have

b ≤ sup
s∈D







∑

j∈S\D

θ⋆(s, j)







exp



−
∑

j∈Ds

θ⋆(s, j)E⋆(Xj)



 .

We saw earlier that E⋆[Xs|XS\{s}] = logit−1(
∑

j∈∂s
θ⋆(s, j)Xj) ≥ 1

2 , and (1.12)
follows.

1.2.2. On assumption A1

A1 is a type of restricted eigenvalue assumption similar to the Assumption
RE(s, c0) of [5]. This assumption is not easy to check. But following the analysis
of [5], it is possible to derive sufficient conditions that give some intuition into
when A1 holds. For simplicity we consider the case of product-form functions:
B(x, y) = B0(x)B0(y). Then

H(s)(ℓ, ℓ′;X)

= B0(Xℓ)B0(Xℓ′)

[

∫

X

B(u)2f̄
(s)
θ⋆

(u|XDs
)du −

{∫

X

B(u)f̄
(s)
θ⋆

(u|XDs
)du

}2
]

.

Thus assuming that there exists a finite constant α > 0 such that

min
s∈D

{

∫

X

B(u)2f̄
(s)
θ⋆

(u|XDs
)du −

{∫

X

B(u)f̄
(s)
θ⋆

(u|XDs
)du

}2
}

≥ α, (1.13)
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we have

θ′sC
(s)θs ≥ α

∑

ℓ∈Ds

∑

ℓ′∈Ds

θ(s, ℓ)θ(s, ℓ′)E⋆ (B0(Xℓ)B0(Xℓ′))

= αE⋆





(

∑

ℓ∈Ds

θ(s, ℓ)B0(Xℓ)

)2


 ≥ αVar⋆

(

∑

ℓ∈Ds

θ(s, ℓ)B0(Xℓ)

)

. (1.14)

Assumption (1.13) is similar to Assumption 2 of [13], and is typically not restric-
tive. We show below that it holds for the auto-logistic model. The difficulty lies
in dealing with the covariance matrix of the (local) fields {B0(Xℓ), ℓ ∈ Ds}. Fol-
lowing [5] (Section 4), the next result captures the intuition that the covariance
matrix of {B0(Xℓ), ℓ ∈ Ds} is positive definite if the covariance matrix between
the neighbors of s is positive definite and the covariance between neighbors of s
and non-neighbors of s is weak. This bears some similarity with the dependency
assumption A and the incoherence assumption B of [10].

Proposition 1.6. Assume (1.13) and suppose that for all u ∈ R
|∂s|,

inf
s∈D

∑

ℓ∈∂s

∑

ℓ′∈∂s

uℓuℓ′Cov⋆ (B0(Xℓ), B0(Xℓ′)) ≥ ρ
∑

ℓ∈∂s

u2ℓ , and

sup
s∈D

sup
j /∈∂s

∑

ℓ∈∂s

uℓCov⋆ (B0(Xℓ), B0(Xj)) ≤ δ

√

∑

ℓ∈∂s

u2ℓ .

Then for all θ ∈ ∆,

∑

s∈D

θ′sC
(s)θs ≥ 2α

(

ρ− 6a1/2δ
)

‖θ‖22⋆.

Proof. We have

Var⋆

(

∑

ℓ∈Ds

θ(s, ℓ)B0(Xℓ)

)

≥ Var⋆

(

∑

ℓ∈∂s∩D

θ(s, ℓ)B0(Xℓ)

)

+ 2
∑

ℓ∈∂s∩D

∑

ℓ′∈Ds\∂s

θ(s, ℓ)θ(s, ℓ′)Cov⋆ (B0(Xℓ), B0(Xℓ′))

≥ ρ
∑

ℓ∈∂s∩D

θ(s, ℓ)2 − 2δ

√

∑

ℓ∈∂s∩D

|θ(s, ℓ)|2
∑

ℓ′∈Ds\∂s

|θ(s, ℓ′)|

≥ ρ
∑

ℓ∈∂s∩D

θ(s, ℓ)2 − 2δ‖θ‖2⋆
∑

ℓ′∈Ds\∂s

|θ(s, ℓ′)|

Clearly
∑

s∈D

∑

ℓ∈∂s∩D θ(s, ℓ)
2 = 2‖θ‖22⋆, and

∑

s∈D

∑

ℓ′∈Ds\∂s

|θ(s, ℓ′)| = 2
∑

(s,ℓ)∈D2\I

|θ(s, ℓ)| ≤ 6
∑

(s,ℓ)∈I

|θ(s, ℓ)| ≤ 6a1/2‖θ‖2⋆.
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Therefore, using (1.14), we get

∑

s∈D

θ′sC
(s)θs ≥ α

(

2ρ‖θ‖22⋆ − 12a1/2δ‖θ‖22⋆
)

≥ 2α
(

ρ− 6a1/2δ
)

‖θ‖22⋆.

1.3. Example and Monte Carlo evidence

We consider the example of the auto-logistic model where X = {0, 1}, and
B(x, y) = xy. For the simulations, we consider three cases: p = 50, p =
80, and p = 100. For each setting, we consider different sample sizes n ∈
{50, 100, . . . , 500}. The sparsity (the proportion of non-zero entries) of θ⋆ is set
to 1%, and the non-zero entries of θ⋆ are generated uniformly from the interval
[0.3, 1]. Having all the entries of θ⋆ non-negative allows us to simulate exactly (in-
stead of using MCMC) from the Ising distribution µθ⋆ using the Propp-Wilson’s
perfect sampler. For all the simulations, we set the regularization parameter to
λ = 0.5

√

log p)/n.
To quantify the amount of missing data, we use the upper bound established

above

b̌
def
= sup

s∈D

∑

ℓ∈∂s\D

|θ⋆(s, ℓ)| exp



−1

2

∑

j∈Ds

θ⋆(s, j)



 .

We compare three settings. In Setting 1, there is no missing data, and the
samples are generated exactly from (1.1). In Setting 2 and 3, we generate the

sample (X
(i)
1 , . . . , X

(i)
p , X

(i)
p+1, . . . , X

(i)
p+r) from (1.1), for θ = θ⋆, and we retain

only (X
(i)
1 , . . . , X

(i)
p ), for 1 ≤ i ≤ n. Thus there are r missing nodes. In Set-

ting 2, we use r = 2, whereas in Setting 3, we set r = 20. Table 1 shows the
corresponding values of b̌ in each setting.

Regardless of the data generation mechanism, we fit model (1.1) by ℓ1 penal-

ized pseudo-likelihood and compute the relative Mean Square Error E⋆(‖θ̂n −
θ̄⋆‖2)/‖θ̄⋆‖2, estimated from K replications of the estimator (K = 10). In Fig-

ure 1, we plot E⋆(‖θ̂n − θ̄⋆‖2)/‖θ̄⋆‖2 as a function of the sample size.
As expected, the estimation error decreases with the sample size. Also, the

more missing data, the worst the estimator behaves. We also observe that in
Setting 2 where r = 2, the value of b̌ is the same in the cases p = 50 and
p = 100, but the estimation error is noticeably more affected by the missing
data for p = 50. This seems in agrement with the conclusion of Corollary 1.5.

Table 1

Values of b̌ in each setting of the simulation

Setting 1, r = 0 Setting 2, r = 2 Setting 3, r = 20
p = 50 0 1.8 2.3
p = 80 0 1.0 2.1
p = 100 0 1.8 2.9
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Fig 1. Relative MSE versus sample size n, where star-line is Setting 1, square-line is Setting 2,

triangle-line is Setting 3.
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Fig 2. Proportion of sign correctly recovered versus sample size n, where star-line is Setting 1,

square-line is Setting 2, triangle-line is Setting 3.

We also compute the proportion of signs of θ⋆ that is correctely recovered.
This is plotted in Figure 2 for p = 100. The estimator θ̃n described in Corollary
1.3 performs much better than the initial estimator θ̂n. For the computation of
θ̃n, we follow Corollary 1.3 and use a threshold of δ =

√
aλ, where a is the num-

ber of non-zero entries of θ⋆. For large sample size, the sign recovery of θ̃n is per-
fect, even in presence of missing nodes (the three lines are almost undistinguish-
able). Notice that the penalty parameter λ = 0.5

√

log p/n varies (decreases)

with n. This negatively affects the basic estimator θ̂n but does not affect θ̃n.

2. Proof of Theorem 1.2

We define
Un(θ) = −Qn(θ̄⋆ + θ) +Qn(θ̄⋆), θ ∈ M(D).

Clearly, Un is strictly convex, Un(0) = 0, and minimized at θ̂n − θ̄⋆. We recall
that

∆ =







θ ∈ M(D) :
∑

(s,ℓ)∈D2\I

|θ(s, ℓ)| ≤ 3
∑

(s,ℓ)∈I

|θ(s, ℓ)|







,
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and for r > 0 we set
∆r

def
= {θ ∈ ∆ : ‖θ‖2 = r} .

The next two lemmas are adaptations of Lemmas 1 and 4 from [15]. We give a
proof for completeness.

Lemma 2.1. On the event {‖∇ℓn(θ̄⋆)‖∞ ≤ λn

2 }, (θ̂n − θ̄⋆) ∈ ∆.

Proof. −ℓn(θ) = −∑n
i=1

∑

s∈D log f
(s)
θ (X

(i)
s |X(i)

Ds
), which is a convex function

of θ by virtue of Lemma A.1. It is also not hard to see that

‖θ̄⋆ + θ‖1 ≥ ‖θ̄⋆‖1 +
∑

(s,ℓ)/∈I

|θ(s, ℓ)| −
∑

(s,ℓ)∈I

|θ(s, ℓ)|. (2.1)

Therefore, using the convexity of−ℓn and (2.1), it follows that on {‖∇ℓn(θ⋆)‖∞ ≤
λn/2},

Un(θ) =
(

−ℓn(θ̄⋆ + θ) + ℓn(θ̄⋆)
)

+ λn
(

‖θ̄⋆ + θ‖1 − ‖θ̄⋆‖1
)

≥
〈

−∇ℓn(θ̄⋆), θ
〉

+ λn





∑

(s,ℓ)/∈I

|θ(s, ℓ)| −
∑

(s,ℓ)∈I

|θ(s, ℓ)|





≥ −λn
2
‖θ‖1 + λn





∑

(s,ℓ)/∈I

|θ(s, ℓ)| −
∑

(s,ℓ)∈I

|θ(s, ℓ)|





= λn





1

2

∑

(s,ℓ)/∈I

|θ(s, ℓ)| − 3

2

∑

(s,ℓ)∈I

|θ(s, ℓ)|



 .

Since, Un(0) = 0, we necessarily have Un(θ̂n − θ̄⋆) ≤ 0, which implies, in view

of the above bound, that θ̂n − θ̄⋆ ∈ ∆.

Lemma 2.2. On the event {infv∈∆r
Un(v) > 0, and ‖∇ℓn(θ̄⋆)‖∞ ≤ λn

2 },
‖θ̂n − θ̄⋆‖ ≤ r.

Proof. Suppose that ‖θ̂n− θ̄⋆‖ > r, and that {‖∇ℓn(θ̄⋆)‖∞ ≤ λn/2} occurs. We
will show that there exists ϑ ∈ ∆r such that Un(ϑ) ≤ 0, and this proves the
result.

By Lemma 2.1, on {‖∇ℓn(θ̄⋆)‖∞ ≤ λn/2}, (θ̂n − θ̄⋆) ∈ ∆. Assuming that

‖θ̂n − θ̄⋆‖ > r, we can find α ∈ (0, 1) such that α‖θ̂n − θ̄⋆‖ = r. It is also clear

that if θ ∈ ∆, tθ ∈ ∆ for all t ≥ 0. Hence α(θ̂n − θ̄⋆) ∈ ∆r. But by convexity

Un

(

α(θ̂n − θ̄⋆)
)

= Un

(

α(θ̂n − θ̄⋆) + (1− α)0
)

≤ αUn

(

θ̂n − θ̄⋆

)

≤ 0.

The main idea of the proof is to show that under the assumption of the
theorem the event {infv∈∆r

Un(v) > 0, and ‖∇ℓn(θ̄⋆)‖∞ ≤ λn

2 } occurs with
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high probability with r = rn appropriately chosen. To make the proof easier to
follow, we include the following intermediary step. For s ∈ D, ϑ ∈ R

p−1, and
x ∈ XDs , we define

V (s)(ϑ, x)
def
=

∫

(

∑

ℓ∈Ds

ϑℓB(u, xℓ)

)2

f̄
(s)
θ⋆

(u|x)du

−
(

∫

∑

ℓ∈Ds

ϑℓB(u,Xℓ)f̄
(s)
θ⋆

(u|x)du
)2

. (2.2)

We recall the notation θs = {θ(s, ℓ), ℓ ∈ Ds}.
Lemma 2.3. Consider the event

En(τ) def
=

{

1

n

n
∑

i=1

∑

s∈D

V (s)(θs, X
(i)) ≥ τ‖θ‖22⋆ for all θ ∈ ∆,

and
∥

∥∇ℓn(θ̄⋆)
∥

∥

∞
≤ λn

2

}

.

Suppose that there exists τ > 0 such that τ > 48c1aλn, and the event En(τ)
holds. Then

‖θ̂n − θ̄⋆‖2 ≤ 26a1/2λn.

Proof. We know from Lemma 2.1 that on En(τ), θ̂n−θ̄⋆ ∈ ∆. Set rn = 26a1/2λn.
We will show that on En(τ), infθ∈∆rn

Un(θ) > 0, and use Lemma 2.2 to conclude

that ‖θ̂n − θ̄⋆‖2 ≤ rn. We recall that for θ ∈ M(D),

Un(θ) =
(

−ℓn(θ̄⋆ + θ) + ℓn(θ̄⋆) +
〈

∇ℓn(θ̄⋆), θ
〉)

−
〈

∇ℓn(θ̄⋆), θ
〉

+ λn
(

‖θ̄⋆ + θ‖1 − ‖θ⋆‖1
)

.

For θ ∈ ∆, and on the event
{

‖∇ℓn(θ̄⋆)‖∞ ≤ λn/2
}

|− 〈∇ℓn(θ⋆), θ〉 + λn (‖θ⋆ + θ‖1 − ‖θ⋆‖1)| ≤ 6λna
1/2‖θ‖2⋆. (2.3)

From the expression of the approximate conditional distribution f̄
(s)
θ (xs|x)

given in (1.5), we have

− ℓn(θ̄⋆ + θ) + ℓn(θ̄⋆) +
〈

∇ℓn(θ̄⋆), θ
〉

=
∑

s∈D

1

n

n
∑

i=1

(

log Z̄
(s)

θ̄⋆+θ
(X(i))− log Z̄θ̄⋆(X

(i))−
〈

∇θ log Z̄
(s)
θ⋆

(X(i)), θs

〉)

,

(2.4)

where Z̄
(s)
θ (x) =

∫

exp(
∑

ℓ∈Ds
θ(s, ℓ)B(u, xℓ))du, θs = {θ(s, ℓ), ℓ ∈ Ds}, and

〈u, v〉 here denotes the usual inner product in R
Ds . Fix s ∈ D, x ∈ XDs . We will
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now apply the self-concordant bound developed in Lemma A.2 to the function

ζ(s)(ϑ|x) def
=

∫

X

exp

(

∑

ℓ∈Ds

ϑℓB(u, xℓ)

)

du.

The constant c is Lemma A.2 is given here by supu∈X
supx,y∈X

|B(u, x) −
B(u, y)| = c1. Hence

log Z̄
(s)

θ̄⋆+θ
(X(i))− log Z̄θ̄⋆(X

(i))−
〈

∇θ log Z̄
(s)
θ⋆

(X(i)), θs

〉

≥ V (s)(θs, X
(i)
−s)

2 + c1
∑

ℓ∈Ds
|θ(s, ℓ)| . (2.5)

Since
∑

ℓ∈Ds
|θ(s, ℓ)| ≤ ‖θ‖1, we combine the above with (2.4) to conclude that

− ℓn(θ̄⋆ + θ) + ℓn(θ̄⋆) +
〈

∇ℓn(θ̄⋆), θ
〉

≥ 1

2 + c1‖θ‖1
1

n

n
∑

i=1

∑

s∈D

V (s)(θs, X
(i)) ≥ τ‖θ‖22⋆

2 + c1‖θ‖1
, (2.6)

for all θ ∈ ∆, using the fact that En(τ) holds. This bound and (2.3) yield that
for θ ∈ ∆,

Un(θ) ≥
τ‖θ‖22⋆

2 + 4c1a1/2‖θ‖2⋆
− 6λna

1/2‖θ‖2⋆ .

The right-hand-side is positive whenever

‖θ‖2⋆ >
13a1/2λn

τ − 24c1aλn
≥ 26a1/2λn,

provided 48c1aλn < τ .

We now show that the event En(τ) occurs with high probability.

Lemma 2.4. For any λn ≥ 4b+ 8c1

√

log d
n ,

P⋆

[

‖∇ℓn(θ⋆)‖∞ >
λn
2

]

≤ 2

d
. (2.7)

Proof. Set δn = 8c1

√

log d
n . We calculate that for (s, ℓ) ∈ D2,

∂ℓn(θ⋆)

∂θs,ℓ
=

1

n

n
∑

i=1

2B(X(i)
s , X

(i)
ℓ )−

∫

B(u,X
(i)
ℓ )f̄

(s)
θ⋆

(u|X(i)
Ds

)du

−
∫

B(u,X(i)
s )f

(ℓ)
θ⋆

(u|X(i)
Dℓ

)du.
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By the definition of b,

∣

∣

∣

∣

E⋆

[

2B(X(i)
s , X

(i)
ℓ )−

∫

B(u,X
(i)
ℓ )f̄

(s)
θ⋆

(u|X(i)
Ds

)du

−
∫

B(u,X(i)
s )f

(ℓ)
θ⋆

(u|X(i)
Dℓ

)du

]∣

∣

∣

∣

≤ 2b.

Therefore for each (s, ℓ) ∈ D2, and by Hoeffding’s inequality

P⋆

[∣

∣

∣

∣

∂ℓn(θ⋆)

∂θs,ℓ

∣

∣

∣

∣

>
λn
2

]

≤ P⋆

[∣

∣

∣

∣

∂ℓn(θ⋆)

∂θs,ℓ
− E⋆

(

∂ℓn(θ⋆)

∂θs,ℓ

)∣

∣

∣

∣

>
δn
2

]

≤ 2 exp

(

− nδ2n
32c21

)

.

We conclude by the union-sum inequality that

P⋆

(

‖∇ℓn(θ⋆)‖∞ >
λn
2

)

≤ 2 exp

(

log d− nδ2n
32c21

)

≤ 2

d
,

given the choice δn = 8c1

√

log d
n .

Lemma 2.5. Assume A1, and let τ as in A1. Suppose that nτ2 ≥
4(642)c41a

2 log(2d). Then

P⋆

[

1

n

n
∑

i=1

∑

s∈D

V (s)(θs, X
(i)) ≥ τ‖θ‖22⋆ for all θ ∈ ∆

]

> 1− 1

d
.

Proof. Set

Qn(θ) =
1

n

n
∑

i=1

∑

s∈D

V (s)(θs, X
(i)).

We recall that the definition of V (s) is given in (2.2). It is worth noticing that

V (s)(θs, X
(i)) =

∑

ℓ∈Ds

∑

ℓ′∈Ds

θ(s, ℓ)θ(s, ℓ′)H(s)(ℓ, ℓ;X(i)),

with H(s)(ℓ, ℓ′;X(i)) as defined in (1.7). it is clear that E⋆

(

V (s)(θs, X
(1))
)

=

θ′sC
(s)θs. Hence for θ ∈ ∆, and using A1,

E (Qn(θ)) =
∑

s∈D

E

[

V (s)(θs, X
(1))
]

=
∑

s∈D

θ′sC
(s)θs ≥ 2τ‖θ‖22⋆.

Therefore,

Qn(θ) = (Qn(θ) − E⋆ (Qn(θ))) +E⋆ (Qn(θ)) ≥ (Qn(θ)− E⋆ (Qn(θ))) + 2τ‖θ‖22⋆.
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We conclude that if there exists θ ∈ ∆ such that Qn(θ) ≤ τ‖θ‖22⋆, then

|Qn(θ) − E⋆(Qn(θ))| ≥ τ‖θ‖22⋆. Set W
(i)
s,ℓ,ℓ′ = H(s)(ℓ, ℓ;X(i)). It is easy to see

that

|Qn(θ) − E⋆ (Qn(θ))|

≤ sup
s∈D

sup
ℓ,ℓ′∈Ds

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

V
(i)
s,ℓ,ℓ′ − E⋆

(

V
(i)
s,ℓ,ℓ′

))

∣

∣

∣

∣

∣

∑

s∈D

(

∑

ℓ∈Ds

|θ(s, ℓ)|
)2

≤ 4‖θ‖21 sup
s∈D

sup
ℓ,ℓ′∈Ds

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

V
(i)
s,ℓ,ℓ′ − E⋆

(

V
(i)
s,ℓ,ℓ′

))

∣

∣

∣

∣

∣

≤ 64a‖θ‖22,⋆ sup
s∈D

sup
ℓ,ℓ′∈Ds

∣

∣

∣

∣

∣

1

n

n
∑

i=1

(

V
(i)
s,ℓ,ℓ′ − E⋆

(

V
(i)
s,ℓ,ℓ′

))

∣

∣

∣

∣

∣

.

Therefore, if there exists a non-zero θ ∈ ∆ such that Qn(θ) ≤ τ‖θ‖22⋆, then

sup
s∈D

sup
ℓ,ℓ′∈Ds

∣

∣

∣

∣

∣

n
∑

i=1

(

V
(i)
s,ℓ,ℓ′ − E⋆

(

V
(i)
s,ℓ,ℓ′

))

∣

∣

∣

∣

∣

≥ nτ

64a
.

By Hoeffding’s inequality, the probability of this event is bounded by

2 exp

(

log(2d)− 2
(

nτ
64a

)2

4c41n

)

= 2 exp

(

log(2d)− nτ2

2c41a
2642

)

≤ 2 exp (− log(2d)) ,

using the condition nτ2 ≥ 4(642)c41a
2 log(2d). This proves the lemma.

2.1. Proof of Theorem 2.3

Take λn ≥ 4b+8c1
√

log d/n. Lemma 2.4 and Lemma 2.5 show that P(En(τ)) ≥
1− 3

d , provided nτ
2 > 4(642)c21a

2 log(2d). Since we have also assumed 48c1aλn <
τ , the theorem follows from Lemma 2.3.

Appendix

A.1. Convexity and strong convexity-type result

Let (X,A, ν) be a measure space, for some positive measure ν. Let B : X×R
p →

R be such that x 7→ B(x, θ) is measurable, and
∫

eB(x,θ)ν(dy) <∞ for all θ ∈ R
p.

Define

F (θ)
def
= log

∫

eB(x,θ)ν(dx), θ ∈ R
p.

We gather here two key results on F . We write | · | (resp. | · |1) to denote the
Euclidean norm (resp. ℓ1-norm) of Rp. Lemma A.2 relies on Lemma A.3 which
is taken from [1] Lemma 1.
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Lemma A.1. Suppose that the function θ 7→ B(x, θ) is convex for ν-almost all
x ∈ X. Then F is convex.

Proof. Set Z(θ) =
∫

eB(x,θ)ν(dy). For γ ∈ (0, 1),

γF (θ)+(1−γ)F (θ′) = log

[

Z(θ′)

(

∫

X

exp (B(x, θ) −B(x, θ′))
eB(x,θ′)

Z(θ′)
ν(dx)

)γ]

≥ log

[∫

X

exp (γB(x, θ) + (1− γ)B(x, θ′)) ν(dx)

]

≥ F (γθ + (1− γ)θ′).

Lemma A.2. Suppose that B(x, θ) = 〈θ, ψ(x)〉, for some bounded measurable

function ψ : X → R
d. Suppose also that ν is a finite measure, and set c

def
=

sup1≤i≤p supx,y∈X |ψi(x) − ψi(y)|. For all θ, u ∈ R
p,

F (θ + u)− F (θ) − 〈∇F (θ), u〉 ≥ Varθ (B(X,u))

2 + c|u|1
, (A.1)

where the variance is taken under the distribution µθ(dx) = eB(x,θ)ν(dx)/
∫

X
eB(x,θ)ν(dx).

Proof. The assumption of the lemma implies that for any θ ∈ R
p, F is differen-

tiable at θ and

∇F (θ) =
∫

ψ(x)e〈θ,ψ(x)〉ν(dx)
∫

e〈θ,ψ(x)〉ν(dx)
= Eθ (ψ(X)) ,

where the expectation is taken under the probability measure µθ. Fix θ, u ∈
R
p, and for t ∈ R, set g(t) = F (θ + tu) = log

∫

e〈θ+tu,ψ(x)〉ν(dx), so that
F (θ + u) − F (θ) − 〈∇F (θ), u〉 = g(1) − g(0) − g′(0). For t ∈ R, consider the
probability measure on X defined by

mt(dx) =
e〈θ+tu,ψ(x)〉µ(dx)
∫

e〈θ+tu,ψ(x)〉µ(dx)
,

and write Et for the expectation with respect to mt. Clearly for t = 0, mt = µθ.
Under the assumption of the lemma, g has derivatives at any order and we verify
that g′(t) = Et (〈u, ψ(X)〉), and

g′′(t) = Vart (〈u, ψ(X)〉) , and g′′′(t) = Et

[

(〈u, ψ(X)〉 − Et (〈u, ψ(X)〉))3
]

.

Therefore
|g′′′(t)| ≤ c|u|1g′′(t), t ∈ R.

Then it follows from Lemma A.3 that

F (θ + u)− F (θ)− 〈∇F (θ), u〉 ≥ e−c|u|1 + c|u|1 − 1

c2|u|21
Var0 (B(X,u)) .

Next notice that for all x ≥ 0 we have the inequality e−x + x − 1 ≥ x2

2+x . The
result follows.
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Lemma A.3. Let g : R → R be a 3 times differentiable function such that
|g′′′(t)| ≤ cg′′(t) for all t ∈ R, where c is a finite constant. Then

g′′(0)

c2
(

e−ct + ct− 1
)

≤ g(t)− g(0)− g′(0)t ≤ g′′(0)

c2
(

ect − ct− 1
)

, t ∈ R.

Proof. The proof follows essentially from Gronwall’s lemma. See [1] Lemma 1
for details.

A.2. A comparison lemma

Lemma A.4. Let (Y,A, ν) be a measure space where ν is a finite measure.
Let g1, g2, f1, f2 : Y → R be bounded measurable functions. For i ∈ {1, 2},
define Zi =

∫

egi(y)ν(dy). For t ∈ [0, 1], let ḡt(·) = tg2(·) + (1 − t)g1(·) and
Zt =

∫

Y
eḡt(y)ν(dy). Let f̄t : Y → R be such that f̄0 = f1 and f̄1 = f2. Suppose

that d
dt f̄t(y) exists for ν-almost all y ∈ Y and supt∈[0,1],y∈Y | ddt f̄t(y)| < ∞.

Then

∫

f2(y)e
g2(y)Z−1

g2 ν(dy) −
∫

f1(y)e
g1(y)Z−1

g1 ν(dy)

=

∫ 1

0

dt

∫

Y

(

d

dt
f̄t(y)

)

eḡt(y)Z−1
t ν(dy) +

∫ 1

0

dtCovt
(

f̄t(X), (g2 − g1)(X)
)

,

(A.2)

where Covt(U1(X), U2(X)) is the covariance between U1(X) and U2(X) assum-
ing that X ∼ eḡt(y)Z−1

t .

Proof. Under the stated assumptions, the function t →
∫

Y
f̄t(y)e

ḡt(y)Z−1
t ν(dy)

is differentiable under the integral sign and we have:

∫

f2(y)e
g2(y)Z−1

g2 ν(dy) −
∫

f1(y)e
g1(y)Z−1

g1 ν(dy)

=

∫ 1

0

d

dt

(∫

Y

f̄t(y)e
ḡt(y)Z−1

t ν(dy)

)

dt.

The identity follows by carrying the differentiation under the integral sign.

With the choice f̄t(y) = tf2(y) + (1− t)f1(y),

Covt
(

f̄t(X), (g2 − g1)(X)
)

= (1 − t)Covt (f1(X), (g2 − g1)(X)) + tCovt (f2(X), (g2 − g1)(X)) .

Hence

∣

∣Covt
(

f̄t(X), (g2 − g1)(X)
)∣

∣ ≤ osc(g2 − g1) ((1− t)osc(f1) + tosc(f2)) ,
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where osc(f)
def
= supx,y∈Y

|f(x) − f(y)| is the oscillation of f . We then obtain

∣

∣

∣

∣

∫

f2(y)e
g2(y)Z−1

g2 ν(dy) −
∫

f1(y)e
g1(y)Z−1

g1 ν(dy)

∣

∣

∣

∣

≤ ‖f2 − f1‖∞ +
1

2
osc(g2 − g1) (osc(f1) + osc(f2)) . (A.3)

We will also need the following particular case. For bounded measurable
function h1, h2 : Y → R, we can take fi(y) ≡ log

∫

ehi(u)ν(du), i = 1, 2,
f̄t(y) ≡ log

∫

eth2(u)+(1−t)h1(u)ν(du), and g1 = g2 in the lemma and get:

log

∫

eh2(y)ν(dy) − log

∫

eh1(y)ν(dy) =

∫ 1

0

dt

(

d

dt
f̄t

)

=

∫ 1

0

∫

Y

(h2(y)− h1(y))
eth2(u)+(1−t)h1(u)

∫

eth2(u)+(1−t)h1(u)ν(du)
ν(dy).

In particular,
∣

∣

∣

∣

log

∫

eh2(y)ν(dy)− log

∫

eh1(y)ν(dy)

∣

∣

∣

∣

≤ ‖h2 − h1‖∞. (A.4)
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