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Abstract: We are concerned with the false discovery rate (FDR) of the
linear step-up test ϕLSU considered by Benjamini and Hochberg (1995).
It is well known that ϕLSU controls the FDR at level m0q/m if the joint
distribution of p-values is multivariate totally positive of order 2. In this,
m denotes the total number of hypotheses, m0 the number of true null
hypotheses, and q the nominal FDR level. Under the assumption of an Ar-
chimedean p-value copula with completely monotone generator, we derive
a sharper upper bound for the FDR of ϕLSU as well as a non-trivial lower
bound. Application of the sharper upper bound to parametric subclasses of
Archimedean p-value copulae allows us to increase the power of ϕLSU by
pre-estimating the copula parameter and adjusting q. Based on the lower
bound, a sufficient condition is obtained under which the FDR of ϕLSU

is exactly equal to m0q/m, as in the case of stochastically independent p-
values. Finally, we deal with high-dimensional multiple test problems with
exchangeable test statistics by drawing a connection between infinite se-
quences of exchangeable p-values and Archimedean copulae with completely
monotone generators. Our theoretical results are applied to important cop-
ula families, including Clayton copulae and Gumbel-Hougaard copulae.
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1. Introduction

Control of the false discovery rate (FDR) has become a standard type I er-
ror criterion in large-scale multiple hypotheses testing. When the number m
of hypotheses to be tested simultaneously is of order 103 − 106, as it is preva-
lent in many modern applications from the life sciences like genetic association
analyses, gene expression studies, functional magnetic resonance imaging, or
brain-computer interfacing, it is typically infeasible to model or to estimate the
full joint distribution of the data. Hence, one is interested in generic procedures
that control the FDR under no or only qualitative assumptions regarding this
joint distribution. The still by far most popular multiple test for FDR control,
the linear step-up test ϕLSU (say) considered in the seminal work by Benjamini
and Hochberg (1995), operates on marginal p-values p1, . . . , pm. As shown by
Benjamini and Yekutieli (2001) and Sarkar (2002), ϕLSU is generically FDR-
controlling over the class of models that lead to positive dependency among the
random p-values P1, . . . , Pm in the sense of positive regression dependency on
subsets (PRDS). All p-value distributions which are multivariate totally positive
of order 2 (MTP2) are PRDS on any subset. Hence, often MTP2 distributions
are considered, because the MTP2 property is typically more tractable from the
mathematical point of view. Under the PRDS assumption, the FDR of ϕLSU is
upper-bounded by m0q/m, where m0 denotes the number of true null hypothe-
ses and q the nominal FDR level.

In this work, we extend these findings by deriving a sharper upper bound for
the FDR of ϕLSU in the case that the dependency structure among P1, . . . , Pm
can be expressed by an Archimedean copula. Although copula modeling has
become a very important topic in multivariate statistics, the application of cop-
ulae in multiple test problems has been discussed only rarely up to now (see,
e. g., Sarkar (2008a), Cerqueti, Costantini and Lupi (2012), Dickhaus and Gierl
(2013), Stange, Bodnar and Dickhaus (2013)). Our respective contributions are
threefold. First, we quantify the magnitude of conservativity (non-exhaustion
of the FDR level q) of ϕLSU in various copula models as a function of the cop-
ula parameter η. This allows for a gain in power in practice by pre-estimating
η and adjusting the nominal value of q. Second, we demonstrate by computer
simulations that the proposed upper bound leads to a robust procedure in the
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sense that the variance of this bound over repeated Monte Carlo simulations
is much smaller than the corresponding variance of the false discovery propor-
tion (FDP) of ϕLSU . This makes the utilization of our upper bound an attrac-
tive choice in practice, addressing the issue that the FDP is typically not well
concentrated around its mean, the FDR, if p-values are dependent. As a by-
product, we directly obtain that the FDR of ϕLSU is bounded by m0q/m under
the assumption of an Archimedean p-value copula, without explicitly relying
on the MTP2 property (which is fulfilled in the class of Archimedean p-value
copulae with completely monotone generator functions, cf. Müller and Scarsini
(2005)). Third, in an asymptotic setting (m → ∞), we show that the class
of Archimedean p-value copulae with completely monotone generators includes
certain models with p-values or test statistics, respectively, which are exchange-
able under null hypotheses, H0-exchangeable for short. Such H0-exchangeable
test statistics occur naturally in many multiple test problems, for instance in
many-to-one comparisons or if test statistics are given by jointly Studentized
means (cf. Finner, Dickhaus and Roters (2007)).

In addition, we also derive and discuss a lower FDR bound for ϕLSU in
terms of the generator of an Archimedean p-value copula. Application of this
lower bound leads to sufficient conditions under which the FDR of ϕLSU is
exactly equal to m0q/m, at least asymptotically as m tends to infinity and
m0/m converges to a fixed value. Hence, if the latter conditions are fulfilled, the
FDR behaviour of ϕLSU is under dependency the same as in the case of jointly
stochastically independent p-values.

The paper is organized as follows. In Section 2, we set up the necessary nota-
tion, define our class of statistical models for P1, . . . , Pm, and recall properties
and results around the FDR. Our main contributions are presented in Section 3,
dealing with FDR control of ϕLSU under the assumption of an Archimedean
copula. Special parametric copula families are studied in Section 4, where we
quantify the realized FDR of ϕLSU as a function of η. Section 5 outlines meth-
ods for pre-estimation of η. We conclude with a discussion in Section 6. Lengthy
proofs are deferred to Section 7.

2. Notation and preliminaries

All multiple test procedures considered in this work depend on the data only via
(realized) marginal p-values p1, . . . , pm and their ordered values p(1) ≤ p(2) ≤
· · · ≤ p(m). Hence, it suffices to model the distribution of the random vector

P = (P1, . . . , Pm)⊤ of p-values and we consider statistical models of the form
([0, 1]m,B([0, 1]m), (Pϑ,η : ϑ ∈ Θ, η ∈ Ξ)). In this, we assume that ϑ is the (main)
parameter of statistical interest and we identify the null hypotheses Hi : 1 ≤ i ≤
m with non-empty subsets of Θ, with corresponding alternatives Ki = Θ \Hi.
The null hypothesis Hi is called true if ϑ ∈ Hi and false otherwise. We let
I0 ≡ I0(ϑ) = {1 ≤ i ≤ m : ϑ ∈ Hi} denote the index set of true hypotheses
and m0 ≡ m0(ϑ) = |I0| the number of true nulls. Without loss of generality, we
will assume I0(ϑ) = {1, . . . ,m0} throughout the work. Analogously, we define
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I = {1, . . . ,m}, I1 ≡ I1(ϑ) = I \ I0 and m1 ≡ m1(ϑ) = |I1| = m − m0. The
intersection hypothesis H0 =

⋂m
i=1Hi will be referred to as the global (null)

hypothesis.
The parameter η is the copula parameter of the joint distribution of P, thus

representing the dependency structure among P1, . . . , Pm. Throughout the re-
mainder, we will consider different parameter spaces Ξ, depending on the degree
of detail of the respective distributional assumption on P. In Section 3, Ξ is
taken as an infinite-dimensional functional space, where we consider the class of
all Archimedean copulae which are indexed by the generator function ψ. Thus,
η is identified with ψ itself in Section 3 and we write ψ ∈ Ξ instead of η ∈ Ξ.
However, we sometimes restrict our attention to parametric subclasses of Archi-
medean copulae, for instance the class of Clayton copulae which can be indexed
by a one-dimensional copula parameter η ∈ R (see Section 4). In such cases,
Ξ ∋ η is of finite dimension and η uniquely determines the generator ψ in the
considered subclass. In any case, we will assume that η is a nuisance parameter
in the sense that it does not depend on ϑ and that the marginal distribution
of each Pi is invariant with respect to η. Therefore, to simplify notation, we
will write Pϑ instead of Pϑ,η if marginal p-value distributions are concerned.
Throughout the work, the p-values P1, . . . , Pm are assumed to be valid in the
sense that

∀1 ≤ i ≤ m : ∀ϑ ∈ Hi : ∀t ∈ [0, 1] : Pϑ(Pi ≤ t) ≤ t.

A (non-randomized) multiple test operating on p-values is a measurable map-
ping ϕ = (ϕi : 1 ≤ i ≤ m) : [0, 1]m → {0, 1}m the components of which have the
usual interpretation of a statistical test for Hi versusKi, 1 ≤ i ≤ m. For fixed ϕ,
we let Vm ≡ Vm(ϑ) = |{i ∈ I0(ϑ) : ϕi = 1}| denote the (random) number of false
rejections (type I errors) of ϕ and Rm ≡ Rm(ϑ) = |{i ∈ {1, . . . ,m} : ϕi = 1}|
the total number of rejections. The FDR under (ϑ, η) of ϕ is then defined by

FDRϑ,η(ϕ) = Eϑ,η

[

Vm
max(Rm, 1)

]

,

and ϕ is said to control the FDR at level q ∈ (0, 1) if supϑ∈Θ,η∈Ξ FDRϑ,η(ϕ) ≤
q. The random variable Vm/max(Rm, 1) is referred to as the false discovery
proportion of ϕ, FDPϑ,η(ϕ) for short. Notice that, although the trueness of
the null hypotheses is determined by ϑ alone, the FDR depends on ϑ and η,
because the dependency structure among the p-values typically influences the
distribution of ϕ when regarded as a statistic with values in {0, 1}m.

The linear step-up test ϕLSU , also referred to as Benjamini-Hochberg test or
the FDR procedure in the literature, rejects exactly hypotheses H(1), . . . , H(k),
where the bracketed indices correspond to the order of the p-values and k =
max{1 ≤ i ≤ m : p(i) ≤ qi} for linearly increasing critical values qi = iq/m. If k
does not exist, no hypothesis is rejected. The sharpest characterization of FDR
control of ϕLSU that we are aware of so far is given in the following theorem.

Theorem 2.1 (Finner, Dickhaus and Roters (2009)). Consider the following
assumptions.
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(D1) ∀(ϑ, η) ∈ Θ × Ξ : ∀j ∈ I : ∀i ∈ I0(ϑ): Pϑ,η(Rm ≥ j|Pi ≤ t) is non-
increasing in t ∈ (0, qj ].

(D2) ∀ϑ ∈ Θ : ∀i ∈ I0(ϑ) : Pi ∼ UNI([0, 1]).
(I1) ∀(ϑ, η) ∈ Θ× Ξ: The p-values (Pi : i ∈ I0(ϑ)) are independent and identi-

cally distributed (iid).
(I2) ∀(ϑ, η) ∈ Θ × Ξ: The random vectors (Pi : i ∈ I0(ϑ)) and (Pi : i ∈ I1(ϑ))

are stochastically independent.

Then, the following two assertions hold true.

Under (D1), ∀(ϑ, η) ∈ Θ× Ξ : FDRϑ,η(ϕ
LSU ) ≤

m0(ϑ)

m
q. (1)

Under (D2)–(I2), ∀(ϑ, η) ∈ Θ× Ξ : FDRϑ,η(ϕ
LSU ) =

m0(ϑ)

m
q. (2)

The crucial assumption (D1) is fulfilled for multivariate distributions of P
which are positively regression dependent on the subset I0 (PRDS on I0) in
the sense of Benjamini and Yekutieli (2001). In particular, (D1) holds true
if the joint distribution of P is MTP2. Weaker sufficient conditions for the
PRDS on I0 property have been provided by Benjamini and Yekutieli (2001).
To mention also a negative result, Guo and Rao (2008) have shown that there
exists a multivariate distribution of P such that the FDR of ϕLSU is equal to
m0q/m

∑m
j=1 j

−1, showing that ϕLSU is not generically FDR-controlling over
all possible joint distributions of P. The main purpose of the present work
(Section 3) is to derive a sharper upper bound on the right-hand side of (1),
assuming that Ξ is the space of completely monotone generator functions of
Archimedean copulae.

The linear step-up test belongs to the broad class of step-up-down (SUD)
multiple tests, introduced by Tamhane, Liu and Dunnett (1998).

Definition 2.1 (Step-up-down test of order λ in terms of p-values, cf. Finner,
Gontscharuk and Dickhaus, 2012). Let p(1) ≤ p(2) ≤ · · · ≤ p(m) denote the
ordered p-values for a multiple test problem. For a tuning parameter λ ∈
{1, . . . ,m} a step-up-down test ϕλ = (ϕ1, . . . , ϕm) (say) of order λ based on
some critical values α(1) ≤ · · · ≤ α(m) is defined as follows: If p(λ) ≤ α(λ),
set k = max{j ∈ {λ, . . . ,m} : p(i) ≤ α(i) for all i ∈ {λ, . . . , j}}, whereas for
p(λ) > α(λ), put k = sup{j ∈ {1, . . . , λ− 1} : p(j) ≤ α(j)} (sup ∅ = −∞). Define
ϕi = 1 if pi ≤ α(k) and ϕi = 0 otherwise (α(−∞) = −∞).

A step-up-down test of order λ = 1 or λ = m, respectively, is called step-
down (SD) or step-up (SU) test, respectively. If all critical values are identical,
we obtain a single-step test.

In case of ϕLSU , λ = m and α(i) = qi for all 1 ≤ i ≤ m. In general, the
choice of the order λ and of the critical values employed in an SUD test for
FDR control depends on model assumptions; cf. Table 5.1 of Dickhaus (2014).
Here, we can mention only a few references. Under independence assumptions
on P, FDR-controlling SD tests have been derived by Benjamini and Liu (1999)
and Gavrilov, Benjamini and Sarkar (2009), and FDR-controlling SUD tests
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with 1 < λ < m have been developed by Finner, Dickhaus and Roters (2009)
and Finner, Gontscharuk and Dickhaus (2012). Under weak dependence, an
adaptive version of ϕLSU was considered by Storey, Taylor and Siegmund (2004).
FDR-controlling SU tests under general dependence are due to Benjamini and
Yekutieli (2001), Blanchard and Roquain (2008, 2009), and Sarkar (2008b). FDR
control of single-step tests was considered by Sarkar (2006).

3. FDR control under Archimedean copula

In this section, it is assumed that the joint distribution of P is given by an
Archimedean copula such that

FP(p1, . . . , pm) = Pϑ,ψ(P1 ≤ p1, . . . , Pm ≤ pm) = ψ

(

m
∑

i=1

ψ−1 (FPi
(pi))

)

, (3)

where the function ψ(·) is the so-called copula generator and takes the role of η
in our general setup. In (3) and throughout the work, Fξ denotes the cumulative
distribution function (cdf) of the variate ξ. The generator ψ fully determines
the type of the Archimedean copula; see, e.g. Nelsen (2006). A necessary and
sufficient condition under which a function ψ : R+ → [0, 1] with ψ(0) = 1 and
limx→∞ ψ(x) = 0 can be used as a generator for an m-dimensional Archime-
dean copula is that ψ(·) is an m-altering function, that is, (−1)dψ(d)(·) ≥ 0
for d ∈ {1, 2, . . . ,m}, cf. Müller and Scarsini (2005). Throughout the present
work, the dimensionality m of the copula coincides with the number m of hy-
potheses to be tested. Furthermore, for sake of simplicity, we impose a slightly
stronger assumption on ψ. Namely, we assume that ψ is completely monotone,
i. e. (−1)dψ(d)(·) ≥ 0 for all d ∈ N.

A very useful property of an Archimedean copula with completely monotone
generator ψ is the stochastic representation of P. Namely, there exists a sequence
of jointly independent and identically UNI[0, 1]-distributed random variables
Y1, . . . , Ym such that (cf. Marshall and Olkin (1988), Section 5)

P = (Pi : 1 ≤ i ≤ m)
d
=
(

F−1
Pi

(

ψ
(

log
(

Y
−1/Z
i

)))

: 1 ≤ i ≤ m
)

, (4)

where the symbol
d
= denotes equality in distribution. The random variable Z

with Laplace transform t 7→ ψ(t) = E[exp(−tZ)] is independent of Y1, . . . , Ym,
and its distribution is determined by ψ only. Throughout the remainder, P and
E refer to the distribution of Z, for ease of presentation. The stochastic repre-
sentation (4) shows that the type of the Archimedean copula can equivalently
be expressed in terms of the random variable Z. Moreover, the p-values (Pi :
1 ≤ i ≤ m) are conditionally independent given Z = z. This second property
allows us to establish the following sharper upper bound for the FDR of ϕLSU .

Theorem 3.1 (Upper FDR bound). Let Z be as in (4) and let P(i) consist of

the (m− 1) remaining p-values obtained by dropping Pi from P so that P
(i)
(1) ≤
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P
(i)
(2) ≤ · · · ≤ P

(i)
(m−1). The random set D

(i)
k is then given by

D
(i)
k = {qk+1 ≤ P

(i)
(k), . . . , qm ≤ P

(i)
(m−1)}.

For a given value Z = z we define the function T : [0, 1]m → [0, 1]m by
T(p) = (T1(p1), . . . , Tm(pm))⊤ with Tj(pj) = exp(−zψ−1(FPj

(pj))) for p =
(p1, . . . , pm)⊤ ∈ [0, 1]m. This function transforms, for fixed Z = z, realizations

of P into realizations of Y = (Y1, . . . , Ym)⊤ given in (4). Let D
(i,z)
Y;k denote the

image of the set D
(i)
k under T for given Z = z and let Gik(z) = Pϑ,ψ(D

(i,z)
Y;k ).

Then it holds

∀ϑ ∈ Θ : FDRϑ,ψ(ϕ
LSU ) ≤

m0(ϑ)

m
q∆(m,ϑ, ψ),

where

∆(m,ϑ, ψ) = 1−
1

m0

m0
∑

i=1

m−1
∑

k=1

E

[(

exp
(

−Zψ−1(qk+1)
)

qk+1
−

exp
(

−Zψ−1(qk)
)

qk

)

× (Gik(Z)−Gik(z
∗
k))1[z∗

k
,∞)(Z)

]

(5)

with

z∗k =
log qk+1 − log qk

ψ−1(qk)− ψ−1(qk+1)
=

log (1 + 1/k)

ψ−1(kq/m)− ψ−1((k + 1)q/m)
(6)

and 1A denoting the indicator function of the set A.

Noticing that ∆(m,ϑ, ψ) is always smaller than or equal to one, we obtain
the following result as a straightforward corollary of Theorem 3.1.

Corollary 3.1. Let the copula of P = (P1, . . . , Pm)⊤ be an Archimedean copula,
where Pi is continuously distributed on [0, 1] for 1 ≤ i ≤ m. Then it holds that

∀ϑ ∈ Θ : ∀ψ ∈ Ξ : FDRϑ,ψ(ϕ
LSU ) ≤

m0(ϑ)

m
q,

where Ξ denotes the set of all completely monotone generator functions of Ar-
chimedean copulae.

The result of Corollary 3.1 is in line with the findings obtained by Benjamini
and Yekutieli (2001) and Sarkar (2002) that we have recalled in Section 1.
Namely, Müller and Scarsini (2005) pointed out that an Archimedean copula
possesses the MTP2 property if the copula generator ψ is completely monotone
and, hence, the FDR is controlled by ϕLSU in this case.

From the practical point of view, it is problematic that ∆(m,ϑ, ψ) depends on
the (main) parameter ϑ of statistical interest. In practice, one will therefore often
only be able to work with supϑ∈Θ{m0(ϑ)q∆(m,ϑ, ψ)/m}. Since ∆(m,ϑ, ψ) ≤ 1
for all ϑ ∈ Θ, the latter ϑ-free upper bound will typically still yield an improve-
ment over the “classical” upper bound. The issue of maximization of ∆(m, ·, ψ)
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over ϑ ∈ Θ is closely related to the challenging task of determining least favor-
able parameter configurations (LFCs) for the FDR. Under assumptions (I1)–(I2)
from Theorem 2.1, so-called Dirac-uniform (DU) configurations (cf., e. g., Blan-
chard et al. (2014) and references therein) are least favorable (provide upper
bounds) for the FDR of ϕLSU , see Benjamini and Yekutieli (2001). DU con-
figurations are such that (D2) holds true and the p-values (Pi : i ∈ I1(ϑ)) are
Pϑ-almost surely equal to 0 (Dirac-distributed with point mass 1 in 0). In the
case of dependent p-values, general LFC results for the FDR of ϕLSU are yet
lacking, but it is assumed that Dirac-uniform configurations yield upper FDR
bounds for ϕLSU also under dependence, at least for large m (cf., e. g., Finner,
Dickhaus and Roters (2007), Blanchard et al. (2014)). Troendle (2000) moti-
vated the consideration of Dirac-uniform configurations from the point of view
of consistency of marginal tests with respect to the sample size. Throughout
the remainder, we write DUm0,m instead of ϑ if ϑ is a DU configuration with
exactly m0 true null hypotheses.

Based on the aforementioned LFC considerations, Theorem 3.1 suggests to
find an adjusted nominal FDR level qadj. such that

m0(ϑ)

m
qadj.∆(m,DUm0,m, ψ) =

m0(ϑ)

m
q,

where q again stands for the target FDR level. This leads to

qadj. =
q

∆(m,DUm0,m, ψ)
. (7)

Since m0 = m0(ϑ) is an unknown quantity in practice, however, one will typi-
cally only be able to use

qadj.min =
q

max
mlower≤k≤m

∆(m,DUk,m, ψ)
, (8)

where mlower denotes a reasonable lower bound for m0.
Notice that (4) implies exchangeability of the p-values corresponding to the

true null hypotheses, provided that (D2) holds true. In particular, all (Pi : 1 ≤
i ≤ m0) are identically uniformly distributed on [0, 1] under (D2). This allows
for restricting attention to P1 in Theorem 3.1 and leads to the expression

∆(m,ϑ, ψ) = 1−
m−1
∑

k=1

E

[(

exp
(

−Zψ−1(qk+1)
)

qk+1
−

exp
(

−Zψ−1(qk)
)

qk

)

× (G1
k(Z)−G1

k(z
∗
k))1[z∗

k
,∞)(Z)

]

(9)

for an upper FDR bound of ϕLSU under (3) and (D2). Finally, we point out that
the expectations in (5) can in general not be calculated analytically. However,
they can easily be approximated by means of computer simulations. Namely,
the approximation is performed by generating random numbers which behave
like independent realizations of Z, which completely specifies the type of the
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Archimedean copula, evaluating the functions Gik at the generated values and
replacing the theoretical expectation of Z by the arithmetic mean of the resulting
values of the integrand in (5). Under DU configurations, evaluation of Gik can
efficiently be performed by means of recursive formulas for the joint cdf of the
order statistics of Y. We discuss these points in detail in Section 4.

Next, we provide a lower bound for the FDR of ϕLSU under the assumption
of an Archimedean copula.

Theorem 3.2 (Lower FDR bound). Let the copula of P = (P1, . . . , Pm)T be
an Archimedean copula with generator function ψ, where Pi is continuously
distributed on [0, 1] for i = 1, . . . ,m. Then it holds that

∀ϑ ∈ Θ : FDRϑ,ψ(ϕ
LSU ) ≥

m0q

m
γmin,

where

γmin ≡ γmin(ψ) =

∫

min
k∈{1,...,m}

{

exp
(

−zψ−1 (kq/m)
)

kq/m

}

dFZ(z). (10)

The proof of Theorem 3.2 is given in the appendix. For its application, it is
convenient to express γmin from (10) more explicitly.

Lemma 3.1. The quantity γmin ≡ γmin(ψ) from (10) can equivalently be ex-
pressed as

γmin = 1− E
[

(g
(

ψ−1(q/m)|Z
)

− g
(

ψ−1(q)|Z
)

)1[0,z∗](Z)
]

, (11)

where

g(x|z) =
exp (−zx)

ψ(x)
(12)

and

z∗ =
logm

ψ−1 (q/m)− ψ−1 (q)
. (13)

If the expectation in (11) cannot be calculated analytically, then it can easily
be approximated via a Monte Carlo simulation by using the expression on the
right-hand side of (11) and replacing the theoretical expectation by its pseudo-
sample analogue.

Corollary 3.2. Under the assumptions of Theorem 3.2, the following two as-
sertions hold true.

(a) If z∗ from (13) does not lie in the support of FZ , i. e., if FZ(z
∗) = 0 or

FZ(z
∗) = 1, then γmin = 1 and, consequently, FDRϑ,ψ(ϕ

LSU ) = m0q/m.
(b) Assume that π0 = limm→∞m0/m exists. If z∗ = z∗(m) is such that

FZ(z
∗(m)) → 0 or FZ(z

∗(m)) → 1 as m→ ∞, then

lim
m→∞

FDRϑ,ψ(ϕ
LSU ) = π0q.
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Part (b) of Corollary 3.2 motivates a deeper consideration of asymptotic or
high-dimensional multiple tests, i. e., the case of m → ∞, under our general
setup. This approach has already been discussed widely in previous literature.
For instance, it was called “asymptotic multiple test” by Genovese and Wasser-
man (2002). The case m→ ∞ was also considered by Finner and Roters (1998),
Storey (2002), Genovese and Wasserman (2004), Finner, Dickhaus and Roters
(2007, 2009), Jin and Cai (2007), Sun and Cai (2007), and Cai and Jin (2010),
among others. Very interesting connections can be drawn between Archimedean
p-value copulae and infinite sequences of H0-exchangeable p-values defined as
follows.

Definition 3.1 (H0-exchangeability). Let (Pi)i∈N be an infinite sequence of
p-values which are absolutely continuous with marginal cdf Fi of Pi under ϑ.
Then we call (Pi)i∈N an H0-exchangeable sequence of p-values if F1(P1), . . . ,
Fm(Pm), . . . are exchangeable random variables and each Pi is uniformly dis-
tributed on [0, 1] under the respective null hypothesis Hi.

Notice that, for an H0-exchangeable sequence (Pi)i∈N, Fi = id. for all i
under the global hypothesis H0. Consequently, P1, . . . , Pm, . . . themselves are
exchangeable under H0. Sequences of H0-exchangeable p-values have already
been investigated by Finner and Roters (1998) and Finner, Dickhaus and Roters
(2007) in special settings. Moreover, the assumption of exchangeability is also
pivotal in other areas of statistics, let us mention Bayesian analysis and validity
of permutation tests. The problem of exchangeability in population genetics has
been discussed by Kingman (1978).

Assuming that (Pi)i∈N is an H0-exchangeable sequence, let P̃i = Fi(Pi),
i ∈ N, for ease of notation. Because P̃1, . . . , P̃m, . . . is an exchangeable sequence
of random variables, it exists a random variable Z with distribution function
FZ such that the joint distribution of P̃1, . . . , P̃m is for any fixed m ∈ N given
by

FP̃1,...,P̃m
(p1, . . . , pm) =

∫

FP̃1|Z=z(p1)× · · · × FP̃m|Z=z(pm)dFZ (z), (14)

see Olshen (1974) and equation (3.1) of Kingman (1978). Moreover, assuming
that Z ∈ (0,∞) with probability 1, we obtain for any i ∈ N from Marshall and
Olkin (1988), p. 834, that

pi = FP̃i
(pi) =

∫

exp
(

−zψ−1(pi)
)

dFZ(z),

where ψ denotes the Laplace transform of Z, i. e., ψ(t) = E[exp(−tZ)].
Theorem 3.3 establishes a connection between the finite-dimensional marginal

distributions of H0-exchangeable p-value sequences and Archimedean copulae.

Theorem 3.3. Assume that the elements in the infinite sequence (Pi)i∈N are
absolutely continuous and H0-exchangeable. Furthermore, let the following two
assumptions be valid.
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(i) The random variable Z from (14) takes values in (0,∞) with probability 1.
(ii) It holds

FP̃i|Z=z(pi) = exp
(

−zψ−1(pi)
)

, z ∈ (0,∞). (15)

Then, for any m,

p = (p1, . . . , pm)⊤ 7→ ψ

(

m
∑

i=1

ψ−1(pi)

)

is a copula of P1, . . . , Pm, where ψ(t) = E[exp(−tZ)].

The final result of this section is an immediate consequence of Theorem 3.3
and Corollary 3.1.

Corollary 3.3. Under the assumptions of Theorem 3.3, it holds:

a) Anym-dimensional marginal distribution of the sequence (Pi)i∈N possesses
the MTP2 property, m ≥ 2.

b) The linear step-up test ϕLSU , applied to p1, . . . , pm, controls the FDR at
level q.

4. Examples: Parametric copula families

In this section, we apply the theoretical results of Section 3 to several parametric
families of Archimedean copulae. We present computer simulations to validate
our findings. To this end, for convenience, we consider the following model for
the p-values (Pi : 1 ≤ i ≤ m).

Pi =

{

Ui for i = 1, . . . ,m0,
Φ
(

µi +Φ−1(Ui)
)

for i = m0 + 1, . . . ,m,
(16)

where U = (U1, . . . , Um)
⊤ denotes a vector of marginally uniformly distributed

random variables following the corresponding Archimedean copula, and Φ de-
notes the cdf of the univariate standard normal distribution. These p-values
correspond to marginal test problems

Hi : µi = 0 versus Ki : µi < 0 for i = 1, . . . ,m,

where µi denotes the mean of a marginally normally distributed test statistic

Ti
d
= µi + Φ−1(Ui) with unit variance. It is noted that the p-values from (16)

satisfy condition (D2). Moreover, the joint distribution of P = (P1, . . . , Pm)⊤

is determined by the same Archimedean copula as for U, because each Pi is an
isotonic transformation of Ui. The parameter ϑ is given by (µ1, . . . , µm)⊤. Notice
that DUm0,m is a limiting case of model (16) for µi = −∞ for allm0+1 ≤ i ≤ m.

Below, we apply the results of Section 3 to the independence copula, the
Clayton copula, and the Gumbel-Hougaard copula. We assess how strongly the
sharper upper bound for the FDR of ϕLSU derived in Theorem 3.1 deviates from
the traditional upper bound m0q/m. Furthermore, we investigate the difference



2218 T. Bodnar and T. Dickhaus

between this sharper upper bound and the true value of the FDR of ϕLSU .
Finally, we compare the empirical power of ϕLSU and its improved version
where q is replaced by qadj. from (7).

In case of the Clayton copula and the Gumbel-Hougaard copula, results are
obtained by means of Monte Carlo simulations. To this end, pseudo-random
vectors which behave like independent relizations of U have been generated by
utilizing the R functions rcopula.clayton and rcopula.gumbel, respectively,
from the package QRM. The values of the µi have been drawn independently from
UNI[−4.5,−2] in each Monte Carlo repetition, because ϕLSU has non-trivial
power in this regime; see, e. g., Section 4 of Dickhaus (2013).

4.1. Independence copula

The generator of the independence copula is given by ψ(x) = exp(−x). Substi-
tuting ψ−1(x) = − ln(x) in (10), we get

γmin = min
k∈{1,...,m}

{

exp (ln (kq/m))

kq/m

}

= 1

and, hence,

∀ϑ ∈ Θ : FDRϑ,ψ(ϕ
LSU ) =

m0(ϑ)

m
q

under the assumption of independence. This result is in line with the previous
finding reported in (2).

4.2. Clayton copula

The generator of the Clayton copula is given by

ψ(x) = (1 + ηx)−1/η, η ∈ (0,∞),

leading to ψ−1(x) = (x−η − 1)/η and to the probability density function (pdf)

fZ(z) =
1

η
fΓ(1/η,1) (z/η) =

1

Γ (1/η)
η−1/ηz1/η−1 exp (−z/η)

of Z, where Γ denotes Euler’s gamma function and fΓ(α,β) the pdf of the gamma
distribution with shape parameter α ∈ (0,∞) and scale parameter β ∈ (0,∞).
For the Clayton copula, z∗ is given by

z∗ =
logm

η−1
(

(q/m)−η − q−η
) =

η logm

(m/q)
η − (1/q)

η .

In Figure 1, we plot FZ(z
∗) as a function of η for m = 20 and q = 0.05. It

is worth mentioning that the Clayton copula converges to the independence
copula for η → 0. In this case we get z∗ → 1 and fZ(z

∗) tends to the Dirac



Copula-based FDR control 2219

a) m = 20 b) m = 200

η

F
Z
(z

 *
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

η

F
Z
(z

 *
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1

η

F
Z
(z

 *
)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
.0
0
2
7

0
.0
0
2
8

0
.0
0
2
9

0
.0
0
3

0
.0
0
3
1

0
.0
0
3
2

0
.0
0
3
3

0
.0
0
3
4

η

F
Z
(z

 *
)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
.0
0
0
2
8

3
e
−
0
4

0
.0
0
0
3
2

0
.0
0
0
3
4

0
.0
0
0
3
6

0
.0
0
0
3
8

Fig 1. The value FZ(z∗) as a function of η for m ∈ {20, 200} and q = 0.05 under the
assumption of a Clayton copula. The graphs in the lower panel are zoomed.

delta function concentrated in 1. As a result, we observe that FZ(z
∗) → 1 as

η → 0 and the FDR of ϕLSU approachesm0q/m. As η increases, FZ(z
∗) steeply

decreases and takes values very close to zero for large values of η. Consequently,
it is expected that the FDR of ϕLSU is close to m0q/m for large values of η,
too. For η of moderate size, however, the FDR of ϕLSU can be much smaller
than m0q/m. This is shown in Figure 2 below and discussed in detail there.

The quantity γmin for the Clayton copula is calculated by

γmin = 1− η−1

∫ z∗

0

exp
(

−zψ−1 (q/m)
)

q/m
fΓ(1/η,1) (z/η)dz

+ η−1

∫ z∗

0

exp
(

−zψ−1 (q)
)

q
fΓ(1/η,1) (z/η)dz

= 1− IC1 + IC2 ,

where

IC1 =
η−1/η

Γ (1/η)

m

q

∫ z∗

0

z1/η−1 exp

(

−
z

η

((

m

q

)η

− 1

)

−
z

η

)

dz

=
η−1/η

Γ (1/η)

m

q

∫ z∗

0

z1/η−1 exp

(

−
z

η

(

m

q

)η)

dz



2220 T. Bodnar and T. Dickhaus

a) m = 20 b) m = 200

η

F
D
R

FDR, Clayton Copula

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
0
.0
1

0
.0
2

0
.0
3

0
.0
4

Upper Bound

Sharper Upper Bound

Lower Bound

Simulated Values

η

F
D
R

FDR, Clayton Copula

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0
0
.0
1

0
.0
2

0
.0
3

0
.0
4

Upper Bound

Sharper Upper Bound

Lower Bound

Simulated Values

Fig 2. Lower bound (dashed blue line), upper bound (dashed red line), the sharper upper bound
(solid black line), and simulated values of the FDR of ϕLSU (solid green line) as functions of
η for a Clayton copula. We put m ∈ {20, 200}, q = 0.05, and m0 = 0.8m. Simulated values are
based on 105 independent pseudo realizations of Z. The sharper upper bound was calculated
under DUm0,m, while simulated data for the solid green line follow the model specified in (16).

= FΓ(1/η,η−1(m/q)η)(z
∗) = FΓ(1/η,1)(η

−1(m/q)ηz∗)

= FΓ(1/η,1)

(

mη lnm

mη − 1

)

and, similarly,

IC2 = FΓ(1/η,η−1(1/q)η)(z
∗) = FΓ(1/η,1)(η

−1(1/q)ηz∗) = FΓ(1/η,1)

(

lnm

mη − 1

)

.

Hence, from Theorem 3.2 we get for all ϑ ∈ Θ that

FDRϑ,η(ϕ
LSU ) ≥

m0q

m

(

1 + FΓ(1/η,1)

(

lnm

mη − 1

)

− FΓ(1/η,1)

(

mη lnm

mη − 1

))

.

Next, we discuss the sharper upper bound for the FDR in the case of Clayton
copulae in detail. As outlined in the discussion around Theorem 3.1, we consider
DU configurations in connection with maximization of ∆(m, ·, η) over ϑ ∈ Θ.
Due to the Dirac-distribution in 0 of the m1 p-values corresponding to false
nulls, the sharper upper bound for the FDR of ϕLSU is then obtained by means
of (see (9))

∆(m,DUm0,m, η) = 1−
m−1
∑

k=m1+1

E

[(

exp
(

−Zψ−1(qk+1)
)

qk+1
−

exp
(

−Zψ−1(qk)
)

qk

)

×
(

G1
k(Z)−G1

k(z
∗
k)
)

1[z∗
k
,∞)(Z)

]

,

where z∗k is given in (6). The random set D
(1,z)
Y;k the probability of which is given

by G1
k(z) can under DUm0,m equivalently be expressed as

D
(1,z)
Y;k =

{

exp
(

−zψ−1 (qk+1)
)

≤ Y
(1)
(k) , . . . , exp

(

−zψ−1 (qm)
)

≤ Y
(1)
(m−1)

}

.
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This follows from the fact that Y
(1)
(k) , . . . , Y

(1)
(m−1) almost surely correspond to

p-values associated with true null hypotheses, i. e.,

F
P

(1)

(k)

(x) = · · · = F
P

(1)

(m−1)

(x) = x.

Moreover, since each of the Y
(1)
(k) , . . . , Y

(1)
(m−1) is obtained by the same iso-

tonic transformation from the corresponding element in the sequence P
(1)
(k) , . . . ,

P
(1)
(m−1), we get that Y

(1)
(k) , . . . , Y

(1)
(m−1) are the order statistics of independent

and identically UNI[0, 1]-distributed random variables. Hence, the probabilities

G1
k(z) = Pϑ,η(D

(1,z)
Y;k ) for k ∈ {m1 + 1, . . . ,m− 1} can be calculated recursively,

for instance by making use of Bolshev’s recursion (see, e. g., Shorack and Wellner
(1986), p. 366).

In general, Bolshev’s recursion is defined in the following way. Let 0 ≤ a1 ≤
a2 ≤ · · · ≤ an ≤ 1 be real constants and let U(1) ≤ U(2) ≤ · · · ≤ U(n) be the order
statistics of independent and identically UNI[0, 1]-distributed random variables.
We let P̄n(a1, . . . , an) = P (a1 ≤ U(1), . . . , an ≤ U(n)). Then, the probability
P̄n(a1, . . . , an) is calculated recursively by

P̄n(a1, . . . , an) = 1−
n
∑

j=1

(

n

j

)

ajjP̄n−j(aj+1, . . . , an). (17)

Application of (17) with n = m0 − 1 and

aj =

{

0 for j ∈ {1, . . . , k −m1 − 1}
exp

(

−zψ−1 (qj+m1+1)
)

for j ∈ {k −m1, . . . ,m0 − 1}

for k ∈ {m1+1, . . . ,m− 1} as well as numerical integration with respect to the
distribution of Z over [z∗k,∞] lead to a numerical approximation of the sharper
upper bound for the FDR of ϕLSU under Dirac-uniform configurations.

In Figure 2 we present the lower bound (dashed blue line), the upper bound
(dashed red line), the sharper upper bound (solid black line), and the simulated
values of the FDR of ϕLSU (solid green line) as a function of the parameter
η ∈ [0, 20] of a Clayton copula. Larger values for η are not considered, since it is
straightforward to show that FDRϑ,η(ϕ

LSU ) tends to m0q/m when η → ∞. In
this limiting case the p-values are totally dependent, such that effectively only
one single test is performed; cf. the discussion around Figures 2 and 3 in Finner,
Dickhaus and Roters (2007). This is also in line with the discussion around our
Figure 1. We put m ∈ {20, 200}, q = 0.05, and m0 = 0.8m. The p-values for
deriving the solid green lines have been generated following (16). The simulated
values are obtained by using 105 independent repetitions. We observe that the
FDR of ϕLSU starts at m0q/m = 0.04 for η = 0 and decreases to a minimum
of approximately 0.025 at η ≈ 1.6 for m = 20 and to 0.022 at η ≈ 1.4 for
m = 200. This value is much smaller than the nominal level q, offering some
room for improvement of ϕLSU for a broad range of values of η. After reaching
its minimum, the FDR of ϕLSU increases and tends to 0.04 as η increases. This
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Fig 3. Average power for ϕLSU (solid red line) and the improved ϕLSU (solid black line) as
functions of η for a Clayton copula under the model specified in (16). We put m ∈ {20, 200},
q = 0.05, and m0 = 0.8m. Simulated values are based on 105 independent pseudo realizations
of Z.

behavior of the FDR of ϕLSU is expected from the values of FZ(z
∗), as discussed

around Figure 1.
In contrast to the “classical” upper bound, the sharper upper bound repro-

duces the behavior of the simulated FDR values very well. It provides a good
approximation of the true values of the FDR of ϕLSU for all considered values
of η. In particular, it is much smaller than the “classical” upper bound for mod-
erate values of η. Consequently, application of the sharper upper bound can be
used to improve the power of the multiple testing procedure by adjusting the
nominal value of q depending on η. This is quantified in Figure 3 where the
average power calculated under (16) is plotted for different values of η in case
of ϕLSU and its improved version employing the adjusted nominal FDR level
qadj. from (7). The average power considered here is defined as the empirical
counterpart of

powerϑ,η(ϕ
LSU ) =

Eϑ,η[Rm − Vm]

max(m1, 1)

over the Monte Carlo repetitions; cf. Definition 1.4 in Dickhaus (2014). In con-
trast to the average power of ϕLSU which fluctuates slightly around 0.77, the
average power of the improved ϕLSU increases to 0.81 for η ≈ 2 and then slowly
drops as η increases.

It is also remarkable that the difference between the sharper upper bound and
the corresponding simulated FDR-values is not large. In contrast, the empirical
standard deviations of the sharper upper bound (over repeated simulations) are
about five times smaller than the corresponding ones for the simulated values
of the FDP of ϕLSU , see Figure 4. While these standard deviations are always
smaller than 0.03 for the sharper upper bound, they are around 0.15 for almost
all of the considered values of η in case of the simulated FDP-values. Finally, we
note that the lower bound seems not to be informative in this particular model
class. It is close to zero even for moderate values of η.
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Fig 4. Empirical standard deviations of the sharper upper bound (solid black line), and of
FDPϑ,η(ϕ

LSU ) (solid red line) as functions of the parameter η of a Clayton copula. We put
m ∈ {20, 200}, q = 0.05, and m0 = 0.8m. Simulated values are based on 105 independent
pseudo realizations of Z.

4.3. Gumbel-Hougaard copula

The generator of the Gumbel-Hougaard copula is given by

ψ(x) = exp
(

−x1/η
)

, η ≥ 1, (18)

which leads to ψ−1(x) = (− lnx)
η
and a stochastic representation

Z
d
=

(

cos

(

π

2η

))η

Z0, η > 1, (19)

for Z, where the random variable Z0 has a stable distribution with index of
stability 1/η and unit skewness. The cdf of Z0 is given by (cf. Chambers, Mallows
and Stuck (1976), p. 341)

FZ0(z) =
1

π

∫ π

0

exp
(

−z−1/(η−1)a(v)
)

dv with

a(v) =
sin ((1− η)v/η) (sin(v/η))1/(η−1)

(sin v)η/(η−1)
, v ∈ (0, π).

Although (19) in connection with FZ0 characterizes the distribution of Z com-
pletely, the integral representation of FZ0 may induce numerical issues with
respect to implementation. Somewhat more convenient from this perspective is
the following result. Namely, Kanter (1975) obtained a stochastic representation
of Z0, given by

Z0 = (a(U)/W )η−1, (20)

where U and W are stochastically independent, W is standard exponentially
distributed and U ∼ UNI(0, π). We used (20) for simulating Z0 and, conse-
quently, Z.
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Fig 5. The value FZ(z∗) as a function of η for m ∈ {20, 200} and q = 0.05 under the
assumption of a Gumbel-Hougaard copula. The graph was obtained via simulations by gen-
erating 106 independent pseudo realizations of Z according to (19) and (20). The graphs in
the lower panel are zoomed.

For the Gumbel-Hougaard copula we get

z∗ =
lnm

(

− ln q
m

)η
− (− ln q)η

=
lnm

(

ln m
q

)η

−
(

ln 1
q

)η .

In Figure 5, we plot FZ(z
∗) as a function of η for m = 20 and q = 0.05.

A similar behavior as in the case of the Clayton copula is present. If η = 1 then
the Gumbel-Hougaard copula coincides with the independence copula. Hence,
FZ(z

∗) = 1 and, consequently, the FDR of ϕLSU is equal to m0q/m in this
case. As η increases, FZ(z

∗) decreases and it approaches 0 for larger values of η.
Hence, FDRϑ,η(ϕ

LSU ) tends to m0q/m as η becomes considerably large. For
moderate values of η, FDRϑ,η(ϕ

LSU ) can again be much smaller than m0q/m,
in analogy to the situation in models with Clayton copulae.

Recall from (11) that

γmin = 1− E
[

g1(Z)1[0,z∗](Z)
]

, (21)

where g1(Z) = g(ψ−1(q/m)|Z) − g(ψ−1(q)|Z). For the Gumbel-Hougaard cop-
ula, we obtain
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Fig 6. Lower bound (dashed blue line), upper bound (dashed red line), the sharper upper bound
(solid black line), and simulated values of the FDR of ϕLSU (solid green line) as functions
of the parameter η of a Gumbel-Hougaard copula. We put m ∈ {20, 200}, q = 0.05, and
m0 = 0.8m. Simulated values are based on 105 independent pseudo realizations of Z. The
sharper upper bound was calculated under DUm0,m, while simulated data for the solid green
line follow the model specified in (16).

g1(Z) =
exp

(

−Zψ−1 (q/m)
)

q/m
−

exp
(

−Zψ−1 (q)
)

q

=
exp

(

−Z
(

ln m
q

)η)

q/m
−

exp
(

−Z
(

ln 1
q

)η)

q
.

The expectation in (21) cannot be calculated analytically. However, it can easily
be approximated with Monte Carlo simulations by applying the stochastic rep-
resentations (19) and (20) for any fixed η > 1. This leads to a numerical value
on the left-hand side of the chain of inequalities

m0q

m

(

1− E
[

g1(Z)1[0,z∗](Z)
])

≤ FDRϑ,η(ϕ
LSU ) ≤

m0q

m
. (22)

The sharper upper bound from Theorem 3.1 can be calculated by using Bol-
shev’s recursion similarly to the discussion around (17), but here with ψ as in
(18). Figure 6 displays the lower bound (dashed blue line), the upper bound
(dashed red line), the sharper upper bound (solid black line), and simulated
values of FDRϑ,η(ϕ

LSU ) (solid green line) as functions of η. Again, we choose
m ∈ {20, 200}, q = 0.05, and m0 = 0.8m. The p-values are generated according
to model (16), as in the case of Clayton copulae. The simulated values were
obtained by generating 105 independent pseudo realizations of Z.

Similarly to the case of the Clayton copula, the curve of simulated FDR
values has a U -shape. It starts at m0q/m = 0.04 and drops to its minimum of
approximately 0.026 for values of η around 8.0 in case of m = 20 and to 0.023
at η around 8.4 in case of m = 200. For such values of η, the green curve is
considerably below the classical upper bound of 0.04. In contrast, the sharper
upper bound gives a much tighter approximation of the simulated FDR values
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Fig 7. Average power for ϕLSU (solid red line) and the improved ϕLSU (solid black line)
as functions of η of a Gumbel-Hougaard copula under the model specified in (16). We put
m ∈ {20, 200}, q = 0.05, and m0 = 0.8m. Simulated values are based on 105 independent
pseudo realizations of Z.

in such cases and reproduces the U -shape over the entire range of values for
the parameter η of the Gumbel-Hougaard copula. As a result, its application
can be used to improve power by adjusting the nominal value of q and thereby
increasing the probability to detect false null hypotheses. In Figure 7, the average
power of ϕLSU and its improved version are compared under model (16). As in
the case of Clayton copulae, an improvement of about 3% in average power is
present for both values of m. Moreover, it is again noted that the empirical
standard deviations of the sharper upper bound are much smaller than those
of the simulated values of the FDP (see Figure 8). The lower bound from (22)
(corresponding to the dashed blue curve in Figure 6) has been obtained by
approximating the expectation in (21) via simulations. As in the case of the
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Fig 8. Empirical standard deviations of the sharper upper bound (solid black line), and of
FDPϑ,η(ϕ

LSU ) (solid red line) as functions of the parameter η of a Gumbel-Hougaard cop-
ula. We put m ∈ {20, 200}, q = 0.05, and m0 = 0.8m. Simulated values are based on 105

independent pseudo realizations of Z.
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Clayton copula, the lower bound is not too informative for the model class that
we have considered here.

5. Empirical copula calibration

In the previous section we studied the influence of the copula parameter η on
the FDR of ϕLSU under several parametric families of Archimedean copulae.
It turned out that adapting ϕLSU to the degree of dependency in the data
by adjusting the nominal value of q based on the sharper upper bound from
Theorem 3.1 is a promising idea, because the unadjusted procedure may lead to
a considerable non-exhaustion of q, cf. Figures 2 and 6. Due to the decision rule
of a step-up test, this also entails suboptimal power properties of ϕLSU when
applied “as is” to models with Archimedean p-value copulae.

In practice, however, often the copula parameter itself is an unknown quan-
tity. Hence, the outlined adaptation of q typically requires some kind of pre-
estimation of η before multiple testing is performed. Although this is not in the
main focus of the present work, we therefore outline possibilities for estimating
η and for quantifying the uncertainty of the estimation in this section.

One class of procedures relies on resampling, namely via the parametric boot-
strap or via permutation techniques if H1, . . . , Hm correspond to marginal two-
sample problems. Pollard and van der Laan (2004) provided an extensive com-
parison of both approaches and argued that the permutation method reproduces
the correct null distribution only under some conditions. However, if these con-
ditions are met, the permutation approach is often superior to bootstrapping
(see also Westfall and Young (1993) and Meinshausen, Maathuis and Bühlmann
(2011)). Furthermore, it is essential to keep in mind that both bootstrap and
permutation-based methods estimate the distribution of the vector P under the
global null hypothesis H0. Hence, the assumption that η does not depend on
ϑ is an essential prerequisite for the applicability of such resampling methods
for estimating η. Notice that the latter assumption is an informal description
of the “subset pivotality” condition introduced by Westfall and Young (1993).
The resampling methods developed by Dudoit and van der Laan (2008) can
dispense with subset pivotality in special model classes, but for the particular
task of estimating the copula parameter this assumption seems indispensable.

Estimation of η and uncertainty quantification of the estimation based on
resampling is generally performed by applying a suitable estimator η̂ to the re-
(pseudo) samples. In the context of Archimedean copulae the two most widely
applied estimation procedures are the maximum likelihood method (see, e. g.
Joe (2005), Hofert, Mächler and McNeil (2012)) and the method of moments
(e. g., the “realized copula” approach by Fengler and Okhrin (2012)).

Hofert, Mächler and McNeil (2012) considered the estimation of the parame-
ter of an Archimedean copula with known margins by the maximum likelihood
approach. To this end, they derived analytic expressions for the derivatives of
the copula generator for several families of Archimedean copulae, as well as
formulas for the corresponding score functions. Using these results and assum-
ing a regular model, an elliptical asymptotic confidence region for the copula
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parameter η can be obtained by applying general limit theorems for maximum
likelihood estimators (see Hofert, Mächler and McNeil (2012) for details and the
calculations for different types of Archimedean copulae).

In the context of the method of moments, Kendall’s tau is often considered.
For a bivariate Archimedean copula with generator ψ of marginally UNI[0, 1]-
distributed variates P1 and P2, it is given by

τP1,P2 = 4

∫ 1

0

∫ 1

0

F(P1,P2)(u, v)dF(P1,P2)(u, v)− 1

= 1− 4

∫ ψ−1(0)

0

t[ψ′(t)]2dt, (23)

cf. McNeil and Nešlehová (2009).
The right-hand side of (23) can analytically be calculated for some families

of Archimedean copulae. For instance, for a Clayton copula with parameter η
it is given by τ(η) = η/(2 + η), while it is equal to τ(η) = (η − 1)/η for a
Gumbel-Hougaard copula with parameter η (see Nelsen (2006), p. 163–164).
Based on such moment equations, Fengler and Okhrin (2012) suggested the “re-
alized copula” method for empirical calibration of a one-dimensional parameter
η of an m-variate Archimedean copula. The method considers all m(m − 1)/2
distinct pairs of the m underlying random variables, replaces the population
versions of τ(η) by the corresponding sample analogues, and finally aggregates
the resulting m(m − 1)/2 estimates in an appropriate manner. More specifi-
cally, consider the functions gij(η) = τ̂ij − τ(η) for 1 ≤ i < j ≤ m and define
g(η) = (gij(η) : 1 ≤ i < j ≤ m)⊤, where τ̂ij is the sample estimator of Kendall’s
tau (see, e. g., Nelsen (2006), Section 5.1.1). The resulting estimator for η is
then obtained by

η̂ = argmin
η

{

g(η)⊤Wg(η)
}

for an appropriate weight matrix W ∈ R
(m2 )×(

m
2 ). An application of the realized

copula method to resampled p-values generated by permutations in the context
of multiple testing for differential gene expression has been demonstrated by
Dickhaus and Gierl (2013). Multivariate extensions of Kendall’s tau and central
limit theorems for the sample versions have been derived by Genest, Nešlehová
and Ben Ghorbal (2011). These results can be used for uncertainty quantification
of the moment estimation of η by constructing asymptotic confidence regions.
For more details about various estimation procedures for copula parameters
and their applications to multiple test problems we defer the reader to Stange,
Bodnar and Dickhaus (2013).

6. Discussion

We have derived a sharper upper bound for the FDR of ϕLSU in models with
Archimedean copulae. This bound can be used to prove that ϕLSU controls the
FDR for this type of multivariate p-value distributions, a result which is in line
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with the findings of Benjamini and Yekutieli (2001) and Sarkar (2002). Since cer-
tain models with H0-exchangeable p-values fall into this class at least asymptot-
ically (see Theorem 3.3), our findings complement those of Finner, Dickhaus and
Roters (2007) who investigated infinite sequences of H0-exchangeable p-values
in Gaussian models. While our general results in Section 3 qualitatively extend
the theory, our results in Section 4 regarding Clayton and Gumbel-Hougaard
copulae are quantitatively very much in line with the findings for Gaussian and
t-copulae reported by Finner, Dickhaus and Roters (2007). Namely, over a broad
class of models with dependent p-values, the FDR of ϕLSU as a function of the
dependency parameter has a U -shape and becomes smallest for medium strength
of dependency among the p-values. This behavior can be exploited by adjusting
q in order to adapt to η. We have presented an explicit adaptation scheme based
on the upper bound from Theorem 3.1. To the best of our knowledge, this kind
of adaptation is novel to FDR theory.

Recall that we have calibrated the improved version of ϕLSU by utilizing qadj.

from (7) in Section 4. This choice was motivated by our goal to demonstrate
how much gain in power is in principle possible by adjusting ϕLSU for the
dependency structure among p-values. In practice, however, one has to resort to
qadj.min from (8). For its calculation, a reasonable lower bound for m0 is required,
because it is easy to show that ∆(m,DU1,m, ψ) = 1. One way to obtain such
a lower bound is to consider an additional adaptation to m0(ϑ), for instance
by pre-estimation as considered, for example, by Schweder and Spjøtvoll (1982)
and Storey, Taylor and Siegmund (2004). Future research shall therefore aim at
analyzing properties of their (and further) estimators under copula dependency.

It is beyond the scope of the present work to investigate which parametric
class of copulae is appropriate for which kind of real-life application. Relatedly,
the problem of model misspecification (i. e., quantification of the approximation
error if the true model does not belong to the class with Archimedean p-value
copulae and is approximated by the (in some suitable norm) closest member
of this class) could not be addressed here, but is a challenging topic for future
research. One particularly interesting issue in this direction is FDR control for
finite sequences of H0-exchangeable p-values.

Finally, we would like to mention that the empirical variance of the false
discovery proportion was large in all our simulations, implying that the random
variable FDPϑ,η(ϕ

LSU ) was not well concentrated around its expected value
FDRϑ,η(ϕ

LSU ). This is a known effect for models with dependent p-values (see,
e. g., Finner, Dickhaus and Roters (2007), Delattre and Roquain (2011), Blan-
chard et al. (2014)) and provokes the question if FDR control is a suitable
criterion under dependency at all. Maybe more stringent in dependent models
is control of the false discovery exceedance rate, meaning to design a multiple
test ϕ ensuring that FDXϑ,η(ϕ) = Pϑ,η(FDPϑ,η(ϕ) > c) ≤ γ, for user-defined
parameters c and γ. In any case, practitioners should be (made) aware of the fact
that controlling the FDR with ϕLSU does not necessarily imply that the FDP for
their particular experiment is small, at least if dependencies among P1, . . . , Pm
have to be assumed as it is typically the case in applications. In contrast, the
empirical standard deviations of our proposed sharper upper bound are about
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five times smaller than the empirical standard deviations of the simulated values
of the FDP of ϕLSU . This provides an additional (robustness) argument for the
application of the results presented in Theorem 3.1 in practice.

7. Proofs

Proof of Theorem 3.1

Following Benjamini and Yekutieli (2001), an analytic expression for the FDR
of ϕLSU is given by

FDRϑ,ψ(ϕ
LSU ) =

m0
∑

i=1

m
∑

k=1

1

k
Pϑ,ψ

{

A
(i)
k

}

,

where A
(i)
k = {Pi ≤ qk ∩C

(i)
k } denotes the event that k hypotheses are rejected

one of which is Hi (a true null hypothesis) and C
(i)
k is the event that k − 1

hypotheses additionally to Hi are rejected. It holds that (C
(i)
k : 1 ≤ k ≤ m) are

disjoint and that
⋃m
k=1 C

(i)
k = [0, 1]m−1.

Let D
(i)
k =

⋃k
j=1 C

(i)
j for k = 1, . . . ,m denote the event that the number of

rejected null hypotheses is at most k. In terms of P(i) introduced in Theorem

3.1, the random set D
(i)
k is given by

D
(i)
k = {qk+1 ≤ P

(i)
(k), . . . , qm ≤ P

(i)
(m−1)}.

Next, we prove that

Pϑ,ψ

(

Pi ≤ qk ∩D
(i)
k

)

qk
≤

Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k

)

qk+1
(24)

−

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

× (Gik(z)−Gik(z
∗
k))dFZ (z).

To this end, we consider the function T introduced in Theorem 3.1, which
transforms a possible realization of the original p-values P into a realization
of Y for Z = z, where Y = (Y1, . . . , Ym)⊤ and Z are as in (4). Because each
component of this multivariate transformation is a monotonically increasing
function which fully covers the interval [0, 1], the resulting transformation bi-

jectively transforms the set [0, 1]m into itself. Let C
(i,z)
Y;k and D

(i,z)
Y;k denote the

images of the sets C
(i)
k and D

(i)
k under T for given Z = z. Then

(a) C
(i,z)
Y;k are disjoint, i. e., C

(i,z)
Y;k1

∩ C
(i,z)
Y;k2

= ∅ for 1 ≤ k1 6= k2 ≤ m,

(b) D
(i,z)
Y;k =

⋃k
j=1 C

(i,z)
Y;j ,

(c) D
(i,z)
Y;m =

⋃m
j=1 C

(i,z)
Y;j = [0, 1]m−1.
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Statements (a) - (c) follow directly from the facts that each Tj is a monotonically
increasing function and T is a one-to-one transformation with image equal to
[0, 1]m. Moreover, we obtain

D
(i,z)
Y;k =

{

∀k ≤ j ≤ m− 1 : Y
(i)
(j) ≥ exp

(

−zψ−1

(

F
P

(i)

(j)

(qj+1)

))}

,

where Y(i) is the (m− 1)-dimensional vector obtained from Y = (Y1, . . . , Ym)T

by deleting Yi. The last equality shows that D
(i,z1)
Y;k ⊆ D

(i,z2)
Y;k for z1 ≤ z2 and,

hence, that Gik, given by Gik(z) = Pϑ,ψ(D
(i,z)
Y;k ), is an increasing function in z.

Returning to (24), we obtain

Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k

)

qk+1
−

Pϑ,ψ

(

Pi ≤ qk ∩D
(i)
k

)

qk

=

∫





Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k |Z = z

)

qk+1

−
Pϑ,ψ

(

Pi ≤ qk ∩D
(i)
k |Z = z

)

qk



 dFZ (z)

=

∫





Pϑ,ψ (Pi ≤ qk+1|Z = z)Pϑ,ψ

(

D
(i)
k |Z = z

)

qk+1

−
Pϑ,ψ (Pi ≤ qk|Z = z)Pϑ,ψ

(

D
(i)
k |Z = z

)

qk



 dFZ(z)

=

∫

(

Pϑ,ψ

(

Yi ≤ exp
(

−zψ−1(qk+1)
))

qk+1

−
Pϑ,ψ

(

Yi ≤ exp
(

−zψ−1(qk)
))

qk

)

Pϑ,ψ

(

D
(i,z)
Y;k

)

dFZ(z)

=

∫

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

Gik(z)dFZ(z). (25)

Next, we analyze the difference under the last integral. It holds that

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk+1)
)

qk

= exp
(

− log qk+1 − zψ−1(qk+1)
)

− exp
(

− log qk − zψ−1(qk)
)

= exp
(

− log qk − zψ−1(qk)
)

×
(

exp
(

− log qk+1 + log qk − zψ−1(qk+1) + zψ−1(qk)
)

− 1
)

.
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The last expression is nonnegative if and only if

− log qk+1 + log qk − zψ−1(qk+1) + zψ−1(qk) ≥ 0.

Hence, for z ≥ z∗k with z∗k given in (6), the function under the integral in (25)
is positive and for z ≤ z∗k it is negative. Application of this result leads to

Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k

)

qk+1
−

Pϑ,ψ

(

Pi ≤ qk ∩D
(i)
k

)

qk

=

∫ z∗k

0

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

Gik(z)dFZ(z)

+

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

Gik(z)dFZ(z)

≥ Gik(z
∗
k)

∫ z∗k

0

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

dFZ(z)

+

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

Gik(z)dFZ(z).

Because of

∫

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

dFZ(z)

=

∫

exp
(

−zψ−1(qk+1)
)

qk+1
dFZ(z)−

∫

exp
(

−zψ−1(qk)
)

qk
dFZ(z)

=
ψ
(

ψ−1(qk+1)
)

qk+1
−
ψ
(

ψ−1(qk)
)

qk
=
qk+1

qk+1
−
qk
qk

= 0

we get

∫ z∗k

0

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

dFZ(z)

= −

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

dFZ(z)

and, consequently,

Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k

)

qk+1
−

Pϑ,ψ

(

Pi ≤ qk ∩D
(i)
k

)

qk

≥ −Gik(z
∗
k)

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

dFZ(z)
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+

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

Gik(z)dFZ(z)

=

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

(26)

× (Gik(z)−Gik(z
∗
k))dFZ(z),

which is obviously positive since both the differences under the integral in (26)
are positive. This completes the proof of (24).

Using (24), we get for all 1 ≤ k ≤ m− 1 that

Pϑ,ψ

(

Pi ≤ qk ∩D
(i)
k

)

qk
+

Pϑ,ψ

(

Pi ≤ qk+1 ∩ C
(i)
k+1

)

qk+1

≤
Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k

)

qk+1
+

Pϑ,ψ

(

Pi ≤ qk+1 ∩ C
(i)
k+1

)

qk+1

−

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

× (Gik(z)−Gik(z
∗
k))dFZ (z)

=
Pϑ,ψ

(

Pi ≤ qk+1 ∩D
(i)
k+1

)

qk+1

−

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

× (Gik(z)−Gik(z
∗
k))dFZ (z)

and, consequently, starting with D
(i)
1 = C

(i)
1 and proceeding step-by-step for all

k ≤ m− 1, we obtain

m
∑

k=1

Pϑ,ψ

{

Pi ≤ qk+1 ∩ C
(i)
k

}

qk
≤

Pϑ,ψ

{

Pi ≤ qm ∩D
(i)
m

}

qm

−
m−1
∑

k=1

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

× (Gik(z)−Gik(z
∗
k))dFZ(z)

= 1−
m−1
∑

k=1

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

× (Gik(z)−Gik(z
∗
k))dFZ(z).

Hence,

FDRϑ,ψ(ϕ
LSU ) =

m0
∑

i=1

m
∑

k=1

1

k
Pϑ,ψ

{

A
(i)
k

}
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=

m0
∑

i=1

q

m

m
∑

k=1

Pϑ,ψ

{

Pi ≤ qk+1 ∩ C
(i)
k

}

qk

≤
m0
∑

i=1

q

m
−

m0
∑

i=1

q

m

m−1
∑

k=1

∫ ∞

z∗
k

(

exp
(

−zψ−1(qk+1)
)

qk+1
−

exp
(

−zψ−1(qk)
)

qk

)

× (Gik(z)−Gik(z
∗
k))dFZ (z)

=
m0

m
q∆(m,ϑ, ψ),

where ∆(m,ϑ, ψ) is defined in Theorem 3.1. This completes the proof of the
theorem.

Proof of Theorem 3.2

Straightforward calculation yields

FDRϑ,ψ(ϕ
LSU ) =

m0
∑

i=1

m
∑

k=1

1

k

∫

Pϑ,ψ

{

A
(i)
k |Z = z

}

dFZ(z)

=

m0
∑

i=1

m
∑

k=1

1

k

∫

Pϑ,ψ {Pi ≤ qk|Z = z}

× Pϑ,ψ

{

C
(i)
k |Z = z

}

dFZ(z)

=

m0
∑

i=1

q

m

m
∑

k=1

∫

Pϑ,ψ {Pi ≤ qk|Z = z}

qk

× Pϑ,ψ

{

C
(i)
k |Z = z

}

dFZ(z),

where the random events A
(i)
k and C

(i)
k are defined in the proof of Theorem

3.1. Moreover, making use of the notation C
(i,z)
Y;k introduced in the proof of

Theorem 3.1, we can express FDRϑ,ψ(ϕ
LSU ) by

FDRϑ,ψ(ϕ
LSU ) =

m0
∑

i=1

q

m

m
∑

k=1

∫ Pϑ,ψ

{

Pi ≤ exp
(

−zψ−1
(

FPi

(

kq
m

)))}

qk

× Pϑ,ψ

{

C
(i,z)
Y;k

}

dFZ(z)

=

m0
∑

i=1

q

m

m
∑

k=1

∫

exp
(

−zψ−1 (qk)
)

qk
Pϑ,ψ

{

C
(i,z)
Y;k

}

dFZ(z)

≥
m0
∑

i=1

q

m

m
∑

k=1

∫

min
k∈{1,...,m}

{

exp
(

−zψ−1 (qk)
)

qk

}

× Pϑ,ψ

{

C
(i,z)
Y;k

}

dFZ(z),

where the latter inequality follows from Yℓ ∼ UNI[0, 1] for all 1 ≤ ℓ ≤ m and
the fact that each Hi is a true null hypothesis.
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Now, it holds that

FDRϑ,ψ(ϕ
LSU ) ≥

m0
∑

i=1

q

m

∫

min
k∈{1,...,m}







exp
(

−zψ−1
(

kq
m

))

kq/m







×
m
∑

k=1

Pϑ,ψ

{

C
(i,z)
Y;k

}

dFZ(z)

=

m0
∑

i=1

q

m

∫

min
k∈{1,...,m}







exp
(

−zψ−1
(

kq
m

))

kq/m







dFZ(z)

=

∫

min
k∈{1,...,m}







exp
(

−zψ−1
(

kq
m

))

kq/m







dFZ(z)

m0
∑

i=1

q

m

=

∫

min
k∈{1,...,m}







exp
(

−zψ−1
(

kq
m

))

kq/m







dFZ(z)
m0q

m
.

This completes the proof of the theorem.

Proof of Lemma 3.1

From the assertion of Theorem 3.2 we conclude that the lower bound for the
FDR of ϕLSU under the assumption of an Archimedean copula crucially depends
on the extreme points of the function g(·|z) given in (12) for x ∈ {ψ−1(q/m),
ψ−1(2q/m), . . . , ψ−1(q)}. If for all z > 0 the minimum of g(x|z) is always at-
tained for the same index k∗ (say), then γmin = 1 and together with Theorem
3.1 we get FDRϑ,ψ(ϕ

LSU ) = m0(ϑ)q/m. This follows directly from the identity

∫

exp
(

−zψ−1 (k∗q/m)
)

k∗q/m
dFZ(z) =

ψ
(

ψ−1 (k∗q/m)
)

k∗q/m
= 1.

However, the latter holds true only in some specific cases. To obtain a more
explicit constant γmin(ψ) in the general case, we notice that, due to the analytic
properties of ψ, there exists a point z∗ such that g(ψ−1(q)|z) < g(ψ−1(q/m)|z)
for z < z∗ and g(ψ−1(q)|z) > g(ψ−1(q/m)|z) for z > z∗. The point z∗ is obtained
as the solution of

0 = g
(

ψ−1(q)|z
)

− g
(

ψ−1(q/m)|z
)

=
exp

(

−zψ−1 (q)
)

q
−

exp
(

−zψ−1 (q/m)
)

q/m

=
1

q

(

exp
(

−zψ−1 (q)
)

− exp
(

logm− zψ−1
( q

m

)))

=
exp

(

−zψ−1 (q)
)

q

(

1− exp
(

logm+ z
(

ψ−1 (q)− ψ−1
( q

m

))))

,
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which leads to

z∗ =
logm

ψ−1 (q/m)− ψ−1 (q)
.

Next, we analyze the function x 7→ g(x|z) for given z. For its derivative with
respect to x, it holds that

g′(x|z) = −
exp (−zx)

(ψ(x))2
(zψ(x) + ψ′(x)) .

Setting this expression to zero, we get that any extreme point of g(·|z) satisfies

zψ(x) + ψ′(x) = 0. (27)

Let xz be a solution of (27). Then, the second derivative of g(·|z) at xz is
given by

g′′(xz |z) = −
exp (−zxz)

(ψ(xz))2
(zψ′(xz) + ψ′′(xz)) . (28)

Substituting (27) with x = xz in (28), we obtain

g′′(xz |z) = −
exp (−zxz)

(ψ(xz))2

(

−
(ψ′(xz))

2

ψ(xz)
+ ψ′′(xz)

)

= −
exp (−zxz)

(ψ(xz))3
(

ψ(xz)ψ
′′(xz)− (ψ′(xz))

2
)

and application of the Cauchy-Schwarz inequality leads to

ψ(xz)ψ
′′(xz) =

∫

exp (−zxz) dFZ(z)

∫

z2 exp (−zxz) dFZ(z)

≥

(∫

z exp (−zxz) dFZ(z)

)2

= (ψ′(xz))
2.

This proves that g′′(xz |z) ≤ 0 if xz is an extreme point of g(xz |z). Thus, any
such xz is a maximum and the minimum in (10) is attained at ψ−1(q) for z ≤ z∗

as well as at ψ−1(q/m) for z ≥ z∗.

Proof of Corollary 3.2

We consider the quantity γmin itself. It holds that 1 ≥ γmin ≥ γ
min

, where

γ
min

= 1−min

{

∫ z∗

0

sup
z∈[0,z∗]

h(z)dFZ(z),

∫ ∞

z∗
sup

z∈[z∗,∞]

(−h(z))dFZ(z)

}

with

h(z) = g
(

ψ−1(q/m)|z
)

− g
(

ψ−1(q)|z
)

=
exp

(

−zψ−1
(

q
m

))

q/m
−

exp
(

−zψ−1 (q)
)

q
,
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because
∫ z∗

0

h(z)dFZ(z) = −

∫ ∞

z∗
h(z)dFZ(z). (29)

However, both of the integrals in (29) can be bounded by different values. To
see this, we study the behavior of the function z 7→ h(z). It holds that

h′(z) = −ψ−1
( q

m

) exp
(

−zψ−1
(

q
m

))

q/m
+ ψ−1 (q)

exp
(

−zψ−1 (q)
)

q

= ψ−1 (q)
exp

(

−zψ−1 (q)
)

q

×

(

1− exp

(

logm+ log
ψ−1

(

q
m

)

ψ−1 (q)
+ z

(

ψ−1 (q)− ψ−1
( q

m

))

))

.

Since ψ−1 is a non-increasing function, we get that there exists a unique mini-
mum of h(z) at

z∗ =
logm+ logψ−1 (q/m)− logψ−1 (q)

ψ−1 (q/m)− ψ−1 (q)
≥ z∗.

Consequently, we get

∫ z∗

0

sup
z∈[0,z∗]

h(z)dFZ(z) =

∫ z∗

0

h(0)dFZ(z) = h(0)FZ(z
∗)

=
m− 1

q
FZ(z

∗),

∫ ∞

z∗
sup

z∈[z∗,∞]

(−h(z))dFZ(z) =

∫ ∞

z∗
h(z∗)dFZ (z) = h(z∗)(1− FZ(z

∗))

=
exp

(

−z∗ψ−1 (q)
)

q

(

1−
ψ−1 (q)

ψ−1 (q/m)

)

× (1 − FZ(z
∗)).

Proof of Theorem 3.3

We plug (15) into (14) and obtain

FP̃1,...,P̃m
(p1, . . . , pm) =

∫ m
∏

i=1

exp
(

−zψ−1(pi)
)

dFZ(z)

=

∫

exp

(

−z
m
∑

i=1

ψ−1
(

FP̃i
(pi)

)

)

dFZ(z)

= ψ

(

m
∑

i=1

ψ−1
(

FP̃i
(pi)

)

)

,
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since the last integral is the Laplace transform of Z at
∑m

i=1 ψ
−1(FP̃i

(pi)). Notic-
ing that P1, . . . , Pm are obtained by componentwise increasing transformations
of P̃1, . . . , P̃m we conclude the assertion.

Acknowledgments

We are grateful to two anonymous referees and the Editor George Michailidis for
their careful reading and detailed suggestions which have considerably improved
the presentation in the paper. This research is partly supported by the Deutsche
Forschungsgemeinschaft via the Research Unit FOR 1735 “Structural Inference
in Statistics: Adaptation and Efficiency”.

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate:
A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser.
B Stat. Methodol. 57 289–300. MR1325392

Benjamini, Y. and Liu, W. (1999). A step-down multiple hypotheses testing
procedure that controls the false discovery rate under independence. J. Stat.
Plann. Inference 82 163–170. MR1736441

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discov-
ery rate in multiple testing under dependency. Ann. Stat. 29 1165–1188.
MR1869245

Blanchard, G. and Roquain, E. (2008). Two simple sufficient conditions for
FDR control. Electron. J. Statist. 2 963–992. MR2448601

Blanchard, G. and Roquain, E. (2009). Adaptive false discovery rate control
under independence and dependence. Journal of Machine Learning Research
10 2837–2871. MR2579914

Blanchard, G., Dickhaus, T., Roquain, E. and Villers, F. (2014). On
least favorable configurations for step-up-down tests. Statistica Sinica 24 1–
23. MR3184590

Cai, T. T. and Jin, J. (2010). Optimal rates of convergence for estimating the
null density and proportion of nonnull effects in large-scale multiple testing.
Ann. Stat. 38 100–145. MR2589318

Cerqueti, R., Costantini, M. and Lupi, C. (2012). A copula-based analysis
of false discovery rate control under dependence assumptions. Economics &
Statistics Discussion Paper No. 065/12, Università degli Studi del Molise,
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