
Electronic Journal of Statistics

Vol. 8 (2014) 1973–1995
ISSN: 1935-7524
DOI: 10.1214/14-EJS941

Simulation extrapolation estimation

in parametric models with Laplace

measurement error∗

Hira L. Koul and Weixing Song

Michigan State University and Kansas State University
e-mail: kou@stt.msu.edu; weixing@ksu.edu

Abstract: The normal-error-based simulation extrapolation (N-SIMEX)
procedure provides a simulation-based method to remove or reduce the bias
in estimators of parameters in measurement error models. This paper shows
that the N-SIMEX procedure only works for the normal measurement er-
ror and does not work for Laplace measurement error. A new L-SIMEX
procedure is particularly designed to remove or reduce the Laplace mea-
surement errors in parametric models. Unlike in the N-SIMEX procedure
where the measurement error is removed or reduced by adding independent
normal errors controlled by the scale parameter, the proposed procedure re-
moves or reduces the Laplace measurement error by adding a noise variable
which is a difference between two independent gamma random variables,
and where the noise level is governed by the shape parameter. Heuristic
and rigorous arguments are provided to justify the proposed method and
a Jackknife-type estimation procedure is provided to estimate the variance
of the L-SIMEX estimate. Simulation studies and a real data example are
presented to demonstrate the proposed estimation procedure. A finite sam-
ple comparison with some revised moment estimators of Hong and Tamer
is also included.
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1. Introduction

Due to wide applicability of measurement error models, the interest of search-
ing for efficient statistical inference methodologies in these models has never
receded. It is well known that simply ignoring the measurement error from the
inference will lead to biased estimation and inefficient statistical inference. How
to effectively remove or reduce the influence of the measurement error on the
inference procedures is one of the main objective in this very important area
of statistical inference. Among several promising procedures, the deconvolution
and normal-error-based SIMEX (N-SIMEX) procedures are commonly used.

To proceed a bit more precisely, in the measurement error model of inter-
est here, we have a response variable Y , an observable predicting variable W ,
and an unobservable covariate X , called latent variable. In this article, all of
these variables are assumed to be scalars. Instead of observing X , we observe
Z = X + U , where U is the measurement error. To achieve the bias reduction
in an estimator of an underlying parameter, the deconvolution procedure tries
to estimate the density function of the latent variable X . Assuming that the
density function of the measurement error U is known and its characteristic
function does not vanish on the whole real line, the characteristic function of
X can be written as the ratio of the characteristic functions of Z and U . The
characteristic function of Z can be smoothly estimated based on the observa-
tions on Z. Then, the deconvolution kernel density estimate is defined as the
inverse Fourier transform of the ratio of the estimated characteristic function
with that of U . Theoretical properties of the deconvolution density estimate are
thoroughly discussed in [1, 5, 6, 7, 12, 19], among others.

Due to its mathematical complexity and burdensome technical details, ap-
plied statisticians might find the deconvolution procedures hard to understand
intuitively, and when dealing with relatively simpler models, using deconvolu-
tion kernel seems like employing a steam engine to crack a nut. As a comparison,
the N-SIMEX procedure proposed by [3] successfully avoids the technical com-
plexity, and provides an easy-to-implement simulation-based method to remove
or reduce the bias in parametric measurement error models. In N-SIMEX, the
estimates are obtained by first adding an extra normal measurement error to the
contaminated data in a resampling stage, where the variability of the normal
measurement error is controlled by the scale parameter; then some naive-like
estimates are constructed based on the noise-enhanced data set, and a trend
of measurement error-induced bias versus the variance of the added normal
measurement error is established; finally, the trend is extrapolated back to the
case of no measurement error. As [3] described, the N-SIMEX procedure “. . . is
completely general, it is also useful in applications when the particular model
under consideration is novel and conventional approaches to estimation with
the model have not been thoroughly studied and developed.” In some simple
cases, the N-SIMEX procedure does remove the bias completely. For example, in
the multivariate linear regression setup, [18] showed that the difference between
the N-SIMEX estimate and the bias-corrected moment estimate is asymptoti-
cally negligible even if the measurement error is not normal, since only the first
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two moments of the measurement error is needed in the proof. But in some
other cases, in particular, if the true extrapolation function is not available,
it only provides approximate solutions. Nevertheless, the N-SIMEX procedure
certainly provides us a very useful exploratory tool for the model fitting in the
measurement error context.

For the sake of completeness and ease of presentation, we briefly describe the
N-SIMEX procedure as follows. With Y,W,X,Z = X + U as described above,
N-SIMEX assumes U ∼ N(0, σ2

u), where σ2
u is known or can be reasonably

estimated from other resources. Suppose θ, possibly multidimensional, is the
model parameter to be estimated, and there is an existing estimation procedure

θ̂TRUE = T ({Yi,Wi, Xi}ni=1)

based on the data {Yi,Wi, Xi}ni=1 which are i.i.d. copies from (Y,W,X). It is

assumed that θ̂TRUE → θ0 in probability. But θ̂TRUE is not an estimate since
{Xi}ni=1 is not available. Upon replacing Xi in this formula by the observed Zi

one obtains the naive estimate of θ given by

θ̂NAIVE = T ({Yi,Wi, Zi}ni=1).

Fix a λ ≥ 0, define

Zb,i = Zi +
√
λUb,i = Xi + Ui +

√
λUb,i, b = 1, 2, . . . ,

where Ub,i are i.i.d N(0, σ2
u) r.v.’s, independent of all the other r.v.’s in the

model. Define

θ̂b(λ) = T ({Yi,Wi, Zb,i}ni=1),

and calculate

θ̂(λ) = E
[

θ̂b(λ)
∣

∣{Yi,Wi, Zi}ni=1

]

.

Note that the expectation is with respect to the distribution of {Ub,i}ni=1 only.
The above expectation might not have explicit form, but it can be approximated
arbitrarily well by the average of θ̂b(λ), b = 1, 2, . . . , B, based on B random
samples {Ub,i}ni=1, b = 1, 2, . . . , B, fromN(0, σ2

u). Repeat the above computation
for a sequence of λ values. According to [3], a rule of thumb is to choose grid
points 0 = λ1 < λ2 < · · · < λk−1 < λk = 2, where k is a known positive integer.
This is the simulation step in the N-SIMEX procedure.

In the extrapolation step, a trend of θ̂(λ) with respect to λ is identified. Ex-

cept for some special cases, the dependence of θ̂(λ) on λ is not clear. However,

in general, a scatter plot of θ̂(λj) versus λj , j = 1, 2, . . . , k, is helpful in de-
termining an approximate trend, and the least squares methodology might be
called upon in helping to decide a reasonable analytic form of the extrapolation
function. Once the trend is set, then extrapolating the extrapolant back to −1
gives the SIMEX estimate. As [3] suggested, the nonlinear form a+b/(c+λ) usu-
ally produces a good fit to the true extrapolant, while the linear and quadratic
extrapolants often give conservative answers.
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Many simulation studies and real data examples show that the above
N-SIMEX proedure works surprisingly well even in some complicated models.
See [3] and other references. The popularity of N-SIMEX procedure is further
enhanced by the theoretical justifications developed by some renowned statis-
ticians. [20] discovered a strong relationship between N-SIMEX and jackknife
estimation. They also provided a crucial lemma which delineates the reason why
the N-SIMEX works for normal measurement errors. By considering the prob-
lems in which the regression parameter estimates are the solution to unbiased
estimating equations and using asymptotic linearization results, an asymptotic
distribution theory was developed in [2] under the assumption that the true
extrapolant is known, including the verification of asymptotic normality and
implementation of standard error estimates. To our best knowledge, there is no
discussion in the literature on how N-SIMEX performs when the measurement
error is not normal, at least from the theoretical perspective.

In this paper, we address three important questions about the SIMEX proce-
dure: (1). Does the N-SIMEX work only for normal measurement error? (2). If
the answer to (1) is positive, is there any similar procedure working for non-
normal errors? (3). Can sufficient theoretical and empirical evidence be found
to justify the proposed procedure. The answers to these questions form the core
of this paper.

2. A motivating example

For any generic random variable T , let σ2
t denote the variance of T , and µ4,t the

fourth central moment E(T−E(T ))4 of T . We say that a r.v. U ∼ Laplace(0, σ2
u)

if its density fu is Laplace density with mean zero and variance σ2
u given by

fu(v) = (
√
2/σu)exp{−(

√
2/σu)|v|}, |v| <∞. Moreover, in the sequel, all limits

are taken as n → ∞, unless mentioned otherwise, and →p denotes the conver-
gence in probability.

To answer the first question mentioned above, we start with the components-
of-variance model Z = X + U . Suppose the variance σ2

x and the fourth central
moment µ4,x of X are the parameters to be estimated. Let {Zi}ni=1 be the
observed data satisfying Zi = Xi + Ui, where Ui are i.i.d. measurement errors
with known density function with mean 0 and the known variance σ2

u > 0.
Consider the N-SIMEX procedure first and focus on the estimation of σ2

x.
Assume that U ∼ N(0, σ2

u). Following the steps stated in Section 1, we generate
a random sample {Ub,i}ni=1 of size n from N(0, σ2

u) distribution, independent

of all other r.v.’s in the model, and for a λ ≥ 0, define Zb,i(λ) = Zi +
√
λUb,i.

Following the N-SIMEX procedure, an estimate of σ2
x is

µ̂2,b(λ) =
1

n− 1

n
∑

i=1

(Zb,i − Z̄b)
2.

Direct computation shows that µ̂2(λ) = E {µ̂2,b(λ)|{Zi}ni=1} = S2
Z +λσ2

u, where
S2
Z is the sample variance of {Zi}ni=1. This fact continues to hold when {Ub,i}ni=1

are i.i.d. Laplace(0, σ2
u) r.v.’s. This implies that to estimate the variance σ2

x, the
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N-SIMEX procedure still produces a reasonable estimator, even when the true
distribution of the measurement error is non-normal.

Next, consider the estimation of the fourth moment µ4,x. From [17], an unbi-
ased estimate of µ4,x based on method of moments when {Xi}ni=1 are observable
is

µ̂4,x = an

n
∑

i=1

(Xi − X̄)4 − bn

[

n
∑

i=1

(Xi − X̄)2

]2

,

where

an =
n2 − 2n+ 3

(n2 − 5n+ 6)(n− 1)
, bn =

3(2n− 3)

n(n2 − 5n+ 6)(n− 1)
.

Following the N-SIMEX procedure, we define

µ̂4,b(λ) = an

n
∑

i=1

(Zb,i − Z̄b)
4 − bn

[

n
∑

i=1

(Zb,i − Z̄b)
2

]2

.

A tedious but routine computation shows that

µ̂4(λ) = E
[

µ̂4,b(λ)
∣

∣

∣{Zi}ni=1

]

= an

n
∑

i=1

(Zi − Z̄)4 − bn

[

n
∑

i=1

(Zi − Z̄)2

]2

+

[

6λan(n− 1)σ2
u

n
− 2λbn(n+ 1)σ2

u

] n
∑

i=1

(Zi − Z̄)2

+ anλ
2

[

(n− 1)(n2 − 3n+ 3)

n2
µ4,u +

3(2n− 3)(n− 1)

n2
σ4
u

]

− bnλ
2

[

(n− 1)2

n
µ4,u +

(n− 1)(n2 − 2n+ 3)

n
σ4
u

]

.

Because µ4,u = 3σ4
u for the normal error,

µ̂4(λ) →p µ4(λ) = µ4,x + 6σ2
xσ

2
u + 3σ4

u + 6λσ2
u(σ

2
x + σ2

u) + 3λ2σ4
u.

Clearly, as expected, µ4(λ) → µ4,x, as λ→ −1.
Now, assume that the true distribution of the measurement error Ui is Laplace

with mean 0 and variance σ2
u, but we still generate Ub,i from N(0, σ2

u). Then
EU2

i = σ2
u, EU

4
i = 6σ4

u and an argument similar to the above leads to

µ̂4(λ) → µ4(λ) = µ4,x + 6σ2
xσ

2
u + 6σ4

u + 6λσ2
u(σ

2
x + σ2

u) + 3λ2σ4
u.

Now, extrapolating back to λ = −1 yields µ4(λ) → µ4,x + 3σ4
u. This implies

that the N-SIMEX does not work for Laplace measurement errors, in the sense
that it does not yield a consistent estimator of the parameter of interest.

These findings from this simple example are significant. First, simply apply-
ing blindly the N-SIMEX to measurement error models can be very mislead-
ing if the true distribution of the measurement errors is not normal; secondly,
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the N-SIMEX might be a very general procedure with respect to a variety of
parametric models, but the assumption of having normal measurement error is
crucial, indicating that the N-SIMEX procedure is not robust with respect to
the distribution of the measurement errors; finally, it is unfortunate that the
N-SIMEX procedure cannot handle the Laplace measurement error, a typical
example for ordinary smooth cases. Therefore, it is of interest, both theoretically
and empirically, to consider the possibility of constructing similar SIMEX-type
procedures for non-normal cases. Due to differences in error distributions, we
can reasonably infer that a one-for-all SIMEX-type procedure does not exist, it
must be an error distribution specific procedure. In the following, we will focus
on the Laplace measurement error case.

As a matter of fact, statistical models with Laplace measurement errors are
not rare at all in applications. For example, the global positioning system (GPS)
collars are frequently used by ecologists to collect location data for animals
moving across a landscape. However, the GPS data are subject to measurement
error. In their empirical study, [13] observed that the type I error can be greatly
reduced for testing the classification of observed locations into habitat types
when the GPS measurement error is fitted by a Laplace distribution. [16] in-
vestigated an application of Laplace measurement error in the analysis of data
from microarray experiments and reported that the Laplace distribution fits the
microarray expression data much better than a normal distribution. In a study
of the differential privacy in cryptography, [4] present an example in which the
queried number of incidents in a database are masked by random numbers gen-
erated from a Laplace distribution. In addition to providing some insights in
SIMEX, we expect that the proposed methodology will find its application in
the real word problems such as the ones discussed in these papers.

3. SIMEX for Laplace measurement error

The answer to the question that why N-SIMEX works for the normal measure-
ment errors is straightforward. We can look at the heuristic and a relatively
rigorous argument supplied in [3], but the most convincing theoretical proof
can be found in [20]. Lemmas 1 and 2 in [20] show that if U1 and U2 are i.i.d.
standardized normal r.v.’s, then E(U1 + iU2)

n = 0, where i =
√
−1, for all

n = 1, 2, . . . , and Ef(µ + σuU1 +
√
λσuU2) → Ef(µ + σuU1 + iσuU2) = f(µ),

as λ → −1, for any sufficiently smooth function f , respectively. From these
two lemmas, we can easily see that a sufficient and necessary condition for
the N-SIMEX procedure to work is that E(Ui + iUb,i)

n = 0 must hold for all
n = 1, 2, . . . . Unfortunately, the following theorem shows that, under a very
general condition on the distribution of the measurement errors, this is true
only for the normal case.

Theorem 3.1. Suppose U1 and U2 are i.i.d. symmetric absolute continuous

r.v.’s having finite moment generating function. Then E(U1+ iU2)
n = 0, for all

n = 1, 2, . . . , if and only if U1 and U2 have a normal distribution with mean 0.
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The sufficiency part is proved in Lemma 1 in [20]. So we only need to show
the necessity. Under the assumption of the theorem, E(U1 + iU2)

n = 0, for all
n = 1, 2, . . . , implies that the moment generating function, denoted bym(t), and
the characteristic function, denoted by ψ(t) of U1 or U2 satisfy m(t)ψ(t) = 1.
Then from Theorem 2 of [21], U1 and U2 must have a normal distribution with
mean 0.

Because of its computational simplicity, we really do not want to give up the
“addition” component in the new SIMEX procedure to be developed, but the
above theorem clearly indicates that just adding a multiple of the same random
error to the contaminated data does not work. Of course, since we know the
distribution of the measurement error, so it is natural to generate the extra
random data from the same distribution or at least from the same distribution
family. As mentioned in the previous section, the SIMEX-type procedure for
non-normal measurement error must be error distribution specific. We will focus
on the Laplace measurement error case. Accordingly, let U be a Laplace (0, σ2

u)
r.v. We shall try to find the anti-measurement error variable (a term from [20]),
say V characterized by some distributional parameters under addition, of U ,
in the sense that E(U + V )n will converge to 0 for all n, as the distributional
parameters approach some particular values.

As seen from the brief justification of Theorem 3.1, E(U1 + iU2)
n = 0, for

all n = 1, 2, . . . , if and only if the characteristic function and the moment
generating function of U1 has a reciprocal relationship. Similarly, in order to
have E(U + V )n → 0, for all n = 1, 2, . . . , it is sufficient to find V such that
the characteristic function of (U + V ) converging to 1 as some distributional
parameter of V tends to a certain particular value. Note that U , as a Laplace r.v.,
is the difference of two exponential or gamma r.v.’s, with the shape parameter
1 and scale parameter σu/

√
2. This motivates us to choose V , independent

of U , to be the difference of two i.i.d. gamma r.v.’s with the shape parameter p
and the scale parameter σu/

√
2. With such a choice, it is easy to see that the

characteristic function φU+V (t) of U + V is

φU+V (t) =

(

1

1 + σ2
ut

2/2

)

·
(

1

1 + σ2
ut

2/2

)p

,

which will tend to 1, if we extrapolate the shape parameter p to −1. In fact, we
have the following

Theorem 3.2. Suppose U ∼ Laplace(0, σ2
u), and V = V1 − V2 with V1, V2 i.i.d.

∼ Gamma(p, σu/
√
2). Then limp→−1E(U + V )n=0, for all n = 1, 2, . . . .

Applying this theorem and an argument similar to the one used in the proof
of Lemma 2 of [20], we obtain

Theorem 3.3. Suppose f is sufficiently smooth, U ∼ Laplace(0, σ2
u), and V =

V1−V2 with V1, V2 i.i.d. ∼ Gamma(p, σu/
√
2). Then limp→−1 Ef(µ+U +V ) =

f(µ).

The requirement of f being sufficiently smooth is indeed identical to the one
used in Lemma 2 of [20]. It basically requires that f has a convergent Taylor ex-
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pansion and the order of expectation and the summation can be interchanged in
the Taylor expansion. Similar to [20], we can also describe the result in Theorem
3.3 in an amusing, yet descriptive way as “Laplace measurement error-induced
bias is asymptotically annihilated by the addition of gamma anti-measurement
error”.

Based on the above results, now we propose the Laplace-error-based SIMEX
procedure (L-SIMEX). Let Y,W,X still denote the response variable, the pre-
dictor without measurement error, and the latent variable, respectively. Suppose
we observe Z = X + U , where U ∼ Laplace(0, σ2

u), and as usual σ2
u is assumed

to be known or can be reasonably estimated. Suppose θ is the model parameter
to be estimated, and we start with an existing consistent estimation procedure
θ̂TRUE = T ({Yi,Wi, Xi}ni=1).

Fix a p ≥ 0. In the simulation step, we first generate two independent se-
quences {V1,b,i}ni=1 and {V2,b,i}ni=1 of i.i.d. Gamma(p, σu/

√
2) r.v.’s, which are

chosen to be independent of all other r.v.’s in the model. Then define

Zb,i(p) = Zi + V1,b,i − V2,b,i = Xi + Ui + V1,b,i − V2,b,i.

As before, b is a positive integer-valued index number. Let

θ̂b(p) = T ({Yi,Wi, Zb,i(p)}ni=1),

and calculate
θ̂(p) = E[θ̂b(p)

∣

∣

∣{Yi,Wi, Zi}ni=1].

Again the expectation is with respect to the distribution of {V1,b,i, V2,b,i}ni=1

only. Similar to the N-SIMEX procedure, the above expectation might not have
an explicit form, but it can be approximated arbitrarily well by the average
of θ̂b(p), b = 1, 2, . . . , B, based on B random samples {V1,b,i, V2,b,i}ni=1, b =
1, 2, . . . , B. Repeat the above computations for a sequence of p values 0 = p1 <
p2 < · · · < pk−1 < pk for some positive integer k. The convention we make here
is that p = 0 corresponding to all observations being 0.

In the extrapolation step, unless the true relationship between p and θ̂(p)

can be identified, a trend of θ̂(p) with respect to p should be approximately

determined by checking the scatter plot of (pj , θ̂(pj)), j = 1, 2, . . . , k. Again,
least squares procedure might be needed to decide a reasonable analytic form of
the extrapolation function. Once the trend is set, then extrapolating the final
trend back to p = −1 gives the L-SIMEX estimate.

[3] provide a rigorous justification for their N-SIMEX procedure. We believe
a similar argument will be also very beneficial to the understanding of the
proposed L-SIMEX procedure for Laplace measurement errors. For this purpose,
let FY,W,X denote the distribution function (d.f.) of (Y,W,X) and FY,W,Zb(p)

that of (Y,W,Zb(p)). Suppose the true parameter θ0 = S(FY,W,X), where S is
a continuous functional on the class of d.f.’s.

Let G1, G2 be two independent Gamma(p + 1, σu/
√
2) r.v.’s and H denote

the d.f. of the difference G1 −G2. From [9], for a r.v. ∆ ∼ H ,

E(∆2k) =
σ2k
u (2k − 1)!

2k−1(k − 1)!
(p+ k)(p+ k − 1) · · · (p+ 1).
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Direct calculations show that for some known constants bj,k, j = 1, . . . , k, with
bk,k = 1,

σ2k
u (p+ k)(p+ k − 1) · · · (p+ 1) =

k
∑

j=1

bj,k
(

(p+ 1)σ2
u

)j
(σ2

u)
k−j .

Note that H is a symmetric distribution around zero, hence all odd moments of
H are zero. Moreover,H is completely determined by its moments. Since both k
and σ2

u are known, the d.f. H thus depends only on the parameter (p+1)σ2
u. To

emphasize this dependence we now write H(p+1)σ2
u
for H , with the convention

that H0 = δ0, a distribution degenerate at zero. Note that H(p+1)σ2
u
converges

weakly to δ0, as p→ −1.
If we further assume that FY,W,Zb(p) is totally determined by its moments,

then from the above observations, and by a direct calculation, we obtain

FY,W,Zb(p) = FY,W,X ∗





δ0
δ0

H(p+1)σ2
u



 ,

S(FY,W,Zb(p)) = S



FY,W,X ∗





δ0
δ0

H(1+p)σ2
u







 .

A similar phenomenon happens to hold in the normal case, where S(FY,W,Zb(λ))

depends on λ only through (1+λ)σ2
u. If we further assume that θ̂TRUE, θ̂b(p) and

θ̂(p) converge in probability to their expectations, which are assumed to be finite,

and θ̂TRUE →p θ0 = S(FY,W,X), then we also have θ̂(p) →p θ(p) = S(FY,W,Zb(p)).
Finally, the continuity of S implies

θ(p) →p S



FY,W,X ∗





δ0
δ0
δ0







 = S(FY,W,X) = θ0, as p→ −1.

Similar to the N-SIMEX procedure, the vexing part in the proposed L-SIMEX
procedure is the extrapolation step. As we mentioned earlier, the true extrap-
olant usually does not have an explicit form which makes the extrapolation step
not easy to follow. Although some exploratory data analysis such as scatter
plots and least squares estimation can help us to determine an approximate ex-
trapolant, the accuracy of the approximation is heavily influenced by the Monte
Carlo error in the simulation step. Increasing the sample size and the replication
time B of course can reduce the Monte Carlo error, but at the cost of prolonged
computation time. Empirical and theoretical arguments show that we can actu-
ally choose the extrapolant from the linear, quadratic, and nonlinear forms as in
the N-SIMEX case. In fact, exactly the same argument as in [3] indicates that
the quadratic and the nonlinear extrapolants produce L-SIMEX estimates with
asymptotic bias of the order O(σ6

u). It is also true that using NON-IID pseudo

errors improves the convergence of B−1
∑B

b=1 θ̂b(p) to θ̂(p) as B → ∞.
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In the N-SIMEX procedure, one uses the same set of random numbers {Ub,i}
generated from N(0, σ2

u) for all the grid points λj ’s. As a result, the scatter plot

of θ̂(λj)’s versus λj ’s will have a smooth pattern and it might be very helpful
for deciding the form of the extrapolant. However, this is not the case for the
L-SIMEX procedure. Because for each grid point p, the random numbers {Ub,i}
are generated from the gamma distribution with shape parameter p. Therefore,
the trend shown on the scatter plot of θ̂(pj)’s versus pj ’s will not be very smooth.
Consequently, the L-SIMEX estimates would not be very stable. One possible
way to avoid this is to use more grid points to decide the extrapolant, for
example, use three or four grid points to determine the linear form instead of
just two points as in the N-SIMEX case.

4. Variance estimation for L-SIMEX

By establishing a strong relationship between the N-SIMEX estimation and
the jackknife estimation, [20] lay a solid theoretical justification for their N-
SIMEX procedure for normal measurement error. More importantly, inspired by
the jackknife variance estimation, a variance estimation method for N-SIMEX
is constructed. In this section, we extend their methodology to the L-SIMEX
procedure.

We will start with single observation case, which is parallel to the discussion
in Section 4.3 of [20]. Suppose we want to estimate θ = exp(µ) from the location
model Z = µ+ U , where U ∼ Laplace (0, σ2

u) and σ
2
u is known. Since only one

observation is available, so exp(Z) is the MLE of θ. Now let Zb = Z + Vb,
where Vb = V1b − V2b and V1b, V2b are independent and both have a Gamma
distribution with shape parameter p and scale parameter σu/

√
2. Then in the

L-SIMEX version of the jackknife with sample size 1, the building block for
variance estimation is ∆(p) = θ̂b(p)− θ̂(p), where θ̂b(p) = exp(Zb), and θ̂(p) =

E(θ̂b(p)|Z). Direct calculations yield

∆(p) = exp(Z)

[

exp(Vb)−
(

1− σ2
u

2

)−p
]

,

with E∆(p) = 0, and

Var(∆(p)) =
exp(2µ)

1− 2σ2
u

[

(

1

1− 2σ2
u

)p

−
(

1− σ2
u

2

)−2p
]

.

Note that θ̂SIMEX = θ̂(−1) = exp(Z)[1− σ2
u/2], and that

Var(θ̂SIMEX) = exp(2µ)

[

(

1− σ2
u

2

)2 (
1

1− 2σ2
u

)

− 1

]

.

Therefore, for this particular example, we have

Var(θ̂SIMEX) = − lim
p→−1

Var(∆(p)).



SIMEX for Laplace measurement error 1983

This relationship also holds when θ =f(µ) = µ2. In general, for the location
model and for a function θ =f(µ) of µ, we have the following result, which is

an analogue of Lemma 3 in [20]. In this case, θ̂b(p) = f(Zb), θ̂(p) = E(θ̂b(p)|Z),
and ∆(p) = θ̂b(p)− θ̂(p).

Theorem 4.1. Suppose f is sufficiently smooth, then

Var

[

lim
p→−1

θ̂(p)

]

= − lim
p→−1

Var(∆(p)).

After replacing λ with p, the proof of Theorem 4.1 is almost a repetition of
the proof of Lemma 3 in [20] with the help of Theorem 3.2 in Section 3 above,
hence omitted for the sake of brevity.

Clearly, the above result has limited practical significance other than its the-
oretical importance. In the following we shall propose a variance estimation
procedure for the general case. Since the theory of the multivariate Laplace dis-
tribution is still developing, we will only focus on the one dimensional case, in
other word, the latent variable X and the measurement error variable U are
assumed to be one dimensional.

To proceed further, we assume that in the case Xi, i = 1, . . . , n, are ob-
servable, there exist unbiased estimators θ̂TRUE = T ({Yi,Wi, Xi}) of θ, and

TVar({Yi,Wi, Xi}) of Var(θ̂TRUE), respectively. Then an estimate of Var(θ̂SIMEX)
can be constructed via the following steps:

(1). Calculate TVar({Yi,Wi, Zb,i(p)}) for b = 1, 2, . . . , B, and denote the average
as τ̂2B(p). If possible, calculate the limit of the average as B → ∞, and
denote the limit as τ̂2(p);

(2). Calculate the sample variance of θ̂b(p), b = 1, 2, . . . , B. Denote it as s2∆(p);
(3). Extrapolating τ̂2B(p)−s2∆(p) or τ̂2(p)−s2∆(p) to p = −1 to get an estimator

of the variance of θ̂SIMEX.

If the exact extrapolant is used, then the resulting estimator is unbiased.

We conclude this section by the similar component-of-variance problem dis-
cussed as in [20] to provide a tangibly informative demonstration of the above
ideas. To be specific, the component-of-variance model has the form of Z =
X + U , where the latent variable X ∼ N(0, σ2

x), and the measurement error
U∼ Laplace(0, σ2

u), with σ
2
u a known positive constant. The parameter of inter-

est is θ = σ2
x. We start with the true estimate θ̂TRUE = S2

X , the sample variance

of {Xi}ni=1. The naive estimate is simply θ̂NAIVE = S2
Z . We have shown in Section

2 that θ̂SIMEX = S2
Z − σ2

u, and after some tedious computation, we obtain

τ̂2(−1) =
2

n+ 1

[

(S2
Z − σ2

u)
2 +

(3 − n)σ4
u

n(n− 1)
− 4S2

Zσ
2
u

n− 1

]

,

and

s2∆(−1) =
(3 − n)σ4

u

n(n− 1)
− 4S2

Zσ
2
u

n− 1
.



1984 H. L. Koul and W. Song

Therefore,

τ̂2(−1)− s2∆(−1) =
2S4

Z

n+ 1
+

3(n− 1)σ4
u

n(n+ 1)
.

This, together with the result

ES4
Z =

3σ4
x + 6σ2

xσ
2
u + 6σ4

u

n
+

(n2 − 2n+ 3)(σ2
x + σ2

u)
2

n(n+ 1)
,

implies

E
[

τ̂2(−1)− s2∆(−1)
]

=
2σ4

x

n− 1
+

4σ2
xσ

2
u

n− 1
+

(5n− 3)σ4
u

n(n− 1)
,

which is exactly the variance of θ̂SIMEX.

5. Numerical studies

Parallel to the Section 4 in [3], this section will report two simulation studies
conducted for some well known parametric models and a real data example.
Through these numberical studies, not only can one further get more familiar
with the methodology, but also appreciate the wide applicability of the L-SIMEX
procedure when the measurement error is truly Laplace.

Simulation 1: Polynomial regression models

Consider the quadratic measurement error regression model Y = β0+β1X+
β2X

2+ ε and Z = X +U . We would like to point out that the best extrapolant
function is not of the form a + b/(c + p) anymore. In fact, this is also true
for the N-SIMEX procedure. For the sake of simplicity, we assume that X has
expectation 0.

If Ui ∼ N(0, σ2
u), Ub,i ∼ N(0, σ2

u), all mutually independent, and Zb,i =

Xi + Ui +
√
λUb,i, then the estimate of β1 for extrapolating has the form







β̂0,b(λ)

β̂1,b(λ)

β̂2,b(λ)






=







n
∑n

i=1 Zb,i

∑n

i=1 Z
2
b,i

∑n

i=1 Zb,i

∑n

i=1 Z
2
b,i

∑n

i=1 Z
3
b,i

∑n

i=1 Z
2
b,i

∑n

i=1 Z
3
b,i

∑n

i=1 Z
4
b,i







−1 





∑n

i=1 Yi
∑n

i=1 Zb,iYi
∑n

i=1 Z
2
b,iYi







It is not easy, if not impossible, to compute β̂j(λ) = E(β̂j,b(λ)|{Yi, Zi}ni=1) for
j = 0, 1, 2, hence the exact extrapolating function. But we can have a good guess
by checking the limit of β̂j,b(λ). Let µk = EXk for k = 2, 3, 4, and λ̃ = (1+λ)σ2

u.
Then, one can show that

β̂1,b(λ) → P
2λ̃β2µ3(2µ2 + λ̃) + β1[µ2(µ4 − 3µ2

2 + 2(µ2 + λ̃)2)− µ2
3]

(µ4 − 3µ2
2)(µ2 + λ̃) + 2(µ2 + λ̃)3 − µ2

3

,

β̂2,b(λ) → P
λ̃β1µ3 + β2[(µ2 + λ̃)(µ4 − µ2

2)− µ2
3]

(µ4 − 3µ2
2)(µ2 + λ̃) + 2(µ2 + λ̃)3 − µ2

3

.
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Therefore, the reasonable extrapolant should be of the form

a0 +
a1 + a2λ+ a3λ

2

1 + a4λ+ a5λ2 + a6λ3
,

which is rather complicated. The same form of extrapolant function can be
obtained for the case of Laplace measurement errors.

For the sake of simplicity, in the following simulation, we will adopt a sim-
pler quadratic model in which β1 = 0. Then we can show that in the normal
measurement error case,

β̂2,b(λ) → P
β2(µ4 − µ2

2)

µ4 − µ2
2 + 4µ2σ2

u(1 + λ) + 2(1 + λ)2σ4
u

.

If Ui ∼ Laplace (0, σ2
u), and Ub,i ∼ V1i−V2i with V1i, V2i ∼ Gamma (p, σu/

√
2),

Zb,i = Xi + Ui + Ub,i, then we can show that

β̂2,b(p) → P
β2(µ4 − µ2

2)

µ4 − µ2
2 + (4µ2σ2

u + 3σ4
u)(1 + p) + 2(1 + p)2σ4

u

.

Therefore, a proper extrapolant for the quadratic regression model has a simpler
form, a+b/(c+dλ+λ2) in the normal case and a+b/(c+dp+p2) in the Laplace
case. Note that the square terms are related to σ4

u, so if σ2
u is small, then using

a+ b/(c+λ) or a+ b/(c+ p) to extrapolate may still get satisfying answers, but
if σ2

u is large, then this replacement might be very dangerous.
In the simulation, we chose β0 = β2 = 1, the sample size to be 300. To see the

effect of σ2
u on the SIMEX procedures, we chose σ2

u = 0.32 and σ2
u = 0.62. The

latent variable X ∼ N(0, 1). Thus the reliability ratio is 91.7% when σ2
u = 0.32,

and 73.5% when σ2
u = 0.62. Naive, linear, quadratic, two nonlinear SIMEX

estimates are compared. For convenience, we call the nonlinear extrapolant a+
b/(c+λ) or a+b/(c+p) as Type I nonlinear extrapolant, and a+b/(1+cλ+dλ2) or
a+ b/(1+ cp+dp2) as Type II nonlinear extrapolant. Similar to the linear case,
we also simulate the mismatch cases, that is, N-SIMEX procedure is applied
to the Laplace measurement error and L-SIMEX procedure is applied to the
normal measurement error.

Figures 1 to 6 consist of the kernel density estimates (KDEs) of the distri-
butions of β2 estimates corresponding to the standard normal kernel, where
the bandwidth used is 0.3 times the median of the standard deviations of all
the estimators in the study. In all plots, the solid curve is for the naive esti-
mate, the short dashed curve is for the linear L-SIMEX estimate, the dotted
curve is for the quadratic L-SIMEX estimate, the long dashed curve is for the
Type I nonlinear L-SIMEX estimate, and the dash-dotted curve is for the Type
II nonlinear L-SIMEX estimate. Table 1 and 2 are means and MSEs for all
the estimates. Just for exploratory purpose, we also calculate the average of the
quadratic and the two nonlinear estimates, denoted by Combined in Table 1 and
2. In these simulations, the L-G SIMEX outperforms the other two mismatch
cases.
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Fig 1. KDEs of the distributions of β2 es-
timates in the quadratic regression (L-G),
σ = 0.3.
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Fig 2. KDEs of the distributions of β2 es-
timates in the quadratic regression (L-G),
σ = 0.6.
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Fig 3. KDEs of the distributions of β2 es-
timates in the quadratic regression (L-N),
σ = 0.3.
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Fig 4. KDEs of the distributions of β2 es-
timates in the quadratic regression (L-N),
σ = 0.6.
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Fig 5. KDEs of the distributions of β2 es-
timates in the quadratic regression (N-L),
σ = 0.3.
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Fig 6. KDEs of the distributions of β2 es-
timates in the quadratic regression (N-L),
σ = 0.6.

It might be worth mentioning that if the measurement error is normal, but
the L-SIMEX procedure is used, then as n → ∞ and p → −1, β̂2,b(p) →
Pβ2(µ4−µ2

2)/(µ4−µ2
2− 3σ4

u), which over estimates β2, and if the measurement
error is Laplace, but the N-SIMEX procedure is used, then, as n → ∞ and
p→ −1, β̂2,b(p) → Pβ2(µ4 − µ2

2)/(µ4 − µ2
2 + 3σ4

u), which under estimates β2.
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Table 1

Mean and MSE of β2 estimates in quadratic regression, σ = 0.3

β̂1,NAIVE Linear Quadratic Nonlinear Nonlinear Combined
(I) (II)

L-G Mean 0.9119 0.9783 1.0022 1.0068 0.9657 0.9915
MSE 0.0018 0.0021 0.0024 0.0025 0.0024 0.0023

L-N Mean 0.8289 0.9285 0.9806 0.9965 0.9338 0.9703
MSE 0.0054 0.0070 0.0081 0.0086 0.0084 0.0081

N-L Mean 0.8374 0.9420 1.0013 1.0212 0.9456 0.9893
MSE 0.0037 0.0047 0.0057 0.0065 0.0060 0.0057

Table 2

Mean and MSE of β2 Estimates in Quadratic Regression, σ = 0.6

β̂1,NAIVE Linear Quadratic Nonlinear Nonlinear Combined
(I) (II)

L-G Mean 0.6907 0.8141 0.9352 1.0241 0.9104 0.9566
MSE 0.0059 0.0087 0.0147 0.0265 0.0221 0.0195

L-N Mean 0.5095 0.6182 0.7746 1.0038 0.8331 0.8705
MSE 0.0091 0.0136 0.0268 0.0993 0.0667 0.0560

N-L Mean 0.5407 0.6548 0.8654 1.3888 1.0244 1.0929
MSE 0.0049 0.0072 0.0132 0.4616 0.0797 0.0936

Simulation 2: Logistic regression

In this simulation, we adopt the similar logistic regression model as in [3]
except the measurement error now has a Laplace distribution. To be specific,
the response variable Y and covariates X,W are related through

P (Y = 1|X,W ) = F (β1 + βxX + βwW + βxwXW ),

where F is the logistic d.f. Here, W is observable, X is measured with Laplace
error Z = X + U , U ∼ Laplace (0, 0.52), and X,W are bivariate normal with
standard normal as their marginal distributions, and their correlation coefficient
is set to be 1/

√
5. Thus the reliability ratio is 80%. The regression parameters

are set to β1 = −2, βx = 1, βw = 0.25, and βxw = 0.25. Simulation is conducted
for 400 data sets of sample size n = 1500 for each data set. To visually illustrate
the L-SIMEX procedure, we take p ∈ {0, 1/8, 2/8, . . . , 16/8} as the grid points
and B = 200. Figure 7 shows L-SIMEX steps from three different extrapolants,
linear, quadratic and nonlinear based on the data from all grid points. For this
particular data set and p values, the performance of the L-SIMEX estimators
for βx, βw, βxw are well ordered in the sense that the nonlinear extrapolation
estimator generally has smaller estimation bias than the quadratic extrapolating
estimator, the quadratic extrapolating estimator has smaller estimation bias
than the linear extrapolating estimator, and the naive estimator has the largest
estimation error. The exception occurs for the estimate of β1 with quadratic
L-SIMEX performing the best, followed by linear, nonlinear and naive. We also
tried some other data sets, and same phenomenon holds for most cases.

We also conducted the simulation study using the above set up, but where the
three σu = 0.3, 0.6, 1 values were used in the simulation in order to see the effect
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Fig 7. Extrapolation Plot for logistic regression.

Table 3

Mean (MSE) of the estimates in logistic regression, σ = 1

Naive Linear Quadratic Nonlinear
L-L -1.8169 (0.0066) -1.8388 (0.0069) -1.8852 (0.0079) -2.0287 (0.0191)

β1 N-L -1.8213 (0.0064) -1.8432 (0.0068) -1.8882 (0.0079) -2.0155 (0.0169)
L-N -1.8236 (0.0069) -1.8454 (0.0072) -1.8922 (0.0082) -2.0444 (0.0213)
L-L 0.4072 (0.0035) 0.4804 (0.0049) 0.6293 (0.0089) 1.0209 (0.0383)

βx N-L 0.4044 (0.0041) 0.4773 (0.0056) 0.6235 (0.0099) 0.9960 (0.0357)
L-N 0.4064 (0.0037) 0.4792 (0.0052) 0.6282 (0.0092) 1.0296 (0.0410)
L-L 0.5352 (0.0073) 0.4973 (0.0079) 0.4198 (0.0096) 0.2074 (0.0228)

βw N-L 0.5471 (0.0081) 0.5097 (0.0086) 0.4363 (0.0098) 0.2565 (0.0180)
L-N 0.5465 (0.0079) 0.5094 (0.0084) 0.4318 (0.0100) 0.2060 (0.0251)
L-L 0.1092 (0.0033) 0.1293 (0.0046) 0.1741 (0.0079) 0.2992 (0.8687)

βxw N-L 0.1035 (0.0035) 0.1232 (0.0049) 0.1604 (0.0081) 0.2926 (2.3963)
L-N 0.1079 (0.0036) 0.1270 (0.0051) 0.1733 (0.0089) 0.2779 (2.0053)

of measurement error on the L-SIMEX procedure. An interesting finding is that
when σu is small (0.3 and 0.6), both match and mismatch SIMEX procedures
work almost equally well, but if σu is large (σu = 1), the advantage of the
match SIMEX procedure becomes obvious, in particular, when estimating the
parameter βxw. Also see Table 3 for detail.
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Fig 8. KDE plots for logistic regression, L-G, σ = 1.

For illustration, Figure 8 is the KDE plots for the parameter estimates using
the proposed L-SIMEX procedure. Again, normal kernel function is used for all
cases and the common bandwidth is chosen to be 0.3 times the median of the
standard deviations of all the estimators in the study. The solid curve is for the
naive estimate, the dashed curve is for the linear L-SIMEX, the dotted curve
is for the quadratic L-SIMEX and the dash-dotted curve is for the nonlinear
L-SIMEX. As expected, the naive estimate, linear, quadratic SIMEX become
more conservative with larger σ, the nonlinear L-SIMEX estimate stays unbi-
ased but with increasing variability. For the sake of brevity, the KDE plots for
mismatch cases are omitted, since the overall patterns are similar.

Real data example: Framinham heart study

In the following, we shall apply the proposed L-SIMEX procedure to a data
set from the Framinham Heart Study, which consists of several exams taken
two years apart. The data set includes 1615 observations from men aged from
31 to 65 years. The response variable Y is the indicator of the first evidence
of coronary heart disease (CHD) within an 8-year period following the second
exam. There are 128 cases of CHD. The predictors of interests include the age
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Table 4

SIMEX estimates and S.E.’s from the Framinham data, SBP measured with error

Intercept Age Smoking Log(SCL-100) Log(SBP-50)
N-SIMEX, Linear -20.3417 0.0561 0.6044 1.5927 1.5822

2.3997 0.0118 0.2510 0.3389 0.3896
L-SIMEX, Linear -20.3381 0.0561 0.6046 1.5927 1.5813

2.3909 0.0118 0.2510 0.3389 0.3862
N-SIMEX, Quadratic -21.5532 0.0538 0.6138 1.5784 1.8972

2.6002 0.0120 0.2517 0.3396 0.4621
L-SIMEX, Quadratic -21.5430 0.0539 0.6139 1.5786 1.8944

2.6010 0.0120 0.2517 0.3396 0.4626
N-SIMEX, Nonlinear -22.6926 0.0511 0.6246 1.5662 2.1963

3.0152 0.0127 0.2548 0.3416 0.5986
L-SIMEX, Nonlinear -22.6832 0.0511 0.6237 1.5666 2.1937

3.1098 0.0130 0.2548 0.3415 0.6280

at Exam 2, systolic blood pressures (SBP) at Exam 2 and Exam 3, smoking
status, and serum cholesterol levels (SCL) at Exam 2 and Exam 3. For each
individual, SBP are measured twice by independent examiners at each exam.
The covariates age and smoking status do not have measurement errors, but the
measurement error is presents in SBP and SCL. A logistic regression model is
used to investigate the relationship between CHD and covariates. In our analysis,
the SBP measurement is transformed to log(SBP − 50). But different from [2],
the SCL measurement is transformed to log(SCL − 100). A logistic regression
model is used to investigate the relationship between CHD and covariates. To
be specific, if we denote X1 = log(SBP − 50), and X2 = log(SCL− 100), then
the logistic regression model used in our analysis can be written as

P (Y = 1|Age, Smoking, X1, X2) = F (β1 + β2Age+ β3Smoking+ β4X1 + β5X2),

where F is the logistic distribution function.
Similar to the set up in [2], we ignore the measurement error in SCL and

assume that the SBP is the only covariate measured with error. In our analysis,
the average Z of all four log(SBP − 50) readings from each individual will be
used as the surrogate. Therefore, implicitly, the true latent variable X is the
long-term average of Z. The average of log(SCL − 100) from Exam 2 and 3 is
used as the true value of log(SCL− 100).

A component of variance analysis produces an estimate of 0.01285 for the
variance of measurement error σ2

u, which is slightly different from 0.01259, the
one reported in [2]. In the simulation, B = 2000 and eight equally spaced values
of p from [0, 8] are used in the simulation step. Using the same B and p values,
the variance estimation procedure developed in Section 5 is used to obtain the
standard errors for each estimate. Linear, quadratic and Type I nonlinear ex-
trapolant are used for the extrapolation. Table 4 presents the analysis results
from both N-SIMEX procedure and L-SIMEX procedure. In each cell, the num-
ber on the top is the SIMEX estimate for the regression parameters, and the
number on the bottom is the SIMEX estimate for the standard error. It is inter-
esting to notice that the estimates from both SIMEX procedures behave almost
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Fig 9. Extrapolation plot for regression parameters estimates, SBP measured with error.

the same. This is mainly due to the fact that the variance of the measurement
error (0.01285) is very small and this phenomenon well matches the simulation
results in logistic regression reported in Section 4.

Figures 9 and 10 are the L-SIMEX extrapolation plots for the regression
parameters except for the intercept. The x-axis is the value of p, and the y-axis
in Figure 9 is the estimated value of regression parameter, and the y-axis in
Figure 10 is the estimated variance. From Figure 9 and 10, we can see that
the effect of the measurement error is significant on the regression coefficient
for log(SBP − 50). This finding is similar to that of [2]. Since the N-SIMEX
extrapolation plots are very similar to the L-SIMEX extrapolation plots, they
are omitted here for the sake of brevity.

6. Discussion

Here, we shall summarize the contribution of this paper and make a finite sample
comparison of the L-SIMEX with the revised moment estimates of [10].

This paper has developed a novel L-SIMEX procedure in the measurement
error models when the measurement error has a Laplace distribution. Theo-
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Fig 10. Extrapolation plot for variance estimates, SBP measured with error.

retical and empirical evidence clearly shows that the L-SIMEX procedure can
successfully reduce or remove the bias induced by the Laplace error. Although
the difference between N-SIMEX and L-SIMEX procedures is not very signifi-
cant when the variance of measurement error is small, extra caution has to be
taken if the parameter to be estimated involves higher than the fourth moment
and the measurement error is not negligible. Same normal pseudo-errors can
be repeatedly used in the simulation step for different λ values in N-SIMEX
procedure, but in L-SIMEX procedure, the same gamma pseudo-variables can
not be repeatedly used in the simulation step. Therefore, a bigger value of B is
preferred in the application in order to reduce the Monte Carlo simulation bias.

Finding the exact extrapolant usually is not possible, in particular, when the
model and the estimation procedure is complicated. The simulation study shows
that if the measurement error is small, then the nonlinear form a + b/(c + p)
works well in the Laplace measurement error case. For example, in the quadratic
regression model discussed in Section 4, although the true extrapolant has a form
of a + b/(c + dp + p2), but the square term p2 actually related to σ4

u which is
negligible when σ2

u is small. Asymptotic theory for L-SIMEX procedure will be
developed following the work in [2] at a later date.
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For the cases of multiple predictors measured with Laplace error, if the com-
ponents in the measurement error vector are independent with mean 0 and pos-
sibly different variances, we can still adapt and apply the proposed L-SIMEX,
and the modification is obvious and straightforward. But if the measurement
error vector follows a general Laplace distribution, such as the one defined in
[11] or in [22], then extending the proposed L-SIMEX to multiple predictors
cases is not easy. A natural choice would be searching for a version of multidi-
mensional gamma distribution, such as the ones discussed in [8, 14, 15], to see
if it still maintains the similar result as in Theorem 3.2. But up to now, we are
still investigate this possibility.

Finally we would like to comment on [10]’s revised moment estimation pro-
cedure when data are contaminated with Laplace measurement error. To be
specific, suppose the parameter of interest, say β, is defined by a set of popula-
tion moment conditions Em(X ;β) = 0, where m is twice differentiable. Instead
of observing X , one observes its surrogate Z = X + U . Both the parameter
β and the variable X could be multidimensional. If the components of U are
independent and follow Laplace distributions with mean 0 and possibly different
variances, then the population moment conditions can be replaced by the revised
moment conditions proposed in [10] based on the surrogate Z. Thus, estimating
equations based on the empirical versions of the revised moment conditions can
be constructed. In the regression setup, if E(Y |X = x) = g(x;β), then they
showed that for a twice differentiable weight function h(x),

E

[

h(Z)R(Y, Z;β)− σ2
u

2
(h′′(Z)R(Y, Z;β)−2h′(Z)g′(Z;β)−h(Z)g′′(Z;β))

]

= 0,

where R(Y, Z;β) = Y − g(Z;β), h′(z), h′′(z) are the first and second order
derivatives of h w.r.t. z, and g′(z;β),g′′(z;β) are the first and second order
derivatives of g w.r.t. z. The asymptotic properties of the estimator based on
the revised moment estimating equation are also discussed in [10]. Although the
revised moment estimation procedure has a clean mathematical structure and
a nice asymptotic theory, the relatively complicated revised moment estimating
equation might create some computational difficulties when implementing the
method. This is extremely undesirable for applied statisticians, in particular at
the beginning stage of a study, they might only want to do some exploratory
analysis. If so, the proposed L-SIMEX procedure surely can satisfy their needs.
For the illustration purpose, we conduct a comparison study through simulation
to show that the finite sample performance of the L-SIMEX procedure versus
the revised moment estimation procedure.

Logistic regression: L-SIMEX vs. revised moment estimate

Consider the regression model Y = I[β0 + β1X + ε ≥ 0], where ε follows a
standard logistic distribution. The same model is also discussed in [10], with the
exception of σ2

u being known here. For any measurable function h(x), we have
E[h(X)(Y − F (β0 + β1X))] = 0, where F is the logistic CDF. In this case, the
revised moment equations have complicated forms. The following two different
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Table 5

MSE of regression parameter estimators

β̂0 β̂1

Sample Size h1(x) h2(x) L-SIMEX h1(x) h2(x) L-SIMEX
500 0.090 0.615 0.35 0.299 0.178 0.319
600 0.087 0.585 0.316 0.294 0.136 0.312
700 0.077 0.627 0.279 0.289 0.146 0.282
800 0.074 0.579 0.284 0.289 0.155 0.289
900 0.070 0.565 0.278 0.249 0.152 0.288

weight functions h are used to see their effects on the estimation of β0 and β1,

h1(x) =

(

1
x3

)

, h2(x) =

(

x2

x3

)

.

The values of the true parameters β0, β1 and σ2
u are chosen to be 1’s, and the

logistic distribution has location parameter 0 and scale parameter 1. The sample
sizes n are chosen to be 500, 600,700,800 and 900, and the simulation is replicated
200 times for each sample size. The MSE is used to evaluate the performance of
the revised moment estimation procedures. The simulation results are shown in
Table 5. Although L-SIMEX estimates have larger MSEs, in particular, when
estimating β1, it still provides reasonably good estimates for the parameters.
Since L-SIMEX only needs a solution for the empirical version of the moment
condition Eh(X)(Y − g(X ;β)) = 0, which is usually much simpler than the one
based on the revised moment condition, so it remains a competitive estimation
procedure over the revised moment estimation methods, in particular, if the
empirical version of the revised moment condition is hard to solve.
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